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Abstract This paper aims at developing a new method by which to build a
data-driven portfolio featuring a target risk-return. We first present a comparative
study of recurrent neural network models (RNNs), including a simple RNN, long
short-term memory (LSTM), and gated recurrent unit (GRU) for selecting the
best predictor to use in portfolio construction. The models are applied to the
investment universe consisted of ten stocks in the S&P500. The experimental
results shows that LSTM outperforms the others in terms of hit ratio of one-month-
ahead forecasts. We then build predictive threshold-based portfolios (TBPs) that
are subsets of the universe satisfying given threshold criteria for the predicted
returns. The TBPs are rebalanced monthly to restore equal weights to each security
within the TBPs. We find that the risk and return profile of the realized TBP
represents a monotonically increasing frontier on the risk—return plane, where the
equally weighted portfolio (EWP) of all ten stocks plays a role in their lower
bound. This shows the availability of TBPs in targeting specific risk-return levels,
and an EWP based on all the assets plays a role in the reference portfolio of TBPs.
In the process, thresholds play dominant roles in characterizing risk, return, and
the prediction accuracy of the subset. The TBP is more data-driven in designing
portfolio target risk and return than existing ones, in the sense that it requires no
prior knowledge of finance such as financial assumptions, financial mathematics,
or expert insights. In a practical application, we present the TBP management
procedure for a time horizon extending over multiple time periods; we also discuss
their application to mean—variance portfolios to reduce estimation risk.
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1 Introduction

Today, machine learning has come to play an integral role in many parts of the
financial ecosystem, from portfolio management and algorithmic trading, to fraud
detection and loan/insurance underwriting. Time series are one of the most com-
mon data types encountered in finance, and so time-series analysis is one of the
most widely used traditional approaches in finance and economics. The develop-
ment of machine learning algorithms has opened a new vista for modeling the
complexity of financial time series as an alternative to the traditional econometric
models, by effectively combining diverse data and capturing nonlinear behavior.
For this reason, financial time-series modeling has been one of the most interesting
topics that has arisen in the application of machine learning to finance. Researchers
have successfully modeled financial time series by focusing primarily on prediction
accuracy or automatic trading rules |1, 21 [3] 4} 5] [6}, (7, 18}, (9, [0}, 1], 12, 13}, 14} 15, [16].
Nevertheless, financial modeling and applications remain daunting, given the dif-
ficulties arising from the essentially nonlinear, complex, and evolutionary charac-
teristics of the financial market.

On the other hand, asset allocation has been traditionally considered an issue
central to investment and risk management. Markowitz [I7] was the first to intro-
duce a rigorous mathematical framework for allocation, called modern portfolio
theory (MPT). Based on a mean—variance optimization technique, MPT provides
a method by which to assemble assets and maximize the expected return of the
portfolio for a given level of risk. Following Markowitz’s thinking, new portfolio
models have been subsequently proposed for more practical use and to achieve a
better understanding of portfolios. Examples include the thee-factor asset pric-
ing model [I8], the Black—Litterman model[I9], the resampled efficient frontier
model [20], the global minimum variance model [2I], the maximum diversification
portfolio [22], and the risk-parity portfolio [23, 24]. Additionally, dynamic/tactical
asset allocations based on simple rules or market anomalies were developed to
automatically adjust portfolios in response to market changes [25, 26, 27, 2§].
These studies show that today there is general consensus about the importance of
effective combinations of assets.

In this study, we propose a new method for constructing a data-driven portfolio
using recurrent neural networks (RNNs)-based future return predictions. Through-
out this study, we will refer to this portfolio as a threshold-based portfolio (TBP),
since its properties are characterized by the threshold levels imposed on predicted
returns. In particular, this study makes the following main contributions to the
literature:

e It examines the ability of RNNs to forecast one-month-ahead stock returns.
e It develops a new TBP portfolio method and analyzes their properties.

e The threshold can be used for a parameter to draw a TBP frontier that
comprises the set of TBP points on a risk—return plane. This implies that
one can build a portfolio with a specific risk—return level by selecting the
appropriate threshold level.

e The equally weighted portfolio (EWP) is the lower bound of the TBPs on
the TBP frontier. This implies that the TBPs can be characterized with
respect to a reference portfolio, EW.
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e In practical application, it develops the management process for TBPs for
pursuing specific risk—return levels over multiple-periods and for the method
incorporating TBPs into MPT.

