Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Gillespie’s Stochastic Simulation Algorithm
on MIC Coprocessors

Andrea Tangherloni - Marco S. Nobile -
Paolo Cazzaniga - Daniela Besozzi -
Giancarlo Mauri

Received: date / Accepted: date

Abstract To investigate the behavior of biochemical systems, many runs of
Gillespie’s Stochastic Simulation Algorithm (SSA) are generally needed, caus-
ing excessive computational costs on Central Processing Units (CPUs). Since
all SSA runs are independent, the Intel Xeon Phi coprocessors based on the
Many Integrated Core (MIC) architecture can be exploited to distribute the
workload. We considered two execution modalities on MIC: one consisted in
running exactly the same CPU code of SSA, while the other exploited MIC’s
vector instructions to reuse the CPU code with only few modifications. MIC
performance was compared with Graphics Processing Units (GPUs), specif-
ically implemented in CUDA to optimize the use of memory hierarchy. Our
results show that GPU largely outperforms MIC and CPU, but required a
complete redesign of SSA. MIC allows a relevant speedup, especially when
vector instructions are used, with the additional advantage of requiring mini-
mal modifications to CPU code.

Keywords High performance computing - MIC - GPU - Parallel computing -
Stochastic simulation algorithm - Stochastic modeling

A. Tangherloni, M. S. Nobile, D. Besozzi, G. Mauri
Dept. Informatics, Systems and Communication, University of Milano-Bicocca (Italy)
E-mail: {tangherloni/nobile/besozzi/mauri}@disco.unimib.it

P. Cazzaniga
Dept. Human and Social Sciences, University of Bergamo (Italy)
E-mail: paolo.cazzaniga@unibg.it

M. S. Nobile, P. Cazzaniga, D. Besozzi, G. Mauri
SYSBIO.IT Centre of Systems Biology (Italy)



2 Andrea Tangherloni et al.

1 Introduction

Nowadays, the synergistic integration between experimental laboratory re-
search and computational analysis is deepening the comprehension of the func-
tioning of complex biological systems [1]. In this context, mechanism-based
mathematical models and simulation algorithms play a fundamental role in
efficiently and reliably reproducing the temporal evolution of the system un-
der investigation, assuming either the stochastic or the deterministic model-
ing approach [24]. One of the most used method to analyze the dynamics of
stochastic mechanistic models is Gillespie’s Stochastic Simulation Algorithm
(SSA), which is based on the stochastic formulation of chemical kinetics [7].

SSA was proven to be equivalent to the Chemical Master Equation [8], so
that it is able to achieve an exact description of the temporal evolution of
the system. In general, large batches of independent SSA runs need to be exe-
cuted to determine the distribution of the system states, to collect statistically
significant results or to investigate the behavior of the system under different
conditions (as in the case of, e.g., parameter estimation [19] or sensitivity anal-
ysis [21]). For computational analyses of this type, the computational burden
can quickly become excessive when SSA is executed on Central Processing
Units (CPUs).

However, since all SSA runs can be executed independently, parallel archi-
tectures can be exploited to distribute the workload and reduce the overall
running time. Algorithm parallelization is usually realized by means of multi-
threading [23], distributed computing on clusters [10], custom circuitry pro-
duced with Field Programmable Gate Array (FPGA) [14] or general-purpose
Graphics Processing Unit (GPU) computing [20,17,18]. These parallel tech-
nologies generally require a custom implementation of the algorithm, since
most of the time CPU code cannot be directly ported on the parallel archi-
tecture; in addition, distributed architectures need the definition of an appro-
priate scheduler to manage the parallel execution of processes. An alterna-
tive solution to algorithm parallelization is represented by the family of Intel
Xeon Phi coprocessors, based on the Many Integrated Core (MIC) architec-
ture, which allow to directly compile and execute on the coprocessors the code
implemented for Intel CPUs.

