
Noname manuscript No.
(will be inserted by the editor)

Resilient MPI applications using an application-level

checkpointing framework and ULFM

Nuria Losada · Iván Cores ·

Maŕıa J. Mart́ın · Patricia González

Received: 10 Sep 2015 / Accepted: 11 Jan 2016 – DOI: 10.1007/s11227-016-1629-7

Abstract Future exascale systems, formed by millions of cores, will present high
failure rates, and long-running applications will need to make use of new fault
tolerance techniques to ensure the successful execution completion. The Fault Tol-
erance Working Group, within the MPI forum, has presented the ULFM (User
Level Failure Mitigation) proposal, providing new functionalities for the imple-
mentation of resilient MPI applications. In this work, the CPPC checkpointing
framework is extended to exploit the new ULFM functionalities. The proposed
solution transparently obtains resilient MPI applications by instrumenting the
original application code. Besides, a multithreaded multilevel checkpointing, in
which the checkpoint files are saved in different memory levels, improves the scal-
ability of the solution. The experimental evaluation shows a low overhead when
tolerating failures in one or several MPI processes.

Keywords Resilience · Checkpointing · Fault Tolerance · MPI

1 Introduction

Current petascale systems are formed by hundreds of thousands of cores. Schroeder
and Gibson [14] have analysed failure data collected at two large high-performance
computing sites, showing failure rates from 20 to more than 1,000 failures per
year, depending mostly on system size. That can be translated in a failure every
8.7 hours. Future exascale systems will be formed by several millions of cores, and
they will be hit by error/faults much more frequently than petascale systems due
to their scale and complexity [6]. Therefore, long-running applications in these sys-
tems will need to use fault tolerance techniques to ensure the successful execution
completion.

Nuria Losada · Iván Cores · Maŕıa J. Mart́ın · Patricia González
Grupo de Arquitectura de Computadores, Universidade da Coruña, Spain
Tel.: +34 881011212
Fax: +34 981167160
E-mail: { nuria.losada, ivan.coresg, mariam, patricia.gonzalez }@udc.es

2 Nuria Losada et al.

The MPI (Message Passing Interface) standard is the most popular paral-
lel programming model in petascale systems. However, MPI lacks fault tolerance
support. By default, the entire MPI application is aborted upon a single process
failure. Besides, the state of MPI will be undefined upon failure and, thus, there
are no guarantees that the MPI program can successfully continue its execution.
Thus, traditional fault tolerant solutions for MPI applications rely on checkpoint-
ing, relaunching a new MPI job for restarting the application. However, a complete
restart is unnecessary, since most of the nodes will still be alive. Moreover, a com-
plete restart introduces overheads both for re-queuing the MPI job and for moving
the checkpointed data across the cluster to the new granted resources.

In the last years new methods have emerged to provide fault tolerance to
MPI applications, such as failure avoidance approaches [7,16] that preemptively
migrate processes from processors that are about to fail. Unfortunately, these
solutions are not able to cope with already happened failures. Recently, the Fault
Tolerance Working Group within the MPI forum proposed the ULFM (User Level
Failure Mitigation) interface [4] to integrate resilience capabilities in the future
MPI 4.0. It includes new semantics for process failure detection, and communicator
revocation and reconfiguration. Thus, it enables the implementation of resilient
MPI applications, that is, applications that are able to recover themselves from
failures. Nevertheless, incorporating the ULFM capabilities in already existing
codes is a complex and time-consuming task.

In this work, the checkpointing tool CPPC [12] is extended to use the new func-
tionalities provided by ULFM to transparently obtain resilient MPI applications
from generic MPI SPMD (Single Program Multiple Data) programs. proposed so-
lution is able to detect failures in one or more processes, and to recover from them,
without re-queuing nor stopping the MPI job. Besides, a multithreaded multilevel
checkpointing is implemented, storing copies of the checkpoint files in different
memory levels. This technique reduces the overhead and network contention upon
failure, as less data have to be moved across the cluster, while the cost of check-
pointing is not increased.

This paper is structured as follows. Section 2 introduces the CPPC framework,
while Section 3 details its extension to obtain resilient MPI applications. The
multithreaded multilevel checkpointing technique is described in Section 4 and
the experimental evaluation is presented in Section 5. Section 6 covers the related
work. Finally, Section 7 concludes this paper.

