Document downloaded from:

http://hdl.handle.net/10251/152271
This paper must be cited as:

Boratto, M.; Alonso-Jorda, P.; Gimenez, D.; Lastovetsky, A. (2017). Automatic Tuning to
Performance Modelling of Matrix Polynomials on Multicore and Multi-GPU Systems. The
Journal of Supercomputing. 73(1):227-239. https://doi.org/10.1007/s11227-016-1694-y

The final publication is available at

https://doi.org/10.1007/s11227-016-1694-y

Copyright - gpringer-Verlag

Additional Information

The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Automatic Tuning to Performance Modelling of
Matrix Polynomials on Multicore and Multi-GPU
Systems

Murilo Boratto - Pedro Alonso -
Domingo Giménez - Alexey Lastovetsky

Received: date / Accepted: date

Abstract Automatic tuning methodologies have been used in the design of
routines in recent years. The goal of these methodologies is to develop routines
which automatically adapt to the conditions of the underlying computational
system so that efficient executions are obtained independently of the end-
user experience. This paper aims to explore programming routines that can
automatically be adapted to the computational system conditions thanks to
these automatic tuning methodologies. In particular, we have worked on the
evaluation of matrix polynomials on multicore and multi-GPU systems as a
target application. This application is very useful for the computation of matrix
functions like the sine or cosine but, at the same time, the application is very
time consuming since the basic computational kernel, which is the matrix
multiplication, is carried out many times. The use of all available resources
within a node in an easy and efficient way is crucial for the end user.

Keywords Automatic Tuning - Matrix Polynomials - Performance -
Multicore - Multi-GPU

1 Introduction

It is up to software developers to create superscalar programs [7], since it is
highly probable that a program written today will need to be totally modified
tomorrow to adapt to machines with more and/or different processors. To
meet this need, manipulation patterns were created which allow modifications
in existing codes by incorporating directives. This means users do not need
to radically update their applications to enjoy the benefits of multiprocessing
environments.

There exist many approaches to automatic tuning focused on getting a
model for the execution time of the routine to optimize. Once the model has
been obtained, theoretically and/or experimentally, for a given problem size
and execution environment, this model is used to obtain the values of some
adjustable parameters with which minimize the execution time [9].

We use in this work a known technique to build the model consisting in
the execution of small benchmarks of the routine. In this work, a technique
for redesigning the model from regression has been included in our original
methodology [1]. The basic idea is to start from the theoretical model using
the information from basic routines to model the higher level ones without
experimenting with them. However, if for a particular routine all this infor-
mation is not useful enough, then it would be built again from the beginning
using a series of experimental executions and regression applied appropriately.

The main contribution consists of a mathematical model to predict the exe-
cution time of high demanding applications on heterogeneous systems which
consists of a general purpose multicore CPU with two equal or different GPUs
attached. The model is simple, can be built in a reasonable time at the instal-
lation stage, and is accurate enough as to get the best workload distribution
among the available computing resources. The rest of the paper is organized
as follows: Section 2 presents the related work. Section 3 shows the fast par-
allel algorithm for solving matrix polynomials on multicore and multi-GPU.
Section 4 explains the design of the automatic tuning methodology. Section 5
presents the experimental results. The conclusions section closes the paper.

2 Related Work

There exist important automatic tuning systems that attempt to automatically
adapt the software to tune to the conditions of the execution platform. These
include, e.g. the FFTW package developed for the computation of discrete
Fourier transform [8], ATLAS for BLAS [19], a library of linear algebra routines
for sparse matrices [12], etc. The main goal of any automatic tuning system
is to minimize the execution time of the routine to tune, keeping in turn the
installation time below a reasonable threshold. In addition, the existence of
automatically tuned software makes easy the efficient utilization of the library
routines by non-expert users.

