
OPTIMIZING CUDA CODE BY KERNEL FUSION—APPLICATION
ON BLAS

JIŘ́ı FILIPOVIČ† , MATÚŠ MADZIN‡ , JAN FOUSEK‡ , AND LUDĚK MATYSKA†

2Institute of Computer Science, Masaryk University, Botanická 68a, 602 00 Brno,
Czech Republic 3Faculty of Informatics, Masaryk University, Botanická 68a, 602 00
Brno, Czech Republic

Abstract.

Modern GPUs are able to perform significantly more arithmetic operations than transfers of a
single word to or from global memory. Hence, many GPU kernels are limited by memory bandwidth
and cannot exploit the arithmetic power of GPUs. However, the memory locality can be often
improved by kernel fusion when a sequence of kernels is executed and some kernels in this sequence
share data.

In this paper, we show how kernels performing map, reduce or their nested combinations can be
fused automatically by our source-to-source compiler. To demonstrate the usability of the compiler,
we have implemented several BLAS-1 and BLAS-2 routines and show how the performance of their
sequences can be improved by fusions. Compared to similar sequences using CUBLAS, our compiler
is able to generate code that is up to 2.61× faster for the examples tested.

Key words. GPU, CUDA, BLAS, Kernel fusion, Code generation, Automated tuning

AMS subject classifications. 68W10, 68N19, 15A99

1. Introduction and Motivation. Today’s accelerators, such as CUDA GPUs,
are able to perform tens of arithmetic operations in the time that it takes for a word
to be read from or written to global memory. Moreover, the dominance of arithmetic
power over memory bandwidth grows with each new hardware generation1. The in-
put and output of each GPU kernel (i. e. the subprogram executed on GPU) has
to be stored in the global memory. Thus, many kernels with low flop-to-word ratio
are memory-bound. When such kernels executed in sequence share some data, per-
formance may be improved by placing the shared data in some significantly faster
on-chip memory. Although global memory is cached in new GPUs, caches usually
cannot hold whole output of the kernel. However, the memory locality can be im-
proved by fusing these kernels into a larger ones and placing shared data into on-chip
memory explicitly.

The number of possible fusions is high as each fusion is created according to
sequence of kernel calls and data dependency between them. Thus, re-usability of
fused kernels is limited. Because of this, it is impractical to produce libraries consisting
of already-fused kernels. Instead, it is more practical to use the library of simple and
re-usable kernels and automatically generate fusions when the sequence of kernel calls
is given.

It is difficult to fuse generic kernels automatically, but automation of fusion be-
comes possible when the type of operations performed by kernels is limited. In this
paper, we study automatic fusions of kernels performing map, reduce or their nested
combination. In our approach, the function applied by map or reduce can run in
multiple threads. Thus, it can efficiently process larger amount of data, which allows
common optimization of memory locality, such as tiling.

1The first CUDA processor, G80, has flop-to-word ratio about 24, GT200 has 27, GF110 has 33
and GK110 has 63.

1

ar
X

iv
:1

30
5.

11
83

v2
 [

cs
.D

C
]

 1
6

Ju
l 2

01
3

In this paper, we present kernel fusion as an optimization method and show how
it can be automated by our source-to-source compiler when the type of fused kernels
is restricted to map and reduce. The compiler works with a library of elementary
functions and a script calling functions from the library. It fuses selected functions
to improve their performance and preserve the semantics defined by the script. We
note that fusing all kernels cannot always maximize performance. Thus, the compiler
searches and prunes the optimization space to find efficient fusions.

We address two main use cases by our approach.

• Using fusion-equipped libraries. Some general purpose library can be im-
plemented to be usable with our compiler. In that case, library users can
write only script calling library functions without the need to care about
their GPU-specific implementation. The advantage of this approach is that
library functions are automatically fused by our compiler, improving their
performance.

• Simplification of fusion optimization. In some cases, it is meaningful to de-
velop both the script and the library (even if is not widely reusable) and use
our compiler to find efficient fusions. First, many combinations of library
function calls may be needed which makes the manual fusion time demand-
ing and error-prone. Second, the optimization of code-to-kernels distribution
may be hard (one such example is presented in our previous paper [5]).

To demonstrate the performance benefit of kernel fusions generated by our com-
piler, we have accelerated several sequences of BLAS (Basic Linear Algebra Subpro-
grams) routine calls. BLAS is a library of linear algebra routines, which is frequently
used in scientific computation and is believed to be well-optimized. The BLAS-1
(vector-vector) and BLAS-2 (matrix-vector) routines are memory-bound, thus their
sequences are good candidates to be improved by fusions [1, 11]. We show that fusing
several BLAS routines into a single kernel can significantly improve performance by
reducing the number of memory transfers. This performance improvement cannot be
achieved by tuning unfused kernels separately.

The rest of the paper is structured as follows. The overview of work related to
our research is given in Section 2. The general discussion about performance impact
of kernel fusion as well as its automation can be found in Section 3, whereas Section
4 describes the compiler allowing automatic fusions. The performance of a code
generated by our compiler is evaluated in Section 5. The Section 6 concludes the
paper and sketch the future work.

2. Related Work. The code-to-kernel distribution can be optimized by kernel
fusion, or by generation of kernels of optimized size from a code which is not explicitly
divided into kernels (monolithic implementation or some high-level language).

The kernel fusion is allowed in some frameworks working with algorithmic skele-
tons. Algorithmic skeletons that allow automatic parallelization are predefined higher-
order functions performing given user-defined first-order functions [4, 7]. The SkeTo
framework automatically fuse skeletons to spare global memory transfers [16]. The
fusion is possible also in Thrust [10], but the programmer has to explicitly set the ker-
nels to be fused. The significant difference of our approach is that first-order functions
can be parallel, which allows them to process larger data (e. g. small tensors [5] or
matrix tiles), whereas user-defined functions executed by skeletons are serial. Second
difference is that we search fusion optimization space to discard suboptimal fusions.

In array programming, one defines the transformations of whole arrays using
element-wise operations, reduction etc. [12] Although array and skeletal programming

2

introduce different programming models, the transformations of arrays performs usu-
ally similar operations as skeletons and there is similar opportunity to perform several
transformations within single kernel. The Barracuda compiler is able to fuse arrays
and perform operations on these arrays in a single kernel [13]. The fusions are per-
formed whenever it is possible, without considering on-chip resources consumption.
A similar fusion mechanism is implemented in Copperhead [3], which is a high-level
data-parallel language embedded in Python. It seems that both Barracuda and Cop-
perhead do not discard suboptimal fusions. A programmer cannot write the native
code of the transformation applied to array’s elements (i. e. first-order functions),
thus he or she cannot explicitly define parallel per-element code or implement any
low-level optimization, which is possible in our approach. On the other hand, our
approach is more low-level, as our compiler fuses functions written in C for CUDA.