2 CPPC overview

CPPC [12] is an open-source checkpointing tool for MPI applications available
under GPL license at http://cppc.des.udc.es. It is implemented at the applica-
tion level, and, thus, it is independent of the operating system and any higher-level
framework used.

CPPC appears to the final user as a compiler tool and a runtime library. At
compile time the CPPC source-to-source compiler automatically transforms a code
into an equivalent fault-tolerant version by adding calls to the CPPC library. The
resulting fault tolerant code can be seen in Fig. 1. Instrumentation is added to
perform the following actions:

Resilient MPI applications using an application-level checkpointing framework ... 3

Fig. 1 CPPC instrumentation for stop and restart fault-tolerant applications.

– Configuration and initialization: at the beginning of the application the
routines CPPC Init configuration() and CPPC Init state() configure and
initialize the necessary data structures for the library management.

– Registration of variables: the routine CPPC Register() explicitly marks
for their inclusion in checkpoint files those variables identified by a liveness
analysis [8] as necessary for the successful recovery of the application. During
restart, this routine also recovers the values from the checkpoint files to their
proper memory location.

– Checkpoint: the CPPC Do checkpoint() routine dumps the checkpoint file.
A checkpoint file will be generated every N calls to this function, being N

user-defined. At restart time this routine checks restart completion.
– Shutdown: the CPPC Shutdown() routine is added at the end of the application

to ensure the consistent system shutdown.

Checkpoint file sizes are reduced by using the liveness analysis and the zero-
blocks exclusion technique [8], which avoids the storage of memory blocks that
contain only zeros. Moreover, a multithreaded dumping performs a copy in memory
of the checkpointed data so that it can be dumped to disk by an auxiliary thread,
overlapping the checkpoint file writing with the computation of the application.

The state files generated by CPPC are portable, allowing the restart on differ-
ent architectures and/or operating systems. Portability is achieved by using HDF5,
a portable storage format, and by avoiding the inclusion in the checkpoint files of
architecture-dependent state. This state is recovered through the re-execution of
the code responsible for creating such state in the original execution. The compiler
automatically identifies both the variables to be checkpointed and the non-portable
code to be re-executed upon restart.

As for checkpoint consistency, the basic difference between sequential and par-
allel applications is the existence of dependencies imposed by inter-process commu-
nications. The CPPC compiler performs a static analysis of inter-process commu-
nication and automatically identifies safe points, code locations where it is guaran-
teed that there are no in-transit, nor inconsistent messages, avoiding the domino
effect. Besides, a heuristic identifies the most computationally expensive loops and
inserts a checkpoint function in the first safe point of these loops. By statically

4 Nuria Losada et al.

ensuring that checkpoints may occur only at selected safe points, no inter-process
communications or runtime synchronizations are necessary when checkpointing.

During restart, the application processes perform a negotiation phase to iden-
tify the most recent valid recovery line, formed by the newest checkpoint file avail-
able simultaneously to all processes. The restart phase has two fundamental parts:
reading the checkpoint data into memory and recovering the application state.
The first step is encapsulated inside the routine CPPC Init state(). However, the
actual reconstruction of the application state is achieved through the ordered exe-
cution of certain blocks of code called RECs (Required-Execution Code): the con-
figuration and initialization block, variable registration blocks, checkpoint blocks,
and non-portable state recovery blocks, such as the creation of communicators.
The compiler inserts control flow code (labels and conditional jumps) to ensure an
ordered re-execution.

3 Resilient MPI applications with CPPC

This section describes how CPPC is extended to exploit the new ULFM func-
tionalities to transparently obtain resilient applications from general MPI SPMD
codes. To maximize the applicability, the proposed approach is non-shrinking and
it uses a global backward recovery based on checkpointing:

– Non-shrinking recovery: the number of executing processes is preserved after a
failure. MPI SPMD applications generally base their distribution of data and
computation on the number of running processes. Thus, shrinking solutions are
restricted to applications which tolerate a redistribution of data and workload
among the processes during runtime.

– Backward recovery based on checkpoint: upon failure the application is restarted
from a previous saved state. Forward recovery solutions attempt to find a new
state to successfully continue the execution of the application. Unfortunately,
forward recovery solutions are application-dependent, and, thus, unsuitable to
be applied in a general approach.