This work extends the analysis we previously presented in [4], by comparing
the performance of MIC coprocessors with respect to both CPUs and GPUs. To
this purpose we considered, on the one hand, two execution modalities of SSA
for MIC: the first consisted in directly executing the same CPUs source code
of SSA, while the second exploited vector instructions, a peculiar capability
of MIC that allows to reuse any existing CPUs source code with only few
modifications. On the other hand, we developed an ad hoc implementation
of SSA for GPUs, optimizing the use of the memory hierarchy. To evaluate
the running time of these sequential and parallel SSA implementations, we
executed an increasing number of stochastic simulations of a mechanism-based
model of prokaryotic gene regulation [16]. A family of synthetic models with
different size (i.e., different number of molecular species and reactions) was



Gillespie’s Stochastic Simulation Algorithm on MIC Coprocessors 3

then used as test case to investigate the benefits of exploiting MIC’s vector
instructions and offload capabilities. In addition to the computational time,
we evaluate the costs and power consumption of the hardware employed, and
discuss the effort to port the existing code on parallel architectures.

Previous works already focused on the comparison of the performance of
Intel Xeon Phi coprocessors against other parallel architectures, showing dif-
ferent results according to the specific problem under investigation. In the
context of the simulation of spin systems, a comparison between Intel Xeon
Phi 5110P and Nvidia Tesla K20s video card was presented in [2], highlight-
ing that a careful implementation of the C code allows the MIC to compete
with the GPU. On the contrary, in [5] it was shown that a Nvidia Tesla K20x
outperforms an Intel Xeon Phi 5110P for the parallelization of non-bonded
electrostatic computation for Virtual Screening; this work pointed out, in par-
ticular, the importance of OpenMP source code optimization. The work pre-
sented in [9] described the performance comparison among a multi-core Intel
CPU, an Nvidia Tesla K20c GPU and an Intel Xeon Phi 7120P coprocessor
for the execution of a tracking algorithm based on the Hough transform: the
results highlighted that in this case the CPU performs better than both GPU
and MIC coprocessors. Moreover, the authors suggested that an implementa-
tion with offloaded calculations to the coprocessors might help in achieving
better performances. A multi-threaded version of an algorithm to tackle the
tensor transpose problem was then presented in [13]. In this case, the multicore
CPU and the MIC achieved a relevant speedup with respect to the GPU, since
the optimization of L1 cache is easier than the implementation of a coalesced
global memory access on the GPU. As a final example, a comparison of the
acceleration on an Intel Xeon Phi 5110P and a Nvidia Tesla K20x for pro-
tein docking calculation based on the fast Fourier transform was introduced
in [22]. The GPU resulted to be 5 times faster than the MIC, considering the
comparable implementation costs required by these architectures.

In this work we show that, for the problem of executing increasing batches
of SSA runs, GPU largely outperforms the other architectures thanks to its
large number of computing units. Nevertheless, GPU required a complete re-
design and specific programming of this simulation algorithm. On the other
side, we show that MIC coprocessors allow a relevant speedup, especially when
the simulated biochemical system is large and MIC vector instructions are
used, and have the additional advantage of requiring minimal modifications to
CPU code.

The paper is structured as follows. In Section 2 we briefly introduce the
formalism of mechanism-based stochastic models and the functioning of Gille-
spie’s Stochastic Simulation Algorithm. We also provide the definition of the
biochemical systems that will be considered as case studies to determine the
computational performances of CPU, GPU and MIC. In Section 3 we show the
speedup obtained by Xeon Phi and Nvidia Tesla K80 with respect to CPU,
and discuss the main benefits of MIC architecture. Finally, in Section 4 we
conclude the work with some final remarks about the selection of the proper
architecture to execute SSA.



4 Andrea Tangherloni et al.

2 Mechanism-based Modeling and Gillespie’s Stochastic Simulation
Algorithm

According to the stochastic formulation of chemical kinetics [7], a mechanism-
based model of a biochemical system can be formalized by specifying the set
S = {51,...,Sn} of molecular species occurring in the system, and the set
R ={R1,..., Ry} of chemical reactions taking place between these species.
Each reaction can be formally defined as R;: Yn, a;iS; —= YN B;:Si,
where o, 8j; € N are the stoichiometric coeflicients associated, respectively,
to the i-th reactant and to the i-th product of the j-th reaction, with i =
1,...,N,j=1,..., M. The value ¢; € RY is the so-called stochastic constant,
encompassing all physical and chemical properties of reaction R;.

