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Abstract Heterogeneity, parallelization and vectorization are key techniques
to improve the performance and energy efficiency of modern computing sys-
tems. However, programming and maintaining code for these architectures
poses a huge challenge due to the ever-increasing architecture complexity.
Furthermore, there has been a swift and unstoppable burst of vector archi-
tectures at all market segments, from embedded to HPC. Vectorization can no
longer be ignored, but manual vectorization is tedious, error-prone, and not
practical for programmers. This work evaluates the feasibility of user-directed
vectorization in task-based applications. Our evaluation is based on the OmpSs
programming model, extended to support user-directed vectorization for dif-
ferent Intel SIMD architectures (SSE, AVX2, IMCI and AVX-512). Results
show that user-directed codes achieve manually-optimized code performance
and energy efficiency with minimal code modifications, favoring portability
across different SIMD architectures.
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1 Introduction

While transistor shrinking allows to include additional features and structures
on the die, the increasing power density prevents the simultaneous usage of all
available resources. Instruction level parallelism (ILP) importance subsides,
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while data level parallelism (DLP) becomes a critical factor to improve the
energy efficiency of microprocessors. Among other features, SIMD instructions
have been gradually included in microprocessors for various market segments,
from mobile (ARM NEON technology [1]) to high performance computing
(Intel AVX-512 [2], ARM’s Scalable Vector Extension [3] or PowerPC Altivec
technology [4]). Each new generation includes more sophisticated, powerful
and flexible instructions. This high investment in SIMD resources per core,
specially in terms of area and power, makes extracting the full computational
power of these vector units more important than ever.

From the programmers point of view, SIMD units can be exploited in
several ways, including: a) compiler auto-vectorization, b) low-level intrinsics
or assembly code and c) programming models/languages with explicit SIMD
support. Auto-vectorization in compilers has strong limitations in the analysis
and code transformations phases that prevent an efficient extraction of SIMD
parallelism in real applications [5]. Low-level hardware-specific intrinsics en-
able developers to fine tune their applications by providing direct access to all
of the SIMD features of the hardware. However, the use of intrinsics is time-
consuming, tedious and error-prone even for advanced programmers. Manual
vectorization forces programmers to be knowledgeable about the offered SIMD
instructions, and that becomes even more complicated with CISC ISAs. To fa-
cilitate the use of SIMD features, some programming models and languages
have been extended to allow programmers to guide the compiler in the vec-
torization process. For example, OpenMP 4.5 [6] offers a set of directives to
describe vectorizable regions. This approach is high-level, orthogonal to the
actual code and portable across different SIMD architectures.

The OpenMP 4.5 standard supports tasking and data dependencies. Par-
allelism is described by a directed acyclic graph where each node is a task and
the edges between nodes represent dependencies, which are explicitly anno-
tated by the programmer. Such annotations also provide the opportunity for
the runtime system to automatically offload tasks to accelerators like GPU’s or
Intel Xeon Phi co-processors. The runtime system is empowered to take care
of data movements without the need of specific programming intervention be-
sides annotating each task input and output dependencies. Also, the runtime
system may deploy some optimizations like data prefetching or overlapping
of computation and communication. It also enables the possibility to exploit
data locality in distributed-cache architectures, by allocating computational
resources near the cache partition where data resides.

In this article, we evaluate the efficiency of user-directed vectorization using
OmpSs [7], developed at the Barcelona Supercomputing Center. OmpSs is
a data-flow programming model, similar to OpenMP, that eases application
porting to the heterogeneous architectures. Nanos++ [7] is used as runtime
system for the OmpSs programming model. OmpSs offers advanced features
like socket-aware scheduling for NUMA architectures or pragma annotations
to handle multiple dependence scenarios Both models (OpenMP and OmpSs)
have virtually the same syntax, thus porting OpenMP code to OmpSs and
vice versa is straightforward.
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Our main contributions include:

– Development of a task-based version of a subset of benchmarks from the
ParVec benchmark suite [8]. As discussed by ParVec authors, benchmarks
can be classified in scalable (S), resource limited (RL) and code/input lim-
ited (CI). We chose representative benchmarks that cover this classification:
Blackscholes (S), Canneal, Streamcluster (RL) and Swaptions (CI).