– Global recovery: the application repairs a global state to survive the failure.
In MPI SPMD applications that means restoring the state of all application
processes to a saved state, in order to obtain the necessary global consistency
to resume the execution. Local recovery solutions attempt to repair failures by
restoring a small part of the application, e.g., a single process. However, due
to interprocess communication dependencies, these solutions require the use of
message logging techniques for its general application.

Next subsections describe the strategy upon failure: all the survivor processes need
to detect the failure, so that the global communicator is reconfigured and a global
consistent application state is recovered, allowing the execution to be resumed.
Fig. 2 illustrates the whole procedure and Fig. 3 shows an example of the new
CPPC instrumentation added to carry it out.

3.1 Failure detection

By default, when a process fails, the MPI application is aborted. The routine
MPI Comm set errhandler() is used to set MPI ERRORS RETURN as the default er-

Resilient MPI applications using an application-level checkpointing framework ... 5

Fig. 2 Obtaining resilient MPI applications with CPPC and ULFM.

ror handler on each communicator, so that ULFM defined error codes are re-
turned after a failure. Each MPI function call is instrumented with a call to the
CPPC Check errors() routine to check whether the returned value corresponds
with a failure, as shown in Fig. 3. Within the CPPC Check errors() routine, whose
pseudocode is shown in Fig. 4, the survivor processes detect failures and trigger
the recovery process.

However, the failure is only detected locally by those survivor processes in-
volved in communications with failed ones. To reach a global detection, the failure
has to be propagated to all other survivors by revoking all the communicators
used by the application. CPPC keeps a reference to the new communicators cre-
ated by the application by means of the CPPC Register comm() function. When a
failure is locally detected, the ULFM MPI Comm revoke() function is invoked over
the global (MPI COMM WORLD) and the registered communicators, assuring a global
failure detection. In the example shown in Fig. 2, process P1 detects that P0 failed
because they are involved in a communication, while processes P2 and P3 detect
the failure after the communicators are revoked by P1.

Lastly, in order to guarantee failure detection in reasonable time, the function
MPI Iprobe() is invoked within the CPPC Do checkpoint() routine. This avoids
excessive delays in failure detection in absence of communications.

3.2 Reconfiguration of the MPI global communicator

As commented previously, this proposal preserves the total number of processes
of the application. Besides, in the SPMD model, the processes ranks distinguish
the roles of the processes in the execution so they must be preserved as well after
a failure. Thus, the failed processes need to be re-spawned and their ranks need
to be restored.

Those communicators created by the application, which derive from the global
communicator (MPI COMM WORLD), will be reconstructed by re-executing the MPI
calls used for creating them in the original execution. On the other hand, the
global communicator has to be reconfigured after failure detection. Firstly, the
failed processes are excluded from the global communicator using the ULFM

6 Nuria Losada et al.

Fig. 3 CPPC instrumentation for resilient MPI applications.

Fig. 4 CPPC Check errors() pseudocode.

function MPI Comm shrink() and they are re-spawned using the MPI function
MPI Comm spawn multiple(). Then, the dynamic communicatormanagement facil-
ities provided in MPI-2 are used to reconstruct the global communicator, so that,
after a failure, the survivor processes keep their original ranks, while each one of the
re-spawned ones takes over a failed process. To ensure that the correct global com-
municator is used, the application obtains it by means of the new CPPC Get comm()

function, and stores it in a global variable, as shown in Fig. 3. The application uses
this global variable instead of the named constant MPI COMM WORLD, allowing CPPC
to transparently replace it with the reconfigured communicator after a failure.

3.3 Recovery of the application

A crucial step in ensuring the success of the restart is to be able to conduct the
application to a consistent global state before resuming the execution. Solutions

Resilient MPI applications using an application-level checkpointing framework ... 7

based on checkpoint, like this proposal, recover the application state rolling back
to the most recent valid recovery line. However, CPPC only dumps to checkpoint
files portable state, while non-portable state is recovered through the ordered
re-execution of certain blocks of code (RECs). Therefore, to achieve a consis-
tent global state, all processes must go back to the beginning of the application
code so that they can re-execute the necessary RECs (including those for the
creation of the derived communicators). The re-spawned processes are already
in this function after the reconfiguration of the communicators. However, sur-
vivor processes are located at the point of the application code where they have
detected the failure and they need to go back in the application control flow.
This is performed by reversed conditional jumps introduced in two instrumen-
tation blocks: the CPPC Check errors() and the CPPC Go init() blocks. While
the CPPC Check errors() blocks are placed after MPI calls, the CPPC Go init()

blocks are located after those application functions containing MPI calls. As shown
in Fig. 3, the reversed conditional jumps consist in a goto with a label or a return

instruction, depending if it is placed in the main program or in an internal function.
Once all the processes reach the beginning of the application code, an usual