The remainder of this paper is organized as follows: Section [2 discusses some
of the important work related to this area. Section [3| explains the simple recurrent
neural network (S-RNN), long short-term memory (LSTM), and gated recurrent
units (GRU). Section [4| provides experimental results regarding the prediction
accuracy of the models and the performance of TBPs. In Section [5] we discuss the
practical applications of TBPs. Finally, in Section [6] we conclude this paper and
discuss possible future extensions of our work.

2 Related Work

We present LSTM-based predictions and prediction-based portfolios.

2.1 Financial Time Series Prediction Using RNNs

Using conventional econometric models, financial economists have found there to
be statistically significant relationship between stock returns and lagged variables.
For example, Campbell et al. [29] investigated the relationship between aggregate
stock market trading volume and the serial correlation of daily stock returns. They
provide an evidence that a stock price decline on a high-volume day is more likely
than a stock price decline on a low-volume day to be associated with an increase in
the expected stock return. Choueifaty and Coignard [30] show that trading volume
is a significant determinant of the lead-lag patterns observed in stock returns.

For this reason, we select RNN algorithms; these are superior for modeling
time-lag effects in multi-dimensional financial time series, by virtue of feeding the
network activations from a previous time step as inputs into the network, to in-
fluence predictions in the current step. In contrast, feed forward neural networks
(FFNNs) are not appropriate for capturing these time-dependent dynamics: they
operate on a fixed-size time windows, and so they can provide only limited tem-
poral modeling.

RNNs are less commonly applied to financial time-series predictions, yet some
recent studies has shown promising results for use in financial time-series predic-
tion. Fischer and Krauss [I3] deployed LSTM networks to predict one-day-ahead
directional movements in a stock universe and constructed subset portfolios by se-
lecting constituents outperforming the cross-sectional median return of all stocks
in the next day. They found that LSTM networks outperform memory-free clas-
sification methods (i.e., a random forest (RAF), a deep neural net (DNN), and
a logistic regression classifier (LOG)) on measures of the mean return per day,
annualized standard deviation, annualized Sharpe ratio, and accuracy.

More recently, Bao et al. [31] developed a hybrid model called the WSAEs—
LSTM, combined with wavelet transforms (WT), stacked autoencoders (SAEs),
and LSTM to effectively combine diverse financial data, including historical trad-
ing data of open price, high price, low price, closing price, and volume and technical
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indicators of stock market indexes and macroeconomic variables. The experimen-
tal results show that it produces more accurate one-day-ahead stock price predic-
tions than the similar models, including WLSTM (i.e., a combination of WT and
LSTM), RNN, and LSTM.

2.2 Machine Learning Prediction-Based Investment Portfolios

Machine learning has been applied to portfolio construction while focusing on the
portfolio optimization problem, with multiple objective functions being subject to
a set of constraints. Machine learning-based prediction is a valuable tool that can
be used to mitigate difficulties inherent in traditional methods, i.e., ranking stocks
and assessing their future potential.

Freitas et al. [32] present a new model of prediction-based portfolio optimiza-
tion for capturing short-term investment opportunities. For the universe of Brazil-
ian stocks, they combined their neural network predictors featuring normal pre-
diction errors with the mean—variance portfolio model, and show that the result-
ing portfolio outperforms the mean—variance model and beats the market index.
More recently, Mishra et al. [33] developed a novel prediction based mean—variance
(PBMV) model, as an alternative to the conventional Markowitz mean—variance
model, to solve the constrained portfolio optimization problem. They present a low-
complexity heuristic functional link artificial neural network (HFLANN) model to
overcome the incorrect estimation taken as the mean of the past returns in the
Markowitz mean—variance model, and carry out the portfolio optimization task by
using multi-objective evolutionary algorithms (MOEAs). Ganeshapillai et al. [34]
propose a machine learning-based method to build a connectedness matrix and
address the shortcomings of correlation in capturing events such as large losses.
They show that the matrix can be used to build portfolios that not only “beat the
market,” but also outperform optimal (i.e., minimum-variance) portfolios.

The results of these studies show that machine learning-based estimations can
be effectively used to overcome certain limitations inherent in traditional method.
With regard to prediction-based portfolios, our work is in line with this thinking,
but is more fundamental in the sense that we focus heavily on predicted returns
by imposing thresholds with respect to prediction and diversification effects, by
aggregating stocks rather than adopting existing portfolio frameworks. This fact
makes TVP more data-driven than existing models.