– We present the code modifications necessary to generate a user-directed
code version that achieves similar performance and energy results to those
obtained with manual vectorization.

– We discuss our findings and proposed improvements for both the manu-
ally vectorized versions and the user-directed vectorization module in the
Mercurium [9] source-to-source compiler.

This article is organized as follows. Section 2 introduces our evaluation
methodology. Section 3 shows our main experimental results and discussion.
Section 4 presents a brief summary of the related work on SIMD benchmarking
and programming models. Finally, Section 5 shows our concluding remarks and
future work.

2 Methodology

In this paper we evaluate three versions of codes, including: a) two manually-
vectorized implementations, one parallelized with the pthreads programming
model [8] and one parallelized with the OmpSs programming model [7] (labeled
pthreads and OmpSs, respectively), and b) a user-directed vectorization
which is also based on OmpSs (labeled U.D.) We initially tested automatic
vectorization on the original scalar code but it resulted in no performance or
energy improvements. Both user-directed and OmpSs versions were developed
for this paper. Within the three versions, we have targeted the same loops and
functions for vectorization, being the performance and energy consumption of
the three versions comparable.

The pthreads codes have been compiled with ICC 14.0 and both the OmpSs
and the U.D. codes are compiled with the Mercurium compiler [9]. Mercurium
is a research source-to-source compiler with support for C, C++, and FOR-
TRAN programming languages, and OpenMP [6], OmpSs [7] and StarSs [10]
programming models, among others. We have extended the Mercurium source-
to-source infrastructure to support the directives used in the U.D. codes [11].
Mercurium’s vectorizer recognizes user annotations on the code to produce
a SIMD version of the scalar code. Binaries are then built and linked using
the Intel Compiler C/C++ as a back-end. We use -no-vec flag to isolate our
results from the automatic vectorization performed by the Intel compiler. Fur-
ther details on the building infrastructure can be found in Table 1. For each
benchmark, we only take measurements from the Region of Interest (ROI) to
ignore the initialization and finalization parts of the applications.

The evaluation platform is a dual-socket E5-2603v3 processor running at
1.60GHz, with a total of 12 cores, 30MB of L3 cache and 64GB of DDR3.
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pthreads OmpSs, U.D.
Front-end
compiler

Intel Compiler
C/C++ 14.0.1

Mercurium

Back-end
compiler

Intel Compiler
C/C++ 14.0.1

Flags
C/C++ codes

[C++ codes]

-03, -no-vec,
-funroll-loops -qopt-prefetch,
[-fpermissive, -fno-exceptions]

Mathematical
libraries

Short VectorMath Library(SVML)

Table 1 Building infrastructure and configuration for pthreads, OmpSs and U.D. codes.

We use PAPI [12] to measure energy, L1D/L2/L3 cache miss-rate and total
instruction count. The E5-2603v3 only provides energy information for the
whole socket, since the power plane 0 is disabled (the one that offers energy
results for the cores). The reported energy numbers account for both sockets.
The system runs CentOS 6.5 with Nanox 0.7.12a as runtime for OmpSs.

We have tested three different input sizes for the benchmarks: native, sim-
large and simsmall. Overall, L1, L2 and L3 cache measurements are affected by
the input size, emphasizing the differences between the OmpSs/U.D. versions
versus the pthreads version. For that reason, we encourage the research com-
munity to use the largest inputs possible even when they are using simulation
tools. Results will be clearer and more significant for the different program-
ming models. In terms of vectorization, bigger input sizes usually favor the use
of longer vectors leading to a better performance and energy improvements.
Nevertheless, this depends on the application’s algorithm.

