

Zhang, R., Chen, W., Hsu, T., Yang, H. and Chung, Y. (2017)

'ANG - a combination of Apriori and graph computing

techniques for frequent itemsets mining’, The Journal of

Supercomputing. doi: 10.1007/s11227-017-2049-z.

The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-017-2049-z

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher

policies.

Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the

ResearchSPAce Metadata and Data Policies, as well as applicable law:-

https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have

permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

http://dx.doi.org/10.1007/s11227-017-2049-z
http://researchspace.bathspa.ac.uk/

ANG – A Combination of Apriori and Graph Computing Techniques for Frequent
Itemsets Mining

Rui Zhang1, Wenguang Chen2, Tse-Chuan Hsu3, Hongji Yang3, and Yeh-Ching Chung4

1Graduate School at Shenzhen, Tsinghua University
Shenzhen 518057, China

Email: r-zhang15@mails.tsinghua.edu.cn
2Department of Computer Science and Technology, Tsinghua University

Beijing 100084, China
Email: cwg@tsinghua.edu.cn

3 Centre for Creative Computing, BathSpa University, England
Email: davidhsu@hcu.edu.tw, h.yang@bathspa.ac.uk

4Research Institute of Tsinghua University in Shenzhen
Shenzhen 518057, China

Email: yehching.chung@gmail.com

Abstract - The Apriori algorithm is one of the most
well-known and widely accepted method for the association
rule mining. In Apriori, it uses a prefix tree to represent
k-itemsets, generates k-itemset candidates based on the
frequent (k-1)-itemsets, and determines the frequent
k-itemsets by traversing the prefix tree iteratively based on the
transaction records. When k is small, the execution of Apriori
is very efficient. However, the execution of Apriori could be
very slow when k becomes large because of the deeper
recursion depth to determine the frequent k-itemsets. From the
perspective of graph computing, the transaction records can
be converted to a graph G (V, E), where V is the set of vertices
of G that represents the transaction records and E is the set of
edges of G that represents the relations among transaction
records. Each k-itemset in the transaction records will have a
corresponding connected component in G. The number of
vertices in the corresponding connected component is the
support of the k-itemset. Since the time to find the
corresponding connected component of a k-itemset in G is
constant for any k, the graph computing method will be very
efficient if the number of k-itemsets is relatively small. Based
on Apriori and graph computing techniques, a hybrid method,
called ANG (Apriori and Graph Computing), is proposed to
compute the frequent itemsets. Initially, ANG uses Apriori to
compute the frequent k-itemsets and then switches to the
graph computing method when k becomes large (where the
number of k-itemset candidates is relatively small). The
experimental results show that ANG outperforms both Apriori
and the graph computing method for all test cases.

Keywords: Apriori; Graph Computing; Frequent Itemset
Mining; Data Mining

1 Introduction

Data mining is to extract the previously unknown and
potentially useful information from a large database [15, 17,
21, 22, 24, 32]. It is the core process of the knowledge

discovery of database [24]. The association rule mining is one
of the most important techniques in data mining. The
association rule was first proposed in supermarket sales [1]. A
supermarket collects a lot of transaction records. The owner
wants to find useful information from transaction records to
help decision makers draw up sale plans. Information such
as certain groups of items are consistently purchased together
is interesting. The managers could use the information to
adjust store layouts, arrange cross selling, and so on.

A transaction record contains a set of items, where an
item means a product. Let I be the set of all items. An
association rule may like X→Y, where X, Y ⊂ I and X ∩ Y = ∅.
For example, users who buy milk and bread may also buy
butter. We say X = {milk, bread} → Y = {butter} is an
association rule if the confidence of X and Y, denoted as

confidence(X, Y) = support (X)/support(X ∪ Y), (1)

is greater than the minimum confidence, where support(X) is
the number of transaction records that contains X and the
minimum confidence is a user-defined threshold. Given a set
of transaction records, there may exist a large number of
useless association rules in which the supports of X and Y are
small although their confidences are large. To eliminate those
useless association rules, the association rule mining, in
general, is divided into 2 steps. The first step is to find all
frequent itemsets whose supports are greater than the
minimum support. This step is also known as frequent itemset
mining (FIM). The second step is to produce all association
rules based on Equation (1) for all frequent itemsets found in
the first step. The overall performance of association rule
mining is mainly depending on the first step since the second
step is easy.
 The Apriori algorithm is one of the most well-known and
widely accepted method to compute FIM [15, 17, 21, 22, 24,
32]. It uses a prefix tree to represent frequent itemsets [3, 4].
In the prefix tree, each node in the kth level represents a set of
k-itemsets. To avoid useless association rules research, Apriori
first generates k-itemset candidates based on the frequent

http://www.editorialmanager.com/supe/download.aspx?id=164618&guid=1bb0476e-fdb4-465b-a2b5-c22b2a10ae0a&scheme=1
http://www.editorialmanager.com/supe/download.aspx?id=164618&guid=1bb0476e-fdb4-465b-a2b5-c22b2a10ae0a&scheme=1

(k-1)-itemsets. Then, it traverses the prefix tree iteratively
based on the transaction records to determine whether a
k-itemset candidate is frequent. When k is small, the execution
of Apriori is very efficient. However, the execution of
Apriori could be very slow when k becomes large due to the
deeper recursion depth to determine the frequent k-itemsets.

