

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-016-1640-
z

https://link.springer.com/article/10.1007/s11227-016-1640-z

http://hdl.handle.net/10251/82062

Springer Verlag (Germany)

Peñaranda Cebrián, R.; Gómez Requena, C.; Gómez Requena, ME.; López Rodríguez, PJ.;
Duato Marín, JF. (2016). The k-ary n-direct s-indirect family of topologies for large-scale
interconnection networks. Journal of Supercomputing. 72(3):1035-1062.
doi:10.1007/s11227-016-1640-z.

Noname manuscript No.
(will be inserted by the editor)

The k-ary n-direct s-indirect Family of Topologies
for Large-Scale Interconnection Networks

Roberto Peñaranda · Crisṕın Gómez ·
Maŕıa E. Gómez · Pedro López · Jose
Duato

Received: date / Accepted: date

Abstract In large-scale supercomputers, the interconnection network plays a
key role in system performance. Network topology highly defines the perfor-
mance and cost of the interconnection network. Direct topologies are some-
times used due to its reduced hardware cost, but the number of network di-
mensions is limited by the physical 3-D space, which leads to an increase of the
communication latency and a reduction of network throughput for large ma-
chines. Indirect topologies can provide better performance for large machines,
but at higher hardware cost. In this paper, we propose a new family of hy-
brid topologies, the k–ary n–direct s–indirect, that combines the best features
from both direct and indirect topologies to efficiently connect an extremely
high number of processing nodes. The proposed network is an n–dimensional
topology where the k nodes of each dimension are connected through a small
indirect topology of s stages. This combination results in a family of topologies
that provides high performance, with latency and throughput figures of merit
close to indirect topologies, but at a lower hardware cost. In particular, it dou-
bles the throughput obtained per cost unit compared with indirect topologies
in most of the cases. Moreover, their fault-tolerance degree is similar to the
one achieved by direct topologies built with switches with the same number
of ports.

Keywords High-Performance Computing · Interconnection Networks ·
Direct Topologies · Indirect Topologies · Hybrid Topologies · Routing

1 Introduction

The size of large supercomputers has been growing year after year. The top-
most machines of the top 500 supercomputer list [6] are being built up by using

Roberto Peñaranda
Universidad Politécnica de Valencia
E-mail: ropeaceb@gap.upv.es

2 Roberto Peñaranda et al.

hundreds of thousands of processing nodes. All these processing nodes work
jointly to solve a given problem in as less time as possible. This joint work is
performed thanks to the interconnection network that allows all the processing
nodes to share data among them. The interconnection network must enable an
efficient communication among all the processing nodes because it strongly im-
pacts the performance of the whole system. Transmission time of data across
the interconnection network adds up to the processing time, impacting the
time required to run the applications.

The main design challenges of interconnection networks design are to pro-
vide low latency communications, in order to reduce the execution time of
applications, and a high network throughput, to allow as many simultane-
ous communications as needed, while providing a simple implementation at a
reduced hardware cost.

In addition to performance and cost, another important feature of intercon-
nection networks is their ability to provide fault–tolerance. The high amount of
hardware that can be found in an interconnection network in high–performance
machines significantly impacts the probability of having a fault in the system.
Each component may independently fail, and therefore, the probability of hav-
ing a single fault in the whole system drastically raises with the number of
elements that compose it. Thus, tolerating faults is also a basic requirement
when designing an interconnection network, specially for a large machine.

Two of the most important design issues of the interconnection networks
are the topology and the routing algorithm [11,15]. Topology defines how the
components of the system are connected, and the routing algorithm determines
the path that is followed by packets from their source to their destination node.
The topology of a network also impacts, to a large extent, its cost. Topologies
usually adopt a regular structure to simplify their implementation, the routing
algorithm and the possibility of expanding the network. Among the different
taxonomies of regular topologies, the most commonly-used one divides them
into direct and indirect topologies [11,15].

Direct topologies usually adopt an orthogonal structure where nodes are
organized in an n–dimensional space. Each node is composed of a router and
a processing node. The nodes are connected in each dimension in a ring or
array fashion. 2D or 3D direct topologies are relatively easy to built as each
topology dimension is mapped to a physical dimension. Implementing direct
topologies with more than three dimensions implies not only increasing its
wiring complexity but also the length of its links when they are mapped to
the 3D physical space. Indeed, the number of ports of the routers geometrically
grows with the number of dimensions (as two ports per each dimension are
required). The implementation limitation in the number of dimensions leads
to increase the number of nodes per dimension, which increases the commu-
nication latency, negatively impacting performance. As a consequence, direct
topologies are not the most suitable ones for large machines.

The alternative is to use an indirect topology. The main difference, com-
pared to direct topologies, is that not all the routers have an associated pro-
cessing node. The most common indirect topologies are multistage indirect

Title Suppressed Due to Excessive Length 3

networks (MINs) where switches are organized in a set of n stages. Indirect
topologies provide better performance for a large number of processing nodes
than direct ones. However, this is achieved by using a higher amount of switches
and links. Furthermore, their physical implementation is complex due to the
fact that the wiring complexity grows with the number of processing nodes in
the system, unlike direct topologies where complexity grows with the number
of topology dimensions.

To overcome the limitations of direct and indirect topologies, in this paper
we propose a new family of topologies where we combine the best features of
both types of topologies. Other hybrid topologies have been proposed previ-
ously in the literature (see Section 6). However, most of them are hierarchical
and therefore introduce long latency for the communication of non-local pro-
cessing nodes and others are intended for particular purposes [20,10]. In this
paper we propose a topology family that can be configured to meet differ-
ent scenario requirements. We propose an n–dimensional topology, where the
rings that connects the nodes in each dimension are replaced by small indirect
networks. In this way, communication latency along each dimension no longer
linearly grows with the number of nodes per dimension thanks to these indirect
networks. On the other hand, the small size of this indirect topology allows a
reasonable wiring complexity opposite to large indirect topologies. This com-
bination results in a family of topologies that provides high performance, with
latency and throughput figures of merit close to the ones obtained with indirect
topologies, but at a reduced hardware cost. In addition, the fault–tolerance
level is higher than or equal to the one provided by direct and indirect topolo-
gies.

Evaluation results show that the new proposed family of topologies can
obtain similar or better performance results than the ones provided by indirect
topologies, but using a smaller amount of hardware resources and with an
easier implementation. In particular, they are able to double the throughput
obtained per cost unit compared to the one obtained with indirect topologies
in most of cases, and this difference is even higher when it is compared with
direct topologies.

The rest of the paper is organized as follows. Section 2 presents some back-
ground. Section 3 describes the proposed family of topologies. The routing
algorithms to be used are presented in Section 4. Section 5 evaluates the new
family of topologies, comparing it against direct and indirect topologies, and
other recently proposed topologies. Some related works are commented in Sec-
tion 6. Finally, some conclusions are drawn.

2 Direct and Indirect Topologies

In direct topologies, each node has its own router that connects it to a subset
of the nodes of the system by means of point-to-point links. Direct topolo-
gies usually adopt an orthogonal structure, where nodes are organized in an
n–dimensional space, in such a way that traversing one link produces a dis-

4 Roberto Peñaranda et al.

placement in only one dimension. That is, all the links of the network are
organized in several dimensions in a regular way, and each node has at least
one link in each dimension. The symmetry and regularity of these networks
greatly simplify its implementation and the routing algorithm, since the move-
ment of a packet in a single dimension does not modify the number of hops
remaining in the other dimensions to reach the packet destination.

This kind of topologies is known as k–ary n–cubes. In what follows, to
distinguish the topology parameters of both direct and indirect topologies, we
will refer to this topology as kd–ary nd–cubes1, where kd is the number of
nodes in each of the nd dimensions in a direct network. The total number of
processing nodes in the system is given by N = kd

nd . In these topologies, nodes
are labeled by an identifier with as many components as topology dimensions
{pnd−1, . . . , p0}, and the component associated to each dimension ranges from
0 to kd−1 (i.e., nodes are numbered from 〈0, 0, . . . , 0〉 to 〈kd−1, kd−1, . . . , kd−
1〉). The identifiers of neighbor nodes in a given dimension only differ in the
component corresponding to that dimension, while the remaining components
have the same value. For instance, two nodes p y p′ are neighbors in the x
dimension, if and only if px = p′x ± 1 and pi = p′i for the rest of dimensions.

The most commonly–used direct topologies are mesh, torus and hypercube.
In a mesh topology, all the nodes of a dimension compose a linear array.
In torus, all the nodes of each dimension form a ring. The hypercube is a
particular case of a mesh where there are only two nodes in each dimension
(kd = 2), which forces the number of dimensions (nd) to be large enough to
interconnect all the nodes of the system (i.e., nd = log2N). Direct topologies
have been used in several of the most powerful supercomputers, being the 3D-
torus the most widely used one. For instance, the number two (Titan) and
number three (Sequoia) of the November 2015 Top500 supercomputer list [6]
use a torus.

For a given number of processing nodes N , direct topologies provide a
richer connectivity as the number of dimensions increases. As the hypercube
has the largest possible number of dimensions, it provides a better connectivity
than meshes and tori, but at a higher cost, since it uses more links and it has
a higher router degree (number of ports of the router).