The approach chosen, e.g. by FAST [5], consists of a large benchmark fol-
lowed by a polynomial regression to find the optimal parameters for different
routines. Polynomial regression is used in [18] to decide which is the most
appropriate version among the different variants of a routine. The authors
of the same work also introduce a black-box running method to reduce the
enormous implementation space. In the approach followed by FIBER [13] the
execution time of a routine is approximated by fixing one parameter and vary-
ing the other one. In this case, a set of polynomial functions of grades 1 to 5
is generated and the best one of them all is selected. The values provided by
these functions for different problem sizes are then used to generate another
function where the second parameter is fixed now and the first one is varied.
The work in [17] introduces a new method, named Incremental Performance
Parameter Estimation. In this method, the estimation of the theoretical model
by polynomial regression is started from the least sampling points and incre-
mented dynamically to improve accuracy. Initially, they apply it on sequential

platforms and with just one algorithmic parameter to seek. In [11] the number
of sampling points is reduced by starting from a previous shape of the curve
that represents the execution time.

The current hardware trends have inevitably brought the need for updates
on existing legacy software packages, such as BLAS [4] and LAPACK [3]. This
is reflected, for instance, in the Parallel Linear Algebra Software for Multicore
Architectures (PLASMA) project [16], and the Matriz Algebra on GPU and
Multicore Architectures (MAGMA) project [14], which is a recent effort on
developing a LAPACK version for multicore and heterogeneous/hybrid archi-
tectures containing hardware accelerators like GPUs. The goal of this work
falls within the context of all these above mentioned packages which try to
build the best routine through the selection of some critical parameters at
installation time, and is carried out on the evaluation of matrix polynomials.

3 Fast Parallel Algorithm for Solving Matrix Polynomials on
Multicore and Multi-GPU

The matrix polynomial is a simple algebraic structure that represents a real
problem applied in the area of engineering and physics. We define a matrix
polynomial P of degree d as

d
P=> a4 i X" =0qX"+ a1 X+ + a1 X +aol |
1=0

where X, € R"*", being I the identity matrix [2]. We also define the array
@ as & = [oy)i=0,...,a for convenience in further descriptions.

There exists a sequential technique that allows to reduce the number of
computations (number of matrix products) needed to evaluate a polynomial.
This technique is based on the method that Paterson and Stockmeyer designed
for scalar polynomials [15]. From now on, and for the sake of clarity, we will
denote this method as bozing. The next example, where the degree of the
polynomial to evaluate is d = 14, easily shows the idea behind this method.

14
P = Z Ck14,iX14_i (1)
i=0
= 0414X14 + 0413X13 + 0412X12 + Oé]lxll + OéloXlo + Ongg + a8X8
+ ar X"+ X0+ as X% + s X+ a3 X3+ s X2+ oy X + aol
= X1 (a14X2 + a3 X + auf) + X8 (a11X3 +a10X? + agX + agj)
+ X* (a7 X? + a6 X + as X' + aul) + (a3 X? + o X? + on X + al) .
Let Q?(a, X) be the polynomial of degree ¢ in X with coefficients given by
vector & = {ag, @g—1,...,01,00}, then

QU@ X)=Q"a) = X"+ ag 1 X7 4+ X + aol

Algorithm 1 Algorithm for the evaluation of the matrix polynomial using
bozing.
1: function EVALUATE(n, X, d, &, b) return P

2. A0)=X

3: for i + 1,b do

4: AG) — AGi—1)- X

5: end for

6: P + BOXING(n, d, b, 0, @, A)

7: end function

8: function BOXING(n, d, b, i, &, A) return P
9: q+—d—1

10: if ¢ < b then

11: P <+ BEVAL(n, q, Ggtiii, A)

12: else

13: Q1 < BOXING(n,d, b,b+1i,a, A)
14: g+ b—1

15: Q2 <+ EVAL(n, q, Ggyii, A)

16: P+ A(q) - Q1 + Q2

17: end if

18: end function

and polynomial (1) can be written as

P = X"Q*(14:12) + X°Q (11:8) + X' Q% (ar.a) + Q°(v3:0) (2)
= XXX Q*(A14:12)) + @ (Gn1:8)) + Q% (Ar.4)) + @ (aiz0) -