CPPC restart is performed. First, processes negotiate the most recent valid recov-
ery line. In the example shown in Fig. 2, all processes will negotiate to recover
the application state from recovery line i. Then, the negotiated checkpoint files
containing portable state are read and the actual reconstruction of the application
state is achieved through the ordered re-execution of RECs, recovering also the
non-portable state. Finally, the application execution continues normally when the
point where the checkpoint files were generated is reached.

4 Improving scalability: multithreaded multilevel checkpointing

CPPC uses a multithreaded dumping to minimize the overhead introduced when
checkpointing. The multithreaded dumping overlaps the checkpoint file writing
with the computation of the application. When a MPI process determines that
a checkpoint file must be generated (according to the checkpointing frequency),
it prepares the checkpointed data, performs a copy in memory of that data, and
creates an auxiliary thread that builds and dumps to disk the checkpoint file in
background, while the application processes continue their execution.

With the extension of CPPC to exploit the ULFM functionalities, a multilevel
checkpointing is implemented to minimize the amount of data to be moved across
the cluster, thus, reducing the recovery overhead when failures arise and increasing
the scalability of the proposal. As in a memory hierarchy, in which higher levels
present lower access time but less capacity and larger miss rates, this technique
stores the checkpoint files in three different locations:

– Memory of the compute node: each process maintains the copy in memory of
the last checkpoint file generated until a new checkpoint file is built.

– Local disk: processes also save their checkpoint files in local storage.
– Remote disk: all the checkpoint files generated by the application are stored in

an NFS mounted directory in a remote disk.

The multilevel checkpointing is performed in background by the auxiliary
threads, thus, the cost of checkpointing is not increased. During recovery, the ap-
plication processes perform a negotiation phase to identify the most recent valid

8 Nuria Losada et al.

recovery line, formed by the newest checkpoint file available simultaneously to all
processes. When using the multilevel technique the three checkpointing levels are
inspected during the negotiation, and the application processes choose the closest
copy of the negotiated checkpoint files.

5 Experimental evaluation

The application testbed used is comprised of three benchmarks with different
checkpoint file sizes and communication patterns. The ASC Sequoia Benchmark
SPhot [2] is a physics package that implements a Monte Carlo Scalar PHO-
Ton transport code. It was run using 6144 as the NRUNS parameter. The Hi-
meno benchmark [10] is a Poisson equation solver using the Jacobi iteration
method. It was run fixing NN to 24000 and using 512x256x256 as grid size. Finally,
MOCFE-Bone [17] simulates the main procedures in a 3D method of character-
istics (MOC) code for numerical solution of the steady state neutron transport
equation. MOCFE-Bone was run using 4 energy groups, 8 angles, a mesh of 193

doing strong scaling in space, and a trajectory spacing of 0.5cm2. The CPPC
version used was 0.8.1, working along with HDF5 v1.8.11 and GCC v4.4.7. The
ULFM commit icldistcomp-ulfm-67d6cc5b9cfa was used with the default configu-
ration parameters and the agreement algorithm number 1. Finally, the Portable
Hardware Locality (hwloc) [5] is used for the binding of the processes to the CPU
cores.

Each node of the cluster used for the experiments consists of two Intel Xeon
E5-2660 Sandy Bridge-EP 2.2 GHz processors with Hyper-Threading support,
with 8 cores per processor and 64 GB of RAM, interconnected to an InfiniBand
FDR and a Gigabit Ethernet networks. The experiments are run spawning 16 MPI
process per node, one per core. When checkpointing, each MPI process will create
an auxiliary thread to dump data to disk.

