
Noname manuscript No.
(will be inserted by the editor)

Reducing the Upfront Cost of Private Clouds with
Clairvoyant Virtual Machine Placement

Yan Zhao 1 · Hongwei Liu �1 · Yan
Wang 2 · Zhan Zhang 1 · Decheng Zuo 1

Received: date / Accepted: date

Abstract Although public clouds still occupy the largest portion of the to-
tal cloud infrastructure, private clouds are attracting increasing interest from
both industry and academia because of their better security and privacy con-
trol. According to the existing studies, the high upfront cost is among the most
critical challenges associated with private clouds. To reduce cost and improve
performance, virtual machine placement (VMP) methods have been exten-
sively investigated; however, few of these methods have focused on private
clouds. This paper proposes a heterogeneous and multidimensional clairvoy-
ant dynamic bin packing (CDBP) model, in which the scheduler can conduct
more efficient VMP processes using additional information on the arrival time
and duration of virtual machines to reduce the datacenter scale and thereby
decrease the upfront cost of private clouds. In addition, a novel branch-and-
bound algorithm with a divide-and-conquer strategy (DCBB) is proposed to
effectively and efficiently handle the derived problem. One state-of-the-art and
several classic VMP methods are also modified to adapt to the proposed model

The work described in this paper was supported by the National High-tech R&D Program
of China (863 Program) under Grant 2013AA01A215 and the National Laboratory of High-
effect Server and Storage Techniques under Grant 2014HSSA05.

Yan Zhao
E-mail: yanzhao@hit.edu.cn ·
Hongwei Liu
E-mail: liuhw@hit.edu.cn ·
Yan Wang
E-mail: yan.wang@mq.edu.au ·
Zhan Zhang
E-mail: zz@ftcl.hit.edu.cn ·
Decheng Zuo
E-mail: zuodc@hit.edu.cn
1 Department of Computer Science and Technology, Harbin Institute of Technology, Hei-
longjiang, China
2 Department of Computing, Macquarie University, Sydney, Australia

ar
X

iv
:1

80
2.

03
15

2v
3

 [
cs

.D
C

]
 2

2
D

ec
 2

01
8

2 Yan Zhao 1 et al.

to observe their performance and compare with our proposed algorithm. Ex-
tensive experiments are conducted on both real-world and synthetic workloads
to evaluate the accuracy and efficiency of the algorithms. The experimental
results demonstrate that DCBB delivers near-optimal solutions with a conver-
gence rate that is much faster than those of the other search-based algorithms
evaluated. In particular, DCBB yields the optimal solution for a real-world
workload with an execution time that is an order of magnitude shorter than
that required by the original branch-and-bound (BB) algorithm.

Keywords virtual machine placement · dynamic bin packing · private cloud
computing · resource management

1 Introduction

Cloud computing is a computing paradigm that enables convenient, measur-
able, and on-demand network access to a pool of configured physical resources,
such as CPU and memory. It can be categorized into three major deployment
models: public clouds, private clouds and hybrid clouds [1]. Although public
clouds still occupy the largest portion of the total cloud infrastructure, private
clouds are attracting increasing attention from both industry and academia
[2] because of their better security and privacy control. According to a 2017
survey [3] focusing on the adoption of cloud computing among IT profession-
als, 95% of respondents used cloud platforms, and 75% used private clouds or
hybrid clouds. Moreover, previous studies [3, 4] have revealed that a high up-
front cost is among the most critical challenges associated with private clouds.
Thus, there is a demand for efficient resource management methods those can
reduce the scale of datacenters in order to popularize private cloud computing.

Although the existing resource management methods have been well ex-
ploited, most of them are designed for general or public clouds. There is a need
for more research based on the distinctive characteristics of private clouds,
such as their predictable workloads and limited resources, to develop more
efficient resource scheduling methods for the private cloud environment. In
recent years, researchers have proposed multiple resource management meth-
ods, including task allocation [5, 6] and workflow scheduling [7] methods, for
achieving various goals specifically in the private cloud environment.

The motivation of this work is to propose efficient virtual machine place-
ment (VMP) methods for private clouds, in which resources are more limited
and the workloads are more predictable than those of public clouds. The aim
is to reduce the high upfront cost of datacenters, which is a key barrier to
the popularization of private clouds. To achieve this goal, this work focuses on
minimizing the number of servers (#servers), which can also contribute to en-
ergy efficiency. Reducing the #servers is one of the most straightforward and
efficient methods of reducing the upfront cost of a private cloud since it can
directly lower the costs of site use, server purchase, refrigeration, etc. Since re-
sources are relatively limited in private clouds, we employ advance reservation
[8, 9] to increase the resource utilization ratio and reduce resource contention.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 3

VMP is a critical resource management method for cloud computing to
improve performance, lower resource consumption and reduce maintenance
cost [10]. Many VMP methods have been proposed with various objectives,
including effective load balancing, high energy efficiency, and high network
traffic efficiency. However, the private cloud environment, in which resources
are more limited and workloads are more predictable, has received little atten-
tion. As private clouds receive increasing interest from industry and academia,
one of the emerging challenges of VMP is to determine how to conduct efficient
scheduling to minimize the #servers and thus reduce the high upfront cost in
the private cloud environment.

Although the majority of research and industry applications still focus
on on-demand provision, advance reservation has been attracting increasing
interest in the literature. Similar to the widely adopted appointment system
[11], the advance reservation approach can improve the scheduling efficiency
and mitigate resource contention by making use of additional time information.
Applications of advance reservation in cluster computing [12, 13] and grid
computing [14, 15] have been extensively researched to exploit its potential. In
recent years, researchers have applied advance reservation in cloud computing
to improve energy efficiency [9] and maximize revenue [8, 16]. Moreover, cloud
providers (e.g., Amazon 1) have also provided reserved instances to satisfy
user requirements. Because of the more predictable workloads and the resource
limitations in private clouds, advance reservation can be effectively employed
to increase the resource utilization ratio and reduce resource contention.

Bin packing approaches are typically employed to address VMP problems.
However, classic bin packing concentrates only on resources and ignores time
information, which makes it difficult to address problems with an additional
time dimension (e.g., advance reservation). Compared to classic bin packing,
dynamic bin packing (DBP) can better handle VMP problems involving reser-
vations since it considers time factors. By definition, DBP [17] aims to model
scenarios in which items arrive and depart randomly. DBP can be further
classified into clairvoyant and nonclairvoyant settings depending on when the
scheduler becomes aware of the departure times of virtual machines (VMs). Ini-
tially, researchers focused on nonclairvoyant dynamic bin packing (NCDBP),
in which the system does not know the departure times of VMs until they
have departed. However, with advances in workload prediction techniques
[18, 19, 20], clairvoyant dynamic bin packing (CDBP), in which the system
becomes aware of the departure times of VMs when they arrive, has received
increasing attention in recent years. Although efforts have been made to apply
the DBP model in cloud computing, few studies have been conducted that
have considered a heterogeneous environment or multidimensional resources,
and this research gap impedes the further application of DBP in this context.

The present research is applicable to the following scenario:

– The employees of an organization need to use computing resources to sup-
port their work.

1 https://aws.amazon.com/

4 Yan Zhao 1 et al.

Table 1: List of the main acronyms used in this paper

Acronym Definition

#servers Number of servers
#VMs Number of virtual machines
BB Branch-and-bound
CS Clustered set of virtual machines
CDBP Clairvoyant dynamic bin packing
DBP Dynamic bin packing
DCBB Branch-and-bound algorithm with a divide-and-conquer strategy
DDFF Duration-descending first fit
DDFF+ Duration-descending first fit with a shuffling process
FF First fit
FF+ First fit with a shuffling process
MGC Most-greedy clustering
NCDBP Nonclairvoyant dynamic bin packing
OEMACS Ant colony system with an order exchange and migration technique
OEMACS+ Time-aware and multidimensional OEMACS
SCS Set of clustered sets of virtual machines
VM Virtual machine
VMP Virtual machine placement

– The workloads are reasonably predictable and stable with regard to the
required amounts of resources and their periods of usage.

– The company is concerned with issues such as security and confidentiality
and thus prefers a private cloud.

– The organization hopes to minimize the datacenter size to reduce the up-
front cost of building its own datacenter.

The main contributions of this paper are as follows:

1. A novel model and algorithm are proposed to reduce the upfront cost, which
is the main barrier to the popularization of private clouds, by reducing the
total #servers required.

2. A formal definition of the enhanced CDBP problem with a heterogeneous
environment and multidimensional resources is presented to better address
VMP problems with an additional time dimension.

3. A novel branch-and-bound algorithm with a divide-and-conquer strategy
(DCBB) is proposed to deliver near-optimal scheduling solutions within
an execution time that is significantly shorter than those required by the
other search-based algorithms evaluated.

4. The previously proposed ant colony system with an order exchange and
migration technique (OEMACS) is enhanced by endowing it with the abil-
ity to handle heterogeneous environments, multidimensional resources, and
additional time information, thus making the algorithm more practical.