The example above uses a bozing size of b = 3, which means that the largest
polynomial in the previous expression can not be larger than b = 3. The boxing
size b also means that the power b + 1 of matrix X (X* in the example) is
used as the common factor. It is easy to see that the number of operations
needed to evaluate polynomial (2) is lower than that needed for evaluating
the original polynomial. Function EVALUATE of Algorithm 1 summarizes the
overall process. In lines 2-5, an array of matrices A is filled with the b + 1
matrix powers of X needed for the evaluation of the polynomial so that

A= X" p= (X X?.. X0 XVFL) . (3)

Array A will be used to evaluate the “boxed” polynomials of type Q?(&, X).
Once array A has been computed, routine EVALUATE calls the routine BOXING,
which is a recursive routine that allows to evaluate the polynomial using bozing.

Routine BOXING is based on the following recurrence

Py X" Py + Q% (Gyis) = XM Q1+ Q2 (4)

fori =0,b4+1,2(b4+1),3(b+1),..., where matrix P; represents the general
case. The base case of this recursion is met when d — ¢ < b, which means that
there is no longer the possibility of doing boxing. In this case, the algorithm

Algorithm 2 Recursive algorithm to evaluate a matrix polynomial using bo-
xing on CPU cores and multi-GPU.

1: function BoxING(d, b, i, @, A, B) return P

2: P + BOXING (¢, d, b, 4, &, A)

3: #pragma omp parallel for

4 for g« 0,...,D do

5: qg+—d—1i

6: if ¢ < b then

7 P« EVAL(7, Gq4i:i, A)
8 else

9 Q1 + BOXING(d, b, b+, a, A, B)
10: g+ b—1

11: Q2 < EVAL(k, Qgti:i, A)
12: P+ B-Q1+4+ Q2

13: end if

14: end for
15: end function

evaluates the polynomial Q9(&g+i:i), being ¢ = d — i. It can be easily shown
that the recursion (4) applied to the polynomial example in (2) results in

P =Py =X"P; + Q*(as0)
Py = X*Ps + Q*(avr.4)
Py = X*Piy + Q*(au1:5)
Py = Q*(a14:12) -

The recursive function BOXING makes use of another function called EVAL.
Function EVAL(¢, &, A), computes Q?(&q+;;) provided ¢ < b.

The algorithm to evaluate a matrix polynomial using boxing on CPU cores
and multi-GPU is written in Algorithm 2. The method proposed is based on
OpenMP parallel loops [6]. Each iteration of the parallel loop is carried out
by one thread which is, in turn, bound to a given GPU and/or CPU core,
from 0 to D devices. Before calling this routine, the powers of X are assumed
to be already computed and stored in array A (3). All the components of
this array (which are matrices) are partitioned in blocks of columns and dis-
tributed among the GPUs and the CPU cores accordingly to their computing
capability. This way, each thread executing the iteration of the loop performs
the computation of a different set of data, those part of the matrix stored on
this component in previous steps. The computation of the powers of X is by
far the most costly step and is distributed among the different devices of the
computer. Only the first (A(0)) and the last (A(b), represented by B in the
algorithm) components are needed to be fully stored in each device.

All the evaluation process is carried out in parallel between the devices

without communication. Only upon termination the CPU system receives fac-
tors P from both GPUs and the CPU cores to build the final square matrix.

4 Automatic Tuning Methodology

The automatic tuning methodology uses a theoretical model of the execution
time of the routine which is used to select the suitable values of some param-
eters that will allow to get the result in the shortest possible time. We follow
here the automatic tuning methodology presented in [1]. The model proposed
must reflect, on the one hand, the computing and communication features of
the algorithm, known as AP (Algorithm Parameters), and, on the other hand,
the features of the system under which the algorithm is executed, known as
SP (System Parameters). The mathematical model of the execution time (%)
can be expressed as a function of the input size (s), which is in turn a function
of the AP and SP, i.e. t(s) = f(s, AP, SP). The value of all these parameters
should be selected to obtain a reduced execution time.