Mechanism-based stochastic models are able to account for any macro-
scopic effect in the behavior of biochemical systems caused by biological noise,
that is, the random collision and reaction events among the molecular species
that are present in very low amounts inside cells. In these cases, the classical
deterministic modeling approach can fail in capturing the effects of biochemical
stochastic processes [24]. The seminal procedure used to describe the dynam-
ics of stochastic models is Gillespie’s Stochastic Simulation Algorithm (SSA)
[7], which is able to realize an exact reproduction of the temporal evolution
of biochemical networks, under the following assumptions: (¢) reactions and
species are contained within a single volume, whose physical conditions (e.g.,
pressure, temperature) remain constant during the whole time of simulation;
(#i) the reaction volume is well-stirred, that is, molecules are uniformly dis-
tributed in space; (ii7) the amount of each molecular species S; is discrete, i.e.,
it is represented by an integer number x; € N.

Briefly, SSA works as follows. Given the state of the system at time t,
represented by the vector x = x(t) = (21(¢),...,zn(t)), SSA first identifies
the reaction to execute in the next time interval [¢,¢ + 7). To this aim, the
probability of each reaction R; to occur in the next infinitesimal time step
[t,t 4 dt) has to be evaluated. This probability is proportional to the so-called
propensity function of reaction R;, defined as a;(x) = ¢;-d;(x), where d;(x) is
the number of distinct combinations of the reactant molecules in ; occurring
in state x. Then, SSA computes the time 7 before a reaction takes place:

T = ﬁ(x)ln (p%), where ap(x) = ZJM=1 a;(x) and p; is a random number
sampled in [0,1] with a uniform probability. The reaction R; to be actually
executed is then chosen by taking the smallest integer in [1, M| such that
Z;,:l a;(x) > p2 - ap(x), where py is a second random number sampled in
[0,1] with a uniform probability. The interested reader is referred to [7] for
more details about SSA.

In what follows, we will consider two different test cases of mechanism-
based stochastic models to the aim of evaluating the computational perfor-
mance of MIC, CPU and GPU when executing large batches of SSA runs.

The first test case is a stochastic model describing the gene expression

regulation network in prokaryotes (PGN, in short). In the PGN model, a gene



Gillespie’s Stochastic Simulation Algorithm on MIC Coprocessors 5

is transcribed into messenger RNA and translated into a protein. The gene
itself is inhibited by the binding with a dimer of the protein. Full details of
this model, consisting in 5 species and 8 reactions, can be found in [16].

The second test case is a family of synthetic stochastic models of increas-
ing size (SynSM, in short), which are randomly generated according to the
methodology proposed in [20]. Namely, SynSM are characterized by a number
of species N and of reactions M ranging from (20 x 20) to (240 x 240); the
values of the stochastic constants are randomly sampled with uniform distri-
bution in (0, 1). SynSM are specifically exploited here to evaluated the impact
of the size of the model on the performance of the MIC architecture.

3 Computational Results

In this section we start by showing the comparison between the computational
performance achieved with Intel Xeon Phi coprocessors, CPUs and GPUs for
the execution of an increasing number of SSA runs for the PGN model. Then,
we investigate some specific MIC features, such as vector instructions and
offload capability, to simulate a set of SynSM with increasing size. To eval-
uate the computational costs of running sequential and parallel SSA runs,
we exploited GALILEQ, a supercomputer created by the Italian consortium
CINECA that combines multiple state-of-the-art accelerators. Namely, it con-
sists of: (a) 768 Intel Xeon Phi 7120P coprocessors, each one with 61 cores,
1.238 GHz; (b) 516 compute nodes, each one equipped with 2 Intel Xeon
Haswell E5-2630 v3 (8 cores, 2.40 GHz), for a total of 8256 cores; (¢) 20 Nvidia
Tesla K80 GPUs (4992 cores with a dual-GPU design, 560 MHz). Thanks to its
peculiar hybrid architecture, this supercomputer represents an ideal machine
for a direct comparison between the three architectures considered here.

To exploit GALILEO, we developed three different implementations of
SSA. The first implementation was designed for the x86 architecture, that
is, the Intel Xeon Haswell E5-2630 v3 and the Intel Xeon Phi 7120P. The sec-
ond implementation consisted in reusing the CPU code, modified to exploit
the advantages of MIC’s vector instructions. The third version was specifically
developed for the Nvidia Tesla K80 architecture, and optimized to fully ex-
ploit the memory hierarchy of the GPU: the state of the biochemical system is
stored in the shared memory, while the matrices of stoichiometric coefficients
are stored in the constant memory. All SSA implementations were written
using the C++ language and exploit the MRG32K32a pseudorandom numbers
generator [12], which is available in the Intel Math Kernel Library for the CPU
and MIC, and in the CURAND Library for the GPU.