The graph computing is a technique to process a set of
large-scale data that can be represented as a graph. Many
applications, such as breadth-first search, page rank,
connected components, shortest paths, etc., can be
implemented by using the graph computing method. From the
perspective of graph computing, a set of transaction records
can be treated as a graph G = (V, E), where V is the set of
vertices of G that represents the transaction records and E is
the set of edges of G that represents the relations among
transaction records. Two vertices have an edge associated
with them if the corresponding transaction records satisfied
the condition specified by the relation. For the association rule
mining, the relation can be specified as two transaction
records have the k items in common, where k = 1, …, |I| and I
is the set of all items in transaction records. An example of
such perspective is shown in Figure 1. In Figure 1(a), a set
of transaction records is given. Figure 1(b) shows the
corresponding graph G1 in which two transaction records have
1 item in common. Figure 1(c) shows the corresponding
graph G2 in which two transaction records have 2 items in
common.

(a) Transaction records (b) Graph G1 (c) Graph G2

Figure 1. A graph perspective of transaction records

Figure 2. The set of connected components of G2 in Figure

1(c)

Let D be a set of transaction records and Gk be the
corresponding graph of D with value k. From Gk, we can
obtain a set of connected components Ck in which any two
transactions in a connected component have the same k items
in common, that is, each k-itemset in D has a corresponding
connected component in Ck. The support of a k-itemset
happens to be the number of vertices in the corresponding
connected component. Therefore, to use the graph computing
method to determine the frequent k-itemsets of D, we only
need to compute the number of vertices in each connected
components of Ck. If the support is greater than a threshold
(minimum support), then this k-itemset is frequent. The
performance of using the graph computing method for FIM is
determined by the number of connected components in Ck.

Given the graph G2 shown in Figure 1(c), the set of connected
components of G2 is shown in Figure 2.

In Apriori, when k is small, the number of k-itemset
candidates could be very huge. If the graph computing
method is applied to determine the frequent k-itemsets based
on these k-itemset candidates, its execution will be very slow.
On the opposite, when k is large, the number of k-itemset
candidates will be small. The calculation of frequent
k-itemsets will be very efficient if the graph computing
method is applied. Since Apriori is efficient when k is small
while the graph computing method is efficient when k is large,
in this paper, we propose a hybrid method, called ANG
(Apriori and Graph Computing), by combining the advantages
of these two methods for FIM. Initially, ANG uses Apriori
to perform FIM and then switches to the graph computation
method when k becomes large. We have derived a formula to
determine the switch from Apriori to the graph computing
method (this will be described in section 3.3 in detail).

To evaluate ANG, we compared its performance with
that of Apriori, DHP (directed hashing and pruning) [23], and
the graph computing method. The experimental results show
that ANG outperforms Apriori, DHP, and the graph computing
method for all test cases. The contributions of this paper are
as follows:

1. We have formulated the FIM problem as a graph
computing problem.

2. We have proposed a hybrid method, ANG, based on
Apriori and the graph computing method to compute
FIM efficiently.

The rest of the paper is organized as follows. Section 2
introduces some graph computing structures and some FIM
methods. Section 3 introduces ANG in details. The
experimental results are given in section 4.

2 Related Work

Many graph computing techniques have been proposed
in the literature [5-10, 14, 16, 18-20, 25-30, 33-35]. They can
be divided into two categories, single node graph computing
techniques [10, 14, 16, 18, 25-27, 30, 33, 34] and distributed
graph computing techniques [5, 7- 9, 19, 20, 31, 35].

In GraphChi [14], the authors proposed a graph
computing structure in a single node system. It is a disk-based
system to compute graphs with billions of edges from disk by
using a novel parallel sliding windows method. GridGraph
[34] decomposes graphs into vertex chunks and edge blocks
using a 2-level hierarchical partition. It uses a novel dual
sliding windows method to process graphs. Ligra [26] is a
lightweight in-memory graph computing system. In Ligra,
the memory requirement is critical since a graph must be in
the memory before processing. Ligra+ [27] is a successor of
Ligra by using compression techniques to reduce the size of a
graph. GraphBuilder [13] provides a scalable framework for
graph loading, extraction, and transformation.