A tool by Gulati and Khatri [8] automatizes the partitioning of the input code
into kernels and automatically generates the code of output kernels. The input code
performs serial computation, the output code performs the computation multiple
times in parallel (thus it is application of map function). The paper shows that the
optimization of resource usage by partitioning of the code into several kernels may in
some cases improve the performance over monolithic implementation even if the data
locality is worse in the partitioned code, which agree with our results.

A fusion method improving energy efficiency of CUDA kernels is proposed in [18].
This method does not aim at improving the execution times of kernels, as kernels
are fused without improving data locality. Instead, it aims at balance the demand
for hardware resources, resulting in lower power consumption, but similar execution
times. Similarly to our method, the previously-implemented kernels are fused instead
of automatic parallelization.

The idea of optimizing sequences of BLAS functions by their fusion is not new,
however, to the best of author’s knowledge, no system allowing fusions on GPUs has
been published. Belter at al. [1] introduce a BTO BLAS compiler, which is able
to fuse BLAS functions targeting modern CPUs. The DESOLA active library, pre-
sented by Russell at al. [15], performs fusions in time the BLAS functions are called,
i. e. without a previous compilation. The main difference between our research and
those presented in [1] and [15] is that we target GPU architecture, thus the technique
of the fusion significantly differs. We fuse parallel kernels instead of loops, which
requires different techniques to perform the fusion correctly.Moreover, the optimiza-
tion space search and performance prediction also changes due to different nature
of GPUs.Our approach addresses multiple types of computational problems, whereas
BTO BLAS and DESOLA focus only on BLAS. Our approach uses the hand-tuned
routines, whereas BTO BLAS uses high-level description of BLAS routines and DES-
OLA implements initial BLAS functions (which are further optimized automatically)
in language similar to C, without any architecture-specific optimizations.

In our previous papers, we have introduced basic principles of our compiler [6]
and its non-trivial application together with improved efficiency of data exchanging
between fused kernels [5]. Nevertheless, the compiler introduced in these papers was
restricted on map kernels, which significantly limits its applicability. In this paper,
we discuss fusion of nested map and reduce and show the structure of generated code
and process of its generation in deeper detail.

3. Kernel Fusion. In this section, we discuss kernel fusion in more detail, but
still as a general concept, i. e. independently of the design and implementation deci-
sions made for our compiler. First, the performance advantages and disadvantages of

3

fusions are discussed. Second, the properties of map and reduce functions allowing
their automatic fusion are described. Finally, the implementation of BLAS routines
as fusible kernels is introduced.

3.1. Fusion as an Optimization Method. The main advantage of fusion is
the improvement of memory locality. In CUDA, each kernel has to read its input from
and store its output to off-chip global memory. When two kernels share some data,
their fusion can hold shared data in on-chip memory—registers or shared memory.

Consider the example depicted in Figure 3.1 left, where z = f3(f1(x), f2(y)) is
evaluated. When f1, f2 and f3 are fused into a single kernel, the results computed by
f1 and f2 can be held in on-chip memory and immediately used by f3. Otherwise,
the outputs of f1 and f2 have to be stored in global memory and loaded by f3. If
the performance of f1, f2 or f3 is bounded by global memory bandwidth, the fusion
increases performance by reducing global memory data transfers.

An additional benefit of kernel fusion is the reduction of kernel launch overhead (a
lower number of kernels are launched). Moreover, the fused kernels are more complex,
thus the optimizing compiler has more room for optimizing the instructions, such as
common subexpression elimination (e. g. data indexing can be the same or similar for
multiple functions included in single fusion), loop fusion, etc.

Besides the performance improvements mentioned above, fusion may also decrease
performance. The occupancy of the GPU (the number of warps that can concurrently
run on the GPU) must be sufficient to hide the memory latency [14]. When a kernel
requires too much on-chip memory, occupancy is limited and the memory latency can
decrease performance. When such a kernel is fused with another, occupancy is limited
for the whole fused kernel. Thus, it is possible that the overall performance is better
when the kernel which limits occupancy is not fused.

Another factor that can limit occupancy is the storage of additional intermediate
data in on-chip memory. Consider the example mentioned above. In the fused kernel,
f1 and f2 have to be performed before f3 in any ordering. Suppose that f1 is performed
before f2. In this case, when f2 is performed, the result of f1 must be held in on-chip
memory, thus at least for f2 the consumption of on-chip memory is higher compared to
the unfused version. This example is depicted in Figure 3.1 right, where the execution
of every unfused kernel would consume less on-chip memory compared to the fusion.

Finally, the optimal number of threads processing data elements can vary for
different kernels. When such kernels are fused, some of them have to use a suboptimal
number of threads, or some threads idle in part of the computation (but hold on-chip
resources), thus fusion may decrease performance.

As we have shown, kernel fusion may increase as well as decrease the performance.
The number of possible fusions and their combinations is large (see Table 5.4 or [5])
and a manual search for the best-performing one is time-consuming and error prone.
Thus, the automatic generation of efficient fused code is necessary.

3.2. Kernel Fusibility. To fuse two kernels, one has to correctly glue kernel
codes into a single kernel preserving the original functionality. The automatic fusion
of generic kernels is difficult for two main reasons.

• On-chip memory is distributed. Some data, which was originally exchanged
via global memory, resides in on-chip memory in fused kernel. This data can
be transfered via on-chip memory when the following holds for all kernels
to be fused: (i) kernels use the same mapping of threads to exchanged data
placed in registers and (ii) kernels use the same mapping of thread blocks to

4

Fig. 3.1. Computation of z = f3(f1(x), f2(y)) as x′ = f1(x), y′ = f2(y), z = f3(x′, y′). Left:
data movement of unfused and fused versions. Right: On-chip memory allocation in unfused and
fused versions.

exchanged data placed in shared memory. Thus, the automatic analysis of
this mapping and its modification is needed.

• Global barrier is not available inside kernel. Kernel execution creates a global
barrier, which cannot be generally implemented within a kernel. Two or more
kernels can be fused only if this global barrier is not necessary, i. e. it can
be replaced by a local barrier or avoided entirely. Thus, it is needed to
automatically determine whereas the global barrier can be avoided.

In our paper, we have restricted the types of kernels to map and reduce and their
nested combinations (mapped map, or mapped reduce – a map function cannot be
used as a reduction operator). These kernels have a wide range of applications as map
and reduce have sufficient expressive power for many computing tasks. Also, map and
reduce allow automatic fusion, as is shown below. We note that the method of fusion
is general, therefore more types of kernels could be fused automatically, although we
currently do not support them.

The idea of fusing GPU kernels performing map and reduce has been presented
in several papers [16, 13, 3, 17]. However, the map and reduce can execute parallel
first-order functions in our case, which makes their fusions more complicated. Thus,
we discuss in more details how to fuse them.