Latency is related to the average distance, measured as the number of
links that packets have to cross to reach their destination. Related to this, the
diameter of a topology measures the maximum distance between two nodes of
the topology using the shortest possible path between them. For a constant
number of processing nodes (N = knd

d), diameter is increased as the number
of dimensions (nd) is decreased and the number of nodes per dimension (kd)
is increased. The increase of the distance traversed by packets also increases
the probability of contention with other packets that are also crossing the
network, which reduces network throughput. From this point of view, it may
seem interesting to maximize the number of dimensions of direct topologies for
a given number N of processing nodes. Nevertheless, other issues have to be

1 The subscript “d” stands for direct.

Title Suppressed Due to Excessive Length 5

considered. Direct topologies up to three dimensions can be implemented by
using relatively short links in the 3-D physical space and with an acceptable
wiring complexity, regardless of the size of the system. However, implementing
a topology with more than three dimensions implies increasing the length
of the links, since we have to map all the dimensions to the 3-D physical
space. In addition, they also require using routers with a higher number of
ports (two bidirectional ports per each dimension are required, one per each
direction in that dimension). So, direct topologies have some limitations for
the implementation of large-scale machines, since they would require using a
large number of nodes per dimension (kd), which increases the diameter of
the network and also the probability of contention which increases message
latency of communications and reduces network throughput.

The alternative is to use indirect topologies. In these topologies, processing
nodes do not have routing capabilities, since the router is separated from the
processing node2. Routers become independent devices, known as switches.
Processing nodes are connected to a switch of the network. Moreover, oppo-
site to direct topologies, all the switches have not necessarily an associated
processing node. In fact, most of the switches are usually connected to other
switches but they are not connected to processing nodes.

The most common indirect networks are multistage interconnection net-
works (MINs). In MINs, switches are organized as a set of stages. Process-
ing nodes are connected to the first stage, and the other stages are con-
nected among themselves using a certain connection pattern that provides
full–connectivity among all processing nodes. Two different types of MINs
can be defined. Unidirectional MINs (UMINs) use unidirectional switches and
links, so the network is traversed by packets only in one direction. In this
case, processing nodes are also attached to the last stage and a unique path
between each source–destination pair is provided (using the minimum number
of stages). Bidirectional MINs (BMINs) use bidirectional links and switches.
So, in order to travel from a source to a destination processing node, packets
travel upwards the network and then downwards. BMINs provide several paths
between each source–destination pair.

In MINs, connection patterns between stages are based on permutations
of the identifiers of the processing nodes. Depending on the connection pat-
tern used among adjacent stages, several MINs have been proposed. The most
widely–used MIN in commercial systems is the fat–tree topology [25], which is
a BMIN. However, there are other more recent systems, like the one proposed
in [8], focusing on fault tolerance. Most of the high–performance interconnect
vendors as Mellanox (manufacturer of the Infiniband technology) [3], Myri-
com (manufacturer of Myrinet) [4] or Quadrics (manufacturer of QsNet) [5]
recommend to use a fat–tree and provide specific switches for building this
topology. Moreover, it has been used in some of the most powerful supercom-
puters. For instance, the Tianhe 2 and the Tianhe 1A supercomputers, the

2 Direct topologies with independent routers are also possible.

6 Roberto Peñaranda et al.

Table 1 Parameters of the different analyzed topologies.

Topology Diameter Bisection bandwidth

Mesh nd(kd − 1) 2N/kd
Torus nd(kd/2) 4N/kd

Fat–tree 2ni N

number one and twenty six respectively in the November 2015 Top500 list [6]
use this topology.

The k–ary n–tree is the most widely–used implementation of the fat–tree
topology. In what follows, to distinguish the topology parameters of both direct
and indirect topologies, we will refer to this topology as ki–ary ni–tree3. ki is
the number of links that connect a switch to the next or the previous stage,
and ni is the number of stages of the indirect network. So, each switch has
2ki bidirectional ports in fat–trees (i.e. using switches with d × d ports, ki is
d/2). A fat–tree requires at least logki

N stages to interconnect N processing
nodes. Each stage has N/ki switches, with a total of (N/ki)logki

N switches
and N = ki

ni processing nodes.

In fat–trees, the diameter of the network depends only on the number of
stages, and it is given by 2ni, that is 2logki

N , as in the worst case a packet
must traverse upwards all stages and all stages downwards. Notice that, for a
UMIN, the distance traversed by packets is always ni, regardless of the source
and destination processing nodes. In summary, for a fixed number N = ki

ni

of processing nodes of a MIN, when the number of stages ni is increased,
ki is decreased but the distance that packets have to traverse to reach the
destination is increased. Also it should be taken into account that, by using
high-degree switches fewer switches will be required, but each of them will be
more complex. On the contrary, if we use low–degree switches, we will require
more switches, but much simpler.

Table 1 shows the diameter and bisection bandwidth for both types of
topologies. As it can be seen, the bisection bandwidth is larger for indirect
topologies –it depends only on N , without being divided– and the diameter
of indirect topologies depends only on the number of stages while in direct
topologies it depends on the product of nd and kd, which will lead in practice
to larger diameters. In direct topologies, for a low number of network dimen-
sions (remember that it is limited by the 3D physical space), the number of
nodes per dimension will be high, negatively impacting diameter and bisection
bandwidth. Indirect networks provide better scalability than direct networks,
because they provide smaller diameters and shorter latencies for large net-
work sizes. Nevertheless, they have a higher cost, because they require a high
amount of switches and links, and their physical implementation is costly since
the complexity of network wiring grows with its size, unlike direct topologies.

3 The subscript “i” stands for indirect.

Title Suppressed Due to Excessive Length 7

3 The KNS Family of Hybrid Topologies

This paper proposes a new family of topologies for interconnection networks
that allows to efficiently connect an extremely high number of processing
nodes, given the huge size of current and near future supercomputers [6].
We propose an hybrid topology based on combining an n–dimensional direct
network with small indirect topologies. The aim is to combine the advantages
of direct and indirect topologies to obtain a family of topologies that is able
to connect a high number of processing nodes, providing low latency, high
throughput and a high level of fault–tolerance at a lower hardware cost than
indirect networks. In the proposed topology, the nodes of each dimension are
connected through an indirect topology that allows to have a large number of
nodes per dimension without negatively affecting performance.

The new family of topologies will use two different kind of switches in the
network (although this is not entirely true, as we will see later). First, low–
degree switches are used to connect processing nodes to each dimension and
move packets across dimensions. We will refer to these switches as routers.
They have, at least, one processing node attached to them and as many ports
as dimensions. Nowadays, it is common that processing nodes are composed
of a large number of cores, and the core count per processing node trend is to
increase even further. So, these processing nodes need network interfaces with
high bandwidth to avoid bottlenecks in the end processing node connection
to the network. In fact, there are already some commercial solutions which
use network interfaces cards with dual ports [1]. Considering the core count
increase trend it is expected that the bandwidth requirements of end process-
ing nodes will be even higher. Another key point of these network interfaces
with several ports is that they provide fault-tolerance. Using one port net-
work interfaces causes having a single point of failure that will disconnect a
high number of cores. Both, bandwidth and fault tolerance requirements will
provoke increasing the number of ports in the near-future network interfaces.

In this paper we take advantage of these network interface cards with
several ports to implement the routers used in the new family of topologies.

Additionally to these routers, the proposed topology also uses other switches
to implement the indirect networks that interconnect the routers of each di-
mension.

3.1 Description of the family

The newly proposed topology family arranges processing nodes and their as-
sociated routers (node) in n dimensions like a direct topology. But, contrary
to mesh and torus topologies, routers of a given dimension are not only con-
nected with their adjacent routers in that dimension. Instead, all the routers
of a given dimension are connected by means of a small indirect network. This
indirect network could be even a single switch, considering the number of ports
of current commercial high-radix switches. However, if the number of routers

8 Roberto Peñaranda et al.

per dimension exceeds the number of ports of the available switches, the indi-
rect network will be arranged as a small MIN. We will refer to this MIN as the
indirect subnet. This will provide a low latency communication among routers
in the same dimension with a small hardware extra cost compared to direct
topologies. In this way, the number of routers per dimension stops being a
bottleneck from the point of view of the performance, as the time to commu-
nicate two routers of the same dimension is constant or grows logarithmically
with the number of routers per dimension. Notice also that each router only
requires a bidirectional link per dimension to connect to the switch of each
dimension. On the contrary, a mesh or torus require two bidirectional links
per dimension, one per neighbor node.

The proposed family of topologies is defined by three parameters. Two of
them are inherited from direct networks: the number of dimensions nh

4 and
the number of routers per dimension kh. The number of processing nodes it
can interconnect is given by N = knh

h . In addition to these two parameters,
there is an additional parameter, the number of stages of the indirect subnet,
referred to as sh. This number depends on the number of routers per dimension
kh and on the number of ports of the switches used to implement the indirect
subnet (which will be referred to as dh). The ratio between kh and dh defines
the way to interconnect the kh routers of each dimension. If kh ≤ dh, a simple
switch would be able to interconnect all the routers of the dimension, and sh
will be equal to 1. On the contrary, if kh > dh, a MIN would be required to
interconnect the routers of each dimension, and the number of required stages
will be given by log dh

2

kh (remember that in an indirect network built with

dh-port switches, the network radix is equal to dh

2). We will refer to the new
family of topologies proposed in this paper as kh–ary nh–direct sh–indirect
(KNS), where kh is the number of routers per dimension, nh is the number of
dimensions and sh is the number of stages of the indirect subnets.

