Noname manuscript No.
(will be inserted by the editor)

Assessing Resilient versus Stop-and-Restart
Fault-Tolerant Solutions in MPI Applications

Nuria Losada - Maria J. Martin -
Patricia Gonzalez

DOI: 10.1007/s11227-016-1863-z

Abstract The MPI (Message Passing Interface) standard is the most pop-
ular parallel programming model for distributed systems. However, it lacks
fault tolerance support and, traditionally, failures are addressed with stop-
and-restart checkpointing solutions. The proposal of ULFM (User Level Fail-
ure Mitigation) for the inclusion of resilience capabilities in the MPI standard
provides new opportunities in this field, allowing the implementation of re-
silient MPI applications, i.e. applications that are able to detect and react
to failures without stopping their execution. This work compares the perfor-
mance of a traditional stop-and-restart checkpointing solution with its equiva-
lent resilience proposal. Both approaches are built on top of CPPC (ComPiler
for Portable Checkpoiting), an application-level checkpointing tool for MPI
applications, and they allow to transparently obtain fault-tolerant MPI appli-
cations from generic MPI SPMD (Single Program Multiple Data) programs.
The evaluation is focussed on the scalability of the two solutions, comparing
both proposals using up to 3072 cores.

Keywords Resilience - Checkpointing - Fault Tolerance - MPI

1 Introduction

Di Martino et al. [8] have studied during 518 days the Cray supercomputer
Blue Waters, reporting that 1.53% of applications running on the machine
failed because of system-related issues. This means that, on average, a failure
arises every 15 minutes. Future exascale systems will be formed by several
millions of cores, and they will be hit by error /faults much more frequently due
to their scale and complexity. Therefore, long-running applications will need

Nuria Losada - Maria J. Martin - Patricia Gonzalez
Grupo de Arquitectura de Computadores, Universidade da Coruna, Spain
E-mail: { nuria.losada, mariam, patricia.gonzalez }@Qudc.es

2 Nuria Losada et al.

to use fault tolerance techniques to ensure the completion of their execution
in these systems and to save energy.

The MPI (Message Passing Interface) standard is the most popular parallel
programming model in distributed memory systems. However, MPT lacks fault
tolerance support. By default, the entire MPI application is aborted upon a
single process failure. Besides, the state of MPI will be undefined in the event
of a failure and there are no guarantees that the MPI program can success-
fully continue its execution. Thus, traditional fault tolerant solutions for MPI
applications rely on stop-and-restart checkpointing: the computation state is
periodically saved to stable storage into checkpoint files, so that, when a fail-
ure occurs, the application can be relaunched and its state recovered. However,
when a failure arises it frequently has a limited impact and affects only a sub-
set of the cores or computation nodes in which the application is being run.
Thus, most of the nodes will still be alive. In this context, aborting the MPI
application to relaunch it again introduces unnecessary recovery overheads and
more efficient solutions need to be explored.

Recently, the Fault Tolerance Working Group within the MPI forum pro-
posed the ULFM (User Level Failure Mitigation) interface [4] to integrate re-
silience capabilities in the future MPI 4.0 standard. It includes new semantics
for process failure detection, and communicator revocation and reconfigura-
tion. Thus, it enables the implementation of resilient MPI applications, that
is, applications that are able to recover themselves from failures.

CPPC (ComPiler for Portable Checkpointing) [19] is an open-source check-
pointing tool for MPI applications, which originally applies a stop-and-restart
checkpointing strategy. CPPC has been extended to exploit the new resilience
capabilities provided by ULFM [14]. The proposal is able to detect failures in
one or multiple processes, and to recover from them, without stopping the exe-
cution of the application and preserving the number of MPI processes running
the application. This proposal transparently obtains resilient MPI applica-
tions from generic MPI SPMD (Single Program Multiple Data) programs by
automatically instrumenting the original application code. In this work, the
CPPC resilience proposal is exhaustively evaluated in a large machine, con-
sidering different fault scenarios, to analyze the scalability of the proposal and
to detect possible bottlenecks. Besides, it is compared with the traditional
stop-and-restart checkpointing strategy in terms of performance and benefits.

The resilience solution based on CPPC is, to the best of our knowledge, the
only current proposal that automatically and transparently transforms MPI
codes into resilience ones, which constitutes an appealing feature to existing
HPC applications. The thorough evaluation presented here, carried out with
large-scale applications on a large system, will be useful to ongoing researchs
on resilience solutions towards exascale computing.

This paper is structured as follows. Section 2 covers the related work. Sec-
tion 3 introduces the CPPC framework, describing the traditional stop-and-
restart approach, as well as the resilience proposal. The experimental evalua-
tion is presented in Section 4. Finally, Section 5 concludes this paper.