Pregel [20] is a distributed programming framework for
graph computing by providing a set of APIs. It uses a
synchronous superstep model to synchronize the execution of
nodes among a distributed computing environment.

Distributed GraphLab [19] and PowerGraph [8] are graph
computing frameworks for data mining and machine learning
algorithms with large-scale data.

Apriori was proposed in [1, 2]. It has been widely
discussed in [3, 4, 12, 15, 17, 21-24, 32]. In [3, 4], the
authors proposed an implementation of Apriori by using the
prefix tree. In [15, 17, 21, 22, 24], some parallel and
distributed implementations of Apriori with MapReduce [7]
were proposed. In [12], the authors implemented Apriori
based on Hadoop. In [23], the authors provide a hash-based
algorithm, DHP, for mining association rules. The difference
between this method and Apriori is the way to generate the
frequent itemset candidates. In Apriori, a prefix tree is used to
generate the frequent itemset candidates while in DHP, a hash
table is used. In [24], the infrequent itemsets mining based
on MapReduce was discussed. In [32], the authors proposed
a hash-based method to discover the maximal frequent
itemsets.

3 The Proposed Method

3.1 Apriori Algorithm

The Apriori algorithm used in this paper is based on the
work proposed in [4]. In [4], it uses the prefix tree to
express all subsets of a set of items. Based on the prefix tree,
the frequent k-itemsets can be calculated iteratively. Let I be
a set of items, Sk be all subsets of I with k items, and |I| = n.
An n level prefix tree T can be used to represent all subsets of
I, where the node in the first level of T contains S1, nodes in
the second level of T contain S2, nodes in the third level of T
contain S3, and so on. An example of using the prefix tree to
represent all subsets of I with n = 5, is shown in Figure 3.

Figure 3. A prefix tree for 5 items

Let D be a set of transaction records and I be a set of

items. To calculate all the frequent k-itemsets of D based on
the prefix tree, the execution of Apriori is composed of two
phases, initial and iterative.

Phase 1. In the initial phase where k = 1, the frequent
1-itemsets are calculated by scanning D once to obtain the
support of each 1-itemset. If the support of a 1-itemset is
greater than the minimum support, the 1-itemset is a frequent
1-itemset. Otherwise, the support of the 1itemset is set to -1 to
indicate that the itemset is not a frequent one.

Phase 2. In the iterative phase where k > 1, Apriori uses
the frequent (k-1)-itemsets generated in the (k-1)th level of the
prefix tree to generate k-itemset candidates. To determine

whether a k-itemset candidate is frequent, Apriori traverses
the prefix tree iteratively based on the transaction records to
get the support of each k-itemset candidate. If the support of a
k-itemset candidate is greater than the minimum support, then
it is a frequent k-itemset. Otherwise, the support of the
k-itemset is set to -1.

The Apriori algorithm is give as follows:
__

Algorithm Apriori (D, I, T)
/* D is the set of transaction records */
/* I is the set of all items in D */
/* T is the prefix tree with level and T = ∅ initially */

/* Initial phase */
1. Build the 1-level prefix tree T’;
2. T = T ∪ T’;
3. Scan D once to obtain the support of each 1-itemset;
4. if (the support of a 1-itemset <= minimum support) the

support of the 1-itemset is set to -1;

/* Iterative phase */
5. k=2;
6. Candidates_Generation (k, T);
7. while (Candidates_Generation (k, T) produce new nodes)
8. {
9. T = Apriori_c (k, D, T);
10. k++;
11. Candidates_Generation (k, T);
12. }
End of Apriori

Algorithm Candidates_Generation (k, T)
/* T is the prefix tree */
1. let p and q be 2 frequent (k-1)-itemsets;
2. if (the items of p and q are the same except the last one)
3. {
4. Add a k-itemset candidate exc with the same (k-2)

items and different 2 last items to the corresponding
position in the kth level of T;

5. if (one of the subset of exc with k-1 items is not a
frequent (k-1)-itemset) the support of exc is set to -1;

6. }
End of Candidates_Generation

Function Apriori_c (k, D, T)
/* D is the set of transaction records */
/* T is the prefix tree with level = k-1 */
1. Build the k-level of prefix tree T’ based on T;
2. For each transaction record r in D do
3. {
4. Use r to traverse T’ iteratively;
5. If the traverse reached a leaf node of T’, the support of

the corresponding k-itemset is increased by 1;
6. }
7. if (the support of a k-itemset <= minimum support) the

support of the k-itemset is set to -1;
8. return T’;
End of Apriori_c
__

The time complexity of Apriori is O(k2 Í |D| Í
𝐶(𝐼 , 𝑖))'()