Typical SP are: the cost of one arithmetic operation, communication start-
up and word-sending times in communication operations. These parameters
represent the characteristics of the computer and the communication system
between CPU and GPU. Typical AP are: the number of processors to use, the
number of processes to be enabled along with their mapping in the physical
system, or the size of communication blocks, or data partitioning and distribu-
tion among processes. To obtain a more realistic model, we can consider that
the values for SP are influenced by those for AP, i.e. SP can be expressed as
a function (h) of the input size (s) and the AP so that SP = h(s, AP).

The values for the SP will be obtained at the moment of installing the
routine in a new system. To this end, the routine designer should develop
the runtime model, identify the SP in the model, and design an installation
strategy that includes, for each SP, the experiments to estimate its values, the
AP and the values that have to be experimented with. The values obtained
for the SP are included with the execution time model in the routine that is
being optimized, which is, thus, installed with information of the system for
which it is being optimized.

The AP for the automatic tuning scheme presented in this paper are: the
number of CPU cores (c¢), and the percentage of computation assigned to
GPUs, defined as workload (w). These two parameters capture the key charac-
teristics of the application performance and the machine that the application
is running on. The CPU cores and workload parameters are used to show the
scalability of the application. They reflect the reasons why the application per-
formance becomes unscalable beyond a certain point. Thus, in our problem,
the set of algorithmic parameters is AP = {c,w}, so the total execution time
can be written as t(s) = f(s, AP,SP) = f(s,c,w, h(s,c,w)).

The optimum number of CPU cores and workload are not constant but
depend on the platform and on the problem size. Thus, a good selection of
the values of the algorithm parameters is important, and the development of
automatic tuning software makes the efficient utilization of the routines by non-
expert users easy. The algorithm is studied theoretically and experimentally in
order to determine the influence of different values for SP on the AP. The most
important part of the information system to be incorporated to the routine is

Table 1 Description of the parameters in the execution time model

Symbol | Description

Computational parameter for each execution system.

Order of the polynomial. In the experiments it ranges from 4 to 20.

The length of the matrix. In the experiments it ranges from 4000 to 8000.
Number of CPU cores.

GPU workload.

Number of GPUs.

Cost of initialization of a thread in CPU.

Cost of initialization of a kernel in GPU.

Relative speedup of a GPU on one core in the CPU.

NS (g o o ||=

the analytical execution model for the time as a function of the problem size
(s), SP, and AP. We propose the following model for the execution time:

t(s,c,w) =ty + CPUpy + GPUpy (5)

where t, is the routine execution time, and CPU,,; and GPU,,; are the CPU
and GPU management times, respectively. This analytical model predicts the
execution time as a function of the input data features, and requires direct
information about the algorithm used and the underlying architecture.

The model for the execution time (Eq. 5) is detailed in the following one:

k-O(s)

— + 1. tg Q. 6
C+gS+ C+gg ()

t(s,c,w) =

Let S be the relative speedup of a GPU versus a CPU core, then the model
estimates the execution time starting from the sequential complexity cost
tsec(s) = k-O(s) divided by the number of the CPU cores (¢) plus the number
of GPUs (g) multiplied by S. Constant k represents the cost of one arithmetic
operation. To obtain this computation time it is necessary to select w properly
so that the workload is well balanced between the CPU and the GPUs. The
model for the execution time depicted in Eq. 6 also involves the management
time for both subsystems. These times depend on the initialization time of
a CPU thread (t.) and a GPU kernel (t4), respectively, and are proportional
to the number of cores (¢) and the number of GPUs (g), respectively. The
management of CPU cores are negligible in small systems (like those where
the experiments have been carried out), but the management of GPU devices
is significant since it includes the cost of data transference between CPU and
GPU. Table 1 summarizes the meaning of each term used in our model (Eq. 6).
The performance parameters involved in the model are key factors that
the automatic tuning methodology should consider for high performance ap-
plications. During the installation, we carry out experiments with different
combinations of the problem size s, the number of cores ¢, and the workload
w, seeking to minimize the time difference between the theoretical prediction
and the experimental values obtained by using a least squares regression. By
varying s and w we obtain a different optimum value for the number of cores
¢ in each execution environment. Constant k is also estimated by using least