Assessing Resilient vs Stop-and-Restart FT Solutions in MPI Applications 3

2 Related work

In line with previous works [3,9,11], the ULFM interface [4] is the last effort to
include fault tolerance capabilities in the MPI standard. It is a low-level API
that supports a variety of fault tolerance models and thus, it is responsibility
of the user to design the recovery strategy.

In the literature, there exist different proposals to implement resilient ap-
plications using ULFM, most of them specific to one or a set of applications [16,
5,12,1,18]. Bland et al. [5] and Pauli et al. [16] focused on Monte Carlo meth-
ods. Laguna et al. evaluate ULFM on a massively scalar molecular dynamics
code [12]. Partial Differential Equation (PDE) codes are targeted by Ali et
al. [1] and by Rizzi et al. [18]. All these proposals take into account the par-
ticular characteristics of the applications to simplify the recovery process. A
customized solution allows reducing the recovery overhead upon failure, e.g.,
simplifying the detection of failures by checking the status of the execution
in specific points; avoiding the re-spawning of the failed processes when the
algorithm tolerates shrinking the number of the MPI processes; or recovering
the application data by means of its properties as an alternative to checkpoint-
ing. In contrast, unlike our proposal, they can not be generally applied to any
SPMD application.

Other alternatives to ULFM to build resilient applications are Reinit [13],
FMI [20] or NR-MPIT [21]. In contrast with ULFM, which proposes a low-level
API that supports a variety of fault tolerance models, these alternatives pro-
pose a simplified interface towards a non-shrinking model, repairing the MPI
inner state upon failure, and re-spawning the failed processes. Reinit proposes
a prototype fault-tolerance interface for MPI, suitable for global, backward,
non-shrinking recovery. FMI is a prototype programming model with a similar
semantic to MPI that handles fault tolerance, including checkpointing appli-
cation state, restarting failed processes, and allocating additional nodes when
needed. Finally, NR-MPI is a non-stop and fault resilient MPI built on top
of MPICH that implements the semantics of FT-MPI [9]. These proposals
hide the complexities of repairing the MPI state, however, they still rely on
the programmers to instrument and modify the application code to obtain
fault-tolerance support, including the responsibility of identifying which ap-
plication data should be saved and in which points of the program. In contrast,
the CPPC resilience proposal provides a transparent solution in which the ap-
plication code is automatically instrumented by the CPPC compiler adding
full fault tolerance support, both for detecting failures and repairing the MPI
inner state as well as for checkpointing and recovering the application data.
The fact that this proposal provides a transparent solution is specially useful
for those scientific applications already developed over the years in HPC cen-
ters, in which manually adding fault tolerance support by programmers is, in
general, a complex and time-consuming task.

4 Nuria Losada et al.

3 CPPC overview

CPPC [19] is an application-level open-source checkpointing tool for MPI ap-
plications available under GPL license at http://cppc.des.udc.es. It ap-
pears to the final user as a compiler tool and a runtime library. At compile
time the CPPC source-to-source compiler automatically transforms a code into
an equivalent fault-tolerant version by adding calls to the CPPC library. This
instrumentation allows the application to periodically save the computation
state into checkpoint files that can be used for its recovery after a failure.

CPPC implements several optimizations to reduce the checkpointing over-
head [7]. The checkpoint file sizes are reduced by using a liveness analysis to
save only those user variables indispensable for the application recovery; and
by using the zero-blocks exclusion technique, which avoids the storage of mem-
ory blocks that contain only zeros. Besides, a multithreaded dumping overlaps
the checkpoint file dumping to disk with the computation of the application.

Also, another CPPC feature is the portability. Applications can be restarted
on machines with different architectures and/or operating systems than those
in which the checkpoint files were generated. Checkpoint files are portable be-
cause of the use of a portable storage format (HDF5 http://www.hdfgroup.
org/HDF5/) and the exclusion of architecture-dependent state from checkpoint
files. Such non-portable state is recovered through the re-execution of the code
responsible for its creation in the original execution. This is specially useful in
heterogeneous clusters, where this feature enables the completion of the appli-
cations even when those resources that were being used are no longer available
or the waiting time to access them is prohibitive.

3.1 Stop-and-restart proposal

The original proposal of CPPC to provide fault tolerance to MPI applications
consist in a stop-and-restart checkpointing strategy [19]: during its execution
the application periodically saves its computation state into checkpoint files, so
that, in case of failure, the application can be relaunched and its state recovered
using those files. As commented before, the CPPC compiler automatically
instruments the application code to obtain an equivalent fault-tolerant version
by adding calls to the CPPC library. The resulting fault tolerant code for the
stop-and-restart proposal can be seen in Fig. 1. Instrumentation is added to
perform the following actions:

— Configuration and initialization: at the beginning of the application
the routines CPPC_Init_configuration() and CPPC_Init_state() config-
ure and initialize the necessary data structures for the library management.