5. Various algorithms are analyzed, evaluated, and compared from different
perspectives on real-world and synthetic workloads.

A list of common acronyms used throughout this paper is presented in Ta-
ble 1 for the reader’s convenience.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 5

The remainder of this paper is organized as follows. Section 2 first intro-
duces related work. Then, Section 3 explains the system model. Next, Section 4
presents the scheduling algorithms, and Section 5 describes the implementa-
tion and experiments. Finally, Section 6 concludes the paper.

2 Related Work

In this paper, CDBP is applied in VMP to enhance the classic VMP model
with an additional time dimension, corresponding algorithms are designed to
address the modified problem, and the proposed methods are analyzed. In
this section, the existing methods those focus on VMP and CDBP models are
introduced and discussed.

2.1 Virtual Machine Placement

VMP, an essential process for the initial placement of new VMs, has been
extensively investigated in the literature [10, 21, 22, 23, 24] on cloud computing
resource management. The goal of this process is to initially allocate VMs to
servers based on certain objectives, including energy conservation [25, 26, 27],
cost minimization [28, 29], resource saving [30, 31, 32], and load balancing [33].

Researchers have applied numerous algorithms to achieve efficient VMP.
Accurate algorithms such as linear programming [34], stochastic integer pro-
gramming [35], and pseudo-Boolean optimization [36] have been studied to
provide optimal scheduling solutions. Despite their accuracy, optimal algo-
rithms are computationally prohibitive since VMP is well known to be an
NP-hard problem [22]. To accelerate the scheduling process, many heuristic
algorithms based on a first-fit (FF) strategy [22, 37], a best-fit strategy [37, 38],
a worst-fit strategy [37] or a first-come-first-served strategy [39] have been pro-
posed to reduce the execution time, at the cost of some decrease in accuracy.
With recent advances in evolutionary algorithms, researchers have also ap-
plied algorithms such as the frog leaping algorithm [40], ant colony optimiza-
tion [23, 41], and genetic algorithms [24] for VMP to improve the scheduling
performance. In 2016, Liu et al. [41] proposed OEMACS, an ant colony sys-
tem with an order exchange and migration technique, which addresses VMP
problems more effectively than other evolutionary and traditional algorithms
do.

Although extensive studies have been conducted in the field of VMP, only
a small number of these studies have focused on private clouds, in which the
workloads are more predictable and resources are more limited. Researchers
have applied the genetic algorithms [42, 43] and an artificial bee colony algo-
rithm [43] to address VMP problems in private clouds with a focus on power
efficiency, but these studies did not consider the distinctive characteristics (e.g.,
predictable workloads and limited resources) of private clouds to improve their
performance. To better handle such scenarios, a formal representation of the

6 Yan Zhao 1 et al.

VMP problem combined with CDBP is presented in this paper, and efficient
algorithms are proposed to handle this problem effectively and efficiently. In
addition, several VMP algorithms designed for the classic model, including
FF and OEMACS, are adapted for use within our proposed heterogeneous
and multidimensional CDBP model to observe their performance and enable
comparisons with the proposed algorithm.

2.2 Clairvoyant Dynamic Bin Packing

Resource-aware VMP has typically been abstracted into a bin-packing problem
that consists of a situation in which several items need to be packed into the
minimum number of bins [44]. Bin packing and its d-dimensional variants have
been extensively studied [45, 46, 47, 48] since the 1960s. Many approximation
algorithms have been proposed for 1-dimensional bin packing [45]. Fernandez
de La Vega and Lueker [46] proposed the first polynomial-time approxima-
tion scheme for 1-dimensional bin-packing problems and proved that no such
polynomial-time approximation scheme is possible for 2-dimensional packing
problems. In addition to the commonly considered case of homogeneous bins,
several researchers have proposed algorithms for bin-packing problems in het-
erogeneous environments [48]. Although classic bin packing has been exten-
sively employed to model resource-aware VMP, it encounters difficulties in
describing time-enhanced cases, e.g., advance reservation.

DBP [17] is an extension of classic bin packing that additionally consid-
ers arrival time and duration, with items arriving and departing dynamically.
Compared to classic bin packing, DBP can better model the advance reserva-
tion scenario and result in more efficient scheduling with time multiplexing.
When DBP was first proposed and analyzed by Coffman et al. [17] for allo-
cation problems in computer systems, they focused on the NCDBP case, in
which the scheduler does not know the departure times of VMs until they
depart. Coffman et al. [17] applied an FF strategy to reduce the #servers re-
quired and proved that no online algorithm can obtain a performance bound
that is lower than the FF bound. Later, researchers applied this model to re-
duce the total server usage time. Li et al. [49] proved that the upper bound
on the competitive ratio achieved with the FF strategy is 2µ + 13 and that
the competitive ratio of the best fit is not bounded for µ. They then proposed
a modified FF strategy to improve the competitive ratio to µ + 8 when µ
is known. Subsequently, Kamali et al. [50] improved the upper bound on the
competitive ratio to 2µ + 1, and Tang et al. [51] reduced the value to µ + 4.

In recent years, researchers have paid more attention to the application of
CDBP to minimize the total usage time of servers. In contrast to the nonclair-
voyant model, in CDBP, the scheduler can perceive the departure time of a
VM upon its arrival, which enables more flexible scheduling. Ren et al. [52]
proposed the duration-descending first fit (DDFF) algorithm, with an approx-
imation ratio of 5, and the dual-coloring algorithm, with an approximation
ratio of 4, as offline solutions. In 2017, Azar and Yossi [53] proposed a classify-

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 7

by-duration FF strategy with a competitive ratio equal to the lower bound on
the competitive ratio

√
logµ of any online algorithm.

The DBP model, which enables more efficient and flexible resource schedul-
ing using the additional time dimension, seems promising for application in
the private cloud environment, in which workloads are predictable and con-
trollable. However, despite the great efforts researchers have directed toward
DBP, their contributions have remained limited to homogeneous environments
and 1-dimensional resources to simplify the work. Moreover, as shown above,
most research on DBP has sought to minimize the usage time of all servers.
In this paper, a heterogeneous and multidimensional CDBP model and DCBB
algorithm are proposed that can handle heterogeneous environments and mul-
tidimensional resources in order to minimize the total #servers required.

3 System Model

In this section, a novel heterogeneous and multidimensional CDBP model is
presented for the VMP problem in private clouds, in which the workloads are
predictable and resources are limited. This model aims to better characterize
the real-world VMP problem by providing a more detailed description of re-
sources and time factors. In addition, with the additional arrival and duration
information provided by the model, the scheduler can perform more efficient
scheduling through time multiplexing. To provide a formal representation of
the model, the VMs and servers are first defined; then, the time-enhanced
constraints and objectives are clarified; and finally, the presented model is
analyzed.

Let S = (s1, s2, ..., sm) and V = (v1, v2, ..., vn) denote the set of servers and
the set of VMs, respectively. The VM vj in V consists of a triple (aj , pj , r

v
j),

where aj is the arrival time, pj is the usage duration, and rvj represents the
resources that vj demands. Thus, vj represents that a VM demanding rvj
resources arrives at time aj and remains for a period of pj . It is assumed that
aj ≥ 0 and pj ≥ 0 for all j. Regarding servers, each server si in S can be
simply represented by its resources rsi since it does not need an additional
time dimension. Given that l types of resources in total are considered, the
resources associated with the server si and the VM vj can be represented as
rsi = (rsi1, ..., r

s
il) and rvj = (rvj1, ..., r

v
jl), respectively. Moreover, for each VM vj ,

there exists at least one server si satisfying rsik ≥ rvjk, ∀k ∈ 1, 2, ..., l. Then, the
heterogeneous and multidimensional CDBP model for VMP can be presented

8 Yan Zhao 1 et al.

Table 2: Symbols used in the system model

Symbol Definition

l Number of resource dimensions
m #servers
n #VMs
rsik Amount of the kth resource possessed by the ith server
rvjk Amount of the kth resource demanded by the jth VM

t An instant of time in the experimental period
T Total time of the experiment
ujt A variable indicating whether the execution time of the jth VM contains the time instant t;

its value is 1 if the execution time of the jth VM contains t and is 0 otherwise
xij A variable indicating whether the jth VM is assigned to the ith server;

its value is 1 if the jth VM is assigned to the ith server and is 0 otherwise

as follows.

min

m∑
i=1

n
max
j=1

xij (1)

s.t.

n∑
j=1

rvjkxijujt ≤ rsik ∀i = 1, ...,m, ∀k = 1, ..., l,∀t = 0, ..., T (2)

m∑
i=1

xij = 1 ∀j = 1, ..., n (3)

xij ∈ {0, 1} ∀i = 1, ...,m, ∀j = 1, ..., n (4)

ujt ∈ {0, 1} ∀j = 1, ..., n, ∀t = 0, ..., T (5)

The symbols used in the formulae are explained in Table 2.