3.2.1. Map Kernels. Let Li = [ei1, e
i
2, . . . , e

i
m] is a list of m elements ei1, . . . , e

i
m.

The map is a higher-order function which applies a given n-ary2 function f element-
wise to all elements of the lists L1, . . . , Ln, producing the list of results:

map(f, L1, . . . , Ln) = [f(e11, . . . , e
n
1), . . . , f(e1m, . . . , enm)]

Suppose two data-dependent calls of map function map(g,map(f, L)), L = [e1, . . . , en].
The mapped functions f, g can be fused, i. e. kernel performing map(g ◦ f, L) can be
created, if and only if ∀i ∈ [1, n], f(ei) and g(f(ei)) run in the same (single) thread
block. It guarantees that the result of f can be transfered to g via on-chip shared
memory, as the shared memory is visible for all threads within the same block. It
also guarantees that no global barrier is needed, as no data are exchanged between
blocks. We note that single instance of each mapped function has to fit into thread
block, i. e. has to use reasonable number of resources (threads, on-chip memory).

2Some languages uses map only for unary functions and introduce zipwith for n-ary functions.

5

3.2.2. Reduce Kernels. Let ⊕ be a binary associative operator. The reduce is
higher-order function applying given operator ⊕ recursively to all elements of the list
L building a resulting element.

reduce(⊕, L) = e1 ⊕ e2 ⊕ e3 ⊕ · · · ⊕ en
The result of reduction is constructed using all elements e1 . . . en. As multiple

thread blocks are used to utilize GPU, a global barrier is needed to obtain the result
of reduction. The important consequence of global barrier need is that the result of
the reduction cannot be used in the same kernel where the reduction is computed.
Nevertheless, we can fuse a reduction kernel with other kernel. Because of ⊕ associa-
tivity, a partial reduction can be computed locally per thread block without global
barrier and thus reuse on-chip data (produced by map, or shared input of another
reduce function). The final result of reduction is obtained after global barrier by
reducing results of all partial reductions.

We note that the final result of the reduction can be computed by several ways
(i) by extra kernel, (ii) by the last running block of kernel performing partial re-
duction (global barrier is replaced by test of termination of all other blocks) or (iii)
automatically after kernel is finished when atomic instructions are available.

3.2.3. Local Barriers and Registers. Let f and g are functions being fused.
The thread-to-data mapping of f, g is same if and only if each word transfered from
f to g is stored in f and loaded in g by the same thread. As our mapped functions
or reduce operators can be parallel, the thread-to-data mapping can differ in kernels
being fused. In that case, data has to be transfered via shared memory and local
barrier needs to be performed between kernel codes.

The local barrier is not needed between f and g when the thread-to-data mapping
is same. When all functions accessing data element e access them with same thread-
to-data mapping, and the access is not data-dependent3, the element e can be stored
in registers.

Fig. 3.2. Fused kernel performing map(g ◦ f, L).

The Figure 3.2 illustrates an example of kernels fusion, showing fused kernel
performing map(g ◦ f, L). In this example, two instances g(f(e2i−1)) and g(f(e2i))
run in a single thread block. As no instance is divided among thread blocks, data can
be passed via on-chip memory between functions f and g. Each function is performed
by a different number of threads, and let all threads of f write a result in this example,
thus data exchanged between them cannot be placed in registers and thus must be
placed in shared memory. Finally, a local barrier has to be used.

We does not consider a fusion of functions with different nesting depth, as it
yields redundant execution of functions with lower nesting depth. We note that all
rules discussed in this chapter are same for nested and unnested map and reduce.

3Data element can be placed in registers only if their indexing can be determined in compile
time [14].

6

3.3. BLAS Functions Expressed as Map and Reduce Calls. In this paper,
we use several BLAS functions or sequences of BLAS function calls as demonstration
of described mechanisms used in our compiler. Thus, we first describe how to express
BLAS functions to be usable with our compiler.

Many BLAS functions can be expressed as a map, a reduce or a combination of
the two. Thus, it is possible to fuse them automatically, i. e. to perform several BLAS
functions as well as their fragments within a single kernel.

BLAS-1 implements vector-vector operations. Each vector can be expressed as
a list of elements (scalars, or small sub-vectors). BLAS-1 operations process vector
elements independently (i. e. perform map), perform reductions, or a combination of
the two. For example, DOT kernel (z ← xT y) multiplies each element from vector x
by corresponding element of vector y (map) and sums the results of multiplication over
all elements (reduce). Currently, we have not implemented all BLAS-1 operations,
however, we are not aware of any BLAS-1 function that cannot be implemented in
the described model.

A more complicated situation arises when BLAS-2 functions, which implement
matrix-vector operations, are considered. The matrix can be seen as a list of vectors,
where vectors represent rows or columns. Then, we could implement BLAS-2 functions
as a mapping of scalar-vector functions (where scalars are elements of vectors and
vectors are elements of matrices). However, vectors representing matrix columns or
rows may be too large to be stored in on-chip memory, which makes fusions impossible.
To overcome this limitation, we introduce nested calls of map and reduce, which allows
us to further divide vectors representing matrix rows or columns to smaller elements
and process these elements with map or reduce.

Consider the matrix-vector multiplication y = Ax as an example of a BLAS-2
function. In its computation, for the i-th row of A, the dot product of the row and x
is computed and stored to the i-th position in y.

Without nesting, we represent y = Ax as:

y = map(dotprod(Ai, x), A) (3.1)

where A is a list of rows A1, A2, . . . , An, and x is a list of elements of the vector x.
The single instance of function dotprod computes dot product of row Ai and vector
x, which may be too large for on-chip memory.

Using nested map and reduce, y = Ax can be expressed as:

y = map(reduce(+,map(·, Ai, x)), A) (3.2)

where A is a list of rows A1, A2, . . . , An, each row Ai is a list of elements in i− th row
and x is a list of elements of the vector x.

We note that we can view dimensions of multi-dimensional structures in any order
– e. g. matrix can be viewed as a list of rows or list of columns. Thus, we can similarly
express operations for transposed matrices.

The current BLAS-2 standard cannot be fully implemented using our model based
on map, reduce and their nested combination. For example, we cannot handle sym-
metric matrices stored in some packed format in this model. To overcome this lim-
itation, more general data structures have to be supported by our compiler in the
future.

4. The Compilation Process. Based on observations given in Section 3, we
have developed a source-to-source compiler, which is able to optimize sequence of

7

kernel calls by kernel fusion. In this section, we focus on the process of creating
fusions and fusion code generation and briefly describe the process of fusion space
exploration, which is discussed in more detail in our previous paper [6].