_________ —»{ Automatic — Tuning ‘

execution [s] [c} w
Step 1

—— > Installation — Set l Step 2

multicore multi-GPU
—»{ w* > w|c"—=c J

Step 4 Step 3

Fig. 1 General scheme of automatic tuning methodology.

squares. Once the execution time has been estimated the possible values of
¢ and w are substituted into the formula and the routine is recompiled. The
final values of the parameters are included in the routine together with a de-
cision engine that gives the user the theoretical time to solve the problem.
This methodology, which is essentially an iterative process, is likely to require
many experiments in order to have a good parameter estimation. This is why
we also pursue simplicity in our model by omitting some architectural aspects
that lose impact in the execution time as the problem size increases. Either
way, the model proves to be sufficient and useful for the target application.

The general scheme of the automatic tuning methodology is shown in Fi-
gure 1. The installation of the automatic routine tuning in the system is done
executing the routine for each matrix size specified in an Installation-Set, and
varying the number of cores ¢ and the workload w between the multicore
and the multi-GPU subsystems. The performance parameter estimation the
procedure is applied to get the optimal values:

Step 1: Choose range from values of the performance parameters in
Installation-Set,

Step 2: Run the routine to obtain execution time at each sampling point,

Step 3: Search a minimum value point of the function which corresponds to
the optimal value of the performance parameters,

Step 4: Define the execution time model and fit it to the executed values.

The Sampling-Points contains significant values, from small to large, so
the installation gives satisfactory results for a wide range of problem sizes.
Our model is based on the guided-search [10], where the search is made in
many directions, and it finishes for each problem size when the execution time

exceeds the minimum for that size by an amount greater than the threshold.
The technique uses a good heuristic to direct the search in an enormous search
space, since the number of solutions increases with the number of test variables.
The optimal performance parameters are estimated using a previously variable
number of sampling points. When the number of sampling points is large, the
accuracy for estimation is high, but the computational efficiency is low, and
when the number of fixed sampling points is small, vice versa.

5 Experimental Results

This section presents the experiments with detailed explanation and useful
insights. We uesd the following two execution environments:

[System 1] Execution environment with 2 identical GPUs. Comprises
two Intel Xeon at 2.26 GHz and 24 GB DDR3 main memory. Each one is
a quadcore processor with 12 MB of cache memory. It contains two GPUs
NVIDIA Tesla C2050 with 14 stream multiprocessors (SM) and 32 stream
processors (SP) each (448 cores in total).

[System 2] Execution Environment with 2 different GPUs. Comprises
two Intel Xeon at 2.93 GHz and 86 GB DDR3 main memory. Each one is
a quadcore processor with 12 MB of cache memory. It contains two GPUs:
The first one is a NVIDIA Tesla K20 with 28 stream multiprocessors (SM)
and 64 stream processors (SP) each (2496 cores in total); the second one
is a NVIDIA Tesla C2050 with 14 stream multiprocessors (SM) and 32
stream processors (SP) each (448 cores in total).

In our experiments we use a parallel implemented version of Algorithm 2
using OpenMP and CUDA for the evaluation of matrix polynomials in hetero-
geneous environments. Many parameter values were used at installation time
to estimate the best values for the AP. The available range for the CPU cores
(¢) is 1,2,...,16 in both systems (Intel Hyper-Threading is set on in both
systems). Then, we checked for GPUs workloads from 10% to 45%. The input
sizes of the problem (s) for the experiments were 4,5, ...,20. Table 2 shows
the parameters used at installation time to estimate the values of AP for the
two environments (System 1 and System 2).