In this paper, we have considered two different MINs to connect the routers
of a given dimension. The first one is a BMIN, the fat–tree. The second one is
RUFT [19], a UMIN derived from a fat–tree using a load–balanced determin-
istic routing algorithm [18], which requires less hardware resources.

Figure 1 shows an example of the new topology with 2 dimensions (nh = 2),
and 4 routers per dimension (kh = 4), with a total number of 16 routers. In
this case, the routers of the same dimension are connected by a single 4-port
crossbar. However, for a higher number of routers per dimension, say kh = 8
and the same switch size, a MIN should be used. In the case of using fat–tree
subnets, for interconnecting the 8 routers of each dimension, it will require 3
stages and 12 bidirectional 4-port switches, implementing in this way a 8–ary
2–direct 3–indirect. In the case of using RUFT as indirect subnets, it is also a
8–ary 2–direct 3–indirect but built with 4-port unidirectional switches. We will
analyze in more depth the issues of using different indirect subnets in Section
5.

4 The subscript ”h” stands for hybrid.

Title Suppressed Due to Excessive Length 9

R R RR

R R RR

R R RR

R R RR

S

S

S

S S SS

S

Fat tree

RUFT

Crossbar

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Fig. 1 An example of the KNS topology with nh = 2, kh = 4 and dh = 4.

R R RR

R R RR

R R RR

R R RR

S

S

S

S S SS

S

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Fig. 2 An example of the KNS topology with nh = 2, kh = 4, sh = 1 and ph = 2.

As it can be seen in Figure 2, the routers are connected to all dimensions
through a different link (one per dimension). Notice that it is also possible
to attach several processing nodes to the same router. Having more than one
processing node attached to each router is known as concentration in the
literature. In fact, the topology shown in the figure already has two processing
nodes attached to each router. Only the corner processing nodes are shown
in the figure for the sake of clarity. This introduces a new parameter on the
topology family, ph, the number of processing elements that are connected to
each router. In this case, the number of processing nodes is given by N =
phk

nh

h .

In Figure 1, two different components with switching capabilities can be
distinguished. The switches5 (in blue and labelled with a “S” in Figure 1)
are only connected to other switching components, whereas the routers (in
pink and labelled with an “R” in Figure 1) are used to connect the processing
nodes to the network through several dimensions. These routers are connected

5 It may be a single switch or a set of switches forming a MIN.

10 Roberto Peñaranda et al.

Table 2 Parameters of the different analyzed topologies.

Topology Parameters
Mesh or Torus nd # dimensions

kd # of nodes per dimension
Fat–tree ni # of stages

ki switch arity
kh–ary nh–direct sh–indirect nh # of dimensions

(KNS) kh # of routers per dimension
sh # of stages of the indirect subnet
dh switch degree
ph # processing nodes per router

on one side with processing nodes and on the other side with switches, and
their degree is nh + ph, that is, the sum of the number of dimensions and
the number of concentrated processing nodes. As it can be seen in Figure
1, if a crossbar is used as indirect subnet, switches allow packets to change
to any position in a given dimension by traversing only two links, whereas
routers allow to travel between dimensions. Thus as, at most, only two hops
are performed per dimension, the diameter of the new topology is 2nh, which
is a very low value. If a MIN is used instead of a crossbar as indirect subnet,
the diameter of the network will be the diameter of the used MIN (for a fat–
tree, i.e. a BMIN, 2× the number of stages, which is expected to be a small
number due to using high-radix switches) multiplied by nh, that is 2sh ∗ nh.

Table 2 summarizes the parameters that define the hybrid family of topolo-
gies. Notice that only one of dh or sh parameter is necessary, as the another
one can be derived from the other parameters. In addition, the parameters
that define traditional direct and indirect topologies are also shown.

The proposed hybrid topologies can take advantage of the high number
of ports available in current switches. For example, edge switches of up to
36 ports are commercially available [2], while chassis switches offer up to 648
ports [2]. With such switches, in most cases, a small MIN with only 2 or 3
stages or even a single switch will be enough to connect the routers in each
dimension. As the MIN is very small, it will introduce low latency and it can
be easily implemented with low wiring complexity.

On the other hand, as already stated, this topology can take advantage of
new network interfaces (like the new commercial HCA cards [1]), that have
several ports to connect the processing nodes to the network. By using these
network interfaces, the proposed topologies can be implemented by integrating
the router into the processing node as part of the network interface. These net-
work interfaces will have switching capabilities, so processing nodes equipped
with these new network interfaces will be able, apart from injecting messages
in the network, to route packets that are not destined to them to other pro-
cessing nodes without ejecting messages from the network.

The resulting topologies could seem similar to BCube [20] or Hypercrossbar
network [10], but the great difference between our proposal and BCube is that
the processing nodes do not eject messages from the network; the new topology

Title Suppressed Due to Excessive Length 11

family forwards the messages in the network interface which highly reduces
latency. However, these cases could be considered as particular configurations
of the KNS family of topologies.

The topologies proposed in this paper have several main advantages. First,
they allow to highly reduce the diameter compared to direct topologies. This
will lead to network performance improvements, decreasing latency and in-
creasing network throughput. Additionally, the number of required switches
and links is reduced compared to an indirect topology that connects the same
number of processing nodes, as will be shown in section 5. Therefore, it is ex-
pected that the proposed family of topologies reduces the cost of the network.
Finally, it also provides a good fault–tolerance level (see Section 5).

4 Routing Algorithms for the KNS Family of Topologies

In this section, we describe the routing algorithms proposed for the new family
of topologies. We will first describe the ones proposed for kh–ary nh–direct
1–indirect topologies (i.e., a crossbar is used as indirect subnet). Then, we
describe the ones proposed for the general case, that is, for KNS topologies,
using a fat–tree or a RUFT as indirect subnets.

First, we explain how routers and switches are labeled in the KNS topology.
Each router is labeled as in meshes and tori, with a set of components or
coordinates (as many as network dimensions) 〈rnh−1, rnh−2, . . . , r1, r0〉. Each
coordinate represents the position of each router in each of the dimensions.
On the other hand, the switches are labeled by a 2-tuple [d,p], where d is the
dimension the switch is located at, and p is the position of that switch in that
dimension. Notice that routers do not belong to any dimension, since they
are connected to all of them, and packets change dimensions through them.
On the contrary, switches do not allow changing the dimension packets are
traversing, they just allow packets to move through that dimension.

4.1 Routing in kh–ary nh–direct 1–indirects

Although both deterministic and adaptive routing algorithms could be used,
taking into account that adaptive routing may introduce out-of-order delivery
of packets and that leads to a more complex implementation, in this paper,
we will focus only on deterministic routing.

The deterministic routing algorithm for kh–ary nh–direct 1–indirect topolo-
gies, which will be referred to as Hybrid–DOR, is a variation of the dimension
ordered deterministic routing algorithm (DOR) for meshes, adapted to the
kh–ary nh–direct 1–indirect topology. In DOR, packets are routed through
the different dimensions following an established order until the destination
processing node is reached. At each dimension of the mesh, packets traverse
several routers until the movement in that dimension is exhausted. On the
other hand, as each mesh router has two links per dimension, packets must

12 Roberto Peñaranda et al.

be forwarded in each dimension through the direction that guarantees the
minimal path.

In Hybrid–DOR, network dimensions are also crossed in an established
order to guarantee deadlock freedom, as in DOR. However, there is a unique
link per dimension that connects the current router to a switch that allows
directly reaching any of the processing nodes in that dimension. So, packets
do not perform several hops at each dimension. Instead, in Hybrid–DOR,
routers directly forward packets through the unique link of the dimension
they have to traverse, and this link is connected to the corresponding crossbar
that moves the packet to the destination component in that dimension. Notice
that, contrary to meshes and tori, in kh–ary nh–direct 1–indirect topologies, it
is not required to choose the direction at each dimension, as there is only one
link per dimension. The routing in the switches is very straightforward since,
they just must forward packets through the link indicated by the destination
component in the current dimension, requiring just one hop to reach next
router.

Next, we show the Hybrid–DOR pseudo–code for the routers and the cross-
bars of the network. The number of dimensions of the topology is nh and the
destination and current router coordinates are given by 〈xnh−1, . . . , xd+1, xd,
xd−1, . . . , x1, x0〉, and 〈rnh−1, . . . , rd+1, rd, rd−1, . . . , r1, r0〉, respectively. In the
case of crossbars, the current switch is given by [d,p] (the pth switch of the d
dimension). The chosen link to send the packet is returned in link.

Routers:

i = 0;
Done = False
while (i < nh) ∧ (!Done) do

if xi! = ri then
Done = True
link = i

end if
i = i + 1

end while

Crossbars:

link = xd

As can be seen, routers select the next dimension to forward the packet,
which it is also the link of the router to be used, since there is just one link
per dimension, and crossbars merely select the link given by the destination
coordinate of the corresponding dimension to reach the destination component
in that dimension.