Stmulation of the PGN model. For each architecture and its respective SSA
implementation, every SSA run of the PGN model was executed for a total
simulation time of ¢ = 80 time units, storing the amount of all molecular
species along 16 time points of the dynamics. Figure 1 reports the running
time (in seconds) required to execute increasing batches of SSA runs on the



6 Andrea Tangherloni et al.

MIC (light gray bars), MIC using vector instructions (dark gray bars), CPU
(black bars) and GPU (white bars).

— MIC

[ MIC vec
SHmmm cpPu E
[/ GPU

Running time [s]
w

40 80 120 160 200 240 280 320
Simulations

Fig. 1 Comparison of the running time to execute an increasing number of SSA runs of the
PGN model on the three architectures: MIC (light gray bars), MIC using vector instructions
(dark gray bars), CPU (black bars) and GPU (white bars). The dotted and dashed lines
represent the linear regression for the estimated running time on the MIC with and without
the use of vector instructions, respectively, assuming a number of cores larger than 60. The
estimated values highlight the actual drop of performances when the number of parallel
threads is larger than 240 (i.e., the maximum number of threads concurrently executable on
the MIC). When more than 80 simulations are performed the GPU outperforms the other
architectures, and the running time remains basically constant up to 320 parallel SSA runs,
thanks to the large number of available cores.

These results show that the CPU running time linearly increases with the
number of simulations, and that the GPU largely outperforms the other archi-
tectures. In particular, the GPU running time remains almost constant while
increasing the number of parallel SSA runs: this is due to the high number
of cores available on the GPU used in this work, which allows to distribute
the simulations over individual computing units. During this batch of tests,
anyway, the GPU Nvidia K80 was far from a full usage of its computing and
memory resources. Thus, although for 320 parallel SSA runs the GPU achieved
a speedup of 15x with respect to the CPU, we argue that its computational
performances would be even better by running a larger number of simulations.
It is also worth noting that, despite the branching of CUDA threads due to
the stochastic nature of all (independent) simulations, the simplicity of SSA
makes coarse-grain simulation perfectly suitable for GPU’s architecture.

In the case of MIC architecture we observed an acceleration with respect
to the sequential SSA execution on the CPU. According to our results, in
the case of 240 SSA runs, the speedup achieved by this architecture—without
the use of vector instructions—is 4.1x with respect to the CPU (Figure 1,
light gray bars). Since Xeon Phi coprocessors can execute up to 4 concurrent
threads on each of the 60 available cores, the acceleration provided by MIC



Gillespie’s Stochastic Simulation Algorithm on MIC Coprocessors 7

scales up to 240 simulations only. In order to highlight this limitation, we
estimated by linear regression the theoretical running time of MIC to execute
280 and 320 simulations, using the running times obtained in the case of
1,...,240 simulations. In Figure 1 we show the estimated running times with
and without the use of MIC’s vector instructions (dotted and dashed lines,
respectively). We observe that, using both SSA execution modalities on MIC,
the measured running times with 280 and 320 simulations are higher than
expected because of the limitation of resources.

The use of MIC vector instructions allows an additional improvement of
computational performances (Figure 1, dark gray bars), and highlights that
this peculiar capability of MIC is necessary to fully leverage the computational
power of Intel Xeon Phi coprocessors. More precisely, in the case of 15 simul-
taneous simulations (Figure 2), the running time of the MIC with and without
the use of vector instructions changes from 0.15 to 0.27 seconds, respectively,
corresponding to an overall reduction of about 42% when vector instructions
are enabled. Figure 2 also shows the break-even between MIC, CPU and GPU.
It is worth noting that when only a few SSA runs need to be executed, the
CPU outperforms both GPUs and MICs, thanks to its higher clock frequency.
The MIC is faster than the CPU when about 15 SSA runs are performed (10
when using vector instructions). The break-even between CPU and GPU is
around 20 simulations.

0.45

—1 MIC
0.40HE= MIC vec E
N CPU -
0.35H=1 Gpu i R

0.30 i

0.25F M M R
0.20 R
0.15f R

Running time [s]

0.10f R
0.05f i

0.00

1 5 10 15 20 25
Simulations

Fig. 2 Break-even of the running time to execute a limited number of SSA runs of the PGN
model on the three architectures: MIC (light gray bars), MIC using vector instructions (dark
gray bars), CPU (black bars) and GPU (white bars). When only a few simulations are ex-
ecuted, the CPU outperforms the other architectures thanks to its higher clock frequency.
The MIC becomes advantageous with respect to CPU execution when about 10 simulations
are performed, using vector instructions. Without vectorialization, the MIC is more perfor-
mant than CPU when at least 15 simulations are run. Similarly, the GPU outperforms the
CPU when about 20 simulations are executed.