*+) based on the method proposed in [4]. An
example of using Algorithm Apriori(D, I, T) for FIM is shown
in Figure 4. In Figure 4(a), a set of transaction records D =
{T1, T2, T3, T4} is given and I = {I1, I2, I3, I4, I5}. In the
initial phase, we can obtain the 1-itemset candidates, the
frequent 1-itemsets with support > 1, and the one-level prefix
tree as shown in Figures 4(b), 4(c), and 4(d), respectively.
In the iterative phase, when k = 2, we can obtain the 2-itemset
candidates, the frequent 2-itemsets with support > 1, and the
two-level prefix tree as shown in Figures 4(e), 4(f), and 4(g),
respectively. When k = 3, the 3-itemset candidates, the
frequent 3-itemsets with support > 1, and the three-level
prefix tree are shown in Figures 4(h), 4(i), and 4(j),
respectively.

(a) Transaction records

(b) 1-itemset candidates (c) Frequent 1-itemsets (d)1-level prefix tree

(e) 2-itemset candidates (f) Frequent 2-itemsets (g) 2-level prefix tree

 (h) 3-itemset candidates (i) Frequent 3-items (j) 3-level prefix tree
Figure 4. An example of using Apriori for FIM

3.2 Graph Computing Method

To use the graph computing method to compute FIM, the
process can be divided into two phases, converting phase and
computing phase:

Phase 1. In the converting phase, we convert the
transaction records to graph data. Given a set of transaction
records D and a set of all items of D, denoted as I, we can
covert D to a graph data G = (V, E) by using the following
rules:

Rule 1. For each transaction record r in D, it denotes as a
vertex v in V. The vertex ID of v is the record ID of r.

Rule 2. If two transaction records have k items in
common, there will be an edge between two vertices and the
attributes associated with the edge is the set of IDs of k items,
where k = 1, …, |I|.

Phase 2. In the computing phase, we determine the
frequent k-itemsets based on G and the prefix tree T. From
G, we can derive Gk that is the corresponding graph of all
k-itemsets in D, where k = 1, …, |I|. Since each k-itemset in
D has a corresponding connected component in Ck. The
support of a k-itemset is the number of vertices in the
corresponding connected component. Given the k-itemset
candidates in T, to determine whether a k-itemset candidate is
frequent, we only need to find the corresponding connected
component of the k-itemset candidate in Ck and compute the
number of vertices (counter) in the corresponding connected
components. If the counter is greater than a threshold
(minimum support), then this k-itemset is frequent.

The algorithm to use the graph computing method to
calculate the frequent itemsets is given as follows.

__

Algorithm FIM_GC (D, T, I, G)
/* D is the set of transaction records */
/* T is the prefix tree with level and T = ∅ initially */
/* I is the set of all items in D */
/* G is the converted graph data of D */
1. Convert D to G based on rules 1 and 2;
2. Build the 1-level prefix tree T’;
3. T = T ∪ T’; k = 1;
4. do
5. {
6. For each k-itemset candidate in T do
7. {
8. s = FIM_CC (G, k-itemset.attribute_set);
9. if (s > minimum support)
10. the support of the k-itemset is s;
11. else the support of the k-itemset is -1;
12. }
13. k++;
14. } while (Candidates_Generation(k, T) produce new nodes)
End of FIM_GC

Algorithm FIM_CC (G, attribute_set)
1. labels = {0, …, |V-1|} initialized such that labels[i]=i;
2. for each edge e in G do Fe (e, attribute_set);
3. Return the counter of vertices in the connected

component;
End of FIM_CC

Function Fv (vertex, new_label)
1. labels[vertex] = new_label;
End of Fv

Function Fe (edge, attribute_set)
1. if (attribute_set is a subset of attributes of edge)
2. {
3. m = min(labels[edge.source],

labels[edge.destination]);
4. Fv (edge.source, m);
5. Fv (edge.destination, m);
6. }
End of Fe
__

In the graph computing method, the converting phase
(Phase 1) will be executed only once. Its time complexity is
O(|D|2). In the computing phase, the maximum number of
frequent itemset candidates processed in the kth iteration is
C(|I|,k). The time complexity of this phase is
O(𝐶 𝐼 , 𝑖'

*+) *|E|).

3.3 ANG Algorithm

The different between the graph computing method and
Apriori is the way to compute the support of k-itemset.
Apriori uses the transaction records to traverse the prefix tree
iteratively to calculate the supports of k-itemset candidates
while the graph computing method uses the connected
components algorithm to compute the supports of k-itemsets.