As Eqs. (1) to (5) indicate, the proposed model considers the uptime of
the VMs, which enables more flexible and efficient resource scheduling. Fur-
thermore, because it considers heterogeneous and multidimensional resources,
the model can better reflect real-world scheduling problems. The objective is
to minimize the total #servers required (i.e., minimize the datacenter scale),
as shown in Eq. (1). If required, the objective function can be modified based
on the user requirements. The constraints given in Eq. (2) indicate that, at
any time, each server should have an amount of resources equal to or greater
than the total resources demanded by all the VMs that it is accommodating.
Specifically, the left-hand side of Eq. (2) represents the total amount of the kth

resource demanded from the ith server by all VMs, while the right-hand side
represents the total amount of the kth resource possessed by the ith server.
Moreover, the constraints in Eq. (3) ensure that every VM is scheduled to one
and only one server; this indicates that all VMs should be accommodated and
that migration is not considered in this model. The constraints in Eq. (4) and
Eq. (5) represent the ranges of x and u, respectively.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 9

(a) VM requests

(b) Solution under the classic model (c) Solution under the CDBP model

Fig. 1: Schematic illustrations of the classic and CDBP models

To provide an intuitive description of the proposed model, the allocation
results obtained in the classic setting and in the CDBP setting are presented
in Fig. 1(b) and Fig. 1(c), respectively, given the VM requests in Fig. 1(a).
In Fig. 1, rectangles are used to represent the VMs, with the height repre-
senting the amount of resources, the width representing the duration, and the
horizontal position representing the arrival time. To clearly visualize the allo-
cation results, a is used to denote the amount of resources possessed by each
server, as shown in Figs. 1(b) and 1(c). Note that resources can have multi-
ple dimensions (e.g., CPU, memory, and SSD) and that the servers can be
heterogeneous in the present model, although only one dimension is used to
represent the resources in Fig. 1 to make the figure simpler and more concise.
As shown in Fig. 1(b), under the classic model, the scheduler must allocate new
resources for each VM because of the lack of time information. By contrast,
as Fig. 1(c) indicates, the CDBP model allows different VMs, for example,
vm2 and vm3, to occupy the same resources in different periods to reduce the
required #servers. The resultant #servers required to accept all requests is 4
in the classic setting and 2 in the CDBP setting. Thus, it can be concluded
that the CDBP model can decrease the total #servers required to accept all
requests by means of time multiplexing.

There are several special forms available for requests in the proposed model,
as follows:

1. arrival time = 0: the request should be executed immediately, without a
reservation.

2. execution time =∞: the duration of the request is undetermined, and the
demanded resources should be reserved until it terminates.

3. arrival time = 0 and execution time = ∞: the request will be degraded
into a classic request since it does not provide any valid time information.

10 Yan Zhao 1 et al.

The use of these three special forms in the CDBP model is not recommended
because they will reduce the degree of time multiplexing. In addition, from the
third form, we find that the request under the CDBP model is more general
than the original one, which indicates a wider range of application.

As shown in Eq. (1), the aim is to minimize the #servers, thus reducing
the upfront cost, while accepting all VMs. However, other objectives (e.g., load
balancing and cost minimization) can also be adopted. Section 4 will present
the algorithms proposed to address the VMP problem with an additional time
dimension derived from the heterogeneous and multidimensional CDBP model
introduced in this section.

4 Scheduling Algorithms

To handle the problem derived from the model proposed in Section 3, this
section proposes DCBB algorithm and improves the state-of-the-art algorithm
OEMACS and the classic algorithm DDFF. First, the motivations for and
requirements of the algorithms for use within our proposed heterogeneous and
multidimensional CDBP model are introduced. Then, we present the improved
versions of DDFF and OEMACS, namely, DDFF+ and OEMACS+, that have
been adapted for use within the proposed model. Finally, the DCBB procedure
and its theoretical analysis are shown.

4.1 Motivations and Requirements

Although various algorithms for the classic VMP problem have been proposed,
as described in Section 2, there is a need to design novel algorithms or improve
existing algorithms to handle the additional time dimension in the CDBP
model. Although the time dimension can be addressed in a time-sequential
fashion using the classic online algorithms, their accuracies need to be im-
proved, as shown in Section 5. Therefore, the DCBB algorithm is proposed to
effectively and efficiently handle the VMP problem with the additional time
dimension. In addition, DDFF and OEMACS are modified for use within the
proposed model to observe their performance with additional time information
and to compare them with the proposed DCBB algorithm.

A practical VMP algorithm under the proposed model should satisfy the
following requirements.

R1. Multidimensional resources [40]: the algorithm should be able to han-
dle resources with multiple dimensions, although some algorithms will
become slower as the number of resource dimensions increases.

R2. Heterogeneity [40]: the algorithm should consider heterogeneous environ-
ments, in which servers have different amounts of resources, since such
environments are a common feature of cloud datacenters.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 11

R3. Time dimension [54]: the algorithm should be able to handle the time
dimension, which is the key feature of the CDBP model. Time multiplex-
ing should be enabled to increase the resource utilization ratio and thus
reduce the #servers required to accommodate VMs.

R4. Availability [8]: the algorithm should ensure that resources are reserved
in the appointed period for every accepted VM request, which is the basic
requirement of the advance reservation mechanism.

The following subsections present the improved algorithms DDFF+ and
OEMACS+ and the proposed algorithm DCBB.

4.2 Duration-Descending First Fit with a Shuffling Process

In the literature, Runtian et al. [52] proposed the DDFF and dual-coloring al-
gorithms to minimize the total usage time of servers under the CDBP model,
with approximation ratios of 5 and 4, respectively. In this subsection, the aim
is to modify the DDFF algorithm to minimize the #servers in a heterogeneous
environment with multidimensional resources. Although the dual-coloring al-
gorithm has a lower approximation ratio, the difficulty of enhancing it to
consider multidimensional resources impedes its application to our proposed
model. DDFF first sorts the VMs in descending order by duration and then
allocates the VMs in an FF manner. It can be easily adapted to a scenario
with multidimensional resources because of its natural features. However, FF-
based algorithms such as DDFF, which were originally designed for scenarios
with 1 resource dimension, generally have difficulty sorting servers by their
resources in a multidimensional-resource scenario since no inclusion relation-
ship exists in this case. Inspired by [41], DDFF+ has been designed as an
improved version of DDFF with an additional shuffling process to improve the
scheduling performance. In addition, FF+ has been designed using a similar
improvement technique, although the detailed procedure is not presented here
to avoid repetition. The pseudocode for DDFF+ with a shuffling process is
shown in Algorithm 1.

Algorithm 1: DDFF+

Input: a set of n VMs, vmSet; a set of m servers, serverSet
Output: an allocation of the VM requests in vmSet to the servers in serverSet

1 vmSet ← descendingSortByDuration(vmSet) O(nlogn)
2 serverSet ← shuffle(serverSet) O(m)
3 allocation← ∅ O(1)
4 foreach vm in vmSet do
5 foreach server in serverSet do
6 if server.canAccommodate(vm) then
7 allocation.add({server, vm}) O(1)

8 return allocation

12 Yan Zhao 1 et al.

In Line 1 of Algorithm 1, the VMs are sorted in descending order by du-
ration, with the aim of improving the accuracy of the algorithm. In Line 2, the
servers are shuffled to improve the scheduling performance in multidimensional-
resource scenarios (R1) and heterogeneous environments (R2). The effective-
ness of the sorting and shuffling processes has been demonstrated through
experiments (Section 5). When the algorithm judges whether a server can ac-
commodate a VM, as shown in Line 6, every resource dimension (R1) and the
time dimension (R3) are simultaneously considered. Once a server that can
accommodate the VM is found, the corresponding demanded resources will be
reserved for the VM (R4), as shown in Line 7.

Now that the details of DDFF+ have been introduced, it can be proven
that it is a polynomial-time algorithm with a time complexity of O(nlogn) +
O(mn), where m and n are the #servers and the number of VMs (#VMs),
respectively. Although this algorithm has a fast processing speed, its outcome
is generally far from the optimum. To compensate for this degradation in
accuracy, two more algorithms are presented below that are designed to achieve
more accurate scheduling solutions.

4.3 Time-aware and Multidimensional OEMACS

As mentioned in Section 2, the OEMACS algorithm [41] performs better than
the conventional heuristics and other evolutionary algorithms when address-
ing the classic VMP problem in heterogeneous environments (R2). The local
search techniques, namely, order exchange and migration, proposed by the
authors for the ant colony system contribute to the impressive performance
of OEMACS. Inspired by this algorithm, OEMACS+ has been designed to
consider the additional time dimension (R3) and the possibility of advance
reservation (R4), allowing this algorithm to be applied to our proposed het-
erogeneous and multidimensional CDBP model. Furthermore, OEMACS+ is
also enhanced in terms of its consideration of multidimensional resources (R1),
whereas OEMACS was originally designed for only two resource dimensions.
To achieve the above goals, the majority of OEMACS was preserved, with the
main modifications being concentrated in only a few formulae. The modified
formulae are shown in Eqs. (6) to (10), and the notations used are explained
in Table 3.