4.1. Compilation Stages. Our compiler works with a special form of kernel
implementation containing CUDA code implementing some higher-order function ap-
plying some first-order function on many elements—we call this special form of a kernel
elementary function. The main purpose of the compiler is to transform a sequence
of elementary function calls into the sequence of kernel calls, where single kernel can
include one or more elementary functions, maximizing performance of output code.

Recall that the input of our compiler consists of a high-level script and a library of
elementary functions. Each elementary function can be present in several alternative
implementations in the library with different performance characteristics. The script
calls functions from the library, thus it defines the sequence of function calls and data
dependencies.

The compilation process is divided into three main stages:

• parsing the script and library (reading elementary functions and their meta-
data);

• generation and search of the optimization space;
• code generation.

The script and metadata parsing is straightforward and is not discussed here.
The optimization space exploration and code generation are discussed in the following
sections in more detail.

4.2. Generation and Search the Optimization Space. The input script is
parsed creating data dependency graph, where vertices represent elementary function
calls and edges represents data dependency between functions. Having data depen-
dency graph build and library data parsed, the code without fusions can be generated
(i. e. each elementary function is translated to separated kernel). However, there is
usually a large number of possible codes with fusions. Thus, the optimization space
is generated and searched for the code with the best expected performance. There
are three main steps in the generation of the optimization space.

• Generation of fusions. We define fusion as a fusible subgraph of data de-
pendency graph (selection of elementary functions, which can be safely fused
without influencing input program semantics). At this step, a space of all
reasonable fusions is generated.

• Generation of fusion implementations. Each fusion can be implemented in
many different ways, differing in (i) calling order of functions (which can
affect the amount of needed on-chip memory), (ii) chosen implementations of
elementary functions, (iii) block size or (iv) number of serial iterations. At this
step, implementations of each fusion are generated and their performances are
predicted.

• Generation of combination of fusion implementations. The combination of
fusion implementations is such a selection of fusion implementations and un-
fused kernels, that covers all calls of elementary functions defined in input
script and maximizes predicted performance. The combination of fusion im-
plementations can be transformed to output CUDA code covering the whole
computation given by the script. The generation of combinations can be
repeated many times (omitting previously selected combinations) to allow
empirical search for output code with the best performance.

8

During the generation of the optimization space, some implementations are au-
tomatically pruned, e. g. fusions which does not spare memory transfers or fusion im-
plementations which use larger amount of on-chip memory per instance than another
implementation of same fusion. After the pruned optimization space is generated,
the performance of each fusion implementation is predicted. The fusion implemen-
tations with poor predicted performance are not definitely pruned—when sufficient
number of combinations of fusion implementations is generated, they are used in some
combination.

The performance prediction works as follows. The basic idea of our performance
prediction method is to sum previously benchmarked running times of routines accord-
ing to the fusion implementation for which the performance is being predicted. More
precisely, the running time of each routine is measured in simulated fusion environ-
ment – certain ranges of the number of instances per block, sequential iterations and
additionally allocated shared memory (which simulates additional data used within
the fusion). When the runtime of some fusion F is predicted, the runtimes of routines
used in F , matching the fusion environment of F , are summed. The time of data
transfers (i. e. load and store routines) tt and computation (i. e. compute routines) tc
are summed separately and the predicted runtime is computed as max(tt, tc). Thus,
we assume full overlap of computation and data transfers. This is inaccurate when
occupancy is low and the overlapping ability is reduced. However, in that case the
timing of each routine is also poor, thus fusions with low occupancy should not be
favored even when full overlap is expected.

Note that the benchmarking of routines is performed once per routine per GPU
architecture and not at the time of compilation. The demand of benchmarking new
routines is compensated for by the low sensitivity of our compiler to GPU architecture
changes – as our performance prediction is based on empirical measurements, the new
GPU architecture needs only re-benchmarking of routines rather than a re-design or
re-parametrization of the prediction method.

4.3. Creating Kernels from Elementary Functions. Recall, that our com-
piler is not able to fuse generic kernels implemented in C for CUDA, but works with
elementary functions. In fact, elementary function used by our compiler contains
nearly complete code of unfused kernel—however, it must fulfill several requirements
described below.

The elementary function is implemented to perform some higher-order function
applying some first-order function on many elements (in current implementation,
higher-order function can be map, reduce or nested combination). The single in-
stance of elementary function performs the first-order function to some input elements
generating output element, i. e. when elementary function performs map(f, L), sin-
gle instance performs f(ei), when elementary function performs reduce(⊕, L), single
instance performs e2i−1 ⊕ e2i.

To be usable with our compiler, the elementary function is associated with meta-
data, which defines its properties, such as parallelism requirements or implemented
higher-order function. Each elementary function has to be implemented in several
routines (functions called from CUDA code):

• load (separate for each input type), loads input data stored in global memory
into on-chip memory;

• compute performs computation on data in on-chip memory;
• store stores data from on-chip memory into global memory.

The decomposition of elementary function into routines is the core principle which

9

significantly simplifies the code generation. The kernel is created as a sequence of load,
compute and store routine calls. When some functions are fused, the stores and loads
for elements that remain in on-chip memory are not called and the remaining calls
are glued into single kernel (see Figure 4.1 for illustration of a simple fusion).

Fig. 4.1. Illustration of a simple fusion.

The compiler generates routine code, kernels calling these routines and a code
encapsulating kernels allowing to empirically search for the most efficient one.

4.3.1. Routine Code Generation. First, the compiler generates routines: it
copies their code from the library, assigns values to macros and modifies local memory
addressing, when registers are used to store input or output elements. Macros in
routines have prescribed names and are used for the thread block size and number of
iterations. They are used to allow the CUDA compiler to evaluate expressions which
use them at compile time or unroll small loops.

4.3.2. Main Kernel Structure. When the kernel code is created from elemen-
tary functions, the compiler knowis the type of the higher-order function which is
implemented by the elementary function (the type of higher-order function is defined
in metadata). It allows the compiler to (i) generate the computation of thread and
block indices and configure the grid size, (ii) force a global barrier before the result of
the reduction is used4 and (iii) correctly place loads of invariant variables and stores
of accumulable variables (i. e. variables that can be accumulated outside of the cycle
performing sequential iterations).

The unnested function runs in a 1D grid. When more than one serial iteration
is performed, the grid is adequately shrunk and block indices are recomputed in each
iteration, simulating the execution of the full-sized grid. For the nested functions
(recall that only nesting level 2 is supported in the current implementation), a 2D
grid is used, and iterations shrink the grid in one dimension, working similarly to
unnested functions. In the following paragraphs, we show structure of the generated
code.

Algorithm 1 sketches the basic structure of the generated (fused or unfused)
kernel. All data exchanged between routines via shared memory are allocated at
the beginning of the kernel (line 1). Elements in shared memory can overlap when
possible to spare shared memory usage [6]. This is technically realized by allocating
one large array and creating pointers into this array, representing data elements. For
data elements stored in registers, local arrays are defined (line 2). The size of local
arrays is set to the size of one element regardless of the fraction of element used by
one thread [5].