— Registration of variables: the routine CPPC_Register () explicitly marks
for their inclusion in checkpoint files the variables necessary for the success-
ful recovery of the application. During restart, this routine also recovers
the values from the checkpoint files to their proper memory location.

Assessing Resilient vs Stop-and-Restart FT Solutions in MPI Applications 5

int main(){
CPPC_Init_configuration();
MPI_Init()
CPPC_Init_state();
MPI_Comm_split(MPI_COMM_WORLD, .., NEW_COMM);
<CPPC_Register() block>
if (CPPC_Jump_next()) goto CPPC_REC_2;
[..
for(i=0;i<niters;i++){
CPPC_REC_2:
CPPC_Do_Checkpoint();
[.]
MPI_..(MPI_COMM_WORLD ..);
I.]
<CPPC_uUnregister() block>
CPPC_Shutdown();
}

Fig. 1: CPPC instrumentation for stop-and-restart fault-tolerant applications.

— Checkpoint: the CPPC_Do_checkpoint () routine dumps the checkpoint
file. At restart time this routine checks restart completion.

— Shutdown: the CPPC_Shutdown() routine is added at the end of the ap-
plication to ensure the consistent system shutdown.

Upon a failure, the application is relaunched and the restart process takes
place. Firstly, the application processes perform a negotiation phase to iden-
tify the most recent valid recovery line, formed by the newest checkpoint file
available simultaneously to all processes. The restart phase has two parts:
reading the checkpoint data into memory and reconstructing the application
state. The reading is encapsulated inside the routine CPPC_Init_state(). The
reconstruction of the state is achieved through the ordered execution of certain
blocks of code called RECs (Required-Execution Code): the configuration and
initialization block, variable registration blocks, checkpoint blocks, and non-
portable state recovery blocks, such as the creation of communicators. When
the execution flow reaches the CPPC_Do_checkpoint () call where the check-
point file was generated, the recovery process ends and the execution resumes
normally. The compiler inserts control flow code (labels and conditional jumps
using the CPPC_Jump_next () routine) to ensure an ordered re-execution.

As for checkpoint consistency, the basic difference between sequential and
parallel applications is the existence of dependencies imposed by inter-process
communications. The CPPC compiler performs a static analysis of inter-process
communication and automatically identifies safe points, code locations where
it is guaranteed that there are no in-transit, nor inconsistent messages. Besides,
a heuristic identifies the most computationally expensive loops and inserts a
checkpoint function in the first safe point of these loops. By statically ensuring
that checkpoints may occur only at selected safe points, no inter-process com-
munications or runtime synchronizations are necessary when checkpointing.

6 Nuria Losada et al.

3.2 Resilience proposal

The use of traditional stop and restart fault tolerance solutions in high per-
formance computing clusters presents several disadvantages. First, in these
solutions the application is aborted in the event of a failure and a new MPI
job needs to be relaunched. In some systems this implies the re-queueing of a
new job to the scheduling system, introducing an overhead dependent of the
cluster availability of resources. In the general case, the re-queueing will result
in the assignment of a different set of resources, forcing the movement of all
the checkpoint data across the cluster in order to restart the computation,
usually causing significant network contention and, therefore, high overheads.
However, a complete restart is unnecessary, since most of the computation
nodes used by a job will still be alive and thus, more efficient solutions need to
be explored. CPPC has been extended using the new functionalities provided
by ULFM to transparently obtain resilient MPI applications [14], that is, ap-
plications that are able to recover themselves from failures without stopping
their execution.

The CPPC resilience proposal maximizes its applicability by implementing
a non-shrinking approach (preserving the number of running processes after
a failure) and by recovering the application state using a global and back-
ward strategy (in which the state of all the MPI processes is restored using
the most recent valid recovery line). This solution is obtained by adding new
instrumentation blocks in the application code, as shown in Fig. 2, to perform
the following actions:

— Failure detection: the default error handler on each communicator is set to
MPI_ERRORS_RETURN and each MPI function call is instrumented with a call
to the CPPC_Check_errors() routine to check whether the returned value
corresponds with a failure. Once a process detects a failure, it revokes all of
its communicators to ensure global failure knowledge, i.e., all the surviving
processes will detect the failure.

— Reconfiguration of the global communicator: once all the surviving pro-
cesses detect the failure, within the CPPC_Check_errors() routine, they
invoke the MPI_Comm_shrink () routine, agreeing about the subset of failed
processes and shrinking the global communicator, i.e. excluding the failed
processes. Then, failed processes are re-spawned and the global communi-
cator is reconstructed so that each surviving process will keep its original
rank, while each one of the re-spawned ones will take over a failed process.
During the restart, the application will obtain this new global communi-
cator by means of the CPPC_Get_comm() routine.