1. The expression for identifying feasible servers is modified to ensure that
the total amount of resources demanded by all VMs is not larger than the
capacity of the target server in every resource dimension at any time, as
shown in Eq. (6).

I ′j = { i |Ritd ≥ vjd, 1 ≤ i ≤Mt,∀t ∈ T (j),∀d ∈ D|} (6)

2. The expressions for the heuristic information (Eq. (7)), overload ratio
(Eq. (8)), heuristic objective (Eq. (9)) and global pheromone updating
operation (Eq. (10)) are improved by calculating the average remaining

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 13

Table 3: List of notations used to describe OEMACS+

Notation Definition

D The set of resource dimensions
Mt The set of servers utilized at time t
Pid The total amount of the dth resource possessed by the ith server
Ritd The remaining amount of the dth resource of the ith server available at time t
S A solution to the VMP problem
Sb The best solution in the current iteration
T (i) The execution period of the ith VM
vid The amount of the dth resource demanded by the ith VM
yi A variable indicating whether the ith server is used (yi = 1) or not (yi = 0)

resource ratio during a time period considering all resource dimensions, as
shown below.

η′(i, j) =
1−

∑
d1∈D

∑
d2∈D
d1 6=d2

∣∣∣∣∣∣ 1
Pid1

 ∑
t∈T (j)

Ritd1

|T (j)| −vjd1

− 1
Pid2

 ∑
t∈T (j)

Ritd2

|T (j)| −vjd2

∣∣∣∣∣∣
C2

|D|

∑
d∈D

∣∣∣∣∣∣ 1
Pid

 ∑
t∈T (j)

Ritd

|T (j)| −vjd

∣∣∣∣∣∣
|D| +1.0

(7)

over′(i) =
∑
d∈D

∣∣∣∣∣∣∣
1

Pid


∑

t∈T (j)

Ritd

|T (j)|
− vjd


∣∣∣∣∣∣∣ (8)

f ′2(S) =
∑
i∈Mt

∑
d∈D


∣∣∣∣∣∣∣

1

Pid


∑

t∈T (j)

Ritd

|T (j)|


∣∣∣∣∣∣∣
 · yi

 (9)

∆τ ′i =
1

f1(Sb)
+

1∑
d∈D

1
Pid

(∑
t∈T (j)

Ritd

|T (j)|

)
+ 1

(10)

Through the modifications shown in Eqs. (6) to (10), OEMACS+ can be
applied in our proposed heterogeneous and multidimensional CDBP model for
enhancing the classic ant colony system with order exchange and migration as

14 Yan Zhao 1 et al.

local search techniques. A brief explanation of the modified formulae is pre-
sented here, and the reader can refer to [41] for more details. First, Eq. (6)
is used to select the feasible servers that have sufficient resources for the VM.
Then, the heuristic information that is used to guide the greedy search is cal-
culated using Eq. (7). The overload ratio calculated in Eq. (8) represents the
difference between the required and total resources after a VM has been accom-
modated. Then, the heuristic objective expressed in Eq. (9) is used to evaluate
the solution. Finally, Eq. (10) is used to calculate the global pheromone, which
guides the construction of better solutions.

4.4 Branch-and-Bound Algorithm with a Divide-and-Conquer Strategy

Although the classic BB algorithm can yield the optimal solution when applied
to the linear programming model introduced in Section 3, its execution time is
beyond tolerance, especially in large-scale cases. In this subsection, we propose
the DCBB algorithm, which is based on the BB algorithm and includes an ad-
ditional divide-and-conquer process to improve the scheduling efficiency with
little to no degradation in accuracy. To achieve this goal, DCBB first clusters
the VMs into several VM sets, then works out the scheduling solutions for
each set, and finally merges these subsolutions into the final one.

The main DCBB procedure is as follows.

1. Cluster the VMs into a set of clustered sets (SCS) that satisfy the following
conditions:
(a) The execution times of every two VMs in the same clustered set (CS)

overlap with each other.
(b) The execution times of any two VMs in different CSs do not overlap.
Then, place the VMs that cannot be clustered into any CS into the left set
(LS).

2. Schedule the VMs in different CSs separately with BB.
3. Schedule the VMs in LS with DDFF+.
4. Combine the solutions obtained in Steps 2 and 3.

As shown above, rather than scheduling the VMs as a unit, the DCBB algo-
rithm employs a divide-and-conquer strategy to handle the problem more effi-
ciently. Step 1 enables time multiplexing (R3) by clustering the VMs into sev-
eral VM sets based on time information. Then, these sets of VMs are scheduled
separately in Steps 2 and 3, and finally, the subsolutions are merged without
resource contention (R4) in Step 4. Although the original BB algorithm can be
used to solve the VMP problem with multidimensional resources (R1) in het-
erogeneous environments (R2), it is computationally prohibitive. Through the
divide-and-conquer process, DCBB achieves significantly improved efficiency
at the cost of a minor degradation in precision, as demonstrated in Section 5.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 15

Algorithm 2: DCBB
Input: a set of VM requests, vmSet; a set of servers, serverSet
Output: an allocation of the VM requests in vmSet to the servers in serverSet
// Cluster the VMs into the SCS and LS. A typical clustering algorithm is

presented in Algorithm 3

1 (scs, ls) ← cluster(vmSet)
2 foreach cs in scs do
3 allocation← allocation ∪ BB(cs, serverSet)

4 allocation← allocation ∪ DDFF+(ls, serverSet)
5 return allocation

Algorithm 3: Most-Greedy Clustering Algorithm

Input: a set of VM requests, vmSet
Output: SCS scs; LS ls

1 scs ← ∅, ls ←∅
2 while |vmSet| 6= 0 do

// determine the time t when the most VMs will be running

3 t←findTimeMostVmsContaining(vmSet)
// put all remaining VMs whose execution times contain t into cs

4 cs←getVMSetContainingTime(t, vmSet)
5 scs ← scs ∪ cs
6 vmSet ← vmSet \cs
7 foreach vm1 in vmSet do
8 foreach vm2 in cs do

// p(v) represents the execution time of VM v

9 if p(vm1) ∩ p(vm2) 6= ∅ then
10 ls ← ls ∪ {vm1}
11 vmSet ← vmSet \{vm1}

12 return scs, ls

The pseudocode for DCBB is shown in Algorithm 2. In this algorithm,
Line 1 corresponds to the clustering process, while Lines 2 to 5 represent the
processes of solving and merging. Various clustering algorithms have been de-
signed such that the CSs will satisfy the two conditions described in the DCBB
procedure. However, in the current work, the different clustering algorithms
perform similarly in both the theoretical analysis presented later in this subsec-
tion and the experiments we conducted. Thus, only one clustering algorithm,
namely, most-greedy clustering (MGC), is presented here to demonstrate the
process. The main strategy of MGC is to iteratively find the CS of the maxi-
mum size. The pseudocode presented in Algorithm 3 shows that MGC mainly
involves the following steps:

1. Build a CS with the largest VM set in which the execution times of every
two VMs overlap with each other. (Lines 3-5)

2. Place all remaining VMs whose execution times overlap with that of any
VM in a CS into the LS. (Lines 7-11)

16 Yan Zhao 1 et al.

Table 4: List of abbreviations used to describe DCBB

Abbreviation Definition

A(V) #servers required by algorithm A for VM set V
ls The LS generated by a clustering algorithm
OPT The optimal algorithm
p(v) The run time of VM v
scs The SCS generated by a clustering algorithm

3. Repeat Steps 1 and 2 until all VM have been clustered into a set. (Lines
2-11)

Steps 1 and 2 guarantee that the execution times of any two VMs in a CS will
overlap with each other and that no two VMs in different CSs will overlap,
while Step 3 ensures that all VMs will be clustered into VM sets, based on
which they will be scheduled later.

Fig. 2: Schematic illustration of MGC

Fig. 2 illustrates the clustering results obtained by MGC for 7 VMs. It
shows that vm4–vm7 constitute the maximal set of overlapping VMs, the size
of which is 4. Thus, MGC first puts vm4–vm7 into cs1. Then, vm3 is clustered
into the ls since its execution time overlaps with that of vm4. Finally, MGC
clusters vm1 and vm2 into cs2 since their execution times overlap.

Although much more theoretical research on DCBB and suitable clustering
algorithms needs to be conducted, some of the features of the clustering algo-
rithm and its influence on DCBB have already been discovered, as described
by the following lemmas and theorems, in which the abbreviations listed in
Table 4 are used.