There are two important observations: 1) The ¢ values depend on the prob-
lem size in the system under test, and 2) for each problem size and for different
values of w we obtain a different optimum value for ¢ on each execution envi-
ronment. Be aware of that this variability is essential in order to make good
decisions in the later selection of the optimum AP parameters. The AP ob-
tained after the automatic tuning process in the environments used are:

[System 1]] (Using 2 identical GPUs + 2 Processors Quadcore)
Number of CPU cores (¢) = 16
Workload (w) = (GPU, GPU, CPU) = (45%, 45%, 10%)

10

Table 2 Execution time (sec.) obtained at installation time with different values for the
performance parameters. (Best values marked in boldface.)

System 1 | w=45,4510 | w =40,40,20 | w = 35,35,30 | w = 30, 30,40
s c t(s, c,w) c t(s, c, w) c t(s, c, w) c t(s, c,w)
5000 16 5.93 14 7.56 12 13.47 12 22.82
6000 16 9.34 14 12.24 12 21.42 14 38.33
7000 16 14.62 16 19.54 14 32.94 16 60.03
8000 16 20.59 16 27.93 14 48.01 16 89.42
System 2 | w = 50,30,20 | w = 45,40,15 | w = 50,35,15 | w = 55,35, 10
s c t(s, c,w) c t(s, c,w) c t(s, c,w) c t(s, c,w)
5000 12 5.13 16 4.90 14 4.85 16 4.44
6000 14 8.44 16 7.99 14 7.53 16 7.42
7000 16 14.04 16 12.61 14 11.75 16 11.37
8000 16 19.32 16 18.07 16 16.63 16 16.11
(1) Execution Time (2) Speedup
1400 70
Using 2 GPUs Using 2 GPUs with respect to CPU cores
1200 Using 1 GPU —— 80 7’ Using 1 GPU_with respect to CPU cores ‘
Using CPU cores Using 2 GPUs with respect to 1 GPU
1000 | sop
§ eoor % 40
[
é’ 600 & aof
400 20
200 10
e T o S S S S S 0 L L L L L 1 1 1 1 1 L L L L L 1 1
4567 891011121314151617181920 4567 8 91011121314151617181920
Degree polynomial Degree polynomial

Fig. 2 Evaluation of matrix polynomials with a matrix size of 10000 with regard to the
polynomial degree on System 1. (1) Executing time. (2) Speedup.

[System 2] | (Using 2 different GPUs + 2 Processors Quadcore)
Number of CPU cores (¢) = 16
Workload (w) = (GPU, GPU, CPU) = (55%, 35%, 10%)

The installation time spent on both platforms was the same (around 160
minutes). We did experiments with different combinations of s, ¢, and w, con-
sidering the small size problem to obtain the model on a given platform.

We show in both plots of Fig. 2 the time and the speedup, respectively,
for the evaluation of matrix polynomials with different degrees ranging from 4
to 20 with a polynomial matrix of size 10000 in System 1. The execution was
carried out on each subsystem independently (CPU, 1 GPU, 2 GPUs) in order
to have a measure for comparison purposes. The speedup has been obtained
with regard to the use of the CPU subsystem only. Both plots show how the
use of GPUs in our system clearly outperforms the computation on the CPU.
The sawtooth shape of the graphs in Fig. 2 is due to the unbalanced workload
for degrees of the polynomial which are odd.

The results shown in Fig. 3(1), that were carried out on System 2, show the
theoretically execution time according to the performance model (Eq. 6) and
the experimental time for a matrix size of 10000 with regard to the polynomial

11

) Theoretical x Experimental Execution Time (2) Speedup
45 3F
Experimental /W
w0 _ ————
35 | 25
—~ 30 2 L
§ 2| Ey 8000 ——
K B 7000 ——
2 o0} o 151 6000
£ & 5000
= o5t 1k
10
0.5 -
5L
O Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
4567 8 91011121314151617181920 4567 8 91011121314151617181920
Degree polynomial Degree polynomial

Fig. 3 (1) Experimental versus theoretical execution time for evaluating matrix polynomials
of size 10000 with regard to the polynomial degree (System 2). (2) Speedup for the evaluation
of matrix polynomials of sizes 5000, 6000, 7000, 8000 with regard to the polynomial degree
(System 2).