Manual Vectorization: The manually vectorized (pthreads and OmpSs) codes
make use of a wrapper library [13] that provides generic vector intrinsics. These
intrinsics are translated to architecture-specific intrinsics at compile time. Vec-
tor instructions that are not supported in the target ISA are emulated to have
the same functionality. For further details on ParVec benchmark specifics and
the manual vectorization process refer to [8] for further details. Figure 2 (bot-
tom) shows the manually vectorized version of the dist function (top) included
in the streamcluster benchmark. Note that the transformation is based on a
direct translation from the scalar operations (-, *, +) to their equivalent vector
intrinsic ( MM SUB, MM MUL, MM ADD). The library will then translate
those calls to ISA-specific intrinsics (e.g., MM ADD to mm add ps for floats
in SSE, or mm256 add ps for floats using AVX). This increments portability
across different architectures and abstracts the low-level details to the pro-
grammer. In addition, we do a vector load ( MM LOADU ) and we increment
the iteration count by a generic SIMD WIDTH.

User-Directed Vectorization: The vectorization infrastructure implemented in
Mercurium is divided in two main phases: Vectorizer and Vector Lowering.
Vectorizer is in charge of transforming the scalar input code into a generic
vector representation, within the compiler middle-end stage. Later, the vector



User-directed vs. Manual Vectorization 5

f loat d i s t ( Point p1 , Point p2 , int dim) {
int i ;
f loat r e s u l t =0.0 f ;
for ( i =0; i<dim ; i++) {

r e s u l t += (p1 . coord [ i ] − p2 . coord [ i ] ) ∗ ( p1 . coord [ i ] − p2 . coord [ i ] ) ;
}
return ( r e s u l t ) ;

}

f loat d i s t ( Point p1 , Point p2 , int dim) {
int i ;
MM TYPE re su l t , aux , d i f f , coord1 , coord2 ;
r e s u l t = MM SETZERO( ) ;
for ( i =0; i<dim ; i=i+SIMD WIDTH) {

coord1 = MMLOADU(&(p1 . coord [ i ] ) ) ;
coord2 = MMLOADU(&(p2 . coord [ i ] ) ) ;
d i f f = MM SUB( coord1 , coord2 ) ;
aux = MMMUL( d i f f , d i f f ) ;
r e s u l t = MMADD( r e su l t , aux ) ;

}
return ( ( f loat ) MM REDUCE ADD( r e s u l t ) ) ;
}

Fig. 1 Manual vectorization example over C code (top) using the wrapper library.

#pragma omp simd [ c l a u s e [ c l a u s e ] . . . ] new−l i n e
for−loop −− funct ion−dec l −− funct ion−de f

Fig. 2 C/C++ syntax of the standalone simd construct.

lowering phase generates architecture specific SIMD intrinsics. The vectoriza-
tion algorithm is based on the traditional strip-mining/unroll-and-jam loop
vectorization approach [14,15]. This algorithm vectorizes two kinds of code
structures: loops and functions. The simplest construct to describe SIMD par-
allelism is the pragma omp simd directive, placed on top of one of these code
structures (Figure 2). This directive is used to instruct de compiler to vectorize
the code, relaxing some restrictions that otherwise would prevent its vectoriza-
tion. For that purpose, the compiler will assume that the vectorization is safe
and profitable without running any legality and cost model analyses. OmpSs
provides optional clauses to offer further information to the compiler about
the target code, such as the aligned clause, the suitable clause and the
vectorlength clause, among others. More detail will be given on the clauses
used for each benchmark case. Please, refer to Caballero de Gea’s work [11]
for further details on Mercurium’s vectorizer. Figure 3 shows a use case of
the compiler directive on the dist function of the streamcluster benchmark.
The addition of the optional clause reduction(+:result) to the standalone
directive annotating the loop statement is enough to automatically vectorize
the code. The reduction clause follows the same style as the parallel constructs
used for threads. It generates a scalar result to be stored in the result vari-
able using the specified reduction operation (+) on to the scalar values of each
lane. Redundant instructions are combined by the Backend.
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f loat d i s t ( Point p1 , Point p2 , int dim) {
int i ;
f loat r e s u l t =0.0 f ;
#pragma omp simd reduct ion (+: r e s u l t )
for ( i =0; i<dim ; i++) {

r e s u l t += (p1 . coord [ i ] − p2 . coord [ i ] ) ∗ ( p1 . coord [ i ] − p2 . coord [ i ] ) ;
}
return ( r e s u l t ) ;