— Restart of the application: a regular restart takes place, that is, the most
recent valid recovery line is identified, checkpoint files are read, and an
ordered re-execution of RECs reconstructs the application state. Thus, all
processes must go back to the beginning of the application code so that
they can re-execute the necessary RECs. This is done by performing the
reversed conditional jumps introduced by the CPPC_Check_errors() and
the CPPC_Go_init () instrumentation blocks.

Assessing Resilient vs Stop-and-Restart FT Solutions in MPI Applications 7
int error; MPI_Comm GLOBAL_COMM; bool CPPC_Check_errors(int error_code){
if(error_code == failure){
int main(){ //Revoke communicators Failure
CPPC_GOBACK_REC_0: For ¢ in application_communicators (yatection
CPPC_Init_configuration(); MPI_Comm_revoke(.., C, .
if(1CPPC_Go_init()) MPI_Init()
CPPC_Init_state(); //shrink global communicator
MPI_Comm_shrink(..)
GLOCAL_COMM=CPPC_Get_comm(); //Re-spawn failed processes . .
error = MPI_Comm_split(GLOBAL_COMM, .., NEW_COMM); MPI,Comm,spawn,multlple() Reconfiguration
if (CPPC_Check_errors(error))goto CPPC_GOBACK_REC_O; //Reconstruct communicator of the global
CPPC_Register_comm(NEW_COMM) MPI_Intercomm_merge(..) communicator
<CPPC_Register() block> MPI_Comm_group(..)
if (CPPC_Jump_next()) goto CPPC_REC_2; MPI_Group_incl(..)
[..] MPI_Comm_create(..)
for(i=0;i<niters;i++){ //Start the recovery process Start the
CPPC_REC_2: return true; recovery
CPPC_Do_Checkpoint(); 3
if(CPPC_Go_init()) goto CPPC_GOBACK_REC_0; //No error detected
[.] return false;
error = MPI_.(GLOBAL_COMM ..); }
if (CPPC_Check_errors(error)) goto CPPC_GOBACK_REC 0;
}
[.]1 bool CPPC_Go_init(){
<CPPC_uUnregister() block> return recovering_from_failure;
CPPC_Shutdown(); 3}
}
(a) CPPC instrumentation. (b) CPPC new routines.
———— AV
PO O— I 7 raS 4
/ & 5\ [
P1 O—-n=n= L 5 FDIRV)— g g —_—
o i 3| |35
P2 I ,_, I - FOJRV)— g s
4 h Ei
; Q 2
P3 Om—nmn- I '_, t QFDiRV} 3 3
o 14
Recovery line i
-

between processes

‘ I Checkpoint X Process failure Failure detection Revoke

(c) Behaviour of the resilient application.

Fig. 2: Resilient MPI applications combining CPPC and ULFM.

For more details about the resilience proposal combining CPPC and ULFM
the reader is referred to [14].

4 Experimental evaluation

The experimental evaluation was performed at CESGA (Galicia Supercom-
puting Center) in the FinisTerrae-II supercomputer, comprised of nodes with
two Intel Xeon E5-2680 v3 @ 2.50GHz processors, with 12 cores per proces-
sor and 128 GB of RAM, interconnected to an InfiniBand FDR 56Gb/s. The
experiments were run spawning 24 MPI process per node (one per core). The
CPPC version used was 0.8.1, working along with HDF5 v1.8.11 and GCC
v4.4.7. The OpenMPI version used was ULFM commit ale241f816d7. Finally,
the Portable Hardware Locality (hwloc) [6] is used for the binding of the pro-
cesses to the cores. Applications were compiled with optimization level O3.
The application testbed used is comprised of three benchmarks with dif-
ferent checkpoint file sizes and communication patterns. The ASC Sequoia
Benchmark SPhot [2] is a physics package and it was run setting the param-
eter NRUNS to 24 x 2'6. The Himeno benchmark [10] is a Poisson equation
solver, it was run fixing NN to 24000 and using 2048x2048x1024 as grid size.

8 Nuria Losada et al.

Original runtimes (minutes) Total ckpt file size (GB)
of MPI processes # of MPI processes
384 [768 [1536 | 3072 384 [768 | 1536 | 3072
Sphot 60.3 30.4 15.6 8.9 0.3 0.5 1.0 2.0
Himeno 77.4 39.1 19.5 10.7 165.1 | 166.2 | 168.6 | 170.6
Mocfe 155.9 64.5 29.7 10.6 160.2 | 146.4 | 153.2 | 136.0

Table 1: Original runtimes and checkpoint file sizes for the testbed benchmarks.