4.2 Routing in kh–ary nh–direct sh–indirects

In kh–ary nh–direct sh–indirect topologies, the crossbars are replaced by small
MINs. As stated above, the MINs considered in this paper are fat–trees or
RUFTs. In these topologies, all the switches of a given fat–tree or RUFT are
always in the same dimension and in the same position relative to the routers.
In order to identify the switches inside a given fat–tree or RUFT, we extend
the classical switch coordinates from MINs by including the coordinates of

Title Suppressed Due to Excessive Length 13

the MIN in the direct topology. In this way, the switch coordinates in kh–ary
nh–direct sh–indirect topologies will be given by a 4-tuple [d,p,e,o], where d
is the dimension the MIN belongs to, p is the position of the MIN in that
dimension, e is the stage of the switch inside the MIN, and o is the order of
that switch in that stage. Remember that d and p are the coordinates of the
equivalent crossbar in kh–ary nh–direct 1–indirect topologies.

Since the routers are the same regardless of the indirect topology used, its
routing algorithm is the same as the one shown for kh–ary nh–direct 1–indirect
topologies. However, switch routing algorithm depends on the particular indi-
rect network used.

First, we focus on the kh–ary nh–direct sh–indirect topology that uses fat–
trees in the indirect subnets. Despite the fact that a fat–tree has several paths
for each source–destination pair (i.e., it allows adaptive routing), we propose
to use the deterministic routing algorithm presented in [18] since it is simpler
and is able to outperform adaptive routing. We will summarize that routing
algorithm here. Routing is composed of two subpaths. First, packets are sent
upwards to the common ancestor switch of the source and destination pro-
cessing nodes and, then, they are sent downwards to its destination. Traffic is
balanced by carefully selecting the links to be used according to the destination
processing node. In particular, the link to be used in both subpaths is given
by the destination coordinate corresponding to the stage where the switch is
located at. For instance, if a switch located at stage e1 routes a packet whose
destination (in the fat–tree) is 〈tni−1, . . . , te1+1, te1 , te1−1, . . . , t1, t0〉, then the
packet is sent through the link ki + te1 in the upwards phase and through link
te1 in the downwards phase. Remember that ki is the arity of the switches of
the fat–tree topology. Please see [18] for more details.

In the fat–trees subnets of the kh–ary nh–direct sh–indirect topologies, the
routing algorithm is the same, but only the part of the destination identifier
corresponding to the dimension the fat-tree belongs to (i.e., xd in our notation)
is used. In this way, the packet is delivered to the same router that would be
reached through the corresponding crossbar in a kh–ary nh–direct 1–indirect
topology.

This routing algorithm is shown below. Assume that destination coordi-
nates are 〈xnh−1, . . . , xd+1, xd, xd−1, . . . , x1, x0〉, the dimension where the fat–
tree is located at is d, GetFTIdentifier returns from xd the fat–tree coordi-
nates to route locally in the fat–tree, UpwardsPhase returns true if the packet
is in its upwards subpath, or false otherwise, and that the stage in the fat-tree
of the switch that is routing the packet is given by e:

Switches:

t = GetFTIdentifier(xd)
if UpwardsPhase() then
link = ki + te

else
link = te

end if

14 Roberto Peñaranda et al.

Let us consider the case where RUFT is used in the indirect subnets of
the KNS topology. In RUFT, there is a unique path between each source–
destination pair and packets have to cross all the stages, reaching the last
stage, which is directly connected back to the processing nodes. The link to be
used by a packet at a particular switch is given by the destination component
corresponding to the stage the switch is located at. Please see [19] for details.
In this case, the pseudo–code for the switch routing algorithm is the following:

Switches:

t = GetFTIdentifier(xd)
link = te

If Hybrid-DOR is used in the routers jointly with the aforementioned algo-
rithms for the switches in the indirect networks, the resulting routing algorithm
for the new topology is deterministic and deadlock-free, since dimensions are
crossed in order in the direct topology and the routing algorithm used in the
indirect networks has not any loop in its channel dependency graph [14].

5 Evaluation

In this section, we evaluate the KNS topology family, comparing it with other
topologies such as meshes, tori, fat-trees, and flattened-butterflies [22].

5.1 Network Model

To evaluate the family of topologies proposed above, a detailed event–driven
simulator has been implemented. The simulator models several topologies,
including the new family of topologies presented in this paper, the KNS. This
simulator uses virtual cut–through switching. Each switch has a full crossbar
with queues of two packets both at their input and output ports. Credits are
used to implement the flow control mechanism. We assumed that it takes 20
clock cycles to apply the routing algorithm; switch and link bandwidth has
been assumed to be one flit per clock cycle; and fly time has been assumed to
be 8 clock cycles. These values were used to model Myrinet networks in [16].
In addition, for the new topology using RUFT as indirect subnet, the fly time
of the long links that connects the output of the unidirectional MIN to the
direct routers is assumed to be 8 clock cycles per stage, in order to take into
account that these links are longer.

We have performed the evaluation by using several synthetic traffic pat-
terns: uniform, hot–spot, tornado, and complement. In the uniform traffic
pattern, message destination is randomly chosen among all destinations. In
the hot–spot traffic pattern, a percentage of traffic is sent to a small subset
of the processing nodes (5% of nodes in this case) and the rest of the traffic
is uniformly distributed. In complement, the destination processing node is
obtained by complementing all the component bits of the source processing
node. Therefore, in this traffic pattern, the destination processing node of all

Title Suppressed Due to Excessive Length 15

packets generated at a given source processing node is always the same. In
tornado [28], the destination is chosen in such a way that each packet travels
n(k

2 − 1) hops. Regarding packet size, the results shown in this paper have
been obtained for 256–flit packets. However, simulations with other packet
sizes, such as 16, 128, and 512 flits has been performed, and the results are
consistent with the ones shown here. For each simulation run, the full range
of injected traffic (from low load to saturation) has been tested.

5.2 Performance Results

In this section, we compare the KNS using different indirect subnets (crossbar,
fat-tree, and RUFT) against other well–known and frequently–used topologies
such as tori, meshes, and fat–trees. Moreover, we also compare our proposal
against the flattened–butterfly (FB) topology because it is becoming a popular
topology in recent research papers (see Section 6 for further details). The FB
topology is a variation of the butterfly topology obtained from using high-
radix switches, that results in a direct topology. This topology can be seen as
a generalized hypercube with concentration, as all the switches in the same
dimension are directly connected, that is, there is a link from each switches to
the others of the same dimension. Several FB configurations have been tested
and compared to our proposal.

We have evaluated a wide range of network sizes, from 64 to 64K pro-
cessing nodes. Larger topologies have not been simulated due to simulator
memory constraints. For direct topologies, we have tested different values of
the number of dimensions and number of nodes per dimension. In particular,
we have evaluated networks of 2 dimensions, with 4, 8, 16, 32, 64, and 256
nodes per dimension; three dimensions, with 4, 8, and 16 nodes per dimen-
sion; four dimensions, with 4, 8, and 16 nodes per dimension; six dimensions,
with 4 processing nodes per dimension; and eight dimensions, with 4 nodes
per dimension. If not stated the contrary, only one processing node is attached
to each router (i.e. without concentration). If several ones are attached, the
x–p suffix is used, x being the number of processing nodes attached to each
router. These networks are compared with fat–trees and FBs with the same
number of processing nodes. Notice that, in some cases, several configurations
are possible. For the sake of clarity, only a subset of the most representative
simulations is shown.

Uniform traffic pattern: Figure 3.(a) shows results for 2-D small net-
works (256 processing nodes) with uniform traffic. As it can be seen, the mesh
is the network that achieves the lowest throughput, followed by torus and the
FBs configurations. In this latter case, we have selected a 4–ary 3–cube and a
2–ary 7–cube FB with concentration in order to compare our proposal against
a topology with a hardware of similar complexity, as we will show later (in
Section 5.3). The next topologies that achieve a better performance are the
two fat–tree configurations. However, the best absolute throughput is achieved
by the family of topologies proposed in this paper. In particular, the different

16 Roberto Peñaranda et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
vg

 M
sg

 L
at

en
cy

 f
ro

m
 G

en
 T

im
e

(c
yc

le
s)

Accepted Traffic (flits/cycle/node)

Mesh
Torus
16-ary 2-d 1-i
16-ary 2-d 2-i(FT)
16-ary 2-d 4-i(FT)
16-ary 2-d 2-i(RUFT)
16-ary 2-d 4-i(RUFT)
FT 16-ary 2-tree
FT 2-ary 8-tree
FB 2-ary 7-cube 2-p
FB 4-ary 3-cube 4-p

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
vg

 M
sg

 L
at

en
cy

 f
ro

m
 G

en
 T

im
e

(c
yc

le
s)

Accepted Traffic (flits/cycle/node)

Mesh
Torus
64-ary 2-d 1-i
64-ary 2-d 2-i(FT)
64-ary 2-d 6-i(FT)
64-ary 2-d 2-i(RUFT)
64-ary 2-d 6-i(RUFT)
FT 16-ary 3-tree
FT 2-ary 12-tree
FB 2-ary 11-cube 2-p
FB 16-ary 2-cube 16-p

(b)