3 Models: S-RNN, LSTM, GRU

S-RNNs [35] are an extension of a conventional FENN that adds a feedback con-
nection to a feedback network consisting of three layers: an input layer, a hidden
layer, and an output layer. However, [36] found it is difficult to train an S-RNN
to capture long-term dependencies, because the gradients tend to either vanish or
explode. Alternatively, LSTM [37] and GRU [38] have been proposed to overcome
the problem by using a “gating” approach. The LSTM algorithm is local in space
and time [37], which means that the computational complexity of learning LSTM
models per weight and time step with the stochastic gradient descent (SGD) op-
timization technique is O(1), and the learning computational complexity per time
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step is O(W), where W is the number of weights. Hence, our model is capable
of handling large-scale data, as the computational complexity of our model grows
linearly with respect to the length of the input data.

3.1 LSTM Architecture

LSTMs can effectively learn important pieces of information that may be found
at different positions in the financial time series, by controlling what is added and
removed from memory in the hidden layers. This is conducted by using a com-
bination of three gates: (1) a forget gate, (2) an input gate, and (3) an output gate.

Forget Gate: An LSTM cell receives the current input z¢ € Rd, the hidden state
vectors hy—1 € R”, and a cell state Cy—1 € R™ at time ¢t — 1. The forget gate then
is then calculated as

ft :U(fot+Ufht_1—|—bf), (1)
where:

- Wy e R™*4 is the weight matrix from the input x; to the forget gate f;,

— Uy € R™*" is the weight matrix from the previous hidden vector h¢—1 to the
forget gate f,

— by € R™ is the forget gate bias,

— £ € R™ is the output of the gate, which determines the amount to be erased

from the previous cell state, and

o () is a sigma function.

Input Gate: The input gate i¢, which is used to scale the candidate update vector
C: € R", determines what parts of C; are added to the corresponding memory
cell element at time t, based on the recurrent connection from the hidden vector
h;_1 and the input at time ¢, x;:

it = o(W;x¢ + Us;hi—1 + by), (2)
C: = tanh(Wex: + Uchy 1 + b,), (3)
where:

— W, € R"*? U; € R"*", and b; € R" are the input gate parameters,
_ WC e RnXd7 UC 6 Rnxn’ N

— be € R™ are the parameters for selecting a candidate state, C;, and
tanh(-) is the tanh function.

Then, the current state of the cell C; € R™ is given by
Ct:it®6t+ft®ct—1, (4)

where © represents the element-wise Hadamard product.

Output Gate: The output gate o € R™, which is used to calculate the output

h; € R", determines the output from the current cell state:

oy = 0(Woxt + Ughy—1 + by), (5)
hy = o; ® tanh(Cy), (6)
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where W, € R"*¢ U, € R"*", and b, € R" are the output gate parameters.
The hidden vector h; of the memory cell can be used as the final output of the
network.

3.2 GRU Architecture

The structure of a GRU can be expressed as follows:

Zt = O'(szt + Uzhtfl + bZ)y (7)
rt = o(Wyx¢ + Urhi_1 + b,), (8)
h; =z:O0hi_1 + (1 — Zt) O) tanh[WhXt + Uh(rt © htfl) + bh}v (9)

where:

— X4, hy, z¢, and ry are the input vector, output vector, update gate vector, and
reset gate vector, respectively, and
— W, U, and b are forward matrices, recurrent matrices, and biases, respectively.

4 Experiment
4.1 Data
4.1.1 Universe

The asset universe consists of the top 10 stocks in Standard and Poor’s 500 index
(S&P500):

e Apple (AAPL), Amazon (AMZN), Bank of America Corporation (BAC), Berk-
shire Hathaway Inc. Class B (BRK-B), General Electric Company (GE), Johnson& Johnson
(JNJ), JPMorgan Chase & Co. (JPM), Microsoft Corporation (MSFT), AT&T
Inc. (T), and Wells Fargo & Company (WFC).

We use data from January 1997 to December 2016 from Yahoo Finance. The daily
stock dataset contains five attributes: open price, high price, low price, adjust
close price, and volume (OHLCV). Figure [1| graphically shows the normalized
closed price (i.e., subtract the mean from each original value and then divide by
the standard deviation). We convert the daily OHLCV dataset to four different
monthly OHLCYV datasets by calculating the last, mean, maximum, and minimum
values of the daily OHLCV dataset per month. Each monthly OHLCV dataset is
used as a raw dataset for forecasting one-month-ahead return at the end of each
calendar month.