5.1 Instrumentation and checkpointing overhead

The instrumentation overhead is measured in the execution of the CPPC instru-
mented applications without generating any checkpoint files. On the other hand,
the checkpointing runtime corresponds with the execution in which only one check-
point is taken when the 50% of the computation has completed and using the
multithreaded multilevel checkpointing technique explained in Section 4. Fig. 5
shows the original, the instrumentation, and the checkpointing runtimes varying
the number of processes. The total state saved to disk in each application (the
addition of the checkpoint files generated by each process) is also represented in
the figure. For SPhot the checkpoint file of each individual process is constant,
no matter how many processes run the application, thus, the total checkpoint file
size increases with the number of processes. On the other hand, for Himeno and
MOCFE-Bone, the application data is distributed among the processes, therefore,
each individual checkpoint file size decreases as more processes run the application,
and the total checkpoint file size remains almost constant.

The instrumentation overhead is always very low, below 1.7 seconds. As re-
gards the checkpointing, the maximum overhead is 7.9 seconds. The two main

Resilient MPI applications using an application-level checkpointing framework ... 9

Fig. 5 Runtimes for the testbed benchmarks, specifying number of processes and total check-
point file size.

sources of overhead in the checkpointing operation are: the copy in memory of
the checkpointed data (including the application of the CPPC zero-blocks exclu-
sion technique), and the dumping to disk. Thanks to the use of the multithreaded
checkpointing technique, the overhead of dumping the checkpoint files to disk is
significantly reduced.

5.2 Resilient MPI applications

The performance of the proposal is evaluated inserting one-process or full-node
failures by killing one or sixteen MPI processes, respectively. Failures are intro-
duced when the 75% of the application has completed and the applications are
recovered using the checkpoint files generated at the 50% of the execution. In
all the experiments, the survivor processes recover from the copy in memory of
the checkpoint files. When one process fails, it is re-spawned in the same compute
node, thus, it uses the checkpoint file in local storage. When a node fails, the failed
processes are re-spawned in a different compute node: an already in use node, over-
loading it; or an spare node, pre-allocated for this purpose when scheduling the
MPI job. In both cases, the failed processes use the checkpoint files located in the
remote disk.

The analysis of the overhead introduced by the proposal requires the study
of the different operations it involves. Fig. 6 shows the times, in seconds, of each
operation performed to obtain resilient MPI applications, indicating whether one-
process or full-node failures are introduced, and for the late one, if a compute
node is overloaded or an spare one is used for the recovery. Failure detection times
are deeply dependent on the application, as they depend on the frequency of MPI
calls. Table 1 shows, for each application, the average number of MPI calls per
second in the process that performs the fewest MPI calls. SPhot is the application
with the smallest number and it also presents the largest detection time. The com-
municator revocation times are low and they slightly increase with the number of
processes. The same tendency can be observed in the reconfiguration operations:
the communicator shrinking, the process spawning and the communicator recon-
struction. Even though the processes spawning times remain low, they increase
with the number of failed processes. Furthermore, spawning times are larger when

10 Nuria Losada et al.

Fig. 6 Operations to obtain resilience.

MPI CALLS PER SECOND DONE BY

THE PROCESS WITH FEWEST CALLS

32PROCS. 64PROCS. 128PROCS.

SPhot 1.36 1.43 1.57

Himeno 815.18 1498.38 2652.24

MOCFE-Bone 1352.21 3034.68 5431.90

Table 1 Number of calls to the MPI library per second performed by the process that less
calls does, which determines the detection time.

a spare node is used than when overloading a node, assumingly because a new
ORTE daemon has to be launched in the spare node.

With regard to the CPPC operations, the time spent in the reversed condi-
tional jumps for the recovery upon failure is negligible in all cases. The checkpoint,
reading, and positioning times are consistent with the state registered by each pro-
cess for its inclusion in the checkpoint files. Note that, the size of the registered
state can be different from the size of the generated checkpoint file, as CPPC
applies the zero-blocks exclusion technique [8], which avoids the dumping to disk
of the memory blocks containing only zeros. During the checkpoint operation, all
the registered data is inspected to identify zero-blocks. Also, during the reading
and positioning operations, zero-blocks are reconstruct and moved to their proper
memory location, respectively. Thus, checkpoint, reading, and positioning are in-
fluenced by the size of registered data. Table 2 shows, for each application, the
average size of state registered by each process and the average checkpoint file size
that each process generates after applying the zero-blocks exclusion technique. For
instance, in SPhot even though the total checkpoint file size is inferior to 100 MB,
the total registered state corresponds with several gigabytes before the application