 0

 2000

 4000

 6000

 8000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
vg

 M
sg

 L
at

en
cy

 f
ro

m
 G

en
 T

im
e

(c
yc

le
s)

Accepted Traffic (flits/cycle/node)

Mesh
Torus
256-ary 2-d 1-i
256-ary 2-d 2-i(FT)
256-ary 2-d 8-i(FT)
256-ary 2-d 2-i(RUFT)
256-ary 2-d 8-i(RUFT)
FT 16-ary 4-tree
FT 2-ary 16-tree
FB 4-ary 7-cube 4-p
FB 16-ary 3-cube 16-p

(c)

Fig. 3 Average packet latency from generation vs. accepted traffic for uniform traffic and
2 dimensions for direct topologies. (a) 256 processing nodes. (b) 4K processing nodes. (c)
64K processing nodes.

tested configurations ordered from lower to higher throughput are the topology
that uses a RUFT with two stages as indirect subnet (16–ary 2–d 2–i (RUFT)),
the ones that uses crossbar (16–ary 2–d 1–i), the one that uses RUFT with
4 stages (16–ary 2–d 4–i(RUFT)), the one that uses a FT with two stages
(16–ary 2–d 2–i (FT)) and the one that uses a FT with four stages (16–ary
2–d 4–i (FT)). In particular, the best configuration of the new topology family
obtains 3 times more throughput than the worst network (mesh), more than
twice versus torus, more than 20% versus FT and about 40% improvement
versus FB.

Figures 3.(b) and 3.(c) show how throughput is decreased in all the topolo-
gies as we increase the number of processing nodes in the network, keeping
constant the number of dimensions in the direct topologies, and therefore in-
creasing the number of routers (processing nodes) per dimension. In the case
of mesh and torus topologies, throughput strongly decreases, as the average
distance between two nodes is markedly higher than in the other topologies.
Regarding the KNS topologies, all the tested configurations outperform both
the FT and FB configurations analyzed. The best configurations are again

Title Suppressed Due to Excessive Length 17

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
vg

 M
sg

 L
at

en
cy

 f
ro

m
 G

en
 T

im
e

(c
yc

le
s)

Accepted Traffic (flits/cycle/node)

Mesh
Torus
16-ary 4-d 1-i
16-ary 4-d 4-i(FT)
16-ary 4-d 2-i(FT)
16-ary 4-d 4-i(RUFT)
16-ary 4-d 2-i(RUFT)
FT 16-ary 4-tree
FT 2-ary 16-tree
FB 4-ary 7-cube 4-p
FB 16-ary 3-cube 16-p

(a)

 0

 1000

 2000

 3000

 4000

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
vg

 M
sg

 L
at

en
cy

 f
ro

m
 G

en
 T

im
e

(c
yc

le
s)

Accepted Traffic (flits/cycle/node)

Mesh
Torus
4-ary 8-d 1-i
4-ary 8-d 2-i(FT)
4-ary 8-d 2-i(RUFT)
FT 16-ary 4-tree
FT 2-ary 16-tree
FB 4-ary 7-cube 4-p
FB 16-ary 3-cube 16-p

(b)

Fig. 4 Average packet latency from generation vs. accepted traffic for uniform traffic with
64K processing nodes and different number of dimensions: (a) 4D and (b) 8D.

the ones that use the tallest FT as indirect subnet. Notice that the differ-
ent topologies have a different hardware cost, which is evaluated in following
sections.

In Figures 3.(a), 3.(b), and 3.(c) we can also see the impact of using more
stages in the MINs of KNS topologies. For the same number of routers per
dimension, if we decrease the number of stages, the arity of the switches is
increased, and a lower latency should be obtained. The plots show that, the
higher the number of stages, the higher the base latency (in more detail the
zero-load latency) as more switches have to be crossed by packets. Surpris-
ingly, networks with more stages also achieve more throughput. This effect
is explained by the reduction of the head-of-line (HoL) blocking effect. For
a given number of routers per dimensions, a taller FT uses smaller switches
(i.e. with lower number of ports). As a consequence, each switch port is po-
tentially demanded by a lower number of input ports and, hence, the effect of
HoL blocking is reduced. From another point of view, with fewer stages, each
indirect topology has less switches to serve the same number of routers. Thus,
each switch has to deal with more traffic, leading to more HoL blocking effect
and, hence, less throughput.

Let us analyze the base latency. In a kh–ary nh–direct 1–indirect, base
latency does not depend on the number of routers per dimension. However, in
KNS that uses MINs, the base latency increases with the number of processing
nodes because the number of stages in the indirect subnets also grows in
order to connect a larger number of routers. This effect is more prominent
in RUFT, due to the fact that packets traverse always all stages since it is a
UMIN topology. In the case of torus and mesh, base latency strongly depends
on the number of nodes per dimension, as average distance between nodes is
increased.

Figure 4 analyzes the impact of the number of dimensions in the different
topologies. We analyze a network with 64K processing nodes implemented with
a different number of dimensions. We can distinguish three different behav-

18 Roberto Peñaranda et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(c
yc

le
s)

Traffic (flits/cycle/node)

Mesh
Torus
64-ary 2-d 1-i
64-ary 2-d 2-i(FT)
64-ary 2-d 2-i(RUFT)
FT 16-ary 3-tree
FT 2-ary 12-tree
FB 16-ary 2-cube 16-p
FB 8-ary 3-cube 8-p
FB 4-ary 5-cube 4-p
FB 2-ary 11-cube 2-p

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(c
yc

le
s)

Traffic (flits/cycle/node)

256-ary 2-d 1-i
256-ary 2-d 2-i(FT)
256-ary 2-d 2-i(RUFT)
FT 16-ary 4-tree
FT 2-ary 16-tree
FT 4-ary 8-tree
FB 2-ary 15-cube 2-p
FB 4-ary 7-cube 4-p
FB 16-ary 3-cube 16-p

(b)

Fig. 5 Average packet latency from generation vs. accepted traffic for complement traffic
and (a) 4K processing nodes and (b) 64K processing nodes.

iors. First, Mesh and torus topologies have a similar behavior. The higher the
number of dimensions, the fewer the number of nodes per dimension, and the
higher the achieved throughput. Also, base latency decreases with the number
of dimensions, because the average distance is reduced. However, the behav-
ior of kh–ary nh–direct 1–indirect is different. Throughput also increases with
the number of dimensions because the size of switches of the indirect network
(a crossbar in this case) is reduced, and, hence, the pernicious effect of HoL
blocking is reduced. However, base latency does not improve with the num-
ber of network dimensions. This is due to the fact that the number of hops
that packets must perform also grows with the number of dimensions. Con-
cerning the kh–ary nh–direct sh–indirect, they have a similar behavior to the
previous one, but with a difference. The base latency, in this case, slightly de-
creases when the number of dimensions increases. Although network diameter
increases with the number of dimensions, as started above, as there are fewer
routers per dimension, indirect subnets have fewer stages, and, thus, packets
have less stages to cross. Finally, the configurations of the FB shown (the ones
with a hardware cost similar to the one of our proposal, see Section 5.3) and
FT obtain an intermediate throughput value. Anyway, we would like to re-
mark that the new family of topologies always obtains the best throughput
regardless of the number of dimensions.

Complement traffic pattern: Figure 5 shows the obtained results for
this traffic pattern for different networks (4K and 64K processing nodes).
We can distinguish two different behaviors among the analyzed topologies.
In torus, mesh, and FB topologies, the network is rapidly saturated. In the
rest of topologies (all the KNS topologies, and fat–trees), the network is able
to cope with all the injected traffic. The reason is that, for this traffic pat-
tern, as an optimal load-balanced routing algorithm [18] is used in FT and
RUFT, the network resources are not shared among source–destination pairs.
The same happens in the indirect subnets of the proposed family of topolo-
gies as they use the same routing scheme, and, in addition, links connecting

Title Suppressed Due to Excessive Length 19

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(c
yc

le
s)

Traffic (flits/cycle/node)

Mesh
Torus
64-ary 2-d 1-i
64-ary 2-d 2-i(FT)
64-ary 2-d 2-i(RUFT)
FT 16-ary 3-tree
FT 2-ary 12-tree
FB 16-ary 2-cube 16-p
FB 8-ary 3-cube 8-p
FB 4-ary 5-cube 4-p
FB 2-ary 11-cube 2-p

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 f
ro

m
 G

en
er

at
io

n
T

im
e

(c
yc

le
s)

Traffic (flits/cycle/node)

256-ary 2-d 1-i
256-ary 2-d 2-i(FT)
256-ary 2-d 2-i(RUFT)
FT 16-ary 4-tree
FT 2-ary 16-tree
FT 4-ary 8-tree
FB 2-ary 15-cube 2-p
FB 4-ary 7-cube 4-p
FB 16-ary 3-cube 16-p

(b)

Fig. 6 Average packet latency from generation vs. accepted traffic for tornado traffic and
(a) 4K and (b) 64K processing nodes.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
vg

 M
sg

 L
at

en
cy

 f
ro

m
 G

en
 T

im
e

(c
yc

le
s)

Accepted Traffic (flits/cycle/node)

Mesh
Torus
8-ary 2-d 1-i
8-ary 2-d 3-i(FT)
8-ary 2-d 3-i(RUFT)
FT 2-ary 6-tree
FT 4-ary 3-tree
FB 2-ary 5-cube 2-p
FB 4-ary 2-cube 4-p

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
vg

 M
sg

 L
at

en
cy

 f
ro

m
 G

en
 T

im
e

(c
yc

le
s)

Accepted Traffic (flits/cycle/node)

Mesh
Torus
16-ary 2-d 1-i
16-ary 2-d 4-i(FT)
16-ary 2-d 2-i(FT)
16-ary 2-d 4-i(RUFT)
16-ary 2-d 2-i(RUFT)
FT 16-ary 2-tree
FT 2-ary 8-tree
FB 4-ary 3-cube 4-p

(b)

Fig. 7 Average packet latency from generation vs. accepted traffic for Hot–Spot traffic at
5% in 2 dimensions. (a) 64 processing nodes. (c) 256 processing nodes.

routers and switches only forward packets between a source and a destination,
since each router only has one processing node attached to it and a source
processing node only generates traffic to a given destination. Thus, the path
used by packets from a given source-destination pair is not shared with any
other packets destined to another processing node. So, hybrid topologies and
fat–trees are clearly the winners for this traffic pattern, and direct topologies
are not a good option.