4.1.2 Preprocessing

To achieve higher quality and reliable predictions, the five attributes are prepro-
cesed as a percentage change, (az(t) — az(tfl))/oc(tfl). All data were divided into
a training dataset (70%) to set the model parameters and the test set (30%) for
an out-of-sample model evaluation. The 30% of the training set is used as the
validation to evaluate a given model during training.
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Fig. 1 (Color online) Normalized stock prices for the 10 sample stocks over the test period
The statistical characteristics of the data used to train and test the deep learn-
ing model are shown in Table[I}] We observe that the data are roughly in the range
of —1 to 1 which is a usual range of features in deep learning, save for abnormal
trading volume from max values of the volume data.
Table 1 Statistics of data (closed prices and volume) used to train, validate, and test the
RNN models
AAPL AMZN BAC BRK-B GE JNJ JPM MSFT T WFC
Train data
Mean 0.01, 0.45 0.01 0.12 0.01 0.124 0.00 0.21 0.00 0.17 0.007 0.186 0.00 0.16 -0.00 0.13 -0.00 0.20 10.13
Std. 0.16,2.22 0.20 0.59 0.08 0.549 0.06 0.79 0.07 0.74 0.069 0.901 0.11 0.83 0.12 0.73 0.10 0.84 7 0.62
Min. -0.57, -0.88 -0.41 -0.75 -0.22 -0.76 -0.12 -0.76 -0.17 -0.617 -0.157 -0.66 -0.28 -0.80 -0.34 -0.80 -0.18 -0.76 -0.16 -0.84
Max 0.45,16.68 0.62 1.71 0.17 2.198 0.26 2.34 0.19 2.93 0.174 5.603 0.25 5.17 0.40 4.84 0.29 4.56 0.23, 2.93
Validation data
Mean 0.06, 0.31 -0.00 0.11 0.01 0.152 0.00 0.13 0.00 0.082 0.00 0.14 0.01 0.21 0.00 0.32 0.015 0.20 0.01, 0.12
Std. 0.12, 1.06 0.14 0.60 0.03 0.822 0.02 0.52 0.02 0.393 0.027 0.68 0.04 0.77 0.05 1.66 0.03 0.878 0.02, 0.58
Min. -0.15, -0.72 -0.30 -0.70 -0.04 -0.68 -0.05 -0.50 -0.065 -0.48 -0.04 -0.65 -0.06 -0.59 -0.11 -0.79 -0.06 -0.73 -0.02, -0.67
Max. 0.35, 5.03 0.36 1.96 0.09 3.62 0.05 1.30 0.058 1.19 0.05 2.90 0.09 2.85 0.08 8.50 0.08 4.30 0.07, 1.41
Test data
Mean 0.03, 0.11 0.04 0.36 -0.00 0.22 0.00 0.27 -0.011 0.11 .00 0.10 0.00 0.20 0.00 0.15 0.00 0.05 0.00, 0.23
Std. 0.12, 0.54 0.14 1.40 0.21 0.68 0.06 1.06 0.11 0.51 0.04 0.51 0.11 0.75 0.08 0.70 0.06 0.40 0.14, 0.80
Min. -0.32, -0.82 -0.25 -0.72 -0.53 -0.60 -0.14 -0.86 -0.27 -0.58 -0.12 -0.61 -0.23 -0.73 -0.16 -0.69 -0.15 -0.63 -0.35, -0.74
Max. 0.23, 1.71 0.54 6.45 0.73 2.25 0.12 5.64 0.25 1.87 0.07 1.49 0.24 2.39 0.24 3.05 0.09 1.50 0.40, 3.65

4.2 Experimental Design

We build S-RNN, LSTM, and GRU architectures for one-month-ahead forecasts
of stock returns. Based on the validation set evaluation, we carried out a grid
search over their hyperparameters over the number of RNN hidden layers (1,2, or
3) and the number of hidden units per layer (8, 16, 32, 64, or 128), and whether
dropout is used to avoid overfitting of the model. The whole networks was trained
by a backpropagation algorithm by minimizing the the quadratic loss value, L =
%Z;‘F(r(t) — #(t))® (where #(t) is the output of the last layer and r(t) is the
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corresponding target) on the validation set. The efficient ADAM (adaptive moment
estimation) optimization algorithm [39] with a learning rate of 0.001 is used to fit
the models in mini-batches of size 20. From the experiments, we specified the
topology consisting of an input layer, an RNN layer with h = 36 hidden neurons,
a 50% dropout layer, and an output layer with a linear activation function for
regression.