}

f loat d i s t ( : : Point p1 , : : Point p2 , int dim) {
int i ;
f loat r e s u l t (0.000000000000000000000000 e+00 f ) ;
{

m256 v r e d r e s u l t ( mm256 set1 ps ( 0 ) ) ;
for ( i = 0 ; i <= −8 + dim ; i = 8 + i )
{

m256 v3atmp0 ;
v3atmp0 = mm256 loadu ps(&p1 . coord [ i ] ) ;
m256 v3atmp1 ;

v3atmp1 = mm256 loadu ps(&p2 . coord [ i ] ) ;
m256 v3atmp2 ;

v3atmp2 = mm256 loadu ps(&p1 . coord [ i ] ) ;
m256 v3atmp3 ;

v3atmp3 = mm256 loadu ps(&p2 . coord [ i ] ) ;
m256 v3atmp4 ;

v3atmp4 = mm256 sub ps ( v3atmp0 , v3atmp1 ) ;
m256 v3atmp5 ;

v3atmp5 = mm256 sub ps ( v3atmp2 , v3atmp3 ) ;
m256 v3atmp6 ;

v3atmp6 = mm256 mul ps ( v3atmp4 , v3atmp5 ) ;
v r e d r e s u l t = mm256 add ps ( v r e d r e s u l t , v3atmp6 ) ;

}
#pragma l oop count min (0) max(7)

for ( ; i <= −1 + dim ; i = 1 + i )
{

r e s u l t = r e s u l t + (p1 . coord [ i ] − p2 . coord [ i ] ) ∗
( p1 . coord [ i ] − p2 . coord [ i ] ) ;

}
r e s u l t += ({

: : m256 rtmp256
: : m128 rtmp128
rtmp256 = mm256 hadd ps ( v r e d r e s u l t , v r e d r e s u l t ) ;
rtmp128 = mm add ps ( mm256 castps256 ps128 ( rtmp256 ) ,

mm256 extract f128 ps ( rtmp256 , 1 ) ) ;
rtmp128 = mm hadd ps ( rtmp128 , rtmp128 ) ;
mm cvtss f32 ( rtmp128 ) ;

}) ;
}
return r e s u l t ;

}

Fig. 3 Mercurium source-to-source input (top) and output (bottom). Redundant instruc-
tions are combined by the Backend.

Mercurium’s vectorization functionalities are still a work in progress, and
as such, some of the situations require some code preparation to be done
by the programmer. First, aligned accesses yield significantly better perfor-
mance. Mercurium can generate unaligned loads, but on some platforms, like
Intel’s Xeon Phi, performance can be compromised [16]. Second, Mercurium
supports vectorization of “if-then-else” statements using predication. Current
implementations rely on mask registers to decide which lanes of the vector
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Fig. 4 All benchmarks instruction count reduction. It does not change with thread count,
thus, only the configuration with a 6-thread configuration is shown.

register perform the specific operation. This feature is supported by new ar-
chitectures, such as AVX2 (predicated loads/stores), AVX-512 and SVE, but
not in SSE or NEON. As such, Mercurium will not be able to directly produce
code for these architectures. However, Mercurium able to vectorize ternary
operators using blend operations. Therefore, “if-then-else” statements need to
be transformed into simple ternary operators to be vectorized for old architec-
tures. Third, similar to manual vectorization, it is recommended to transform
data structures from array-of-structures (AoS) into structure-of-arrays (SoA)
Although there is some ongoing work to automatize this process [17,18], we
reused the transformations that were already applied by the ParVec’s authors.

3 Evaluation

This section shows performance and energy measurements for a subset of the
ParVec benchmarks [8]: blackscholes, canneal, streamcluster and swaptions.
Each application has been executed and analyzed with three programming
models (pthreads, OmpSs and U.D.) and three instruction sets (scalar, SSE,
AVX). Speed-up and energy reduction are referenced to the scalar sequential
combination of each version to show scalability when varying thread count
and vector length. Figure 4 shows the ratio of instruction count reduction
normalized to the baseline scalar code for all applications when running on 6
threads. Similar results are achieved for other thread counts. Scalability with
SIMD register size is similar for all three implementations, meaning that user-
directed vectorization can achieve similar results to manual vectorization.