Tornado traffic pattern: For this traffic pattern, shown in Figure 6, we
obtain similar results than in complement traffic pattern. The KNS topologies
and fat–trees are able to cope with all the injected traffic. Again, this very
good behavior is due to the use of a load-balanced routing algorithm and the
higher effective bisection bandwidth of these topologies.

Hot–spot traffic pattern: As expected, the concentration of packets sent
to a few processing nodes makes the network saturate at a lower throughput

20 Roberto Peñaranda et al.

Table 3 Analytical comparison of the Mesh, Torus, Fat–Tree, Flattened–Butterfly and the
KNS topologies. KNS topologies refers to the arity of indirect switches.

Mesh Torus Fat–tree Flattened–Butterfly

Switches N N Nni/ki k
nf

f

links (kd − 1)k
nd−1
d nd + N k

nd
d nd + N N(ni − 1) + N k

nf

f (kf − 1)nf/2 + N

KNS

Switches N/ph(shnh/ki)
Routers N/ph

links k
nh
h nh + (sh − 1)Nnh/ph + N

than in other traffic patterns. As it can be seen in Figure 7, the worst topology
is again the mesh; the torus saturates also slightly after it. The remaining
topologies obtain a similar throughput, being the best one the hybrid topology
that uses crossbars as subnets.

To summarize, the new family of topologies is able to obtain, in all analyzed
traffic patterns and network configurations, equal or better performance results
than the direct and indirect topologies evaluated for different traffic patterns.

However, each network topology has different complexity. In the next sec-
tion, we estimate the complexity and cost of each network. Then, we will
perform a comparison of topologies from a cost-performance point of view.

5.3 Cost–performance analysis

This section estimates and compares the hardware cost of each considered
topology connecting the cost also with the perfomance of each of them. First,
we will analyze, for each topology, the number of links and switches that
it requires. However these numbers of links or switches in isolation is not
a good metric, since a network with more complex switches (which are more
expensive) has a lower number of links and switches and (incorrectly) seems to
be cheaper. Therefore, neither the number of links nor the number of switches
by themselves are accurate metrics of the actual cost. This is why we will
provide another way to mesure the actual cost.

Table 3 shows how to compute the number of links and switches for each
topology (it also shows the number of direct routers for the new family of
topologies). For example, in kh–ary nh–direct 1–indirect (i.e. it uses crossbar
as subnets), if we have N processing nodes and ph concentrated processing
nodes per each direct router, we will need N/ph or, what is the same, knh

h

direct routers and one switch (crossbar) for each group of kh routers with the
same dimension component. Then, we will need crossbars with kh ports (in
this case kh is equal to ki because a single switch is used in each dimension) to
connect the kh direct routers in each dimension, so we will need N/ph(nh/kh)
crossbars.

If we use MINs as subnets (fat–tree or RUFT), we will need kh/ki switches
per stage to implement the MIN that replaces the crossbar, yielding N/ph

Title Suppressed Due to Excessive Length 21

Table 4 Results for different 2–D topologies with uniform traffic and 64K processing nodes.

Topology Base Throughput Links Switches Routers
Latency (KNS)

256–ary 2–direct 386 0.47 196,608 512 65,536
1–indirect
256–ary 2–direct 480 0.40 327,680 16,384 65,536
2–indirect(RUFT)
256–ary 2–direct 516 0.43 327,680 16,384 65,536
2–indirect(FT)
256–ary 2–direct 635 0.41 589,824 131,072 65,536
4–indirect(RUFT)
256–ary 2–direct 727 0.48 589,824 131,072 65,536
4–indirect(FT)
256–ary 2–direct 941 0.48 1,114,112 524,288 65,536
8–indirect(RUFT)
256–ary 2–direct 1,129 0.55 1,114,112 524,288 65,536
8–indirect(FT)

FB 16-ary 3-cube 16-p 367 0.39 157,696 4,096 0
FB 4-ary 7-cube 4-p 443 0.38 237,568 16,384 0
FB 2-ary 15-cube 2-p 512 0.41 311,296 32,768 0

FT 16-ary 4-tree 428 0.40 262,114 16,384 0
FT 4-ary 8-tree 596 0.41 524,288 131,072 0
FT 2-ary 16-tree 921 0.47 1,048,576 524,288 0

Torus 4,547 0.02 196,608 65,536 0
Mesh 6,478 0.01 196,096 65,536 0

(nh/kh)(shkh/ki) switches with arity ki, which can be simplified to N/ph
(shnh/ki) switches.

Regarding links, we will need one link per dimension in each direct router
(i.e. knh

h nh links in total) and one link for each processing node to connect it
to its corresponding router (N links in total). Furthermore, if we use MINs as
subnets (fat–tree or RUFT), each one will have kh links between each stage
(i.e. (sh− 1)kh per MIN), yielding (sh− 1)khN/ph(nh/kh) in total, which can
be simplified to (sh−1)Nnh/ph links. Notice that all links are bidirectional ex-
cept those of the RUFT indirect subnets that use unidirectional links, and the
same occurs with the switches. In the case of links, their cost is not halved,
since much of the cost comes from the connectors. For this reason, and for
easier comparison, we assume the same link cost for unidirectional and bidi-
rectional links. Regarding switches, a switch with p unidirectional ports can
be implemented by using a switch with p/2 bidirectional ports.

Table 4 shows these metrics for different configurations of 64K–processing
node topologies including also the performance results for the uniform traffic
pattern. The network is 2D in the case of KNS, mesh, and torus topologies.
For the FB topology, we have considered different configurations. As it can
be seen, fat-trees and the KNS topologies with more stages are the topologies
that achieve the highest raw throughput (256–ary 2–direct 8–indirect – FT and
RUFT – and FT 2-ary 16-tree). However, if we also consider the cost, these

22 Roberto Peñaranda et al.

Table 5 List price for switches: (a) Edge switches and (b) Chassis switches.

Edge Switches
Ports List price ($)

12 5,361
18 9,850
36 12,523

(a)

Chassis Switches
Ports List price ($)

108 32,650
216 48,778
324 65,875
648 110,177

(b)

Table 6 List price for links: (a) Copper Links and (b) Fiber Links.

Copper Links
Length(m) List price ($)

0.5 84
1 94
2 107
3 123
4 139
5 172

(a)

Fiber Links
Length(m) List price ($)

3 551
5 551
10 580
15 611
20 642
30 730
50 896
100 1,347

(b)

topologies are composed of a higher number of links and switches. Specially
in the case of the 256–ary 2–direct 8–indirect (FT and RUFT) and the FT
2-ary 16-tree. On the other hand, there are topologies that require a smaller
number of switches, but these switches have more ports, so they may be more
expensive. This is the case of the 256–ary 2–direct 1–indirect or FB 16-ary
3-cube 16-p.

In order to get an actual cost figure, we have calculated the cost (in $)
that some of these configurations would have when implemented with real
commercial products. We have used InfiniBand products with FDR technology
of Mellanox [2] (February 2015) to calculate the cost.

Tables 5.(a) and 5.(b) show the list price of switches depending on their
number of ports. There are two different types of switches: edge and chassis
switches. When preparing the budget, if there are no switches with the number
of ports required by the configuration, we selected the next one with greater
number of ports. For example, we needed to use 256-port switches for 256–ary
2–direct 1–indirect, so we selected 324-port switches.

Tables 6.(a) and 6.(b) show the list price of links depending on their length.
As copper links are limited to 5 meters, if a longer link is required, fiber links
must be used. We assumed an average length between cabinets (global links)
of 10 meters, and 2 meters for connections in the same cabinet (local links).

The number of global and local links depends on the topology. For 256–ary
2–direct 1–indirect and 256–ary 2–direct 4–indirect with FT as subnets, the
processing nodes of the same first dimension can be placed in the same cabinet

Title Suppressed Due to Excessive Length 23

Table 7 Cost for Network Interface Cards.