The feature vectors to feed the models are overlapping sequences of 36 con-
secutive points (trading months in three years) for the preprocessed variables.
The sequences themselves are sliding windows shifted by one month for each time
t > 36, that is, {x¢t—35,X¢—34, -+, X¢ }.

The experimental set-up is implemented over a laboratory prototype, equipped
with an Intel quad core i7-6700 processor at 3.4GHz, Nvidia GPU (i.e., GTX 1070),
and 32GB of RAM running the Ubuntu 16.04.2 LTS x86-64 Linux distribution.
Prediction models are evaluated using Keras 2.0.4 [40] and TensorFlow 0.11.0.
In our approach, the stage of modeling and forecasting stock returns contributes
significantly to the overall processing time and, for one asset, is obtained in an
approximate processing time of 109 seconds.

4.3 Prediction accuracy

We evaluate the predictive ability of the three models using the hit ratio, which is
defined as follows:

N
. . 1 .
Hit ratio = NZEZI P(i=1,2,...,N), (10)

where N is total trading months and P; is the prediction result for the ‘" trading
day, defined as:

P, =

1 if ye41 - Gey1 > 0,
0 otherwise,

where y:4+1 and §:+1 are the realized return at the last business day of month ¢+ 1
and the one-month-ahead return predicted at the last business day of month ¢,
respectively.

Table [2| shows the mean and standard deviation (SD) of the hit ratios for the
10 assets and the use of the last business day and the LSTM model generates the
best prediction accuracy value (0.604). Therefore, we will use the LSTM model
and the last business day OHLCV of each month for building TBPs in the next
subsections.

Table 2 Mean and SD of hit ratios for the ten assets, respectively

Last Mean Max Min

S-RNN  0.559, 0.040 0.555, 0.066  0.555, 0.059  0.555, 0.048
LSTM  0.604, 0.042 0.536, 0.083 0.569, 0.048  0.584, 0.039
GRU 0.573, 0.053  0.550, 0.079  0.586, 0.049  0.575, 0.051
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4.4 Role of Threshold and TBP

We present the three type of TBP imposing the positive and negative threshold
levels (6+ and 07, respectively) on the predicted returns. Given the one-month-
ahead return prediction #; for asset S;(i = 1,2,...,n), the TBPs are defined as
the subset of the universe:

e Long only TBP: {S; € Universe | #; > 07}
e Short only TBP: {S; € Universe | #; < -0~}
e Long short TBP: {S; € Universe | #; > 6*and #; < -0~}

To illustrate, the thresholds are used to classify assets as long and short positions.
A long (short) equity portfolio consists of assets whose prediction is higher (lower)
than 0% (67). Here, the thresholds are exogenous variables, and as explained in
the next sections, we can determine proper threshold values for the target portfolio
through backtesting.

4.5 Portfolio Weight

As classical portfolio models, the TBPs are built on the following underlying as-
sumptions for evaluating performance. (i) all stocks are infinitely divisible; (ii)
there are no restrictions on buying and selling any selected portfolio; (iii) there is
no friction (transactions costs, taxation, commissions, liquidity, etc.); and (iv) it
is possible to buy and sell stocks at closing prices at any time ¢.

We adapt the periodic rebalancing strategy: the investor adjusts the weights in
his portfolio on the last business day of every month, as academic research typically
assumes monthly portfolio rebalancing. Throughout this study, we provide the
results of experiments on the long TBP (TBP in short), and other TVPs can be
easily built by adjusting the thresholds. Let w; denote the TBP weight on the
i'" asset. The TBPs (w; > 0) are subjected to the budget constraint Ef w; =1,
where P is the number of assets in the TBP. For all the TBPs, w; is defined as
|w;| = 1/ P, that is, equally-weighted TBPs.

4.6 Simulation Results
4.6.1 Experiment 1: Performance of TBPs

Table [3| provides the mean and SD (standard deviation) values of the monthly
returns of the individual assets, the EWP of the universe, and the TBPs with
different thresholds. The explanation is as follows:

e AAPL and AMZN achieve higher returns with higher volatility.

e The EWP achieves lower volatility by diversification effect, which leads higher
Sharpe ratio.

e The EWP and TBPs overly outperform individual stocks in terms of the Sharpe
ratio.

e As shown in the TBPs, an increase in 6 results in an increase in the return and
volatility of TBPs.
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Table 3 Performance of the individual assets, EWP, and TBPs