It is important to note that Intel platforms share both floating point reg-
isters and arithmetic units for scalar and SIMD instructions. While longer
registers burn more power, if we reduce enough the execution time we can
reduce the overall energy comsumption. Additonally, instruction count is re-
duced with SSE and AVX compared to a scalar version, reducing the front-
end pressure of the pipeline. The core also spends more time idle, waiting for
memory operations and data dependencies to be resolved. As a result, power
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dissipation remains approximately constant in all SIMD and scalar versions,
as we show in the following sections. Therefore, any performance improvement
from vectorization will come “for free” in terms of power, leading to substan-
tial energy savings. In figures 5, 7, 9 and 11 we show speedup with respect
to the scalar-1 thread configuration of each code version (OmpSs, pthreads,
U.D.), average power for the whole execution, and energy reduction defined as
the energy consumed through the whole execution normalized to the scalar-1
thread configuration of each code version.

3.1 Blackscholes

The hot regions to be vectorized are functions BlkSchlsEq- EuroNoDiv and
CNDF. For the pthreads and OmpSs codes, these functions account for roughly
50 lines of intrinsics per instruction set (SSE, NEON, AVX). All this manu-
ally vectorized code can be avoided by using the SIMD directives. In order to
instruct the compiler to vectorize the targeted functions, we annotated them
with no additional clause above the definition of the function CNDF and the in-
ternal loop in function BlkSchlsEqEuroNoDiv. C-standard math library calls
are replaced with Intel’s Short Vector Math Library calls in all codes, to fur-
ther improve performance. As in all of the studied codes, most of the data
structures have been aligned to vector length boundaries. The U.D. code also
needs a conversion of “if-then-else” statement to a ternary operator.

The blackscholes benchmark shows almost linear scalability with both
thread count and vector length (Figure 5). This is mainly because of the high
arithmetic intensity of the benchmark (computations per amount of loads) and
the low L1D cache miss-ratio (Figure 6). Using vector instructions reduces time
in the Region of Interest (ROI) by a range of 2.7x to 4.3x for SSE instructions
and 3.5x to 6.9x for AVX. We observe that the manually vectorized and the
user directed versions scale in a similar manner. Instruction reduction (Figure
4) is above the theoretical optimal factor (4x for SSE and 8x for AVX). The
reason is that operations such as the logarithm and the exponential are imple-
mented by the SVML library and are not a direct translation from the scalar
instructions in the C library.
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Energy is reduced close to a factor of 3x for OmpSs and 5x (per thread)
for pthreads (as shown in Figure 5), most likely due to the overhead of the
Nanos++ runtime when distributing work among threads. This leads to an
energy reduction of 40x when running on 12 threads. Finally, it is worth men-
tioning that Nanos++ has an additional energy overhead when using two
sockets. This is due to the threads spinning while searching for work.

3.2 Canneal

We are using a clustered version of this benchmark (as it was in the ParVec
benchmark suite [8]) to increase computational density, thus improve the vec-
torized performance. For this application we performed an array-of-structure
(AoS) to structure-of-array (SoA) data conversion for all three versions.

For the OmpSs and U.D. (task-based) codes, scalability is linear with
thread count and almost linear for pthreads (Figure 7). Performance also in-
creases linearly with the vector length for manually vectorized versions with
up to 1.56x (2.00x), but is far from the optimal 4x (8x) for SSE (AVX), respec-
tively. The use of SIMD instructions increases the miss-rate of the L1D cache
(Figure 8) by a factor of 4x for SSE instructions and by a factor of 6 for AVX
instructions, becoming a significant bottleneck for scalability as we increase
the vector length. The AVX performance on the U.D. version does not achieve
the same performance and instruction count reduction as the pthreads and
OmpSs relatives. The handcrafted vectorized versions (pthreads and OmpSs)
are more sophisticated than the U.D., their vectorization strategy is person-
alized for the targeted vector extensions (either SSE or AVX). Instead, the
U.D. code generates the exact same vector code except for the register size.
The 16x performance gain translates to energy improvements by a factor of
10x when using AVX for 12 threads. This is 4x more than when only relying
on threading (Figure 7).