4This is trivially fulfilled in code generation stage, as outputs of all reductions are used outside of
the fusion implementation performing the reduction, thus the global barrier is performed by finishing
the kernel.

10

Algorithm 1 Schema of kernel

1: allocate variables in shared memory
2: create arrays in registers
3: compute thread and block indices
4: load invariant data
5: clear outputs of accumulated reductions
6: for i = 0; i < iters; i + + do
7: call non-invariant load, compute and store routines
8: recompute block indices
9: end for

10: call stores of accumulated reductions

Algorithm 2 Schema of routine call

1: call local barrier
2: clear output of the reduction
3: if thread participates then
4: recompute thread indices
5: call routine
6: end if

The thread and block indices are set at line 3 according to real thread and block
indices for the kernel. When some routine within the kernel needs different parallelism,
indices are recomputed before this routine is called.

For nested map or reduce, some input data elements can be invariant across
iterations (e. g. for matrix-vector multiplication, a sub-vector can multiply several
matrix tiles), thus invariant loads are called before the loop (line 4). Both nested and
unnested variants of reduce can accumulate their result across iterations, thus their
results are cleared before the loop (line 5) and stored after the loop finishes (line 10).
The rest of the routines are called within the loop (line 7) according to selected calling
order and the block indices are recomputed at the end of each iteration (line 8).

Note that fusion of nested and unnested functions are not efficient, as it results in
repetition of unnested operations and hence does not spare global memory transfers.
Therefore, our compiler does not fuse functions with different nesting level. Con-
sequently, compute routines are always performed within the loop, as no result of
a compute routine performed within the fusion is invariant across loop iterations.

4.3.3. Generation of Routine Call. In Algorithm 1, routines are called at
lines 4, 7 and 10. The more detailed schema of a generated routine call is described
in Algorithm 2. First, the local barrier call can be generated. The local barrier before
routine r is generated, if one of the following conditions holds.

• Routine r accesses at least one input element e, that has been modified by
routine s, and (i) thread-to-data mapping of access to e is different for r and
s and (ii) no local barrier is called between r and s.

• Routine r writes the element e into shared memory, and e overlaps with
another element e′, that is accessed after last synchronization called before r.

The first condition ensures that all words of the element e are written into shared
memory before they are read by r, when thread-to-data mapping is different in writing
and reading the element. The second condition provides synchronization of all warps
before element e′ is rewritten by e to ensure that all routines accessing e′ are finished

11

before its rewriting.
When the routine performing reduction is to be called and its output is not

accumulated among iterations, the code clearing its output is generated at line 2.
If the routine is performed by a lower number of threads than it is available within

the kernel, line 3 reducing the parallelism is generated. The code reducing parallelism
is created to keep maximum of warps fully utilized, i. e. when parallelism is reduced
from m to n threads, threads < 0, . . . , n − 1 > continue in computation whereas
threads < n,m− 1 > stall.

The thread indices recomputation (line 4) is generated when parallelism is re-
duced, or when the thread arrangement of the routine differs from the thread arrange-
ment of the fusion (e. g. a routine need a block of 9 × n × 1 threads for n instances,
whereas the fused kernel uses block of 3 × 3 × n threads, i. e. the same number of
threads, but different indexing). The compiler generates the indexing computation
that maps adjacent indices to adjacent threads to create at most one under-populated
warp. Moreover, as it knows the number of threads in each dimension required by
routines in compile time, it optimizes the number of arithmetic operations needed to
recompute indices. After the parallelism is restricted and indices are recomputed, the
routine can be called (line 5) with new indices.

4.4. An Example of Code Generation. To demonstrate the compiler’s fea-
tures described above, we have chosen the computation of BiCGK sequence as an
example. The sequence performs

q = Ap

s = AT r

It demonstrates kernel fusion (q = Ap and s = AT r are implemented as separated
elementary functions) as well as working with nested operation.

Recall that the vector and matrix elements can be represented by a single number,
or some larger structure. We are using a 32-number sub-vector as a vector element
and 32 × 32 tile as a matrix element. These element sizes allow us to write efficient
elementary functions, such as q = Ap or s = AT r, where single instance multiplies
32 × 32 matrix tile by sub-vector of size 32, giving good opportunity for manual
optimizations. It implies that the size of A (and consequently all vectors) must be
padded to 32 in each dimension.

1 TILE32x32 A;
2 subvector32 p, q, r, s;
3
4 input A, p, r;
5
6 q = sgemv(A, p);
7 s = sgemtv(A, r);
8
9 return q, s;

Listing 1
Script performing BiCGK sequence

We have implemented elementary functions sgemv (q = Ap) and sgemtv (s =
AT r). The sctipt performing BiCGK sequence is listed in Listing 1.

1 __device__ void d_sgemv_1_load_1(TILE32x32 A, TILE32x32 s_A,
2 int tx, int ty, int bx, int by, int sx){
3 #pragma unroll
4 for (int j = 0; j < 32; j+=SGEMV_1_BY)
5 s_A[ty*33+tx+j*33] = A[(by*32+ty+j)*sx*32 + bx*32+tx];
6 }

12

7
8 __device__ void d_sgemv_1_load_2(subvector32 x, subvector32 s_x,
9 int tx, int ty, int bx, int by){

10 if (ty == 0)
11 s_x[tx] = x[bx*32+tx];
12 }
13
14 __device__ void d_sgemv_1_compute(TILE32x32 s_A, subvector32 s_x, subvector32 s_y,
15 int tx, int ty){
16 float tmp = 0.0f;
17 #pragma unroll
18 for (int j = 0; j < 32; j+=SGEMV_1_BY)
19 tmp += s_A[tx*33+ty+j]*s_x[ty+j];
20 atomicAdd(s_y+tx, tmp);
21 }
22
23 __device__ void d_sgemv_1_save(subvector32 s_y, subvector32 y,
24 int tx, int ty, int bx, int by){
25 if (ty == 0)
26 atomicAdd(y+by*32+tx, s_y[tx]);
27 }

Listing 2
Routines performing q = Ap

The CUDA code of all routines of elementary function sgemv is listed in Listing 2.
There are two load routines (one for matrix tile, one for sub-vector), one store routine
(saving sub-vector resulting from the reduction) and one compute routine, multiplying
matrix tile with sub-vector. The macro SGEMV 1 BY is expanded to the selected y-size
of the block and the function is implemented to run only in single instance per block
(as there is enough parallelism, the execution of multiple instances per block is not
necessary, contrary to unnested functions). As it can be seen, the code of sgemv is
quite low-level, but still reasonably simple.