Resilient MPI applications using an application-level checkpointing framework ... 11

AVERAGE SIZE PER PROCESS (MB):

REGISTERED DATA → CKPT FILE EXCLUDING ZERO-BLOCKS

32 PROCESSES 64 PROCESSES 128 PROCESSES

SPhot 586.23 → 0.70 586.23 → 0.70 586.23 → 0.70

Himeno 61.49 → 43.25 31.49 → 21.97 16.15 → 11.32

MOCFE-Bone 44.90 → 27.79 22.89 → 13.49 12.30 → 6.86

Table 2 Average size (MB) of data registered by each process (including zero-blocks) and
average size (MB) of the checkpoint file generated by each process (excluding zero-blocks).

Fig. 7 Runtimes when introducing failures varying the number of processes. The baseline
runtime in which no overhead is introduced is included for comparison purposes.

of the zero-blocks exclusion technique. Therefore, the CPPC operations are more
costly for SPhot when comparing with applications that generate larger check-
point files. Besides, due to the use of the multilevel checkpointing, the reading
phase depends on the location of the negotiated checkpoint files. Consequently,
the reading times for the experiments introducing one process failures present the
lowest reading time, as the failed process reads the checkpoint file from the local
storage of the compute node. On the other hand, in the experiments introduc-
ing node failures, the reading operation presents a higher cost because the failed
processes use the copy of the checkpoint files in the remote disk.

Finally, the total overhead introduced by the proposal is studied. The failure-
introduced runtimes are measured, including the execution until the failure, the
detection and recovery from it, and the completion of the execution afterwards. As
checkpointing takes place at 50% of the execution and the failure is introduced at
75%, the minimum runtime of an execution tolerating a failure will be 125% of the
original runtime (75% until failure plus 50% from the recovery point until the end
of the execution). Therefore, we consider this time as the baseline runtime, and
the overhead of the proposal is measured as the difference between the baseline
and the testbed failure-introduced runtimes.

Fig. 7 shows the original runtimes, as well as the baseline and the testbed
failure-introduced runtimes. In the experiments, when only one MPI process is
killed, the total cost of tolerating the failure is, on average, 6.6 seconds, intro-
ducing 3.6% of relative overhead with respect to the original runtimes. Similarly,
when a full-node failure is recovered using a spare node, the absolute overhead is
8.7 seconds on average, introducing 3.7% of relative overhead. However, when an
already in use node is overloaded, runtimes are larger, as both the computation
after the failure and the operations to recover the applications are slower.

12 Nuria Losada et al.

Regarding the relation between the number of running processes and the total
overhead, we observed that there are not significant differences for the experiments
introducing one process failures or node failures using a spare node. However, in the
experiments overloading a computation node, the total overhead decreases with
the number of processes. As more processes execute the applications, less work
corresponds to each one of them, and the impact of the overloading is reduced.

6 Related work

Some works in the literature [3,9] have proposed extensions to the MPI interface
to cope with failures in MPI processes and obtain resilience. However, none of this
proposals were included in the MPI standard so far.

Recently, different approaches for resilience using the new ULFM functionali-
ties have emerged. Some of these solutions are Algorithm-Based Fault Tolerance
(ABFT) techniques, which means that they are specific to one or a set of appli-
cations and they can not be generally applied, such as the proposals of Laguna et
al. [11] and Ali et al. [1]. In contrast, the works of Sato et al. [13] and Teranishi and
Heroux [15], like the one in this proposal, focus on obtaining general MPI resilient
applications. However, both of them rely on the developers to instrument their
MPI applications in order to obtain fault tolerance support, which is, in general,
a complex and time-consuming task.

7 Concluding remarks

In this proposal the CPPC checkpointing tool is extended to exploit the new
ULFM functionalities to transparently obtain resilient applications from general
MPI SPMD programs. By means of the CPPC instrumentation of the original
application code, failures in one or several MPI processes are tolerated using a non-
shrinking backwards recovery based on checkpointing. Besides, a multithreaded
multilevel checkpointing stores a copy of the checkpoint files in different levels
of memory, minimizing the amount of data to be moved upon failure, and thus,
reducing the recovery overhead without increasing the checkpointing overhead.