Lemma 1 If one clustering algorithm yields |ls| = 0, then all clustering al-
gorithms will yield |ls| = 0.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 17

Proof Assume that the lemma is invalid. Suppose that clustering algorithm a1
yields SCS scs1 = {cs11, cs12, ..., cs1n} and that clustering algorithm a2 yields
SCS scs2 = {cs21, cs22, ..., cs2n} and LS ls′. Then, for any vi ∈ ls′, there must
exist two VMs vk1

and vk2
belonging to the same CS cs2j in scs2 that satisfy

Eqs. (11) to (13):
p(vi) ∩ p(vk1) = ∅, (11)

p(vi) ∩ p(vk2
) 6= ∅, (12)

p(vk1
) ∩ p(vk2

) 6= ∅. (13)

From Eqs. (12) and (13), it can be inferred that vi and vk1
belong to the same

cs1k since both vi and vk1 should belong to the same CS as vk2 does in scs1.
However, according to Eq. (11), vi and vk1 cannot be clustered into the same
CS. Thus, the lemma is validated because the assumption fails.

Lemma 2 If the clustering algorithm used in DCBB yields |ls| = 0, then
DCBB will produce the optimal solution.

Proof According to the independence of the execution times of the VMs in
different CSs and given |ls| = 0,

DCBB(vmSet) = DCBB(
⋃

csi∈scs
csi) = max

csi∈scs
BB(csi). (14)

Since
BB(csi) ≤ BB(vmSet) for ∀csi ∈ scs, (15)

the following holds:

DCBB(vmSet) ≤ BB(vmSet). (16)

Since the BB algorithm is ideally accurate, it can be inferred that DCBB yields
the optimal solution.

Theorem 1 If one clustering algorithm yields |ls| = 0, then DCBB integrated
with any clustering algorithm will yield the optimal solution.

Proof Theorem 1 can be deduced based on Lemma 1 and Lemma 2.

Lemma 3 If clustering algorithm a yields |ls| = 0 and the VMs va and vb are
clustered into the same CS csi by algorithm a, then va and vb will be clustered
into the same CS by all clustering algorithms.

Proof Assume that va and vb are clustered into different CSs produced by
a certain clustering algorithm. Then, p(va) ∩ p(vb) = ∅. However, it can be
inferred that p(va) ∩ p(vb) 6= ∅ since va and vb are both clustered into csi by
algorithm a, which leads to a contradiction.

Lemma 4 If one clustering algorithm results in |ls| = 0, then all clustering
algorithms will yield the same results.

18 Yan Zhao 1 et al.

Proof For any two clustering algorithms a1 and a2, if a1 yields scs1 = {cs11,
cs12, . . . , cs1m}, then a2 yields scs2 = {cs21, cs22, . . . , cs2n} without the LS
because of Lemma 1. Assume that vx belongs to cs1i and cs2j . If cs1i is different
from cs2j , then a VM vy must exist such that either vy ∈ cs1i and vy /∈ cs2j
or vy /∈ cs1i and vy ∈ cs2j . Thus, vx and vy are clustered into the same CS
only in scs1 or scs2, which contradicts Lemma 3.

Theorem 2 DCBB(vmSet) ≤ OPT(vmSet) + |ls|.

Proof The proof can be divided into two separate cases:

(i) When |ls| = 0, DCBB(vmSet) = OPT(vmSet) according to Lemma 1.
(ii) When |ls| > 0, let vmSet′ = vmSet − |ls|. Since vmSet′ can be clustered

into CSs, the following equation is satisfied according to Lemma 1:

DCBB(vmSet′) = OPT(vmSet′)

≤ OPT(vmSet)
(17)

The worst case for DDFF(vmSet) is |ls| when each VM in ls needs to be
scheduled to a different server. Thus, it can be inferred that

DCBB(vmSet) = DCBB(vmSet′ ∪ ls)
≤ DCBB(vmSet′) + DDFF(ls)

≤ OPT(vmSet) + |ls|
(18)

Consequently, Theorem 2 is satisfied for any |ls|.

As shown above, no resource-related features are involved in the deduc-
tions of Lemmas 1 to 4 and Theorem 1, which indicates that the conclusions
satisfy requirements R1 and R2 well. Furthermore, Theorem 1, Lemma 1, and
Lemma 2 represent the typical conditions under which R3 can be best fulfilled.
Since all VMs can be clustered into several independent VM sets that do not
overlap with each other, DCBB can achieve the optimal solution by merging
the subsolutions for each subset under these conditions. Moreover, because all
the VMs can be clustered into either a certain CS or the LS, based on which
they will later be scheduled to a certain server, R4 is not violated during the
clustering process. In addition, Theorem 2 presents the upper bound of our
proposed DCBB algorithm.

5 Implementation and Experiments

In this section, experimental results are presented to evaluate and compare
various algorithms, including BB, DCBB, OEMACS+, DDFF+, and FF+, in
our proposed heterogeneous and multidimensional CDBP model. The main
metrics used for evaluation are the accuracy and execution time of each al-
gorithm. As mentioned in Section 2, the scheduling problem in the proposed
model is NP-hard; thus, obtaining an optimal solution (the least #servers re-
quired) in a reasonable time is computationally infeasible. Therefore, as widely

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 19

adopted in the literature [27, 30, 40, 41, 42], we assess the accuracy on the
basis of the #servers, where a smaller #servers indicates a higher accuracy. In
the following, Subsection 5.1 first introduces the workloads. Then, Subsections
5.2 to 5.6 describe experiments conducted to answer the following questions:

Q1: How do the algorithms perform on a real-world workload? (Subsection 5.2)
Q2: What are the convergence rates of search-based algorithms, such as DCBB,

BB, and OEMACS+, under the proposed model? (Subsection 5.3)
Q3: How does the shuffling process affect the performance of FF-based algo-

rithms in a multidimensional environment? (Subsection 5.4)
Q4: How do the performances of the algorithms change with increasing prob-

lem scale? (Subsection 5.5)
Q5: How do time factors (i.e., the arrival times and durations of VMs) affect

the performances of the algorithms? (Subsection 5.6)

Finally, Subsection 5.7 summarizes the experimental results.

5.1 Workloads

A real-world workload is considered to observe the practical performances of
the algorithms. In addition, synthetic workloads are generated to observe the
influence of the #VMs and time distribution on the algorithms. Furthermore,
as shown in Table 5, 8 types of VMs were selected from the Amazon Elastic
Compute Cloud (EC2) 2 to serve as workloads, and 3 types of servers were
selected on the basis of the products available from Inspur Technologies Co.,
Ltd. 3, to make the experimental environment more similar to a real-world
scenario. The selected types of both VMs and servers include CPU-intensive,
memory-intensive and SSD-intensive representatives to cover a general set of
cases.

In addition, a uniform distribution U(a, b) and a Gaussian distribution
N(µ, σ2) are used to simulate the arrival times and durations, respectively of
the VMs.

The details of the workloads are as follows.

– Workload I: real-world workload
Considering the completeness and quality of the workloads, we selected two
real-world datasets, namely, “RICC” and “UniLuGaia”, from the “Logs of
Real Parallel Workloads from Production Systems” [55] to evaluate and
compare the accuracy and efficiency of the algorithms. In contrast to syn-
thetic data, these real-world datasets have long time spans, sparse VM dis-
tributions, and occasionally incomplete records. Thus, data cleaning was
first performed on the two datasets to improve the significance of the ex-
periments. Considering the computational capacity of the experimental
environment, 500 qualified records extracted from each dataset were used
to conduct the experiments.

2 https://aws.amazon.com/ec2/
3 http://en.inspur.com/inspur/

20 Yan Zhao 1 et al.

Table 5: Types of servers and VMs

#(V)CPUs Memory (GB) SSD (GB)

servers
16 32 160
8 32 160
8 64 320

VMs

1 3.75 4
2 7.5 32
4 15 80
2 3.75 32
4 7.5 80
8 15 160
2 15.25 32
4 30.5 80

Table 6: Distributions of the arrival times and durations of the VMs and their
default parameters

Type Distribution Parameter 1 Parameter 2

Arrival time Uniform 0 (a) 240 (b)
Duration Gaussian 360 (µ) 60 (σ)

– Workload II: varying #VMs and fixed time distributions
Workload II, in which the total #VMs varies from 24 to 336 while the
distributions of the VM arrival times and durations are fixed, as shown in
Table 6, was generated to illustrate the influence of the #VMs.

– Workload III: fixed #VMs and varying time distributions
Workload III was designed to study the influence of time distributions on
the algorithms. The total #VMs of this workload is fixed at 160. For the
time distributions, both the upper bound b on the arrival times and the
mean duration µ vary between 60 s and 420 s, while the lower bound a on
the arrival times and the variance σ of the durations remain unchanged,
as shown in Table 6.

The scheduling algorithms were evaluated and compared using the above
workloads in a KVM-based VM with 8 VCPUs and 16 GB of memory. A
private cloud platform was built using OpenStack 4 to observe the perfor-
mances of the proposed model and algorithms. A simulated environment was
also established in which to conduct large-scale experiments. In the following
sections, we do not differentiate the real and simulated experimental environ-
ments since they do not affect the scheduling results.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 21
se

rv
er

s

#servers
execution time

ex
ec

ut
io

n
tim

e
(s

)
(a) RICC dataset

se
rv

er
s

#servers
execution time

ex
ec

ut
io

n
tim

e
(s

)

(b) UniLuGaia dataset

Fig. 3: Comparisons of the algorithms using real-world datasets. The fewest
#servers achieved by the algorithms are marked with dotted lines.