The metadata are associated with CUDA code of sgemv, determining the paral-
lelism required by single instance of the function, higher-order function and data
padding. Optionally, access pattern defining thread-to-data mapping can be de-
fined [5]. The demand for writing these function’s properties into metadata brings
no significant programming overhead, as they have to be known to the programmer
implementing the function.

Algorithm 3 Fused q = Ap, s = AT r

1: allocate Al, pl, ql, rl, sl in shared memory
2: compute thread indices
3: compute tile indices x← block.x, y ← i · block.y
4: pl ← load(p, x)
5: sl ← 0
6: for y′ = y; y′ < min(n, y + i); do
7: rl ← load(r, y′)
8: Al ← load(A, x, y′)
9: sl ← compute gemtv(Al, rl, x, y

′)
10: ql ← 0
11: ql ← compute gemv(Al, pl, x, y

′)
12: q ← store(ql, y

′)
13: y′ ← y′ + 1
14: end for
15: s← store(sl, x)

The pseudo-code of the generated fused kernel of BiCGK sequence is listed in

13

Algorithm 3. The algorithm has several inputs: A is an m×n matrix, p, s are vectors
of size m, and q, r are vectors of size n. Load, compute and store routines, which are
called in the generated code, are present in the library of elementary functions. In
the optimization space searching phase, the compiler has decided to perform several
serial iterations in each instance, thus, the for loop going over several matrix tiles is
to be generated in the kernel.

The code generation works as follows. The compiler generates a shared memory
allocation for all on-chip variables. Each variable in shared memory can be padded—
in this example, A is allocated as array of size 33 × 32 to allow conflict-free parallel
access to columns. After memory allocation, the compiler generates the computation
of the thread indices and block indices x, y, where y is stridden according to number
of serial iterations i. When indices are computed, the routines can be called. The
local part of vector p loaded into pl is invariant across iterations, and the output of
the partial reduction sl can be accumulated across iterations. Thus, the compiler
puts loading of pl and zeroing of sl before the loop. Within the for loop, the local
part of r and A are loaded to rl and Al, and AT

l rl is computed and added to sl
(line 9). To compute Alpl (line 11), pl is zeroed (line 10) and stored (line 12) after
the computation in each iteration. When all the iterations are finished, accumulated
result in sl is stored. We note that for simplicity, local synchronizations are not shown
in the pseudo code.

Fig. 4.2. A data usage of a single instance of the fused BiCGK.

The data movement in the computation is illustrated in Figure 4.2. The single
instance of BiCGK processes two tiles of A in depicted example (i = 2), thus two
sub-vectors of vectors r, q, and one sub-vector from both p and s are moved between
global and on-chip memory. The instances are created m× n

2 times over the matrix.
The important property of the algorithm described above is that Ap can be fused

together with AT r, although the dot products of the multiplied vectors and matrix
A are performed using rows as well as columns of the matrix—the only difference is
in the placing of routines call with respect to the loop (for invariants or accumulable
output).

5. Evaluation. In this section, the optimization of sequences of BLAS calls is
evaluated. First, various sequences of linear algebra kernels used in our experiments
are defined and the possibilities for optimizing them are analyzed. Second, the perfor-
mance of implementations generated by our compiler is evaluated and compared with

14

Sequence Operation Tag

AXPYDOT z ← w − αv FS
r ← zTu

ATAX y ← ATAx
BiCGK q ← Ap F

s← AT r
SGEMV z ← αAx+ βy B
SGEMVT x← βAT y + z (S)

w ← αAx
SSCAL x← αx B
GEMVER B ← A+ u1v

T
1 + u2v

T
2 FS

x← βBT y + z
w ← αBx

GESUMMV y ← αAx+ βBx (F)
MADD C ← A+B S
VADD x← w + y + z FS
WAXPBY w ← αx+ βy F

Table 5.1
Sequences used in our performance study, adopted from [1]. Tags: F=improvable by the fusion,

S=improvable by kernel specialization, B=equivalent of CUBLAS kernel.

implementations using CUBLAS. Finally, the accuracy of the performance prediction
method and compiler timing is analyzed.

5.1. Experiment setup. To test the code efficiency of our compiler, we have
used the same sequences as in [1], which are specified in Table 5.1. These sequences
are a representative selection of generally interesting operations, where many of them
have important applications (BiCGK is used in biconjugate gradient method, ATAX
in normal equations computation), are added to the updated BLAS specification (AX-
PYDOT, SGEMVT, GEMVER, GESUMMV, WAXPBY) [2], are in original BLAS
specification (SGEMV and SSCAL) or are generally usable (MADD, VADD). Some
of these sequences can be significantly improved by fusions whereas others cannot.
The adoption of sequences from [1] allows us to compare effect of fusion on two dif-
ferent processors—multi-core CPU and many-core GPU. The only difference between
our sequences and those used in [1] is in the floating point accuracy—we have used
the single precision version of all sequences, whereas in [1] double precision has been
used5.

We have assigned tags to each sequence in Table 5.1. These tags indicate op-
timizations that our compiler is able to perform. Tag F indicates that fusion can
be used to improve performance, tag S indicates that more specialized kernels that
save some work compared to CUBLAS can be generated. Finally, tag B indicates
sequences that have their equivalents in CUBLAS, thus any optimization that can
be used by our compiler can also be implemented in CUBLAS. When some tag is
enclosed in brackets, its significance is low, i. e. is related to BLAS-1 operations in
sequences where much more time-consuming BLAS-2 operations are executed.

5Note that the selection of different precision should not affect comparison of speedups reached by
our compiler and BTO BLAS. Although double amount of data are transfered when double precision
is used, the CPU SSE peak performance in double precision is a half of single precision performance,
thus the ratio of memory to arithmetic throughput is same for both single and double precisions and
therefore the effect of fusions should be same.

15

Sequence Our compiler CUBLAS Speedup Tag

AXPYDOT 38.3GFlops 19.7GFlops 1.94× FS
ATAX 73.5GFlops 71.5GFlops 1.03×
BiCGK 115GFlops 71.5GFlops 1.61× F
SGEMV 73.3GFlops 69.9GFlops 1.05× B
SGEMVT 73.3GFlops 71.5GFlops 1.03× (S)
SSCAL 18.2GFlops 17.3GFlops 1.05× B
GEMVER 83.4GFlops 31.9GFlops 2.61× FS
GESUMMV 73.4GFlops 73.1GFlops 1× (F)
MADD 11.3GFlops 7.68GFlops 1.47× S
VADD 20.0GFlops 8.84GFlops 2.26× FS
WAXPBY 36.4GFlops 18.9GFlops 1.93× F

Table 5.2
Performance comparison of generated and CUBLAS implementations of studied sequences.

For some sequences, the tag assignment does not have to be straightforward, thus
we discuss it in more detail.