8 Andrea Tangherloni et al.

Simulation of SynSM. In the second batch of tests, we specifically focused
on MIC architecture to investigate the impact of the size of the simulated
model. To evaluate the performances of the Xeon Phi coprocessor, we randomly
created a set of synthetic models of increasing size, i.e., 20 x 20, 40 x 40, 80 x 80,
160 x 160, whose dimensions correspond to the number of chemical species
and the number of reactions, respectively. The models were simulated using
the SSA implementation, with and without the vector instructions enabled.
For every model, each SSA run was executed for a total simulation time of
t = 100 time units, storing the amount of 10 molecular species along 11 time
points of the dynamics.

The results, summarized in Figure 3, show two relevant trends. First, al-
though the running time constantly increases, it is not directly proportional
to the size of the model: a single simulation takes 0.11 seconds for size 20 x 20,
and 0.74 seconds for size 160 x 160. This means that a biochemical system
that is 8 times bigger (160 x 160 vs. 20 x 20) requires a running time of 6.7 x.
If we consider the case of 240 simulations, the running times are 0.6 and 1.5
seconds, respectively, corresponding to an increment of just 3.4x. The second
observation is that, by using the vector instructions, the scalability is strongly
improved: bars with cross in Figure 3 show that, in the case of 240 simula-
tions, if we compare sizes 20 x 20 and 160 x 160, we see that the running
time of the largest model is only 2.2x greater than the smallest one. In the
same situation, but without using vector instructions (empty bars), the run-
ning time of the largest model is only 3.38x greater than the smallest one.
Stated otherwise, the use of vector instructions achieves better computational
performances when the size of SynSM increases.

2.5 : : T
I MIC vec, 1sim B MIC, 1sim
B MIC vec, 40 sim EE MIC, 40 sim
2.0l Bl MIC vec, 80 sim 3 MIC, 80 sim i
“7||E=m MIC vec, 120 sim I MIC, 120 sim
- B8 MIC vec, 160 sim [ MIC, 160 sim
;‘ B2 MIC vec, 200 sim [ MIC, 200 sim
£ L.5{Em@ MIC vec, 240sim [ MIC, 240 sim b
£ o
o
£
c 1.0p i
c
=1
4
0.5t | ‘ i

80x80 160x160

Model size

Fig. 3 Comparison of MIC running times with (bars with cross) and without (empty bars)
the use of vector instructions to execute an increasing number of stochastic simulations
(from 1 to 240) of synthetic models, having a number of species N and of reactions M equal
to (20 x 20), (40 x 40), (80 x 80), (160 x 160).



Gillespie’s Stochastic Simulation Algorithm on MIC Coprocessors 9

MIC’s offload capability. As last test, we exploited the explicit offload capa-
bilities of the Xeon Phi coprocessors. In order to do so, we modified the SSA
implementation in two ways: (i) we linearized all data structures, so that the
arrays could be automatically transferred to the Xeon Phi; (i7) we added the
offload compiler pre-directives, which mark the regions of the source code that
must be offloaded (in our case, the initialization of the system, the calcula-
tion of the propensity functions and the system’s states update). According
to our results, even in the case of “large” stochastic models of biochemical
systems (e.g., 240 x 240 chemical species and reactions) the offload does not
provide a relevant speedup. The rationale behind this is that SSA is a rela-
tively simple algorithm, so that the reduced number of calculations distributed
on MIC’s cores—combined with the overhead due to MIC initialization and
data transfers—affect the overall performances, making CPU more efficient
for this task. Although it is possible that MIC could provide a more relevant
speedup to simulate larger models, it is usually not trivial to define stochastic
models of such complexity, due to the lack of quantitative parameters and
of initial molecular amounts that usually affect the availability of large scale
mechanistic models of biochemical systems.