Asset/Portfolios  Threshold Mean SD  Mean/SD Average
assets
AAPL 0.02 0.075 0.271
AMZN 0.023 0.08 0.299
BAC 0.013 0.102 0.128
BRK 0.01 0.0378 0.275
GE 0.01 0.053 0.202
JNJ 0.0129 0.036 0.353
JPN 0.014 0.075 0.19
MSFT 0.017 0.062 0.275
T 0.01 0.042 0.239
WFC 0.011 0.048 0.237
EWP 0.014 0.039 0.368
0 0.015 0.04 0.381 9.072
0.005 0.017 0.044 0.381 6.637
TBP 0.01 0.02 0.052 0.383 4.376
0.015 0.02 0.06 0.347 2.855
0.02 0.018 0.069 0.269 2.173
9 T T
«— 9=(0.00,0.00)
8 «— 6=(0.005,0.00)
S| e 0=(0.010,0.00) \
o §=(0.015,0.00)
61 e—  9=(0.020,0.00)
>
g° —
3
g4
w
3 )/
2
/
1
[

-0.2 -0.1 0.1

0.0 . 0.2
Portfolio monthly return

Fig. 2 (Color online) Distributions of TBP monthly returns

The remarkable fact is that the EWP serves as a benchmark for evaluating
the TBPs, in the sense that there is a (roughly) consistent up—right shift from the
point of the EWP on the risk—return plane: as 6 increases, the return increases
from 0.014 (EWP) to 0.015 (¢ = 0.000), and then to 0.018 (8 = 0.02); the risk
increases from 0.039 (EWP) to 0.04 (§ = 0), and then to 0.069 (6 = 0.02). In the
next section, this relationship is more clearly elucidated as the risk—return frontier.

The EWP has been frequently used as a proxy for the risk-return ratio of
the financial market, by both academia and the financial industry [41] [42]. It is
more diversified than a value-weighted portfolio, which is heavily concentrated into
just the largest companies, so that it is being widely traded in the real financial
industry (e.g., the NASDAQ-100 Equal Weighted Index allots the same weight to
each stock in the index). Therefore, the fact that such a well-known EWP serves
as a benchmark for TVPs allows us to more quantitatively characterize TBPs.
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Table 4 Prediction accuracy values for assets whose predictive return is higher than 6 over
the test period

No. of correct  No. of total

0 forecasts forecasts Accuracy
0 343 562 0.61
0.0025 321 521 0.616
0.005 225 405 0.629
0.0075 204 326 0.625
0.01 171 272 0.628
0.0125 134 216 0.62
0.015 110 177 0.621
0.0175 95 152 0.625
0.02 83 134 0.619
0.0225 74 117 0.632
0.025 67 108 0.62

We examine the relationship between the magnitude of predictive returns and
the prediction accuracy. Table 4] shows the correct forecasts among all forecasts
whose value is larger than 6. For the different s, the prediction accuracy ranges
over 0.61 ~ 0.63, independent of 6.

We calculate the accumulated returns of TVPs by using the closing prices on
the last trading day of each month. We rebalance all portfolios on the last trading
day of each month based on the one-month-ahead prediction; we then reinvest
according to a weight vector that divides the accumulated wealth equally among
the constituents. The accumulated return R is defined as:

t

Re=[J(1+m), (11)

i=0

where r; is the arithmetic return at time 4. This is a standard performance measure
for comparing investments, and it relates the wealth at time ¢, W} , to the initial
wealth, Wy, as Wy = Wy x R;. All experiments in this study used an initial wealth
value of Wy = 1. Figure E| shows the cumulative returns of the individual assets,
EWP, and TBPs.

4.7 Experiment 2: Robustness Test

As a further check, we conduct a similar experiment with the whole of the study
period (i.e., January 1, 2006 to December 31, 2014). Figure |4| graphically shows
the cumulative returns over the test period (i.e., 30% of the period). Over the test
period, the market is more volatile than the previous one, and the LSTM-based
predictors shows a poor predictive accuracy value of 0.495. Much of our analysis
generated results similar to those in earlier sections, but interestingly, there is a
positive relation between the magnitude of predictive return and the prediction
accuracy: that is, the accuracy consistently increases from 0.529 (6 = 0.00) to
0.611 at (6 = 0.225), as shown in Table
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Fig. 3 (Color online) Cumulative returns of individual assets, EWP, and TBPs
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Fig. 4 (Color online) Experiment 2 results: Cumulative returns of individual assets, EW, and
TBPs

5 Applications

Regarding the practical use of TBPs, we provide illustrations on how to man-
age them over multiple-periods and and how to incorporate them into an MPT
optimization portfolio.