Finally, MOCFE-Bone [23] simulates the main procedures in a 3D method of
characteristics (MOC) code. It was run using 4 energy groups, 8 angles, a mesh
of 283 doing strong scaling in space, and a trajectory spacing of 0.01cm?.

Table 1 shows, for each application and varying the number of MPI pro-
cesses, the original runtime (without fault tolerance support), and the total
checkpoint file size generated when one checkpoint is taken, that is, the ad-
dition of the individual checkpoint file size generated by each process. The
reminder of this section evaluates and compares the stop-and-restart and the
resilience versions of the applications. For a fair comparison, the same Open-
MPI version was used in all tests. In both proposals, checkpoint files are stored
in a remote disk using the Lustre parallel file system over InfiniBand.

4.1 Operation overhead in the absence of failures

In a failure-free scenario, two main sources of overhead can be distinguished
when using CPPC: the instrumentation and the checkpointing overheads.

The instrumentation overhead corresponds to the CPPC instrumented ap-
plications without generating any checkpoint files. Fig. 3a presents the absolute
instrumentation overhead (in seconds), while Fig. 3b shows its relative value
normalized with respect to the original runtimes, tagged as “NoCkpt” in both
cases. As observed, the instrumentation overhead is larger when using the re-
silience proposal, which relies on a more extensive instrumentation, adding
blocks of code around every MPI call for failure detection and backwards
conditional jumping during the recovery. Differences between the instrumen-
tations can be reduced using a MPI custom handler and non-local jumps [12],
although workarounds are needed for its usage in Fortran applications.

The checkpoint overhead is measured in the execution of the CPPC in-
strumented versions generating checkpoint files, and it includes both the in-
strumentation overhead and the time spent in all the operations done when
checkpointing. Note that the multithreaded dumping implemented by CPPC
is used both in the stop-and-restart and the resilience proposal, thus, the
checkpointed data is dumped to disk in background, hidding most part of
the checkpointing overhead. Fig. 3a shows the absolute checkpointing over-
heads (in sedonds) using different checkpointing frequencies, while Fig. 3b
presents the equivalent relative values (normalized with respect to the orig-
inal runtimes). The checkpointing frequency is a user-defined parameter in

Assessing Resilient vs Stop-and-Restart FT Solutions in MPI Applications 9

SPhot —&—— Himeno Mocfe —o—— ‘
g3 384 PROCESSES 3% 768 PROCESSES
E 300¢ 300
g 2501 250
£ 200 200
T 150t _\.:./_/'/. 150 /
g -
f 100 b 100 e
e 50+ 50
© 0% < 0 < <
oF T TS e oF o oF o
eﬁ N N N
Stop—and-restart Resilience Stop—and-restart Resilience
g3 1536 PROCESSES 3% 3072 PROCESSES
300 300
3250 250
Z2001 200
2150t 150
£ 100 ._/ 100 —
g 537 : — sg = —
> Jdv do o > dv do e > Jo > o0
AR A Ko o
Stop—and-restart Resilience Stop—and-restart Resilience
(a) Absolute checkpointing overhead (seconds).
SPhot —&—— Himeno Mocfe —o——
R20 20
- 384 PROCESSES 768 PROCESSES
Fis) 15
@
£
S10F 10
B
'g St H_./l/./. 3 W
£ ‘ —=— r";df'
g0 & o mﬁf Q‘F;\e" @ g G & - F @ o & @ T
ST TS ST RARORE IR
Stop-and-restart Resilience Stop-and-restart Resilience
20 20
et 1536 PROCESSES 3072 PROCESSES
Eis| 15
2
§ 101 .\././' 10 / '/.
B
@
£ T X '/0/'/. 3 o
2 FE S S 0 S S
& BC‘S S e@ﬁ S ed& S e@é S
Stop—and-restart Resilience Stop—and-restart Resilience

(b) Relative checkpointing overhead (normalized with repect to the original runtimes).

Fig. 3: Checkpointing overhead varying the checkpointing frequency.

CPPC. Table 2 shows the different testbed checkpointing frequencies used
(e.g. 20% means checkpointing every time the 20% of the computation has
been completed), specifying the number of checkpoint files generated and the
time elapsed between two consecutives checkpoints in each case. Note that the
checkpointing frequency is increased until checkpoints are generated every 3-5
minutes with each number of processes. The checkpointing operation presents
no differences whether using the stop-and-restart or the resilience proposals.
However, the checkpointing overhead is larger for the resilience proposal. This
is explained because the checkpointing overhead also includes the instrumenta-
tion cost, which, as commented previously, is larger in the resilience proposal.
As observed, when increasing the checkpointing frequency, more checkpoint
calls are taken, and thus, the checkpointing overhead increases. All in all, the