NIC List price ($)

Connect IB PCIe 3.0 16x Single Port 1314
Connect IB PCIe 3.0 16x Dual Port 2378

Fig. 8 Total cost of different topology configurations with 64K processing nodes.

or in two cabinets (one beside the other). The links of this dimension are local
links, and the links of the second dimension are global links. Regarding the
links interconnecting the stages of the MIN (a fat–tree in this case), we assume
that they are local, since each subnet fits in a cabinet. In flattened–butterfly
configurations, for example FB 16-ary 3-cube 16-p, we use the same approach.
The links of the first dimension are local because the processing nodes of the
same first dimension are placed in one or two cabinets and the links of the
remaining dimensions are global. In fat–trees, the links which connect the
processing nodes with the first stage are local, and the remaining links are
global. In torus topology, the configuration is very similar to kh–ary nh–direct
1–indirect (local links for the first dimension and global links for the second
dimension). However, in this case, a cabinet or a group of cabinets that contain
processing nodes of the same first dimension, are connected to the neighboring
cabinet or group. So, they will be very close. For this reason, in this case we
have used shorter global links of 5 meters.

As previously stated, multiport NICs can be used to implement the KNS
topologies. There are currently commercially available dual-port NICs that can
may used to implement KNS with two dimensions. With these NICs, neither
direct routers nor links between processing nodes and direct routers are longer
required. The prices of dual–port and single–ports NICs are shown in Table 7.

Notice that all prices shown in Tables 5, 6 and 7 are for individual products.
If purchased them massively we will surely enjoy a great discount in all cases.

Using these data, we calculated the cost of some selected configurations,
which are shown in Figure 8. The configurations shown are the cheapest ones
that their perfomance is not very far to the configuration that obtains the
highest throughput.

24 Roberto Peñaranda et al.

Table 8 Cost–performance analysis for different topology configurations with 64K process-
ing nodes. Throughput is measured in flits/cycle/node. Throughput/cost is measured in
flits/cycle/node/$.

Topology 256-ary 256-ary 256-ary FB FB FT FT Torus
2-direct 2-direct 2-direct 16-ary 4-ary 16-ary 4-ary 256-ary

1-indirect 2-indirect 2-indirect 3-cube 7-cube 4-tree 8-tree 3-cube
(FT) (RUFT) 16-p 4-p

Throughput 0.47 0.43 0.40 0.39 0.38 0.40 0.41 0.02
Total Cost ($) 235 M 420 M 376 M 266 M 371 M 412 M 1,062 M 463 M
Throughput 2.00 1.02 1.06 1.47 1.02 0.97 0.39 0.04
/Cost x10−9 x10−9 x10−9 x10−9 x10−9 x10−9 x10−9 x10−9

As can be seen in Figure 8, the 256–ary 2–direct 1–indirect configuration
obtains the lowest absolute cost. The fat–tree with 8 stages (FT 4-ary 8-
tree)has a very high cost, despite having very good performance. In the case
of torus, its cost is not very high, but it has a low performance. Flattened–
butterfly has a competitive cost, but it is not lower than the 256–ary 2–direct
1–indirect and it does not reach a better perfomance.

To allow a better comparison of both cost and perfomance, Table 8 shows
the ratio between cost and perfomance. If we use KNS topologies, configu-
rations with more stages have better throughput but also a higher cost and
more latency. The same applies to fat-trees. The kh–ary nh–direct 1–indirect
combines a good perfomance with a low cost. Although the torus configuration
is not very expensive, it has a very poor perfomance. Flattened–butterflies are
not very expensive and obtain good perfomance. However, the kh–ary nh–
direct 1–indirect configuration obtains the best absolute results in terms of
perfomance-cost ratio. As it can be seen, the worst ratio is provided by the
torus, followed by a configuration of the fat–tree (FT 4-ary 8-tree).

5.4 Fault–tolerance

The proposed topologies provide a lot of alternative paths for each source–
destination pair, which is very important to tolerate faults. In this section, we
will briefly analyze the fault-tolerance properties of the new topology.

In meshes, the worst case arises when a link connected to a corner node
fails. As each corner node has a number of links equal to the number of network
dimensions, the maximum number of faults that keeps the network connected
is equal to the number of dimensions minus 1 (nd − 1). The torus topology
tolerates more faults than the mesh due to the fact that packets can move
in both directions of a dimension (in particular, 2nd − 1 faults). The fat–tree
topology tolerates as many faults as the number of up or down ports of the
switches minus one (ki− 1). In the FB, each router is connected to (kf − 1)nf

routers, so it tolerates as many faults as (kf − 1)nf − 1.
In the case of the KNS family of topologies and considering faults in the

links connected to routers, as long as a router is still connected to one dimen-
sion, it may forward packets, providing that the indirect subnet associated to

Title Suppressed Due to Excessive Length 25

that dimension is working. Therefore, at least, the number of tolerated faults
is given by the number of dimensions minus 1. If the faults occur in the links
of the indirect network, as long as one subnet of every dimension is working,
they will be also tolerated. Remember that there are kh subnets per dimen-
sions. Indeed, if fat-trees are used as the indirect subnets, several faults in each
one of them are tolerated. Notice, though, that RUFT is not fault-tolerant,
since there is a unique path for each source–destination pair, so it tolerates 0
faults. However, even when using RUFTs as indirect subnets, as long as other
indirect subnets of the same dimension are working, the number of tolerated
link faults in different indirect subnets should be higher than the one of the
links connected to routers. As a consequence, we conclude that the fault tol-
erance degree of the new topology is upper bounded by the maximum number
of faults in the routers, that is, the number of dimensions minus one, nh − 1.
This gives us the same fault tolerance as a mesh with the same number of
dimensions.

Another analysis is also possible. Assume that we have routers with p
ports available. With such a router, we could build a mesh with p

2 dimensions
that tolerates p

2 − 1 faults or a torus with also p
2 dimensions that tolerates

2p
2 − 1 = p− 1 faults. In the case of the KNS, we could built a p dimensional

network that tolerates p − 1 faults. That is, for the same router degree, the
KNS tolerates the same number of faults as a torus.

On the other hand, considering the rich connectivity of the newly proposed
topology, a higher number of faults should be tolerated with a very high prob-
ability using a fault-tolerant routing algorithm or reconfiguration mechanism.
Finally, it must be noticed that routing should be also changed to fully support
fault tolerance in all topologies. However, an in depth analysis of both fault-
tolerance probability and fault-tolerance routing issues is out of the scope of
this paper.

We have not considered faults in injection links. Most topologies usually
have a single link that connects the processing node to the network. If this link
fails, the processing node will be isolated. Therefore, considering faults in the
injection links, these networks will not tolerate any fault. However, in the KNS
topology family (and also in tori and meshes), if the router is implemented
inside each processing node (for instance using the HCA cards from [1]), the
processing node is actually connected to the network through as many links
as dimensions in the network, therefore tolerating also faults in the injection
links.

6 Related Work

There are previous works that propose alternative topologies to the ones con-
sidered in this paper, but they have been never or seldom used in commercial
products or in supercomputers. This is the case of the WK–recursive topology
that was proposed in [13] for interconnection networks and more recently for
on–chip networks [27], but, to the best of our knowledge, it has never been used

26 Roberto Peñaranda et al.

in commercial products. Moreover, this topology has difficulties to guarantee
deadlock freedom in the routing algorithm.

One of the topologies considered for comparison purposes in this paper is
the flattened–butterfly[22] which is a very popular topology in recent papers. It
is obtained from combining the routers in each row of a conventional butterfly
MIN, thus obtaining an n–dimensional direct network where the nodes of each
dimension are not connected in a ring fashion like in a torus, or through a small
indirect topology like in our proposal; instead they are fully connected. In this
paper, we have referred to nf as the number of network dimensions and to kf as
the number of switches per dimension. This results in a topology very similar
to a generalized hypercube but attaching several processing nodes to the same
switch. Therefore, the flattened–butterfly, like the generalized hypercube, has
a high cost, specially for large machines, which are the focus of our proposal.
This topology is compared against our proposal in Section 5.

Other works propose the combination of several topologies, as we do in this
paper. Most of them have been proposed for on–chip networks and therefore
the target is different to ours. For example, in [26], each core is connected to
two different tree networks in an on-chip environment in order to overcome
the poor performance provided by trees. This proposal is not suitable for large
machines due to the complexity of the cable layout and the poor performance
achieved even with two trees. Another proposal is the multi-ring topology [9],
which is composed of several interconnected rings.

Many of the proposals for on–chip networks are based on hierarchical
topologies. Subsets of cores are connected by small local networks connected
in turn, by a global network. This is not the case of the family of topologies
proposed in this paper. Hierarchical designs are expected to have a higher la-
tency and smaller throughput, since both networks must be traversed for most
of the source–destination pairs. In [12], the authors propose to use as local net-
work a simple bus, and a mesh as global network. As can be expected, this is
not an appropriate topology for a large machines due to the low performance
provided by buses and meshes. The authors of [21] propose a tool to select
the most suitable topology for a given network design. The tool explores the
design space of hybrid Clos-torus networks. However, opposite to our proposal,
the explored designs are hierarchical topologies, where local networks are Clos
networks and they are connected by a global torus network. Another hierarchi-
cal topology is the DragonFly[23,17], which provides a topology that is based
on grouping routers virtual routers to increase the effective radix of the net-
work. This topology uses two different networks, one intra–group, and another
one inter–group. For this topology, it is advisable to use a non-minimal global
adaptive routing to balance the load across the global channels. These global
channels, which link different groups, are long links, so that a high latency can
be expected.