5.1 TBP Management

Figure [5] is a scatter plot of the risk-return profiles of the TBPs that we are
constructed in experiment 1, at different 0s (0.000,0.0025, .. .,0.025) over the last
10 months, along with the lines fitted to the polynomial of degree 3. We will
refer to the line as the “TBP frontiers.” Note that the points indicate the realized
monthly returns and risk of the (predictive) TBPs built using one-month-ahead
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Table 5 Experiment 2 results: Prediction accuracies for the assets whose predictive return is
higher than 6 over the test period

No. of correct  No. of total

0 forecasts forecasts Accuracy
0 142 268 0.529
0.0025 124 238 0.521
0.005 115 218 0.527
0.0075 104 192 0.541
0.01 96 172 0.558
0.0125 79 143 0.552
0.015 73 130 0.561
0.0175 63 108 0.583
0.02 57 95 0.6
0.0225 52 85 0.611
0.025 46 73 0.605
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Fig. 5 (Color online) The realized monthly return versus risk of the TBPs, which are con-
structed using one-month-ahead return predictions, at # = 0.000,0.0025,...,0.025 on the last
10 months of the test period of experiment 1. T" is the last business month.

predictive returns. The TBP lines are concave, moving upward and to the right as
0 increases, thus indicating that the greater the amount of risk by the increase of
0, the greater the realized returns. This characteristics allows for the design of a
TBP with a target risk-return.

To illustrate, let us suppose that an investor at time 7" — 9 hopes to build a
TBP to achieve a target risk—return at time T — 8. If the target is the monthly risk
of 0.05 and the monthly return of 0.016, the investor can estimate the é, which
corresponds to the target from the TBP frontier drawn at 7" — 9; the investor
can then build a TBP with the target, using the predictive return generated and
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the estimated @ at time 7' — 9. Then, at time T — 8, the investor will obtain an
approximate return of 0.017 and risk of 0.05, as seen in the TBP frontier moving
upward over the period from time T'— 9 to T — 8. This difference, 0.017 — 0.015,
is the estimation risk of the TBP. As seen in the continual shift of TBPs as time
passes, to maintain a target risk—return, the corresponding 6 needs to be updated.
The estimation risk of TBP can be quantified by calculating the average of the
differences of realization and expectation for both return and risk over a past
period. There is the estimation risk, but it seem to be sufficiently small to classify
TBPs as having different risk aptitude. The TBP frontier can be more broad, and
combined with riskless assets. In summary, we illustrate the TBP management
process:

Step 1. Set a investment universe (stocks, bonds, ETFs, etc.)

Step 2. Build forecasting models for future stock return or price

Step 3. Select a trading position (long-only, short-only, or long—short) and a
weighting method (equal-weighted, prediction-weighed, etc.)

Step 4. (Backtest) Draw the TBP frontiers at different thresholds

Step 5. Select a target risk-return value and find its corresponding 6 on the
TBP frontier

Step 6. (Actual investment) Invest in the TBP with the 6

Step 7. (Realization) Estimate the TBP at 6, and reinvest in the TBP with the
updated 6 from the realized TBP frontier

5.2 Mean-Variance Portfolio

MPT is a mathematically elegant framework for building a portfolio with specific
risk-return level. However, it is well known that it is more difficult to estimate the
means than the covariances of asset returns [43], and errors in the estimates of
means will have a greater impact on portfolio weights than errors in the estimates
of covariances. Furthermore, as mean—variance optimization is extremely sensitive
to expected returns, any errors therein might make outcomes far from optimal
[44, [45]. For this reason, although theoretical and empirical academic studies have
examined various MPT aspects, its real-life practical applications have mostly
focused on minimum variance portfolios. This estimation error invariably leads to
inefficient portfolios, which can be explained by considering the following three
sets of portfolios [46].

o True efficient frontier (TEF): the efficient frontier based on true (but unknown
parameters)

e Estimated frontier (EF): the frontier based on the estimated (and hence incor-
rect) parameters

e Actual frontier (AF): the frontier comprising the true portfolio mean and vari-
ance points corresponding to portfolios on the estimated frontier

The use of thresholds on predicted returns can help mitigate inefficiency by screen-
ing a subset to be predicted more accurately, as shown in Table |5} Figure |§| shows
a schematic scenario that EFp, which is estimated for the assets screened by a
threshold, is located more closely to the TEF. (Here, for simplicity, we ignore the
shift in EF due to the change in the asset number.)
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Mean Portfolio Return
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Fig. 6 (Color online) Schematic scenario for shifting EF to EF by screening the universe at
a threshold