(1) Identical GPUs: (Tesla C2050, Tesla C2050, Quadcore) (2) Different GPUs: (Tesla K20, Tesla C2050, Quadcore)
45
(@5 ,45,10) —— 50,30 ,20) ——
100 | (4040 200 —— 40 H 4540 15) ——
(35,35 ,30, 50,35 ,15,
(30,30 .40 35 H 55,3510,
—~ 80 —~ 30}
(&3 o
& e} & Br
2 g w0t
F 40 + F 45|
10
20
5L
ol v v v ol v v
45678 91011121314151617181920 456 7 8 91011121314151617181920
Degree polynomial Degree polynomial

Fig. 4 (1) Time for the evaluation of matrix polynomials of size 10000 with regard to the
polynomial degree on identical GPUs (System 1). (2) Time for the evaluation of matrix poly-
nomials of size 10000 with regard to the polynomial degree on different GPUs (System 2).

degree. We consider that the difference between the two plots is low accounting
for the simplicity of the model and the low installation time used to figure
out the performance parameters. Fig. 3(2) shows the speedup achieved when
varying both the matrix size and the polynomial degree. These numbers are
interesting since they allow to check that the speedup grows more with the
matrix size than with the polynomial degree. This is because the matrices and,
consequently, the multiplication of matrices have all been partitioned in pieces
and have been scattered among the different subsystems of the heterogeneous
envionment. The smooth sawtooth shape of the graph is due to the unbalanced
workload for degrees of the polynomial which are odd, since in these cases one
of the two GPUs performs one more matrix multiplication.

We show different aspects of the behavior of the algorithm with differents
workloads. Firstly, Fig. 4(1) plots the evolution of time regarding identical
GPUs. Based on the experiments it can be seen that the value w obtained
through the theoretical derivation is the best to be chosen if we use 2 GPUs
and all the CPU cores. This value for the workload is (w) = (GPU, GPU, CPU)

12

= (45%, 45%, 10%) for System 1. Secondly, we show in the next experiment
the execution time of the algorithm using different GPUs. Fig. 4(2) shows the
reduction in time achieved by the use of 2 GPUs and the CPU cores, and how
this improvement grows with the problem size thanks to the parallelization
of the matrix multiplication. As expected, the degree of the polynomial does
not involve a big difference for different workloads due to the small weight of
communications (CPU-GPU) with regard to the weight of computations. The
best behavior is around (w) = (GPU, GPU, CPU) = (55%, 35%, 10%).

6 Conclusions

Inspired in the Paterson-Stockmeyer technique for computing polynomials, we
proposed in this work a recursive algorithm and an efficient implementation
for the evaluation of matrix polynomials in parallel. Also, we propose an au-
tomatic tuning methodology to easily adapt existing parallel algorithms that
can execute efficiently on heterogeneous computers, i.e. computers featuring
one or more hardware accelerator(s).

Automatic tuning techniques must be established based on a good under-
standing of the target architecture, and an efficient algorithm implementation
that exposes critical and relevant properties of a program performance for that
architecture. Regarding the experiment data on the automatic tuning explains
why the application achieves the best performance under a certain parameter
setting, but not under other settings.

The experimental results indicate that our approach is efficient and scalable
and the routines to solve this problem can incorporate an automatic tuning
engine to obtain execution times close to the optimum without user interven-
tion. The use of modelling techniques can contribute to improve the decisions
taken in order to reduce the execution time of the routines. The modelling
allows us to introduce information about the behavior of the routine in the
automatic tuning process, guiding this process. It is necessary that the mod-
elling time is small because at least part of this process could be carried out in
each installation of the routines. Therefore, different ways of reducing it have
been studied here, and the results have been satisfactory.