When k is small, Apriori can be very efficient. However,
Apriori will be very inefficient when k becomes large because
of the deeper recursion depth. It indicates that the execution
time of Apriori is mainly depending on the level of prefix tree
traversed. For the graph computing method, it computes a
support of a k-itemset by executing the connected components
algorithm once. The time of executing multi-attributes
connected components algorithm for different k-itemsets is
almost the same. Therefore, the execution time of the graph
computing method is mainly depending on the number of
k-itemsets.

In Apriori algorithm, the number of k-itemset candidates,
in general, is much less than the number of k-itemsets in the
prefix tree. We observe that the number of k-itemset
candidates is large when k is small. While k become large,
the number of k-itemset candidates decreases sharply. Table 1
shows the number of k-itemset candidates of a set of
transaction records with different minimum supports
percentage s. The minimum support is defined as s times the
number of transaction records. The 1-itemset candidates are
the whole items, and the k-itemsets candidates are depending
on frequent (k-1)-itemsets. From Table 1, we can see that the
number of k-itemset candidates decrease greatly when k > 2.

Table 1. The number of k-itemset candidates

Apriori is very efficient when k is small while the graph

computing method with the prefix tree can accelerate the
computation of the support of k-itemset candidates when k is
large. By using this feature, we propose the ANG algorithm
to perform FIM. In ANG, initially the Apriori method is
used when k is small. When k is large, the graph computing
method is applied. We need to determine the value of k such
that the execution can be switched from the Apriori method to
the graph computing method.

Let Ni be the number of items in the ith transaction
record, CAk be the number of k-itemset candidates, trk be the
time of one transaction record traversing a prefix tree with
depth k, tck be the time to execute the connected components
algorithm with k items. The time to compute the support of
k-itemset candidates in Apriori is 𝐶,-

' ∗ 𝑡0'. The time to
compute the support of k-itemset candidates in the graph
computation method is 𝐶𝐴' ∗ 𝑡2'. When the time of Apriori
is greater than the time of the graph computation method, we
switch to the graph computing method i.e. when the Equation
(2) is satisfied.

𝐶(𝑁*, 𝑘) ∗ 𝑡0' > 𝐶𝐴' ∗ 𝑡2'	 (2)

The algorithm of ANG is given as follows.
__

Algorithm ANG (D, T, G)
/* D is the set of transaction records */
/* T is the prefix tree with level and T = ∅ initially */
/* G is the converted graph data of D */

1. Build the 1-level prefix tree T’;
2. T = T ∪ T’;
3. Scan D once to obtain the support of each 1-itemset;
4. if (the support of a 1-itemset <= minimum support) the

support of the 1-itemset is set to -1;
5. k=2;
6. Candidates_Generation (k, T);
7. while (Equation (2) is not satisfied)
8. {
9. Apriori_c (k, D, T);
10. k++;
11. Candidates_Generation (k, T);
12. }
13. while (k-itemset candidates are not empty)
14. {
15. Build k-level prefix tree T’ based on T;
16. for each k-itemset candidate do
17. {
18. s = FIM_CC (G, candidate.attribute_set);
19. if (s < minimum support) support of the k-itemset

is set to -1; set corresponding support of k-itemset
= s;

20. k++;
21. Candidates_Generation (k, T’);
22. }
23. }
End function
__

The time complexity of ANG is O(j2 Í |D| Í
𝐶(𝐼 , 𝑖))7()

*+) + O(𝐶 𝐼 , 𝑖'
*+7 *|E|), where j and k are the

first and the last iterations performed by Algorithm
FIM_CC(G, candidate.attribute_set) in Algorithm ANG(D, T,
G), respectively. The execution flow of the ANG algorithm
is shown in Figure 5.

 s = 0.1% s = 0.2% s = 0.3% s = 0.4%
1-itemsets 1000 1000 1000 1000
2-itemsets 318003 274911 242556 200028
3-itemsets 158413 30110 7881 1788
4-itemsets 5493 2719 737 200
5-itemsets 3140 1631 266 53
6-itemsets 1427 826 61 11
7-itemsets 494 303 11 1

Figure 5. The execution flow of the ANG algorithm

4 Experimental Results

To evaluate the performance of ANG, we have
implemented ANG algorithm along with Apriori, DHP, and
the graph computing method. We use the set of transaction
records in [11] as the test sample. The set contains 61100
transaction records and 1000 items. Items in transaction
records are uniform distributed, that is, each item has the
same influence to the experiment conducted.

Table 1 shows the number of k-itemset candidates in the
prefix tree with different minimum support percentages s for
the test sample. Tables 2-5 show the execution time (in
seconds) of Apriori and the graph computing method for the
k-itemset candidates shown in Table 1. From Tables 2-5, we
have the following observation:

Observation 1: If the value of minimum support
percentage increases, the time for the graph computing
method to determine the frequent itemsets from the k-itemset
candidates will be less than that of the Apriori method with
smaller k.