5.2 Experiment on the Real-World Workload

In this subsection, Workload I is employed to check the performances of the
algorithms on real-world datasets, which is a key component of the evaluation
and comparison. The results are shown in Fig. 3, with dotted lines indicating
the fewest #servers required by the algorithms.

First, the execution times are compared. As shown, DDFF+ and FF+ re-
quire less than 0.1 s to yield the solutions, which is much less than the times re-
quired by the other algorithms. The execution times of DCBB and OEMACS+

are approximately dozens of seconds, whereas BB requires the most time – sev-
eral hundreds of seconds.

In terms of the #servers required by each algorithm, DCBB and BB achieve
the optimal results, requiring 19.46% and 20.13% fewer servers on average than
the DDFF+ and FF+ algorithms do, respectively. DDFF+ requires the third
fewest servers on the RICC dataset; however, it has the worst accuracy on the
UniLuGaia dataset. OEMACS+ and FF+ have accuracies similar to that of
DDFF+.

To summarize, DCBB achieves the same optimal solution as BB does with
an execution time that is an order of magnitude shorter. Moreover, OEMACS+

requires nearly the largest #servers with a relatively long execution time,
which may be caused by the additional problem complexity introduced by
the additional time and resource dimensions. Furthermore, the FF-based al-
gorithms can produce a scheduling solution within a trivial execution time,
indicating that they are suitable for real-time scheduling. In the following
subsections, more comprehensive analyses of the algorithms will be presented
based on synthetic data.

4 https://www.openstack.org/

22 Yan Zhao 1 et al.

10
−1

10
0

10
1

10
2

10

15

20

25

execution time (s)

#s
er

ve
rs

DCBB
BB

OEMACS+

(a) #VMs = 24

10
0

10
2

10
440

60

80

100

120

execution time (s)

#s
er

ve
rs

DCBB
BB

OEMACS+

(b) #VMs = 120

10
0

10
2

10
480

100

120

140

160

180

200

execution time (s)

#s
er

ve
rs

DCBB
BB

OEMACS+

(c) #VMs = 216

10
0

10
2

10
4100

150

200

250

300

execution time (s)

#s
er

ve
rs

DCBB
BB

OEMACS+

(d) #VMs = 312

Fig. 4: Comparison of the convergence rates

5.3 Convergence Rate Comparison

As search-based algorithms, DCBB, BB, and OEMACS+ can deliver better
solutions given longer execution times, up to the time when the optimal solu-
tion is found. In particular, BB can theoretically always produce an optimal
scheduling solution given enough time. However, the execution time cannot
be arbitrarily long. Thus, the convergence rates of these algorithms should be
studied to evaluate their performance and achieve a suitable compromise be-
tween accuracy and efficiency. In this subsection, DCBB, BB, and OEMACS+

are applied to Workload II to compare the convergence rates of these algo-
rithms.

Fig. 4 shows that the total #servers required by DCBB decays exponen-
tially with an increasing execution time, and thus, the convergence rate of this
algorithm becomes the fastest. Furthermore, DCBB converges before 50 s in
most cases. In contrast, the convergence rate of BB is much slower, with a
nearly linear decay after a period of unchanging results. The missing data of
BB after 50 s in Fig. 4(d), where the #VMs is 312, is caused by the exces-
sive computational resource requirements of this algorithm. In the other cases
shown in Figs. 4(a) to 4(c), BB obtains nearly convergent results after 1000

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 23

0 100 200 300 400
0

20

40

60

80

100

120

140

160

180

#VMs

#s
er

ve
rs

DDFF+

DDFF

FF+

FF

(a) Effect of shuffling on #servers

0 100 200 300 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

#VMs

ex
ec

ut
io

n
tim

e
(s

)

DDFF+

DDFF

FF+

FF

(b) Effect of shuffling on execution time

Fig. 5: Effects of the shuffling process

s. For OEMACS+, the #servers required remains almost unimproved as the
execution time increases.

It can be concluded that DCBB achieves the fastest convergence rate,
OEMACS+ yields nearly unchanging results over time, and BB has the slow-
est convergence rate. In the following subsections, time limits of 50 s and
1000 s are set for DCBB and BB, respectively, and an iteration limit of 5 is
set for OEMACS+ to balance the accuracy and efficiency of these algorithms
according to the results shown in Fig. 4.

5.4 Effectiveness of Shuffling

In this subsection, the improved algorithms FF+ and DDFF+ are compared
with the original algorithms FF and DDFF using Workload II to observe the
effectiveness of the shuffling process.

In Fig. 5(a), the lines representing the #servers required by FF+ and
DDFF+ lie below those for FF and DDFF, indicating that the shuffling process
reduces the total #servers required. Moreover, the effectiveness of the shuf-
fling process becomes more evident as the #VMs increases. Furthermore, the
two nearly overlapping lines in Fig. 5(a) indicate that the duration-descending
process does not have much impact on the #servers under our proposed het-
erogeneous and multidimensional CDBP model.

Regarding the execution time, Fig. 5(b) implies that the shuffling process
does not incur much extra time. Although FF and DDFF require shorter
execution times when the #VMs is small, the difference disappears as the
#VMs increases. The extra execution time incurred by the shuffling process is
thus regarded as trivial compared to the time required for the total scheduling
process and the perturbations caused by different server orders.

From the experimental results in this subsection, it can be concluded that
the shuffling process can slightly reduce the #servers required by FF and

24 Yan Zhao 1 et al.

Table 7: Evaluations and comparisons of the algorithms with various #VMs.
#S and T denote the #servers and the execution time, respectively. The fewest
#servers and the shortest execution time achieved among all algorithms are
marked with underscores and bold text, respectively.

#VMs
DCBB BB OEMACS+ DDFF+ FF+

#S T (s) #S T (s) #S T (s) #S T (s) #S T (s)
24 10.0 1.2 10.0 39.0 12.0 4.8 11.6 0.010 11.4 0.009
48 20.0 45.8 19.8 831.0 23.6 8.3 22.0 0.016 22.6 0.018
72 29.2 33.2 29.0 479.1 34.8 9.7 33.2 0.023 33.2 0.022
96 39.0 50.4 39.0 1049.5 46.4 15.5 44.4 0.027 44.4 0.027
120 49.0 50.5 48.2 1027.6 58.4 17.5 55.8 0.035 54.8 0.033
144 59.0 50.6 58.0 1034.4 69.2 22.9 67.2 0.035 65.8 0.034
168 68.0 51.3 67.8 1037.2 81.2 28.1 76.4 0.044 77.6 0.039
192 78.4 52.7 78.4 1044.6 92.6 37.6 88.8 0.043 87.8 0.042
216 88.0 51.9 89.0 1053.8 104.8 48.4 99.4 0.051 99.6 0.049
240 97.8 50.9 98.0 1051.8 115.6 51.5 111.0 0.058 110.6 0.057
264 110.0 52.3 NaN NaN 126.6 68.4 121.0 0.056 119.6 0.054
288 118.8 52.4 NaN NaN 138.8 76.2 132.2 0.062 131.6 0.059
312 127.6 51.9 NaN NaN 150.6 89.4 142.0 0.067 142.2 0.065
336 139.8 56.4 NaN NaN 162.4 88.8 153.8 0.074 152.8 0.074

DDFF. Moreover, the additional time incurred by the shuffling process is triv-
ial, particularly when the #VMs is large.

5.5 Influence of the Number of Virtual Machines

In this subsection, the algorithms are evaluated and compared on workload II,
in which the #VMs varies. Table 7 lists the average #servers and execution
time of each algorithm for each #VMs. Data for BB are not available when the
#VMs exceeds 240 because the computational resources of the experimental
environment are no longer sufficient to support BB in these cases.

Table 7 shows that DCBB yields better results than DDFF+, FF+, and
OEMACS+ do in much less time than that required by BB. Although BB
generally yields a slightly smaller #servers than DCBB does when the #VMs
is less than 192, it requires a longer execution time and an enormous amount
of computational resources. Furthermore, DCBB yields the smallest #servers
when the #VMs exceeds 192. The performance of OEMACS+ is not desirable,
as it often requires both the largest #servers and a relatively long execution
time. In addition, DDFF+ and FF+ always output similar results for the
#VMs in less than 0.1 s, which is a trivial execution time compared to those
of the other algorithms.