10 Nuria Losada et al.

Elapsed time (minutes) between checkpoints
for different checkpointing frequencies

50% 40% 20% 10% 5%
1 ckpt 2 ckpts 4 ckpts 8 ckpts 16 ckpts

taken taken taken taken taken

0]] o °]
Bls|olE|s|o|E|S|olE|s|elE|S]e
W | & S| T S| Z S| m T S| wm T =
384 procs. [31[39|80(|25(32(64|13|16(33| 7 |9 (17| 4|5 |9
768 procs. 16(20(33|12(16(|26| 6 | 8 |14| 3 |4 | 7 - | -
1536 procs. | 8 |[10|15]| 6 | 8 [12| 3 | 4 | 6 - = —-1-1-
3072 procs. |5 |5 |5 ||| —-|—-|—-|—-|—-|—-|—-|—-|—-1~-

Table 2: Testbed checkpointing frequencies and total checkpoint file size.

Process failure stop-and-restart —8— Process failure resilience
Node failure stop-and-restart ——=— Node failure resilience

1201 _/-/.
, N
.o

=)
=)

[-
S o o

Total recovery time (seconds)
%
(=]

=]

384 768 1536 3072 384 768 1536 3072 384 768 1536 3072
SPhot Himeno Mocfe

Fig. 4: Recovery time (seconds).

absolute overhead does not increase with the number of cores, while the rel-
ative overhead, which in general is below 5%, increases when scaling out the
applications as the original runtimes decrease.

4.2 Operation overhead in the presence of failures

The performance of both the stop-and-restart and the resilience proposal is
evaluated inserting one-process or full-node failures by killing the last ranked
one or twenty-four MPI processes, respectively. Failures are introduced when
the 75% of the application has completed and the applications are recovered
using the checkpoint files generated at the 50% of the execution. Table 3
summarizes the recovery operations performed in each proposal and described
in Section 3. Fig. 4 presents for each proposal the addition of all the operations
performed in each case to allow the application to continue its execution. On
average, the resilience proposal reduces in 65% the recovery time of the stop-
and-restart solution.

Fig. 5 breaks down the recovery operation times for each application. Fail-
ure detection times measure the time spent from the introduction of the failure
until its detection. In the resilience proposal, it includes the time spent revok-

Assessing Resilient vs Stop-and-Restart FT Solutions in MPI Applications

11

Stop-and-restart

[

Resilience]

Detection

Until application aborted

due to failure

Until global knowledge of the
failure (includes comm. revoke)

Other resilience
operations (A)

Agreement about failed proc.
(MPI_Comm shrink)

Re-spawning

Application is relaunched,
all processes re-spawned

Failed processes are
re-spawned & initialized

Other resilience
operations (B)

Global comm. reconstruction
& backwards conditional jumps

Reading Find recovery line and read checkpoint files
Restart s — T —
Positioning Recover application state and positioning in the code.
Table 3: Recovery operations in each proposal.
Process failure stop—and-restart ——#—— Process failure resilience
Node failure stop—and—restart —H—— Node failure resilience
6 Detecti poe R i
etection e—spawnin;
2 50r 35 P
b=l 30
£ 401 25
>3
g 30t 20
2 0l Ja = =9 s
£ o7 . 10
£ 10} o—& 5
0 0
> A0 AV o AV £y v @ A0 AV > o AV D A0 AV
FLEL LELFE LESE PSS LSS LSS
SPhot Himeno Mocfe SPhot Himeno Mocfe
60 40
50 Reading 35 Positioning
=y " 30 @“E/@{E\
§ 401 25
2 301 20
e 15
@ 20h
£ 10
= 101 5
0 n . ; 0 ; P—f—t__n]|
$ OO > & o v > & o v > & o0& $ v > & o0&
FLEL LEFY LSS FEEE FEEL PSS
SPhot Himeno Mocfe SPhot Himeno Mocfe
0.40 - 5 10 s -
0351 MPI_Comm_shrinksroutine Reconstruction global communicator
2 a0 8
< 030
£ 0251 6
2020t
3 0.15F 4
Eo.10f)
=005t
0.00 0

& a0 A
F e
SPhot

S A0 AV
& 8 &S
Himeno

F W x"a’b @'\W
Mocfe

o
& & @l\w
SPhot

o AV
ERNRGES
Himeno

> o AV
F & S
Mocfe

Fig. 5: Recovery operations times (seconds).

ing all the communicators in the application, which is inferior to 5 milliseconds
in all the experiments. Detection times are better in the resilience proposal
because of the detection mechanisms provide by ULFM. On average, detec-
tion is twice faster for one process failures and 6 times faster in the presence
of node failures than when using the traditional stop-and-restart solution. In
both proposals, as the number of failed processes increases, the time to detect

the failure decreases.