For example, if s is 0.1%, the time for the graph
computing method to determine the frequent itemsets from
the 7-itemset candidates is 247 seconds while that of the
Apriori method is 711.11 second. When s is increased to
0.3%, the time for the graph computing method to determine
the frequent itemsets from the 5-itemset candidates is 106.4
seconds while that of the Apriori method is 176.29 second.

In ANG, Equation (2) is used to determine when to
switch from Apriori to the graph computing method. Given
the test sample, in Equation (2), 𝐶(𝑁*, 𝑘) can be computed
for a given Ni and k. The value of trk is the time for each
transaction record to traverse a prefix tree with depth k. The
levels traversed for trk and tr(k-1) are k and k-1, respectively.
trk can be approximated as trk = tr(k-1) + (tr(k-1) − tr(k−2)) = 2tr(k-1) -
tr(k-2). Values of CAk are shown in Table 1, where k= 1, …, 7.
The value of tck can be obtained by executing the connected
component algorithm with k items once.

For the case where s = 0.3% and k = 5, we have
𝐶(𝑁*, 5) = 689419357, tr5 = 2.56μs since tr4 = 2.52μs and

tr3 = 2.48μs, CA5 is 266, and tc5 = 0.37s. Based on the values
of 	 𝐶(𝑁*, 5), tr5, CA5, and tc5, the estimated time for the
Apriori method and the graph computing method are 176.49
and 98.42 seconds, respectively. Given the test sample and s
= 0.3%, ANG will use the Apriori method to calculate the
frequent itemsets when k < 5 and switches to the graph
computing method after k ≥ 5 since the condition given in
Equation (2) is satisfied.

Tables 6-9 show the estimated execution of Apriori and
the graph computing method based on the values of
	 𝐶(𝑁*, 𝑘), trk, CAk, and tck for the test sample with s = 0.1%,
0.2%, 0.3%, and 0.4%, respectively. Compare Tables 2-5
and Tables 6-9, we can see that Equation (2) can predict the
switching points for ANG accurately for all test cases. Table
10 shows the execution time of Apriori, ANG, and the graph
computing method for the test sample. From Table 10, we
can see that ANG has the best performance among the three
methods compared for all test cases.

Table 2. The execution time (s) of Apriori and the graph

computing method for k-itemset candidates with s = 0.1%
 Apriori Graph Computing

2-itemsets 8.54 130381.24
3-itemsets 37.16 64949.35
4-itemsets 102.12 2252.12
5-itemsets 232.54 1287.43
6-itemsets 438.68 713.6
7-itemsets 711.11 247

Table 3. The execution time (s) of Apriori and the graph

computing method for k-itemset candidates with s = 0.2%
 Apriori Graph Computing

2-itemsets 7.58 112713.51
3-itemsets 31.59 12345.15
4-itemsets 88.04 1114.79
5-itemsets 198.78 668.71
6-itemsets 374.29 330.4
7-itemsets 608.63 151.5

Table 4. The execution time (s) of Apriori and the graph

computing method for k-itemset candidates with s = 0.3%
 Apriori Graph Computing

2-itemsets 7.37 99447.96
3-itemsets 28.65 3231.21
4-itemsets 78.71 302.17
5-itemsets 176.29 106.4
6-itemsets 333.26 30.5
7-itemsets 541.42 7.7

Table 5. The execution time (s) of Apriori and the graph

computing method for k-itemset candidates with s = 0.4%
 Apriori Graph Computing

2-itemsets 6.41 82011.49
3-itemsets 24.91 733.07
4-itemsets 68.76 82.71
5-itemsets 155.02 21.74
6-itemsets 291.69 6.6
7-itemsets 474.55 1.2

Table 6. The estimated time (s) of Apriori and the graph

computing method for k-itemset candidates with s = 0.1%
 Apriori Graph Computing

2-itemsets 8.66 108121.02
3-itemsets 37.13 53860.42
4-itemsets 119.11 1977.48
5-itemsets 233.02 1161.8
6-itemsets 439.58 585.07
7-itemsets 691.27 207.48

	

Table 7. The estimated time (s) of Apriori and the graph
computing method for k-itemset candidates with s = 0.2%

 Apriori Graph Computing
2-itemsets 7.91 93469.74
3-itemsets 32.19 10538.5
4-itemsets 95.35 978.84
5-itemsets 199.24 603.47
6-itemsets 376.78 338.66
7-itemsets 596.57 127.26