• ATAX and SGEMVT cannot be improved by fusion. In both cases, matrix
A is used twice, but a global barrier is needed between uses of A, and thus
must be used in separate kernels.

• GESUMMV can spare the reading of vector x when it is performed in a single
kernel. However, because of reading the matrices A and B, the amount of
data transfer is almost the same in the fused and unfused versions.

• All sequences with the S tag require memory copy or cleaning in the CUBLAS
implementation because of the in-place implementation of some CUBLAS
kernels, whereas kernels generated by our compiler can work out-of-place.

5.2. Performance Results. All experiments have been performed on a machine
equipped with an Intel Core2 Q9550 (2.83 GHz), 8 GB RAM, and a GeForce GTX
480. Ubuntu 10.04 with CUDA Runtime 5.0 and Driver 304.54 have been installed.

Table 5.2 compares performance of code generated by our compiler with CUBLAS
implementations.

In all cases, the generated implementation performs better or similarly compared
to CUBLAS. Significant speedup is obtained in the case of sequences where the fu-
sion can improve memory locality (tag F) as well as when kernel specialization is
possible (tag S). Those sequences demonstrate the strength of our compiler, as they
are improved by compiler’s optimizations which cannot be implemented in CUBLAS
(without modification of its API).

To the best of our knowledge, there is no other system allowing fusion of BLAS
functions for GPUs that could be compared with our results. Nevertheless, we can
compare the relative speedup of our generated codes with relative speedup of CPU
code generated by BTO BLAS [1], see Table 5.3.

Our speedup is generally better comparing to the speedup of BTO BLAS when fu-
sion can be used (sequences AXPYDOT, BiCGK, GEMVER, VADD, WAXPBY). Our
compiler is more successful with sequences equivalent to BLAS functions (SGEMV)
or sequences with reduced opportunity to be improved by fusion (GESUMMV)—in
our case, the performance is comparable, whereas BTO BLAS generates slower codes.
The main reason is probably that our compiler fuses hand-written routines, that can
be adequately tuned. The exactly same speedup is shown in the case of MADD, where
only kernel specialization takes place.

16

Sequence Our BTO BLAS Our memory
speedup speedup bandwidth

AXPYDOT 1.94× 1.58× 153.2GB/s
ATAX 1.03× 1.37× 147GB/s
BiCGK 1.61× 1.5× 115GB/s
SGEMV 1.05× 0.83× 146.6GB/s
SGEMVT 1.03× 1.29× 146.6GB/s
SSCAL 1.05× n/a 145.6GB/s
GEMVER 2.61× 2.37× 143GB/s
GESUMMV 1× 0.93× 146.8GB/s
MADD 1.47× 1.47× 135.6GB/s
VADD 2.26× 1.83× 160GB/s
WAXPBY 1.93× 1.88× 145.6GB/s

Table 5.3
Comparison of the speedup of sequences generated by our compiler and best cases generated by

BTO BLAS and the memory bandwidth of our kernels.

On the other hand, BTO BLAS has a wider opportunity to enhance code per-
formance using fusions. When the function f performs reduction on each row of the
matrix and the reduction’s result is an input of function g processing the same row,
CPU is able to hold the row in the cache and reuse it after reduction finish (thus
outer loops in f and g going over rows are fused, whereas inner loops are unfused).
Considering GPU, the row needs to be partitioned among more thread blocks when
is read into on-chip memory by f , thus thread blocks needs to be synchronized before
the result of reduction is available. Our compiler performs the synchronization by the
new kernel invocation, thus all on-chip data are lost before the result of the reduction
is available for g so no row data can be reused. The only option how to reuse row data
on GPU is to use persistent threads [9], but it is not clear if it could have a positive
performance impact, as the inter-block synchronization is possible, but decreases the
performance. The wider fusion opportunity of BTO BLAS caused better speedup in
sequences ATAX and SGEMVT.

As sequences analyzed in this section are memory-bounded even after fusion,
their arithmetic throughput is far from the peak throughput of GeForce GTX 480.
To determine generated kernels efficiency, we have measured their bandwidth (shown
in last column of Table 5.3). Note that the bandwidth of fused kernels is measured
(i. e. only bandwidth of data that are really transfered from or to global memory),
which gives us the information about real efficiency of kernel implementations hiding
improvements of the fusion. The maximal theoretical bandwidth of GeForce GTX480
is 177.4 GB/s. However, this bandwidth is unreachable in practice. The most of our
kernels reaches more than 75 % of theoretical peak, which can be considered as a very
good result (there is no significant chance to improve their performance by tuning the
compiler). The BiCGK kernel reaches about 65 % of the peak bandwidth. We have
experimented manually with tuning this kernel, reaching 78 % of the peak bandwidth
when loops of load and compute routines iterating over matrix tile are manually fused,
showing further challenges in automatic kernel fusion.

5.3. Performance Prediction Accuracy. We have analyzed the accuracy of
the performance prediction. As numerous possible implementations can be generated,
good performance prediction allows the reduction of the empirical search to several
promising candidates or eliminate empirical searching entirely.

17

Sequence Impl. Best impl. First impl. Worst impl.
name count found performance performance

AXPYDOT 25 4th 75.2% 34.9%
ATAX 1 1st 100% n/a
BiCGK 5 1st 100% 64.0%
SGEMV 83 14th 99.2% 97.8%
SGEMVT 41 5th 99.8% 99.4%
SSCAL 1 1st 100% n/a
GEMVER 1271 54th 98.7% 43.1%
GESUMMV 415 51st 99.6% 94.4%
MADD 1 1st 100% n/a
VADD 41 14th 94.6% 50.4%
WAXPBY 83 1st 100% 29.3%

Table 5.4
For each studied sequence, the count of all implementations is shown in the second column, the

rank of the best generated implementation is shown in the third column, the performance of the first
generated implementation relative to the best one is in the fourth column and the performance of the
worst implementation relative to the best performing implementation is shown in the fifth column.
To eliminate measurement error, all implementations for which performance does not differ more
than 0.1 % are considered to have same performance.

Table 5.4 shows the number of possible implementations of each sequence and
the rank of the fastest implementation. As we can see, the best implementation is
not generated as the first one in six cases. However, the performance of the first
generated implementation is reasonably close to the best one except the AXPYDOT
routine (see fourth column of the table).

The selection of inefficient implementation of AXPYDOT is caused by a system-
atic error in the performance prediction method which underestimates performance
of fused kernels. The error is probably caused by ignoring kernel startup overhead
and serial code optimizations. As performances of the fused and unfused versions of
AXPYDOT are relatively close, the compiler wrongly expects unfused version to run
faster.

The last column of Table 5.4 shows the performance of the worst generated imple-
mentation compared to the best one. As we can see, the worst generated implementa-
tions often perform poorly, thus the sorting of possible implementations by predicted
performance is crucial.