4 Conclusion

In this work we investigated the application of MICs for the stochastic sim-
ulation of biochemical systems. To this aim, we performed several tests and
compared MIC with two alternative architectures: CPU and GPU. Accord-
ing to our results, MICs provide better performances than CPUs when more
than 10 SSA runs are executed, although GPUs outperform both MICs and
CPUs when more than 80 SSA runs are executed. It is worth noting that the
running time on GPUs remains constant until computing resources (i.e., the
cores) are available; in the case of MIC’s, the performances scale well until the
maximum number of supported threads (i.e., 240) is reached. Moreover, MIC’s
performances in native mode are strongly improved when vector instructions
are exploited, especially in the case of larger synthetic stochastic models. We
also tested the offload capability of the Xeon Phi coprocessors, that is, the
possibility of automatically distributing independent calculations over multi-
ple threads. Our results showed that the offload of the SSA algorithm does
not provide a speedup, since the portions of code that can be offloaded consist
in a few instructions only; therefore, the offload parallelization is affected by
overheads and data transfers.

The empirical analyses shown in this work might facilitate the selection of
the proper parallel architecture and SSA implementation when a large number
of mutually independent simulations are needed, as is the case of many com-
putationally expensive tasks typically carried out for in-depth investigations of
biological systems (see, e.g., [1,3,19,16,21]). However, we highlight that some
additional issues should be considered for the selection of a proper parallel ar-



10 Andrea Tangherloni et al.

chitecture. Specifically, we discuss hereby also the efforts of code porting, the
power consumption of the three architectures and the financial costs items.

Concerning the cost of code porting, in the case of GPGPU computing on
Nvidia video cards, the effort necessary to re-implement any algorithm using
the CUDA programming technique is relevant. Since this issue would increase
the time-to-market, it should be seriously taken into account. On the contrary,
Xeon Phi coprocessors are supposed to be fully compatible with CPUs based
on the x86 ISA; however, according to our experience, the code has to be
slightly adapted in order to be correctly executed on MIC (considering the
native mode). On the other hand, a comparison between the three architectures
should also take into consideration the evaluation of costs, power consumption
and theoretical peak performance. At the time of writing, the CPU Intel Xeon
Haswell E5-2630 v3 has a cost of around €600, with a power consumption
of 80W and theoretical peak performance in double precision of about 500
GFlops, which is only reachable when fused multiply-add (FMA) and advanced
vector instructions (AVX) are simultaneously exploited. The characteristics of
the other devices are: €5800, 300W and 1208 GFlops for Intel Xeon Phi 7120P;
€4200, 300W and 2910 GFlops for Nvidia Tesla K80. According to these data,
the same theoretical peak of the Tesla K80 GPU can be achieved using either 6
CPUs or 3 Xeon Phi 7120P, with the consequent increment in terms of financial
cost and power consumption. However, to fully leverage the computational
power of the CPU, the implementation would require the extensive use of
FMA, AVX and multi-threading, requiring relevant modifications of the code.

As a final remark, we highlight that the performance of GPUs and MICs are
affected by the Error Correcting Code (ECC), used to avoid any error caused
by natural radiations [6]. This functionality is enabled on both accelerators
on the GALILEO supercomputer and introduces a relevant overhead, mainly
due to bits verification. According to the tests performed by Fang et al., the
ECC on MIC coprocessors causes a bandwidth reduction greater than 20%
[6]. Tesla GPUs exploit ECC over the whole memory hierarchy, including the
global memory, L1 and L2 caches, and registers [15]. Also in the case of GPUs
the bandwidth reduction is around 20% [11], so we expect that the speedup
obtained using GPUs and MIC for stochastic simulations could be further
improved by disabling the ECC.

Acknowledgements We acknowledge the CINECA award under the ISCRA initiative, for
the availability of high performance computing resources and support.

References

1. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical mod-
elling of cell signalling pathways. Nat. Cell Biol. 8(11), 1195-1203 (2006)

2. Bernaschi, M., Bisson, M., Salvadore, F.: Multi-Kepler GPU vs. multi-Intel MIC for
spin systems simulations. Comput. Phys. Commun. 185(10), 2495-2503 (2014)

3. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.: The
role of feedback control mechanisms on the establishment of oscillatory regimes in
the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinform. Syst. Biol.
2012(10) (2012)