For the U.D. code, two loops are vectorized inside function swap cost-
block omp simd (which is the SIMD version of swap cost block function).

Additionally to the standalone construct, we also add the optional clause
aligned( loc cluster x, loc cluster y). This clause is used to inform the
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Fig. 7 Canneal power dissipation (left Y axis) and speedup/energy reduction factor (right
Y axis) for different core count and SIMD instruction sets.

compiler that loc cluster x and loc cluster y are aligned to the vector
length boundary of the architecture. We aligned these structures to the re-
spective vector length used in each case (16 bytes for SSE or NEON and 32
bytes for AVX) when we transformed the memory layout of the data struc-
ture from AoS to SoA. Without the clause, the compiler would assume that
the pointers are not aligned to any specific boundary. As a consequence, it
would generate unaligned vector memory accesses, that may translate into
poor performance.

3.3 Streamcluster

This application has almost linear scalability up to 6 threads (Figure 9). How-
ever, it does not scale linearly when using two sockets, due to the significant
number of synchronization barriers. This can be explained by the slowdown of
the interconnection network compared to shared memory. Function dist was
vectorized as it accounts for most of the execution time, which has a small set
of arithmetic operations. As a consequence, scalability depends on the memory
subsystem accompaniment. Performance increases by a factor of 1.8x and 2.1x
when using SSE and AVX instructions, respectively, with regard to the scalar
version. This means that we are unable to fully benefit from AVX due to the
memory subsystem.
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Fig. 9 Streamcluster power dissipation (left Y axis) and speedup/energy reduction factor
(right Y axis) for different core count and SIMD instruction sets.

While energy scales linearly with thread count until full socket use, per-
formance scalability issues with vector length translates into sub-linear energy
improvements (5x for AVX as compared to 3x without SIMD in the case of 6
threads). Consumption, speedup and energy reduction when using two sockets
is explained by the time spent in inter-socket barrier synchronization.

As shown in Figure 3 (top), the function dist is annotated to vectorize
the code. reduction(+:result) clause is added to instruct the compiler to
perform a horizontal reduction on variable result using + operator. This
annotation is enough to vectorize the loop and generate similar code to the
pthreads and OmpSs codes.

3.4 Swaptions

Swaptions benchmark shows linear scalability with thread/task count, but
limited scalability with vector length (Figure 11). In fact, instruction count is
reduced by a factor of 1.75x to 2.5x for SSE and AVX, respectively (down from
a potential 4x for SSE and 8x for AVX). In addition, swaptions performance is
also limited by multiple data dependencies and high L1D cache miss-rate (1.5%
for scalar, 2.5% for AVX), as shown in Figure 12. Energy follows performance
closely (Figure 11), again experiencing a moderate increase in average power
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due to the Nanos++ runtime system. The increase on vector scalability due to
predication of the code yields moderate energy benefits for SSE and AVX on
the U.D. code. AVX instructions manage to almost double the energy efficiency
of the application.

This application has several complex “if-then-else” statements that Mer-
curium’s vectorizer is unable to handle efficiently, so we decided to manually
predicate the code on the U.D. version. In this way, arithmetic operations are
executed unconditionally and conditions are only used on memory operations.
This causes a significant increment of the execution time of the scalar version
of the U.D. codes, but makes the SSE and AVX versions scale better with
vector length (as compared with the manual vectorization with “if-then-else”
statements). We plan to rewrite the manual vectorization (in pthreads and
OmpSs codes) in our future work using the same strategy. The U.D. code saves
around 20 lines of instrinsic-based code plus a big vector initialization phase
that is specific for the target instruction sets (SSE and AVX, around 40 lines
of code), making it suitable for any other architecture. In addition to the man-
ual predication of the U.D. codes, we used the standalone construct in all of
the loops inside HJM SimPath Forward Blocking function. The construct was
accompanied with the aligned(ppdHJMPath[:]) and suitable(BLOCKSIZE)

clauses. The clause suitable: it is used to inform the compiler that the vari-
able BLOCKSIZE will have a value at runtime that will be multiple of the vector
length of the architecture. The use of suitable together with aligned clauses
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Fig. 11 Swaptions power dissipation (left Y axis) and speedup/energy reduction factor
(right Y axis) for different core count and SIMD instruction sets.
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improves the vectorization of certain loops with multi-dimensional arrays. In
this case, the expression inside the loop ppdHJMPath[0][BLOCKSIZE*j + b] is
computed as ppdHJMPath + BLOCKSIZE*j + b, which is aligned to the vector
length boundary.