The results in this subsection show that a larger #VMs can cause an in-
crease in the resulting #servers. Moreover, BB yields the smallest #VMs,
though with a long execution time, when the problem scale is small. How-
ever, ideally accurate algorithms (e.g., BB) cannot handle large-scale prob-
lems because of their prohibitive computational complexity. In addition, this
experiment demonstrates that DCBB can achieve a suitable tradeoff between
accuracy and efficiency, as it can output near-optimal results within 60 s. Al-

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 25

(a) Execution times required by the algo-
rithms under different VM time configu-
rations

(b) #servers required by the algorithms
under different VM time configurations

0 100 200 300 400 500
40

45

50

55

60

65

70

75

80

upper bound of arrival time (s)

#s
er

ve
rs

DCBB
BB

OEMACS+

DDFF+

FF+

(c) #servers required versus the arrival
time range

0 100 200 300 400 500
30

40

50

60

70

80

mean value of duration

#s
er

ve
rs

DCBB
BB

OEMACS+

DDFF+

FF+

(d) #servers required versus the mean du-
ration

Fig. 6: Evaluations and comparisons of the algorithms with various VM time
distributions

though DDFF+ and FF+ do not yield better results than that of DCBB, they
can produce a scheduling solution within less than 0.08 s, which is suitable for
real-time scheduling.

5.6 Influence of Time Factors

To investigate the influence of the VM arrival times and durations, the results
obtained by the algorithms on Workload III, with varying distributions of the
arrival times and durations of the VMs, are presented to show the resulting
changes in the accuracy and efficiency of the different algorithms. Fig. 6 com-
pares the results obtained with various upper bounds on the arrival time and
various mean durations.

As shown in Fig. 6(a), the execution times of the algorithms do not change
much with the variation of the time factors. Consistent with the previous
results, BB takes the most time (approximately 1020 s), while DDFF+ and
FF+ require only a trivial execution time (less than 0.1 s). Because BB does

26 Yan Zhao 1 et al.

not terminate before the time limit (1000 s) is reached, it does not guarantee
an optimal result.

From a comprehensive analysis of Figs. 6(b) to 6(d), it can be concluded
that a shorter duration and a wider arrival time range both result in a lower
#servers required by algorithms. These results are logical, as a sparser distribu-
tion of VMs can lead to a higher degree of time multiplexing, thus contributing
to a smaller #servers. Although BB generally requires the fewest #servers, its
execution time is long. Moreover, several outliers are produced by BB, as seen
in Fig. 6(b), reflecting its instability under a time limit. Similar to the previous
results, OEMACS+ generally performs the worst in this experiment. Further-
more, DCBB yields the second smallest #servers, as shown in Figs. 6(b) to
6(d).

To summarize, a shorter duration and a wider arrival time range cause the
algorithms to require a lower #servers, possibly because of a higher degree
of time multiplexing. The execution time does not vary much with different
time parameter settings. Consistent with the previous results, DCBB yields
a near-optimal solution within a relatively short execution time, BB achieves
the lowest #servers with the longest execution time, OEMACS+ typically
delivers unsatisfactory performance, and the FF-based algorithms have the
fastest processing speed.

5.7 Summary

The experiments presented in Subsections 5.2 to 5.6 have answered questions
Q1-Q5 posed at the beginning of Section 5:

A1. BB and DCBB can both yield the optimal solutions on the real-world
datasets considered here; however, DCBB requires an order of magnitude
less time than BB does. Meanwhile, FF+ and DDFF+ can produce a
scheduling solution within an insignificant execution time (less than 0.1
s), indicating that they are suitable for real-time scheduling. However, the
performance of OEMACS+ is not satisfactory in terms of either accuracy
or efficiency.

A2. DCBB has a much faster convergence rate than that of BB. As for
OEMACS+, its scheduling solutions show almost no improvement with
increasing execution time.

A3. The shuffling process improves the accuracy of DDFF and FF with a
trivial increase in the execution time.

A4. A larger #VMs results in an increase in the #servers required. Further-
more, ideally accurate algorithms such as BB have difficulty handling
large-scale problems because of their prohibitive computational complex-
ity.

A5. A shorter mean duration and a wider arrival time range for the VMs can
result in a lower #servers while exerting little influence on the execution
time.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 27

In addition, the experiments also demonstrate that the proposed algorithms
satisfy requirements R1-4 mentioned in Subsection 4.1. Since the algorithms
can handle Workloads I-III, for which the resources are multidimensional and
the servers are heterogeneous, R1 and R2 are satisfied. Furthermore, R3 is
met because different VMs without overlapping execution times can share the
same resources. R4 is also fulfilled since no VM requests are rejected in the
experiments.

Overall, the experimental data confirm that DCBB can yield near-optimal
scheduling solutions while having faster convergence rate than the other eval-
uated search-based algorithms do. The results also demonstrate that the FF-
based algorithms have the fastest processing speed and that BB can produce
the best solution when the problem scale is small. In addition, the experimen-
tal results for OEMACS+ are unsatisfactory, possibly because of the extra
problem complexity introduced by the additional time and resource dimen-
sions. Furthermore, a wider arrival time range and a shorter mean duration
for the VMs both cause a lower #servers to be required since they enable
higher degrees of time multiplexing.

6 Conclusions and Future Work

To lower the expensive upfront cost of private clouds, this paper proposes
DCBB, an effective and efficient VMP algorithm that is applicable to the
heterogeneous and multidimensional CDBP model, to reduce the #servers re-
quired to accommodate VMs. The proposed model and algorithm employ time
multiplexing to achieve more efficient and flexible scheduling. Theoretical anal-
yses have been conducted to identify the upper bound and other features of
DCBB. The experimental data clearly confirm the superiority of DCBB. It has
been verified that DCBB can achieve near-optimal solutions while requiring
significantly less execution time (by an order of magnitude on a real-world
workload) than the BB algorithm does. The experimental results also show
that DCBB has a much faster convergence rate than those of the other search-
based algorithms evaluated. Although the BB algorithm can yield the optimal
solution in theory, it requires a long execution time and a large amount of com-
putational resources and shows unstable performance when given a time limit.
Moreover, the accuracies of the DDFF and FF algorithms have been improved
by including an additional shuffling process, and the resulting algorithms can
be applied for real-time scheduling because of their trivial processing time. In
addition, the experimental results demonstrate that OEMACS+ does not de-
liver the expected performance under the proposed model, possibly because of
the extra problem complexity introduced by the additional time and resource
dimensions. Furthermore, the experiments indicate that, in addition to a lower
#VMs, a shorter mean duration and a wider arrival time range for the VMs
can also cause a lower #servers to be required due to the higher degree of time
multiplexing that can be achieved in this case.

28 Yan Zhao 1 et al.

Although extensive experiments have been conducted to evaluate and com-
pare the algorithms considered here, the superiority of DCBB has not been
fully theoretically proven. In addition, the influence of the adopted cluster-
ing algorithm on DCBB is not clear. Therefore, further theoretical analysis
should be conducted to discover more features of DCBB and to enable further
improvements.

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 29

References

1. Mell P, Grance T, et al (2011) The NIST definition of cloud computing
2. Framingham M (2017) Spending on IT infrastructure for public cloud

deployments will return to double-digit growth in 2017, according
to IDC; 2017. URL https://www.idc.com/getdoc.jsp?containerId=

prUS42454117

3. Kim W (2017) Cloud computing trends: 2017 state of the cloud survey.
URL https://www.rightscale.com/blog/cloud-industry-insights/

cloud-computing-trends-2017-state-cloud-survey, [Online; accessed
23-January-2018]

4. Goyal S (2014) Public vs private vs hybrid vs community-cloud computing:
A critical review. International Journal of Computer Network and Infor-
mation Security 6(3):20

5. Ficco M, Di Martino B, Pietrantuono R, Russo S (2017) Optimized task
allocation on private cloud for hybrid simulation of large-scale critical sys-
tems. Future Generation Computer Systems 74:104–118

6. Ramanathan R, Latha B (2018) Towards optimal resource provisioning
for hadoop-mapreduce jobs using scale-out strategy and its performance
analysis in private cloud environment. Cluster Computing pp 1–11

7. Ye X, Li J, Liu S, Liang J, Jin Y (2017) A hybrid instance-intensive workflow
scheduling method in private cloud environment. Natural Computing pp 1–
12

8. Toosi AN, Vanmechelen K, Ramamohanarao K, Buyya R (2015) Revenue
maximization with optimal capacity control in infrastructure as a service
cloud markets. IEEE transactions on Cloud Computing 3(3):261–274

9. de Assuncao MD, Lefèvre L (2017) Bare-metal reservation for cloud: an
analysis of the trade off between reactivity and energy efficiency. Cluster
Computing pp 1–12

10. Masdari M, Nabavi SS, Ahmadi V (2016) An overview of virtual machine
placement schemes in cloud computing. Journal of Network and Computer
Applications 66:106–127

11. Feldman J, Liu N, Topaloglu H, Ziya S (2014) Appointment schedul-
ing under patient preference and no-show behavior. Operations Research
62(4):794–811

12. Irwin DE, Chase JS, Grit LE, Yumerefendi AR, Becker D, Yocum K
(2006) Sharing networked resources with brokered leases. In: USENIX An-
nual Technical Conference, General Track, pp 199–212

13. Lawson BG, Smirni E (2002) Multiple-queue backfilling scheduling with
priorities and reservations for parallel systems. In: Workshop on Job
Scheduling Strategies for Parallel Processing, Springer, pp 72–87