In both proposals, the re-spawning times also include the initialization
of the failed processes (time spent in the MPI_Init routine). The backwards

12 Nuria Losada et al.

conditional jumps, with a maximum value of 0.5 milliseconds in all the tests,
were not included in the figures. Note that, relaunching the entire application
is always more costly than relaunching only the processes that have actually
failed. However, this difference decreases as the number of failed processes
increases, and, more important, when scaling out the application. As a result,
the cost of re-spawning 24 processes when there are 3048 surviving processes,
is close to the cost of relaunching 3072 processes from scratch.

The reading of the checkpoint files is faster in the resilience proposal,
because the surviving processes benefit from the use of the page cache in
which the checkpoint files from the most recent recovery line will frequently
be present. In other scenarios, reading times can be reduced by using opti-
mizations techniques, such as diskless checkpointing [22,17] in which copies of
the checkpoint files are stored in the memory of neighbour nodes, or multi-
level checkpointing [15,14], which saves those copies in different levels of the
memory hierarchy. The restart positioning times are tight to the particular
applications and the re-execution of the non-portable state recovery blocks.
In SPhot positioning times are lower in the resilience proposal because the
re-execution of these blocks benefits from the usage of page cache. Finally, the
shrinking and the global communicator reconstruction are also represented in
the figures. In both cases, these times increases with the number of processes
running the applications. Shrinking times are larger when more survivors par-
ticipate in the operation, as more survivors must agree about the subset of
failed processes.

Note that, in both proposals the restart overhead would also include the
re-execution of the computation done from the point in which checkpoint files
were generated until the failure occurrence, an overhead that will be tight to
the selected checkpointing frequency (more frequent checkpoints imply less
re-execution overhead in the event of a failure, although more overhead is
introduced during the fault free execution). Additionally, in some systems, the
stop-and-restart proposal would also imply the re-queueing of a new job to
the scheduling system, introducing an overhead dependent of the availability
of the cluster resources.

5 Concluding remarks

This paper aims to assess the performance and compare two application-level
fault-tolerant solutions for MPI programs: a traditional stop-and-restart ap-
proach and its equivalent resilience proposal using ULFM capabilities, with
the focus on the scalability in current petascale systems.

The resilience solution clearly outperforms the stop-and-restart approach,
reducing the time consumed in the recovery operations between 1.6x and 4x,
and avoiding the resubmission of the job. During the recovery, the most costly
steps are the failure detection and the re-spawning of failed processes. In the
resilience proposal, the failure detection times are between 2x and 6x faster
and the re-spawning times are also notably smaller. However, the re-spawning

Assessing Resilient vs Stop-and-Restart FT Solutions in MPI Applications 13

times significantly increase when the number of failed processes grow and when
scaling out the application. Thus, optimizations to minimize the re-spawning
cost should be studied, such as the use of spare processes, initialized at the
beginning of the execution that can take over the failed ranks upon failure [22].

The evaluation performed in this work is done on the basis of a general
solution that can be applied to any SPMD code. However, ULFM allows for the
implementation of different fault-tolerant strategies, depending on the nature
of the applications at hand. Ad-hoc solutions could reduce the failure-free or
the recovery overhead upon a failure. For instance, simplifying the detection of
failures by checking the status of the execution in specific points, or avoiding
the re-spawning of the failed processes in those applications that tolerate the
shrinking of MPI processes.

Finally, in the evaluated resilience solution, all the application processes
roll back to the last valid recovery line, thus, all processes re-execute the
computation done from the checkpoint until the point where the failure have
occurred. We believe that a global recovery should be avoided to improve the
application performance both in time and energy consumption. Thus, as future
work, we will explore this direction further considering the development of a
message-logging protocol to avoid the roll back of the surviving processes.

Acknowledgements This work has been supported by the Ministry of Economy and
Competitiveness of Spain and FEDER funds of the EU (project TIN2013-42148-P and pre-
doctoral grant of Nuria Losada ref. BES-2014-068066) and by the Galician Government
(Xunta de Galicia) under the Consolidation Program of Competitive Research Units, co-
funded by FEDER funds (Ref. GRC2013/055). We gratefully thank CESGA for providing

access to the FinisTerrae-II supercomputer.