Table 8. The estimated time (s) of Apriori and the graph

computing method for k-itemset candidates with s = 0.3%
 Apriori Graph Computing

2-itemsets 7.42 82469.04
3-itemsets 28.62 2758.35
4-itemsets 84.09 265.32
5-itemsets 176.49 98.42
6-itemsets 330.64 25.01
7-itemsets 520.82 4.62

Table 9. The estimated time (s) of Apriori and the graph

computing method for k-itemset candidates with s = 0.4%
 Apriori Graph Computing

2-itemsets 6.29 68009.52
3-itemsets 24.83 625.8
4-itemsets 74.09 73.44
5-itemsets 154.43 19.61
6-itemsets 294.76 4.51
7-itemsets 464.01 0.42

Table 10. The execution time (s) of Apriori, ANG and the

graph computing method
s Apriori ANG Graph Computing

0.1% 1546.15 1032.64 200067.72
0.2% 1324.12 905.69 127710.91
0.3% 1179.69 297.72 103529.93
0.4% 1036.31 145.55 83258.75

In addition to the performance comparison of Apriori,
ANG, and the graph computing method, we also compare the
performance of ANG with DHP, another method for FIM.
Figure 6 shows the execution time of ANG and DHP for the
test cases with minimum support from 0.1 to 0.4. From
Figure 6, we can see that ANG outperforms DHP for all test
cases.

Figure 6. The execution time (s) of ANG and DHP for test
cases with different minimum support

5 Conclusions

In this paper, we have shown that how to use the graph
computing method to perform frequent itemset mining. We
also discussed the advantages and disadvantages of Apriori
and the graph computing method when applied them to
frequent itemset mining. Based on the discussions, we have
proposed a hybrid method, ANG, by taking the advantages of
Apriori and the graph computing method for frequent itemset
mining. In ANG, initially, Apriori is used to compute the
support of k-itemset candidates when k is small. When k
becomes large, the graph computation method is used to
compute the support of k-itemset candidates. We have
derived a formula to determine when to switch from the
Apriori method to the graph computing method. The
experimental results show that the formula can predict the
switching point accurately and ANG outperforms Apriori,
DHP, and the graph computing method for all test cases.

ACKNOWLEDGMENT

The work of this paper is partially supported by Shenzhen City
Brach Committee under contract 2016-09.01
	
References

[1]. Agrawal R, Imielinski T, Swami AN (1993) Mining

association rules between sets of items in large
databases. In: Proceeding of the SIGMOD’93, pp. 207–
216.

[2]. Agrawal R, Srikant R (1994) Fast algorithms for mining

association rules. In: Proceeding of the VLDB’94, pp.
487–499.

[3]. Borgelt, C, Kruse, R (2002) Induction of Association

Rules: Apriori Implementation. In: Compstat.
Physica-Verlag HD, pp. 937-944.

[4]. Borgelt, C (2003). Efficient implementations of apriori

and eclat. In: Proc.ieee Icdm Workshop on Frequent
Item Set Mining Implementations. ceur Workshop
Proceedings, 90.

[5]. Chen R, Shi JX, Chen YZ, Chen HB (2015) Powerlyra:

Differentiated graph computation and partitioning on
skewed graphs. In: Proceedings of the Tenth European
Conference on Computer Systems. ACM, pp. 1-15.

[6]. Chen Z, Yang S, Shang Y, Liu Y, Wang F, Wang L, Fu J

(2016) Fragment Re-Allocation Strategy Based on
Hypergraph for NoSQL Database Systems. In:
International Journal of Grid and High Performance
Computing, vol. 8(3), pp. 1-24.

[7]. Dean J, Ghemawat S (2004) MapReduce: Simplified

Data Processing on Large Clusters. In Proc. of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 219-228.

[8]. Gonzalez JE, Low YC, Gu HJ, Bickson D, Guestrin C
(2012) PowerGraph: Distributed graph-parallel
computation on natural graphs. In: OSDI, pp. 17-30.

[9]. Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin

MJ, Stoica I (2014) GraphX: Graph Processing in a
Distributed Dataflow Framework. In: 11th USENIX
Symposium on Operating Systems Design and
Implementation, pp. 599-613.

[10]. Han WS, Lee S, Park K, Lee JH, Kim MS, Kim J, Yu H

(2013) Turbograph: a fast parallel graph engine
handling billion-scale graphs in a single pc. In:
Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discover and data mining,
ACM, pp. 77-85.

[11]. http://fimi.ua.ac.be/

[12]. https://github.com/solitaryreaper/HadoopApriori

[13]. Jain N, Liao G, Willke TL (2013) GraphBuilder:

scalable graph etl framework. In: First International
Workshop on Graph Data Management Experiences
and Systems, ACM, pp. 1-6.

[14]. Kyrola A, Blelloch G, Guestrin C (2012) GraphChi:

Large-Scale Graph Computation on Just a PC. In: OSDI,
vol. 12, pp. 31-46.