Gillespie’s Stochastic Simulation Algorithm on MIC Coprocessors 11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Cazzaniga, P., Ferrara, F., Nobile, M.S., Besozzi, D., Mauri, G.: Parallelizing biochem-

ical stochastic simulations: a comparison of GPUs and Intel Xeon Phi processors. In:
V. Malyshkin (ed.) Proc. 13th Int. Conference on Parallel Computing Technologies
(PaCT 2015), LNCS, vol. 9251, pp. 363-374 (2015)

. Fang, J., Varbanescu, A.L., Imbernon, B., Cecilia, J.M., Perez-Sanchez, H.: Parallel

computation of non-bonded interactions in drug discovery: Nvidia GPUs vs. Intel Xeon
Phi. In: Proc. 2nd Int. Work-Conference on Bioinformatics and Biomedical Engineering
(IWBBIO’14) (2014)

. Fang, J., Varbanescu, A.L., Sips, H., Zhang, L., Che, Y., Xu, C.: Benchmarking In-

tel Xeon Phi to guide kernel design. Tech. Rep. PDS-2013-005, Delft University of
Technology, The Netherlands (2013)

. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem. 81(25), 23402361 (1977)

. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A

188(1), 404-425 (1992)

. Halyo, V., LeGresley, P., Lujan, P., Karpusenko, V., Vladimirov, A.: First evaluation

of the CPU, GPGPU and MIC architectures for real time particle tracking based on
Hough transform at the LHC. J. Instrum. 9(04) (2014)

Kent, E., Hoops, S., Mendes, P.: Condor-COPASI: high-throughput computing for bio-
chemical networks. BMC Syst. Biol. 6(1), 91 (2012)

Kraus, J., Pivanti, M., Schifano, S.F., Tripiccione, R., Zanella, M.: Benchmarking GPUs
with a parallel Lattice-Boltzmann code. In: 25th Int. Symposium on Computer Archi-
tecture and High Performance Computing, pp. 160-167. IEEE (2013)

L’Ecuyer, P., Simard, R., Chen, E.J., Kelton, W.D.: An object-oriented random-number
package with many long streams and substreams. Oper. Res. 50(6), 1073-1075 (2002)
Lyakh, D.I.: An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi,
and NVidia Tesla GPU. Comput. Phys. Commun. 189, 84-91 (2015)

Macchiarulo, L.: A massively parallel implementation of Gillespie algorithm on FPGAs.
In: Int. Conference of the IEEE on Engineering in Medicine and Biology Society, pp.
1343-1346 (2008)

Nickolls, J., Dally, W.J.: The GPU computing era. IEEE Micro 30(2), 56-69 (2010)
Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based multi-
swarm PSO method for parameter estimation in stochastic biological systems exploiting
discrete-time target series. In: M. Giacobini, L. Vanneschi, W. Bush (eds.) Evolution-
ary Computation, Machine Learning and Data Mining in Bioinformatics. Proc. 10th
European Conference, EvoBIO 2012, LNCS, vol. 7246, pp. 74-85 (2012)

Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: cupSODA: a CUDA-
powered simulator of mass-action kinetics. In: V. Malyshkin (ed.) Proc. 12th Int. Con-
ference on Parallel Computing Technologies, LNCS, vol. 7979, pp. 344-357 (2013)
Nobile, M.S., Cazzaniga, P., Besozzi, D., Mauri, G.: GPU-accelerated simulations of
mass-action kinetics models with cupSODA. J. Supercomput. 69(1), 17-24 (2014)
Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: Reverse engineering
of kinetic reaction networks by means of Cartesian Genetic Programming and Particle
Swarm Optimization. In: IEEE Congress of Evolutionary Computation, pp. 1594-1601
(2013)

Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: cuTauLeaping: A GPU-
powered tau-leaping stochastic simulator for massive parallel analyses of biological sys-
tems. PLoS ONE 9(e91963) (2014)

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,
M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley-Interscience (2008)
Shimoda, T., Suzuki, S., Ohue, M., Ishida, T., Akiyama, Y.: Protein-protein docking
on hardware accelerators: comparison of GPU and MIC architectures. BMC Syst. Biol.
9(Suppl 1), S6 (2015)

Tian, T., Burrage, K.: Parallel implementation of stochastic simulation of large-scale
cellular processes. In: 8th Int. Conference on High-Performance Computing in Asia-
Pacific Region, pp. 621-626 (2005)

Wilkinson, D.: Stochastic modelling for quantitative description of heterogeneous bio-
logical systems. Nat. Rev. Genet. 10(2), 122-133 (2009)