Acknowledgments

This work has been partially supported by Generalitat Valenciana under grant
PROMETEOII/2014/003, and by the Spanish MINECO, as well as European
Commission FEDER funds, under grant TEC2015-67387-C4-1-R,, and network
CAPAP-H. Also, we have work in cooperation with the EU-COST Programme
Action IC1305, “Network for Sustainable Ultrascale Computing (NESUS)”.

13

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Alberti, P.V., Alonso, P., Vidal, A.M., Cuenca, J., Giménez, D.: Designing polylibraries

to speed up linear algebra computations. IJHPCN 1(1/2/3), 75-84 (2004)

. Alonso, P., Boratto, M., Pinilla, J., nez, J.I., Martinez, J.: On the evaluation of matrix

polynomials using several GPGPUs. Tech. Rep. Riunet/E10251/39615 (2014)

. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A.,

Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users Guide,
2 edn. SIAM, Philadelphia (2013)

. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux,

M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.:
An updated set of basic linear algebra subprograms (blas). ACM Transactions on
Mathematical Software 28, 135-151 (2001)

. Caron, E., Uter, F.: Parallel extension of a dynamic performance forecasting tool. Sci-

entific Annals of Cuza University 11, 80-93 (2002)

. Chandra, R.: Parallel programming in OpenMP. Morgan Kaufmann (2001)
. Demmel, J., Marques, O., Parlett, B.N., Vomel, C.: Performance and accuracy of LA-

PACK’s symmetric tridiagonal eigensolvers. STAM J. Scientific Computing 30(3), 1508—
1526 (2008)

. Frigo, M., Johnson, S.: FFTW: An adaptive software architecture for the FFT. In: Pro-

ceedings of IEEE International Conference on Acoustics Speech and Signal Processing,
vol. 3, pp. 1381-1384 (1998)

. Garcfa, L., Cuenca, J., Giménez, D.: Including improvement of the execution time in a

software architecture of libraries with self-optimisation. In: ICSOFT 2007, Proceedings
of the Second International Conference on Software and Data Technologies, Volume SE,
Barcelona, Spain, July 22-25, 2007, pp. 156-161 (2007)

Garcia, L.P., Cuenca, J., Giménez, D.: On optimization techniques for the matrix mul-
tiplication on hybrid cpu+4gpu platforms. Annals of Multicore and GPU Programming
1(1), 10-18 (2014)

Hasanov, K., Quintin, J.N., Lastovetsky, A.: Hierarchical approach to optimization of
parallel matrix multiplication on large-scale platforms. The Journal of Supercomputing
pp. 24-34 (2014)

Katagiri, T., Kise, K., Honda, H.: RAO-SS: A prototype of run-time auto-tuning facility
for sparse direct solvers. Tech. rep. (2005)

Katagiri, T., Kise, K., Honda, H., Yuba, T.: Effect of auto-tuning with user’s knowledge
for numerical software. In: Conf. Computing Frontiers, pp. 12-25 (2004)

Nath, R., Tomov, S., Dongarra, J.: An Improved Magma Gemm For Fermi Graphics
Processing Units. International Journal of High Performance Computing Applications
24(4), 511-515 (2010)

Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary
to evaluate polynomials. SIAM Journal on Computing 2(1), 60-66 (1973)

PLASMA: Parallel Linear Algebra Software for Multicore Architectures. Available in:
http://www.netlib.org/plasma/ (2015)

Tanaka, T., Katagiri, T., Yuba, T.: D-spline based incremental parameter estimation
in automatic performance tuning. In: International Conference on Applied Parallel
Computing: State of the Art in Scientific Computing, PARA’06, pp. 986-995. Springer-
Verlag, Berlin, Heidelberg (2007)

Vuduc, R., Demmel, J., Bilmes, J.: Statistical models for empirical search-based per-
formance tuning. International Journal High Performance Computing Application 18,
65-94 (2004)

Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of soft-
ware and the ATLAS project. Parallel Computing 27, 21-37 (2001)