A topology closer to the new family proposed in this paper is the mesh
of trees (MoT) introduced in [24] and later used also in NoCs [7]. It is based
on an n−dimensional topology where the nodes of a given dimension are con-
nected using a tree. This results in a particular case of our proposed family

Title Suppressed Due to Excessive Length 27

of topologies with very poor expected performance due to using a simple tree
for connecting the nodes of a dimension. The Bcube [20] and Hypercrossbar
network [10] also resemble our proposal. Each processing node is connected to
several dimensions by using several NICs. A switch is used to connect the pro-
cessing nodes of the same dimension. However, routing is performed through
end-processing nodes, by ejecting packets from the network through a NIC
and later reinjecting them through another one.

Finally, in [29] a topology that combines several tori networks is proposed.
The proposal focus on large supercomputers, but its applicability is limited
to 216 processing nodes and its wiring layout is complex for large machines.
The proposal starts from a 2-D torus and provides bypass links in the diagonal
direction as many times as needed. This proposal does not improve the number
of hops in a single dimension, since no new links are added to connect nodes of
the same dimension, but reduces the number of hops when traversing several
dimensions. In addition, this topology has the same problem with deadlock-
free routing than the WK–recursive.

7 Conclusions

This paper proposes a new family of hybrid topologies, the KNS, for large–
scale interconnection networks. It is based on an n–dimensional topology where
the nodes of each dimension are connected through a crossbar or a small
indirect topology (a fat–tree or a RUFT in this paper). This results in a
new family of topologies that provides high–performance, with latency and
throughput figures of merit close to the ones obtained with indirect topologies,
but with a much lower hardware cost. In particular, from the throughput
point of view, the new topologies with fat–trees as indirect subnet are the
best ones. Nevertheless, from the cost–performance point of view, the new
topologies with crossbars as indirect subnets are the winners, as they are able
to obtain better throughput per dollar compared to indirect topologies, and
the differences are even higher when comparing to direct topologies. Moreover,
in the new topologies with MIN’s as indirect subnets, as the indirect subnets
are small, the layout of the new topologies is much simpler than the one for
indirect topologies with the same number of processing nodes. Concerning
fault–tolerance, the proposed family of topologies is able to tolerate, at least,
the same number of faults as a mesh with the same number of dimensions,
regardless the topology used in the indirect subnets.

Acknowledgements This work was supported by the Spanish Ministerio de Economa y
Competitividad (MINECO) and by FEDER funds under Grant TIN2012-38341-C04-01 and
by Programa de Ayudas de Investigación y Desarrollo (PAID) from Universitat Politècnica
de València.

28 Roberto Peñaranda et al.

References

1. Connect-IB. http://www.mellanox.com/related-docs/prod adapter cards/PB Connect-
IB.pdf

2. Mellanox Store. http://www.mellanoxstore.com
3. Mellanox Technology. http://www.mellanox.com
4. Myricom. http://www.myri.com
5. Quadrics homepage. http://www.quadrics.com
6. TOP500 Supercomputer Site. http://www.top500.org
7. Balkan, A., Qu, G., Vishkin, U.: Mesh-of-Trees and Alternative Interconnection Net-

works for Single-Chip Parallelism. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 17(10), 1419–1432 (2009). DOI 10.1109/TVLSI.2008.2003999

8. Bermudez Garzon, D., Gomez, M.E., Lopez, P., Duato, J., Gomez, C.: FT-RUFT: A
Performance and Fault-Tolerant Efficient Indirect Topology. In: Parallel, Distributed
and Network-Based Processing (PDP), 2014 22nd Euromicro International Conference
on, pp. 405–409. IEEE (2014)

9. Bhandarkar, S.M., Arabnia, H.R.: The Hough Transform on a Reconfigurable Multi-
Ring Network. J. Parallel Distrib. Comput. 24(1), 107–114 (1995)

10. Boku, T., Nakazawa, K., Nakamura, H., Sone, T., Mishima, T., Itakura, K.: Adaptive
routing technique on hypercrossbar network and its evaluation. Systems and Computers
in Japan 27(4), 55–64 (1996)

11. Dally, W., Towles, B.: Principles and practices of interconnection networks. Morgan
Kaufmann (2004)

12. Das, R., Eachempati, S., Mishra, A., Narayanan, V., Das, C.: Design and evaluation
of a hierarchical on-chip interconnect for next-generation CMPs. In: High Performance
Computer Architecture, 2009. HPCA 2009. IEEE 15th International Symposium on,
pp. 175–186 (2009). DOI 10.1109/HPCA.2009.4798252

13. Della Vecchia, G., Sanges, C.: Recursively Scalable Networks for Message Passing Ar-
chitectures. Proceedings of International Conference on Parallel Processing and Appli-
cations pp. 33–10 (1987)

14. Duato, J.: A Necessary and Sufficient Condition for Deadlock-Free Routing in Cut-
Through and Store-and-Forward Networks. IEEE Transactions on Parallel and Dis-
tributed Systems 7, 841–854 (1996). DOI 10.1109/71.532115

15. Duato, J., Yalamanchili, S., Lionel, N.: Interconnection Networks: An Engineering Ap-
proach. Morgan Kaufmann Publishers Inc., USA (2002)

16. Flich, J., Malumbres, M., López, P., Duato, J.: Improving Routing Performance in
Myrinet Networks. Parallel and Distributed Processing Symposium, International p. 27
(2000). DOI 10.1109/IPDPS.2000.845961

17. Garćıa, M., 0001, E.V., Beivide, R., Camarero, C., Valero, M., Rodŕıguez, G., Minken-
berg, C.: On-the-fly adaptive routing for dragonfly interconnection networks. The Jour-
nal of Supercomputing 71(3), 1116–1142 (2015)

18. Gómez, C., Gilabert, F., Gómez, M., López, P., Duato, J.: Deterministic versus Adaptive
Routing in Fat-Trees. In: Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pp. 1–8 (2007). DOI 10.1109/IPDPS.2007.370482

19. Gómez, C., Gilabert, F., Gómez, M., López, P., Duato, J.: RUFT: Simplifying the Fat-
Tree Topology. In: Parallel and Distributed Systems, 2008. ICPADS ’08. 14th IEEE
International Conference on, pp. 153–160 (2008). DOI 10.1109/ICPADS.2008.44

20. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: BCube: a
high performance, server-centric network architecture for modular data centers. In: SIG-
COMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on Data communica-
tion, pp. 63–74. ACM, New York, NY, USA (2009). DOI 10.1145/1592568.1592577. URL
http://www.bibsonomy.org/bibtex/23a5da89fbf099e3c70f4559ab38082c5/chesteve

21. Gupta, A., Dally, W.: Topology optimization of interconnection networks. Computer
Architecture Letters 5(1), 10–13 (2006). DOI 10.1109/L-CA.2006.8

22. Kim, J., Dally, W., Abts, D.: Flattened butterfly: a cost-efficient topology for high-
radix networks. In: Proceedings of the 34th annual international symposium on Com-
puter architecture, ISCA ’07, pp. 126–137. ACM, New York, NY, USA (2007). DOI
10.1145/1250662.1250679

Title Suppressed Due to Excessive Length 29

23. Kim, J., Dally, W., Scott, S., Abts, D.: Technology-Driven, Highly-Scalable Dragonfly
Topology. In: Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, pp. 77–88. IEEE Computer Society, Washington, DC, USA
(2008). DOI 10.1109/ISCA.2008.19

24. Leighton, F.: Introduction to parallel algorithms and architectures: arrays, trees, hyper-
cubes. v. 1. M. Kaufmann Publishers (1992)

25. Leiserson, C.E.: Fat-trees: universal networks for hardware-efficient supercomputing.
IEEE Trans. Comput. 34(10), 892–901 (1985)

26. Matsutani, H., Koibuchi, M., Amano, H.: Performance, Cost, and Energy Evaluation of
Fat H-Tree: A Cost-Efficient Tree-Based On-Chip Network. In: Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pp. 1–10 (2007). DOI
10.1109/IPDPS.2007.370271

27. Rahmati, D., Kiasari, A., Hessabi, S., Sarbazi-Azad, H.: A Performance and Power
Analysis of WK-Recursive and Mesh Networks for Network-on-Chips. In: Computer
Design, 2006. ICCD 2006. International Conference on, pp. 142–147 (2006). DOI
10.1109/ICCD.2006.4380807

28. Towles, B., Dally, W.J.: Worst-case traffic for oblivious routing functions. In: Proceed-
ings of the fourteenth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’02, pp. 1–8. ACM, New York, NY, USA (2002). DOI 10.1145/564870.564872.
URL http://doi.acm.org/10.1145/564870.564872

29. Yang, Y., Funahashi, A., Jouraku, A., Nishi, H., Amano, H., Sueyoshi, T.: Recursive
diagonal torus: an interconnection network for massively parallel computers. Paral-
lel and Distributed Systems, IEEE Transactions on 12(7), 701–715 (2001). DOI
10.1109/71.940745