[15]. Lin M, Lee P, Hsueh S (2012) Apriori-based frequent

itemset mining algorithms on MapReduce. In Proc.
ICUIMC, ACM, pp. 26–30.

[16]. Lin Z, Kahng M, Sabrin KM, Chau DHP, Lee H, Kang

U (2014) Mmap: Fast billion-scale graph computation
on a pc via memory mapping. In: IEEE International
Conference on Big Data, IEEE, pp. 159-164.

[17]. Li N, Zeng L, He Q, Shi Z (2012) Parallel

implementation of apriori algorithm based on
MapReduce. In: Proc. SNPD, pp. 236–241.

[18]. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C,

Hellerstein JM (2010) GraphLab: A new parallel
framework for machine learning. In: Conference on
Uncertainty in Artificial Intelligence, pp. 340-349.

[19]. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C,

Hellerstein JM (2012) Distributed GraphLab: A
Framework for Machine Learning and Data Mining in
the Cloud. In: Proceedings of the VLDB Endowment.
pp. 716-727.

[20]. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I,

Leiser N, Czajkowski G (2010) Pregel: a system for
large-scale graph processing. In: Proceedings of the
ACM SIGMOD International Conference on
Management of data, ACM, pp. 135-146.

[21]. Moens S, Aksehirli E, Goethals B (2012) Frequent
Itemset Mining for Big Data. In: IEEE International
Conference on Big Data, IEEE, pp. 111-118.

[22]. Othman Y, Osman H, Ehab E (2012) An efficient

implementation of apriori algorithm based on hadoop-
MapReduce model. In: International Journal of Reviews
in Computing, Vol. 12, pp.57-67.

[23]. Park JS, Chen MS, Yu PS (1995) An Effective

Hash-Based Algorithm for Mining Association Rules.
In: Proceedings of the ACM SIGMOD, pp. 175-186.

[24]. Ramakrishnudu T, Subramanyam RBV (2015) Mining

Interesting Infrequent Itemsets from Very Large Data
based on MapReduce framework. In: International
Journal of Intelligent Systems Technologies &
Applications,7(7), 44-49.

[25]. Roy A, Mihailovic I, Zwaenepoel W (2013) X-Stream:

Edge-centric Graph Processing using Streaming
Partitions. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ACM, pp.
472-488.

[26]. Shun J, Blelloch GE (2013) Ligra: A Lightweight Graph

Processing Framework for Shared Memory. In: ACM
SIGPLAN Notices, vol. 48, ACM, pp. 135-146.

[27]. Shun J, Dhulipala L, Blelloch GE (2015) Smaller and

Faster: Parallel Processing of Compressed Graphs with
Ligra+. In: Proceedings of the IEEE Data Compression
Conference (DCC), pp. 403-412.

[28]. Tian J, Zhang H (2016) A Credible Cloud Service

Model based on Behavior Graphs and Tripartite
Decision-Making Mechanism. In: International Journal
of Grid and High Performance Computing, vol. 8(3), pp.
39-57.

[29]. Viswanathan V (2016) Discovery of semantic

associations in an RDF graph using bi-directional BFS
on massively parallel hardware. In: International
Journal of Big Data Intelligence, vol.3, No.3, pp.
176-181.

[30]. Wang K, Xu G, Su Z, Liu YD (2015) Graphq: Graph

query processing with abstraction refinement: scalable
and programmable analytics over very large graphs on a
single PC. In: USENIX ATC, pp. 387-401.

[31]. Xin RS, Gonzalez JE, Franklin MJ, Stoica I (2013)

GraphX: A Resilient Distributed Graph System on
Spark. In: First International Workshop on Graph Data
Management Experiences and Systems, ACM, p. 2.

[32]. Yong DL, Pan CT, Chung YC (2001) An Efficient

Hash-Based Method for Discovering the Maximal
Frequent Set. In: Proceedings of IEEE International

Computer Software and Applications Conference
(COMPSAC), IEEE, pp. 511-516.

[33]. Yuan P, Zhang W, Xie C, Jin H, Liu L, Lee K (2014)

Fast Iterative Graph Computation: A Path Centric
Approach. In: High Performance Computing,
Networking, Storage and Analysis, IEEE, pp. 401-412.

[34]. Zhu X, Han W, Chen W (2015) GridGraph: Large-Scale

Graph Processing on a Single Machine Using 2-Level
Hierarchical Partitioning. In: USENIX ATC, pp.
375-386.

[35]. Zhu X, Chen W, Zheng W, Ma X (2016) Gemini: A

Computation-Centric Distributed Graph Processing
System. In: OSDI, pp. 301-316.

	Article coversheet Springer
	ANG