3.5 Effects of Hardware Prefetching

Hardware prefetching becomes a critical component on SIMD architectures,
since SIMD applications significantly increase the pressure on the memory
subsystem. We cannot provide results for the L1D cache since we cannot in-
teract with the prefetcher at this level, and did not find an alternative way
of disabling the prefetching mechanism for that L1D cache level. As for the
results for L2 cache level (Figures 13 and 14), we see similar results for the
OmpSs and the U.D. versions and different than the one for pthreads. Both for
OmpSs and U.D. versions, the number of accesses is significantly less and at
the same time the absolute number of misses is much higher without prefetch-
ing. These two facts are not surprising and just confirm that the prefetcher for
that cache level works as it is expected. On the other hand, the pthreads ver-
sion has significantly less accesses to the L2 cache compared to the other two
versions (specially for the case of streamcluster). This fact can be explained
by the way the Nanos++ runtime works, creating the dependence task graph
and incrementing the number of memory accesses. Moreover, when we disable
the prefetching mechanism we see that most of the accesses are misses. Results
for the L3 cache level are similar to the ones for L2 and can be explained by
the same factors.

For blackscholes, prefetching has a significant impact on performance (and
consequently on energy efficiency). The speedup per thread of the native inputs
on the pthreads version compared to the scalar OmpSs version goes up from
1.2054x for scalar, 3.7543x for SSE and 5.7072x for AVX to 1.2398x, 4.5159
7.3109x respectively. Canneal barely benefits from the hardware prefetching,
going from 0.9882x for scalar, 1.5099x for SSE and 1.9251x for AVX to 0.9808x,
1.5292x and 1.9369x respectively. The same happens with swaptions, going
from 1.0810x, 1.6916x and 2.0119x to 1.0882x, 1.6999x and 2.0237x respec-
tively. Finally, results for streamcluster show the opposite trend. For this
benchmark, hardware prefetching is actually harming performance, going from
1.0048x for scalar, 2.2819x for SSE and 2.8350x for AVX to 1.0117x, 1.8097x
and 2.1074x respectively. This behavior is exacerbated for smaller inputs, per-
forming almost twice as fast without prefetching for simlarge. This results
confirm the urgent need to apply manual prefetching for this benchmark.

Globally, the binaries executed with prefetching mechanism obtain higher
energy reduction as the memory accesses result in a higher number of hits.
The power consumption is approximately constant while varying the register
length. With the instruction count reduction previously mentioned and the
power consumption remaining constant, we clearly obtained an energy reduc-
tion proportional to the speedup.
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Fig. 13 All benchmarks L2 total access count, miss count, other type of access count and
miss ratio with 6-thread configuration with prefetching mechanisms enabled.
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Fig. 14 All benchmarks L2 total access count, miss count, other type of access count and
miss ratio with 6-thread configuration with prefetching mechanisms disabled.

4 Related Work

New programming models and languages with support for vector data and
vector operations have emerged in the last years. Among them, the most pop-
ular are OpenCL and CUDA, which define vector data types to describe vector
operations that will be automatically vectorized by the compiler. In addition,
ISPC [19] is a SPMD programming model that allows programmers to na-
tively write applications with SIMD parallelism in mind. Chorus [20] extends
C with the map and fold functions commonly used in Functional Program-
ming Chorus, but they target them to vector operations. Although these ap-
proaches could yield good performance and more portability, sometimes not
only a deeper code rewriting might be needed, but also a full redesign of the
applications.