5.4. Compilation Time. The compilation time and empirical search time are
given in Table 5.5. As we can see, compilation time is rather same when only im-
plementations with best predicted performance are generated. When all possible
implementations (given by combinations of fusion implementations) are generated,
the compilation time is still feasible: it reaches at most tens of seconds in compila-
tion of GEMVER sequence (1271 implementations generated), less then 6 seconds in
GESUMMV and less than 1 second all other sequences. However, the time for em-
pirical search for best performing implementation increases proportionally with the
number of implementations. Fortunately, the empirical search has small impact on
performance and if it is used, only a few implementations needs to be generated and
benchmarked to have a good chance to find the best performing one (see Table 5.4).

6. Conclusions and Future Work. In this paper, we have significantly ex-
tended our approach to automatic kernel fusion by introducing fusion of reduce and
nested map and reduce kernels. We have shown that kernel fusion can improve the

18

Sequence First All Empirical
implementation implementations search

AXPYDOT 0.144 s 0.241 s 1m59 s
ATAX 0.137 s 0.144 s 5 s
BiCGK 0.140 s 0.164 s 18 s
SGEMV 0.152 s 0.900 s 8m22 s
SGEMVT 0.123 s 0.393 s 4m 42 s
SSCAL 0.139 s 0.113 s 3 s
GEMVER 0.133 s 42.165 s 3 h 24m36 s
GESUMMV 0.123 s 5.707 s 48m23 s
MADD 0.128 s 0.116 s 4 s
VADD 0.133 s 0.248 s 3m3 s
WAXPBY 0.156 s 0.731 s 7m14 s

Table 5.5
Time of compilation and empirical search for tested sequences.

performance of memory-bound kernels. Although the fusion of general kernels is dif-
ficult to automate, we have argued that the automation is possible and demonstrated
the automation for (possibly nested) map and reduce kernels using our source-to-
source compiler. The application of our compiler has been demonstrated by fusing
sequences of BLAS calls, where a significant speedup comparing to CUBLAS has been
observed.

We plan to focus on generalization of the presented method, allowing to fuse more
types of kernels, work with irregular data structures or target multiple GPUs.

• Support for more types of fusible kernels. A more general model of tem-
poral locality in GPU memory hierarchy could be formulated, which would
allow us to handle more types of kernels, such as stencils, scatters or gath-
ers. Supporting more general kernels significantly extends the applicability
of our compiler, e. g. in image processing, ODE solvers, or Finite Difference
Method.

• Support for irregular data types. The operations working with irregular data
types, such as triangular or diagonal matrices, or sparse arrays, need more
general higher-order functions, than are currently supported. Irregular or
sparse structures enrich application area of our compiler, e. g. for large sim-
ulation of physical phenomena.

• Support for multi-GPU computations. To allow scaling of GPU applications,
the workload needs to be distributed among multiple GPUs. While the
distribution of map and reduce is quite straightforward, more complicated
functions, such as nested map and reduce or stencils yield significantly more
difficult data exchange pattern.

Besides improving the compiler, we are going to develop libraries of elementary
functions. We plan to implement more functions from the BLAS standard which are
fusible by the compiler and a library of linear algebra operations on small elements
usable for element subroutines in FEM.

Acknowledgements. This work was supported by Ministry of Education, Youth
and Sport of the Czech Republic under the project “CERIT Scientific Cloud” (no.
ED3.2.00/08.0144) and by Czech Science Foundation research project “Mathemati-
cal and Engineering Approaches to Developing Reliable and Secure Concurrent and
Distributed Computer Systems” (no. GD102/09/H042).

19

REFERENCES

[1] G. Belter, E. R. Jessup, I. Karlin, and J. G. Siek, Automating the generation of composed
linear algebra kernels, in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, ACM, 2009, pp. 1–12.

[2] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C.
Whaley, An updated set of basic linear algebra subprograms (BLAS), ACM Transactions
on Mathematical Software, 28 (2002).

[3] B. Catanzaro, M. Garland, and K. Keutzer, Copperhead: compiling an embedded data
parallel language, in The 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2011.

[4] M. Cole, Algorithmic Skeletons: Structural Management of Parallel Computation. Research
Monographs in Parallel and Distributed Computing, MIT Press, Cambridge, 1989.

[5] J. Filipovič, J. Fousek., B. Lakomý, and M. Madzin, Automatically optimized GPU ac-
celeration of element subroutines in finite element method, in Symposium on Application
Accelerators in High-Performance Computing (SAAHPC), 2012.

[6] J. Fousek, J. Filipovič, and M. Madzin, Automatic fusions of CUDA-GPU kernels for
parallel map, in Second International workshop on highly-efficient accelerators and recon-
figurable technologies (HEART), 2011, pp. 42–47.

[7] H. González-Vélez and M. Leyton, A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers, Software: Practice and Experience, 40 (2010).

[8] K. Gulati and S. P. Khatri, An automated approach for simd kernel generation for GPU
based software acceleration, in Symposium on Application Accelerators in High Perfor-
mance Computing (SAAHPC), 2009.

[9] K. Gupta, J. A. Stuart, and J. D. Owens, A study of persistent threads style GPU program-
ming for GPGPU workloads, in Innovative Parallel Computing, 2012.

[10] J. Hoberock and N. Bell, Thrust: A parallel template library, 2009.
[11] G. W. Howell, J. W. Demmel, C. T. Fulton, S. Hammarling, and K. Marmol, Cache

efficient bidiagonalization using BLAS 2.5 operators, ACM Transactions on Mathematical
Software (TOMS), 34 (2008).

[12] K. E. Iverson, A programming language, in Spring joint computer conference (AIEE-IRE),
1962.

[13] B. Larsen, Simple optimizations for an applicative array language for graphics processors,
in Proceedings of the sixth workshop on Declarative aspects of multicore programming
(DAMP), 2011.

[14] NVIDIA, NVIDIA CUDA C Programming Guide, version 4.0., 2011.
[15] F. P. Russell, M. R. Mellor, P. H.J. Kelly, and O. Beckmann, DESOLA: An active linear

algebra library using delayed evaluation and runtime code generation, Science of Computer
Programming, 76 (2011).

[16] S. Sato and H. Iwasaki, A skeletal parallel framework with fusion optimizer for GPGPU
programming, in Programming Languages and Systems, vol. 5904 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2009.

[17] D. Tarditi, S. Puri, and J. Oglesby, Accelerator: using data parallelism to program GPUs
for general-purpose uses, SIGARCH Computer Architure News, 34 (2006).

[18] G. Wang, Y. Lin, and W. Yi, Kernel fusion: An effective method for better power efficiency
on multithreaded GPU, in IEEE/ACM Int’l Conference on Green Computing and Com-
munications & Int’l Conference on Cyber, Physical and Social Computing (GREENCOM-
CPSCOM), 2010.

20