14. Elmroth E, Tordsson J (2009) A standards-based grid resource broker-
ing service supporting advance reservations, coallocation, and cross-grid
interoperability. Concurrency and Computation: Practice and Experience
21(18):2298–2335

https://www.idc.com/getdoc.jsp?containerId=prUS42454117
https://www.idc.com/getdoc.jsp?containerId=prUS42454117
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey

30 Yan Zhao 1 et al.

15. Farooq U, Majumdar S, Parsons EW (2005) Impact of laxity on scheduling
with advance reservations in grids. In: Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2005. 13th IEEE Interna-
tional Symposium on, IEEE, pp 319–322

16. Chase J, Niyato D (2017) Joint optimization of resource provisioning in
cloud computing. IEEE Transactions on Services Computing 10(3):396–409

17. Coffman EG Jr, Garey MR, Johnson DS (1983) Dynamic bin packing.
SIAM Journal on Computing 12(2):227–258

18. Park JW, Kim E (2017) Runtime prediction of parallel applications with
workload-aware clustering. The Journal of Supercomputing 73(11):4635–
4651

19. Calheiros RN, Masoumi E, Ranjan R, Buyya R (2015) Workload predic-
tion using arima model and its impact on cloud applications’ QoS. IEEE
Transactions on Cloud Computing 3(4):449–458

20. Gandhi A, Chen Y, Gmach D, Arlitt M, Marwah M (2012) Hybrid re-
source provisioning for minimizing data center SLA violations and power
consumption. Sustainable Computing: Informatics and Systems 2(2):91–104

21. Usmani Z, Singh S (2016) A survey of virtual machine placement tech-
niques in a cloud data center. Procedia Computer Science 78:491–498

22. Panigrahy R, Talwar K, Uyeda L, Wieder U (2011) Heuristics for vector
bin packing. research microsoft com

23. Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) A multi-objective ant colony
system algorithm for virtual machine placement in cloud computing. Jour-
nal of Computer and System Sciences 79(8):1230–1242

24. Tang M, Pan S (2015) A hybrid genetic algorithm for the energy-efficient
virtual machine placement problem in data centers. Neural Processing Let-
ters 41(2):211–221

25. Fard SYZ, Ahmadi MR, Adabi S (2017) A dynamic VM consolidation tech-
nique for QoS and energy consumption in cloud environment. The Journal
of Supercomputing 73(10):4347–4368

26. Zheng Q, Li R, Li X, Shah N, Zhang J, Tian F, Chao KM, Li J
(2016) Virtual machine consolidated placement based on multi-objective
biogeography-based optimization. Future Generation Computer Systems
54:95–122

27. Xiao Z, Jiang J, Zhu Y, Ming Z, Zhong S, Cai S (2015) A solution of dy-
namic VMs placement problem for energy consumption optimization based
on evolutionary game theory. Journal of Systems and Software 101:260–272

28. Vu HT, Hwang S (2014) A traffic and power-aware algorithm for virtual
machine placement in cloud data center. International Journal of Grid &
Distributed Computing 7(1):350–355

29. Kanagavelu R, Lee BS, Mingjie LN, Aung KMM, et al (2014) Virtual
machine placement with two-path traffic routing for reduced congestion in
data center networks. Computer Communications 53:1–12

30. Gupta MK, Amgoth T (2018) Resource-aware virtual machine placement
algorithm for IaaS cloud. The Journal of Supercomputing 74(1):122–140

Reducing the Upfront Cost of Private Clouds with Clairvoyant VMP 31

31. Liang Q, Zhang J, Zhang Yh, Liang Jm (2014) The placement method of
resources and applications based on request prediction in cloud data center.
Information Sciences 279:735–745

32. Sayeedkhan PN, Balaji S (2014) Virtual machine placement based on disk
I/O load in cloud. vol 5:5477–5479

33. Xu M, Tian W, Buyya R (2017) A survey on load balancing algorithms
for virtual machines placement in cloud computing. Concurrency and Com-
putation: Practice and Experience 29(12)

34. Anand A, Lakshmi J, Nandy S (2013) Virtual machine placement op-
timization supporting performance SLAs. In: Cloud Computing Technol-
ogy and Science (CloudCom), 2013 IEEE 5th International Conference on,
IEEE, vol 1, pp 298–305

35. Chaisiri S, Lee BS, Niyato D (2009) Optimal virtual machine placement
across multiple cloud providers. In: Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific, IEEE, pp 103–110

36. Ribas BC, Suguimoto RM, Montano RA, Silva F, de Bona L, Castilho MA
(2012) On modelling virtual machine consolidation to pseudo-Boolean con-
straints. In: Ibero-American Conference on Artificial Intelligence, Springer,
pp 361–370

37. Fang S, Kanagavelu R, Lee BS, Foh CH, Aung KMM (2013) Power-
efficient virtual machine placement and migration in data centers. In: Green
Computing and Communications (GreenCom), 2013 IEEE and Internet of
Things (iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, IEEE, pp 1408–1413

38. Dong J, Wang H, Jin X, Li Y, Zhang P, Cheng S (2013) Virtual machine
placement for improving energy efficiency and network performance in IaaS
cloud. In: Distributed Computing Systems Workshops (ICDCSW), 2013
IEEE 33rd International Conference on, IEEE, pp 238–243

39. Moreno IS, Yang R, Xu J, Wo T (2013) Improved energy-efficiency in
cloud datacenters with interference-aware virtual machine placement. In:
Autonomous Decentralized Systems (ISADS), 2013 IEEE Eleventh Inter-
national Symposium on, IEEE, pp 1–8

40. Luo Jp, Li X, Chen Mr (2014) Hybrid shuffled frog leaping algorithm for
energy-efficient dynamic consolidation of virtual machines in cloud data
centers. Expert Systems with Applications 41(13):5804–5816

41. Liu XF, Zhan ZH, Deng JD, Li Y, Gu T, Zhang J (2016) An energy efficient
ant colony system for virtual machine placement in cloud computing. IEEE
Transactions on Evolutionary Computation

42. Quang-Hung N, Nien PD, Nam NH, Tuong NH, Thoai N (2013) A
genetic algorithm for power-aware virtual machine allocation in private
cloud. In: Information and Communication Technology-EurAsia Confer-
ence, Springer, pp 183–191

43. Agrawal K, Tripathi P (2015) Power aware artificial bee colony virtual ma-
chine allocation for private cloud systems. In: Computational Intelligence
and Communication Networks (CICN), 2015 International Conference on,
IEEE, pp 947–950

32 Yan Zhao 1 et al.

44. Shi L, Butler B, Botvich D, Jennings B (2013) Provisioning of requests
for virtual machine sets with placement constraints in IaaS clouds. In: In-
tegrated Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on, IEEE, pp 499–505

45. Coffman Jr EG, Csirik J, Galambos G, Martello S, Vigo D (2013) Bin
packing approximation algorithms: survey and classification. In: Handbook
of Combinatorial Optimization, Springer, pp 455–531

46. De La Vega WF, Lueker GS (1981) Bin packing can be solved within 1+
ε in linear time. Combinatorica 1(4):349–355

47. Bansal N, Correa JR, Kenyon C, Sviridenko M (2006) Bin packing in
multiple dimensions: Inapproximability results and approximation schemes.
Mathematics of Operations Research 31(1):31–49

48. Han BT, Diehr G, Cook JS (1994) Multiple-type, two-dimensional bin
packing problems: Applications and algorithms. Annals of Operations Re-
search 50(1):239–261

49. Li Y, Tang X, Cai W (2014) On dynamic bin packing for resource al-
location in the cloud. In: Proceedings of the 26th ACM symposium on
Parallelism in algorithms and architectures, ACM, pp 2–11

50. Kamali S, López-Ortiz A (2015) Efficient online strategies for renting
servers in the cloud. In: International Conference on Current Trends in
Theory and Practice of Informatics, Springer, pp 277–288

51. Tang X, Li Y, Ren R, Cai W (2016) On first fit bin packing for online cloud
server allocation. In: Parallel and Distributed Processing Symposium, 2016
IEEE International, IEEE, pp 323–332

52. Ren R, Tang X (2016) Clairvoyant dynamic bin packing for job scheduling
with minimum server usage time. In: Proceedings of the 28th ACM Sym-
posium on Parallelism in Algorithms and Architectures, ACM, pp 227–237

53. Azar Y, Vainstein D (2017) Tight bounds for clairvoyant dynamic bin
packing. In: Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures, ACM, pp 77–86

54. Gu C, Chen S, Zhang J, Huang H, Jia X (2017) Reservation schemes
for IaaS cloud broker: a time-multiplexing way for different rental time.
Concurrency and Computation: Practice and Experience 29(16)

55. Feitelson D (2017) Parallel workloads archive. URL http://www.cs.

huji.ac.il/labs/parallel/workload

http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload

	1 Introduction
	2 Related Work
	3 System Model
	4 Scheduling Algorithms
	5 Implementation and Experiments
	6 Conclusions and Future Work