On the other hand, user-directed vectorization exploits the power of SIMD
instructions with minimal code modifications. There are several proposals
based on compiler directives that allow programmers to propose loops that
should be vectorized by the compiler. SIMD extensions defined in OpenMP
4.5 and OpenACC 2.0 are two examples of them. In this way, programmers
can guide the vectorization of their code and they can benchmark different
vector versions by means of introducing simple annotations in their applica-
tions. These approaches require little effort by the programmer whereas they
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still provide very good performance across platforms. Our work pursues the
same goals, but we define SIMD extensions in the context of the OpenMP
programming model. OmpSs extensions also allow annotating a loop as safely
vectorizable but we go a step further. We define the interaction between SIMD
parallelism and fork-join parallelism in an integrated parallel approach. Nowa-
days, OpenMP includes SIMD extensions to express SIMD parallelism. We
collaborated in the definition of the extensions that are now part of the 4.0
standard, in the same way that OmpSs was the building block for the task
support in OpenMP.

Regarding SIMD benchmarking, Molka et al. [21] discuss weaknesses of
the Green500 list with respect to ranking HPC system energy efficiency. They
introduce their own benchmark using a parallel workload generator and SIMD
support to stress main components in a HPC system, but do not consider
a task-based scenario. Kim et al. [22] show how blocking, vectorization and
minor algorithmic changes can speed up applications close to the best known
tuned version. Our work evaluates if task-based benchmarks with user-directed
vectorization can behave in the same way. The RODINIA [23] and ALPBench
[24] benchmark suites also offer limited SIMD support, but not in the same
scenario that we explore. Cebrian et al. [8] extended the Parsec benchmark
suite to add SIMD support using manual vectorization. We will use these
benchmarks as our starting point to build user-directed/task-based versions
and compare them in terms of performance and energy. The goal is to produce
similar quality code without the need of low-level programming.

5 Conclusions and Future Work

The main contribution of this paper is to compare different vectorization
strategies and scenarios that would ease the vectorization process of end user
applications and libraries. Our goal is to validate if user-directed vectorization,
such as the one in OmpSs (or equivalent) can produce similar quality code to
the one obtained by manual vectorization introducing annotations in the code.
We show results for four ParVec benchmarks parallelized with both OmpSs
(which we have developed for this publication) and pthreads programming
models. Mercurium source-to-source infrastructure is used to obtain a SIMD
version of the application based on annotated scalar code. We use highly opti-
mized manually vectorized versions as a reference to leverage the results of the
user-directed codes. We describe the necessary code modifications and com-
piler directives used to obtain the user-directed codes that achieve a similar
performance and energy efficiency to the manually vectorized codes.

The evaluation shows good energy scalability with vector length, specially
for blackscholes and canneal benchmarks. The main reason for that is the
reduction of executed instructions and memory accesses with respect to the
scalar versions. The combination of the task-based benchmarks plus the user-
directed vectorization provides similar reduction on run-time while maintain-
ing the power consumption approximately the same. This is explained by the
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fact that Intel architectures share register and arithmetic units for scalar and
SIMD instructions. Power dissipation increases with vector length due to addi-
tional bit-toggling, but the processor spends more idle waiting for the memory
subsystem. As a consequence, average power remains similar while energy is
reduced superlinearly with runtime.

We have showed that scalable applications running with 12 threads can
achieve energy improvements up to 40x (blackscholes) while other applications
can still benefit from up to 5x (streamcluster). As a result, we can confirm
that vectorization together with parallelization are key techniques to improve
energy efficiency.

As vector support is already existent in most commodity processors, we
can reduce energy only by learning how to vectorize our applications in a
comfortable manner. Both parallelization and vectorization can be achieved
without the need of low level programming, by using task and vector annota-
tions (pragmas) on the code. In addition, user-directed vectorization keeps the
abstraction layer with the underlaying architecture, making the code portable
between architectures and saving many lines of intrinsics code, though it may
require reorganizing or modifying the code.

As future work, we aim to improve on energy awareness for runtime systems
running on multisocket machines. Our future line of work will be to extend
the evaluation of user-directed performance on other applications while we
extend Mercurium with additional features. At last, we would like to replace
Intel’s Short Vector Math Library (SVML) with a more generic one in order
to support other ISA’s (e.g. ARM Scalable Vector Extension).
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