References

1. Ali, M. M. and Strazdins, P. E. and Harding, B. and Hegland, M.: Complex scientific ap-
plications made fault-tolerant with the sparse grid combination technique. International
Journal of High Performance Computing Applications (2016)

2. ASC Sequoia Benchmark Codes: https://asc.1lnl.gov/sequoia/benchmarks/. Last
accessed: June 2016

3. Aulwes, R., Daniel, D., Desai, N., Graham, R., Risinger, L., Taylor, M.A., Woodall, T.,
Sukalski, M.: Architecture of LA-MPI, a network-fault-tolerant MPI. In: International
Parallel and Distributed Processing Symposium, p. 15 (2004)

4. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.: An evalua-
tion of user-level failure mitigation support in MPI. In: Recent Advances in the Message
Passing Interface, vol. 7490, pp. 193-203 (2012)

5. Bland, W., Raffenetti, K., Balaji, P.: Simplifying the Recovery Model of User-Level
Failure Mitigation. In: Workshop on Exascale MPI at Supercomputing Conference, pp.
20-25 (2014)

6. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: a Generic Framework for Managing Hardware Affinities
in HPC Applications. In: Int. Conference on Parallel, Distributed and Network-Based
Computing (2010)

7. Cores, 1., Rodriguez, G., Martin, M., Gonzélez, P., Osorio, R.: Improving Scalability of
Application-Level Checkpoint-Recovery by Reducing Checkpoint Sizes. New Generation
Computing 31(3), 163-185 (2013)

14

Nuria Losada et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Di Martino, C., Kramer, W., Kalbarczyk, Z., Iyer, R.: Measuring and Understanding

Extreme-Scale Application Resilience: A Field Study of 5,000,000 HPC Application
Runs. In: Int. Conference on Dependable Systems and Networks, pp. 25-36 (2015)

. Fagg, G., Dongarra, J.: FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applications

in a Dynamic World. In: Recent Advances in Parallel Virtual Machine and Message
Passing Interface, vol. 1908, pp. 346-353. Springer (2000)

Himeno Benchmark: http://accc.riken. jp/en/supercom/himenobmt/. Last accessed:
June 2016

Hursey, J. and Graham, R.L. and Bronevetsky, G. and Buntinas, D. and Pritchard, H.
and Solt, D.G.: Run-through stabilization: An MPI proposal for process fault tolerance.
In: Recent Advances in the Message Passing Interface, pp. 329-332 (2011)

Laguna, I., Richards, D., Gamblin, T., Schulz, M., de Supinski, B.: Evaluating User-
Level Fault Tolerance for MPI Applications. In: European MPI Users’ Group Meeting,
EuroMPI/ASIA ’14, pp. 57-62 (2014)

Laguna, I. and Richards, D. F. and Gamblin, T. and Schulz, M. and de Supinski, B. R.
and Mohror, K. and Pritchard, H.: Evaluating and extending user-level fault tolerance
in MPI applications. Int. Journal of High Performance Computing Applications (2016)
Losada, N. and Cores, I. and Martin, M. J. and Gonzélez, P.: Resilient MPI applica-
tions using an application-level checkpointing framework and ULFM. The Journal of
Supercomputing pp. 1-14 (2016)

Moody, A. and Bronevetsky, G. and Mohror, K. and De Supinski, B. R: Design, mod-
eling, and evaluation of a scalable multi-level checkpointing system. In: Int. Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 1-11 (2010)
Pauli, S. and Kohler, M. and Arbenz, P. : A fault tolerant implementation of Multi-Level
Monte Carlo methods. In: Advances in Parallel Computing, pp. 471-480 (2013)
Plank, J.S., Li, K., Puening, M.A.: Diskless checkpointing. Transactions on Parallel and
Distributed Systems, 9(10), 972-986 (1998)

Rizzi, F., Morris, K., Sargsyan, K., Mycek, P., Safta, C., Debusschere, B., LeMaitre,
O., Knio, O.: ULFM-MPI Implementation of a Resilient Task-Based Partial Differential
Equations Preconditioner. In: Workshop on Fault-Tolerance for HPC at Extreme Scale,
pp. 19-26 (2016)

Rodriguez, G., Martin, M., Gonzélez, P., Tourinio, J., Doallo, R.: CPPC: a compiler-
assisted tool for portable checkpointing of message-passing applications. Concurrency
and Computation: Practice and Experience 22(6), 749-766 (2010)

Sato, K., Moody, A., Mohror, K., Gamblin, T., De Supinski, B., Maruyama, N., Mat-
suoka, S.: FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery.
In: Int. Parallel and Distributed Processing Symposium, pp. 1225-1234 (2014)

Suo, G., Lu, Y., Liao, X., Xie, M., Cao, H.: NR-MPI: A Non-stop and Fault Resilient
MPI. In: Int. Conference on Parallel and Distributed Systems, pp. 190-199 (2013)
Teranishi, K., Heroux, M.: Toward Local Failure Local Recovery Resilience Model Using
MPI-ULFM. In: European MPI Users’ Group Meeting, pp. 51-56 (2014)

Wolters, E., Smith, M.: MOCFE-Bone: the 3D MOC mini-application for exascale re-
search. Tech. rep., Argonne National Laboratory (2013)