The experimental evaluation analyzes the behaviour when one or sixteen MPI
processes (a full compute node) fail. Furthermore, in case of a node failure, two
different scenarios are considered: the failed processes are re-spawned in a spare
node or in an already in use one (overloading it). Results show the low overhead
of the solution.

Acknowledgements

This research was supported by the Ministry of Economy and Competitiveness of
Spain and FEDER funds of the EU (Project TIN2013-42148-P, CAPAP-H5 net-
work TIN2014-53522-REDT, and the predoctoral grant of Nuria Losada ref. BES-
2014-068066) and by the Galician Government (Xunta de Galicia) and FEDER
funds of the EU under the Consolidation Program of Competitive Research (ref.
GRC2013/055).

Resilient MPI applications using an application-level checkpointing framework ... 13

References

1. Ali, M., Southern, J., Strazdins, P., Harding, B.: Application Level Fault Recovery: Using
Fault-Tolerant Open MPI in a PDE Solver. In: IEEE International Parallel Distributed
Processing Symposium Workshops, pp. 1169–1178 (2014)

2. ASC Sequoia Benchmark Codes: https://asc.llnl.gov/sequoia/benchmarks/. Last accessed:
September 2015

3. Aulwes, R., Daniel, D., Desai, N., Graham, R., Risinger, L., Taylor, M.A., Woodall, T.,
Sukalski, M.: Architecture of LA-MPI, a network-fault-tolerant MPI. In: International
Parallel and Distributed Processing Symposium, pp. 15– (2004)

4. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.: An evaluation
of user-level failure mitigation support in MPI. In: Recent Advances in the Message Passing
Interface, Lecture Notes in Computer Science, vol. 7490, pp. 193–203. Springer (2012)

5. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: a Generic Framework for Managing Hardware Affinities
in HPC Applications. In: Euromicro International Conference on Parallel, Distributed and
Network-Based Computing. Pisa, Italy (2010)

6. Cappello, F.: Fault tolerance in petascale/exascale systems: Current knowledge, challenges
and research opportunities. International Journal of High Performance Computing Appli-
cations 23(3), 212–226 (2009)

7. Cores, I., Rodŕıguez, G., González, P., Mart́ın, M.: Failure avoidance in MPI applications
using an application-level approach. The Computer Journal 57(1), 100–114 (2014)

8. Cores, I., Rodŕıguez, G., Mart́ın, M., González, P., Osorio, R.: Improving Scalability of
Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes. New Generation
Computing 31(3), 163–185 (2013)

9. Fagg, G., Dongarra, J.: FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applications in
a Dynamic World. In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface, vol. 1908, pp. 346–353. Springer (2000)

10. Himeno Benchmark: http://accc.riken.jp/2444.htm. Last accessed: September 2015
11. Laguna, I., Richards, D., Gamblin, T., Schulz, M., de Supinski, B.: Evaluating User-Level

Fault Tolerance for MPI Applications. In: European MPI Users’ Group Meeting, Eu-
roMPI/ASIA ’14, pp. 57–62 (2014)

12. Rodŕıguez, G., Mart́ın, M., González, P., Touriño, J., Doallo, R.: CPPC: a compiler-
assisted tool for portable checkpointing of message-passing applications. Concurrency and
Computation: Practice and Experience 22(6), 749–766 (2010)

13. Sato, K., Moody, A., Mohror, K., Gamblin, T., De Supinski, B., Maruyama, N., Matsuoka,
S.: FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery. In: IEEE
International Parallel and Distributed Processing Symposium, pp. 1225–1234 (2014)

14. Schroeder, B., Gibson, G.: A Large-Scale Study of Failures in High-Performance Com-
puting Systems. IEEE Transactions on Dependable and Secure Computing 7(4), 337–350
(2010)

15. Teranishi, K., Heroux, M.: Toward Local Failure Local Recovery Resilience Model Using
MPI-ULFM. In: European MPI Users’ Group Meeting, pp. 51–56 (2014)

16. Wang, C., Mueller, F., Engelmann, C., Scott, S.: Proactive process-level live migration in
HPC environments. In: ACM/IEEE conference on Supercomputing, pp. 1–12 (2008)

17. Wolters, E., Smith, M.: MOCFE-Bone: the 3DMOCmini-application for exascale research.
Tech. rep., Argonne National Laboratory (ANL) (2013)