6 Conclusion

This study proposes a novel framework by which to construct portfolios that target
specific risk—return levels. We evaluated the RNN networks while examining the
hit ratios of the one-month-ahead forecasts of stock returns, and then constructed
TBPs by imposing thresholds for the potential return. The TBPs are more data-
driven in building a portfolio than in existing methods, in the sense that they are
constructed purely on the basis of data-driven models by a deep learning technique,
in absence of any financial mathematics or knowledge. We showed that the EW of
the universe plays the role of the reference portfolio to TBPs, and thus serves to
quantitatively characterize the TBP. The TBP frontiers show that the threshold is
a parameter used to control tradeoff between the risk and the return of portfolios.
We discussed how to practically manage TBPs to maintain a target risk-return
over multiple-periods; we also discussed the benefit of incorporating TBPs into
MPT.

The TBP is promising, since it provides a simple and straightforward way to
build portfolios with target risk—returns, using predictions alone. Any prediction
model can be basically applied to construct TBPs. As predictors become more
accurate, TBPs can achieve greater returns, given a certain level of risk. In this
respect, we believe that the TBP is a valuable application of machine learning to
modern-day investment practice.

Acknowledgements This work was partly supported by the ICT R&D program of MSIP /IITP
[2017-0-00302, Development of Self Evolutionary AI Investing Technology] and the ICT R&D
program of MSIP/IITP [2014-0-00616, Building an Infrastructure of a Large Size Data Center].

References

1. G. S. Atsalakis, K. P. Valavanis, Surveying stock market forecasting techniques -
Part II: Soft computing methods. Expert Systems with Applications 36(3):5932—



16 Sang Il Lee, Seong Joon Yoo

5941 (2009)

2. Dixon, M., Klabjan, D., Bang, J. H. (2015) Implementing deep neu-
ral networks for financial market prediction on the Intel Xeon Phi.
https://ssrn.com/abstract=2627258

3. Huck, N. (2009) Pairs selection and outranking: An application to the S&P100
index. Journal of Operational Research 196(2):819-825

4. Huck, N. (2010) Pairs trading and outranking: The multi-step-ahead forecasting
case. Journal of Operational Research 207(3):1702-1716

5. Krauss, C., Do, X. A., Huck, N. (2017) Deep neural networks, gradient-boosted
trees, random forests: Statistical arbitrage on the S&P500. 259(2):689-702

6. Moritz, B., Zimmermann, T. (2014) Deep conditional portfolio sorts: The rela-
tion between past and future stock returns. Working paper

7. Sermpinis, G., Theofilatos, K. A., and Karathanasopoulos, A. S., Georgopoulos,
E. F., Dunis, C. L. (2013) Forecasting foreign exchange rates with adaptive
neural networks using radial-basis functions and Particle Swarm Optimization.
European Journal of Operational Research 225(3):528-540

8. Takeuchi, L. and Lee, Y.-Y. (2013) Applying deep learning to enhance momen-
tum trading strategies in stocks. Working paper

9. Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nbrega, J. P., Oliveira,
A. L. 1. (2016) Computational Intelligence and Financial Markets: A Survey and
Future Directions. Expert Systems with Applications 55:194-211

10. Aggarwal, S., Aggarwal, S (2017) Deep Investment in Financial Markets us-
ing Deep Learning Models. International Journal of Computer Applications
162(2):40-43

11. Gao, T., Li, X., Chai, Y., Tang, Y. (2016) Deep learning with stock indicators
and two-dimensional principal component analysis for closing price prediction
system. IEEE, Software Engineering and Service Science (ICSESS), 2016 7th
IEEE International Conference on

12. Zhang, Y. (2015) Using Financial Reports to predict Stock Market Trends
With Machine Learning Techniques. Oxford University

13. Fischer, T., Krauss, C. (2017) Deep learning with long short-term memory
networks for financial market predictions. FAU Discussion Papers in Economics
11/2017, Erlangen. Available at http://hdl.handle.net/10419/157808|

14. Pang, X., Zhou, Y., Wang, P. et al. J Supercomput (2018).
https://doi.org/10.1007/s11227-017-2228-y


http://hdl.handle.net/10419/157808

Threshold-Based Portfolios 17

15. Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, and Tie-Yan Liu. (2018)
Listening to chaotic whispers: A deep learning framework for news-oriented stock
trend prediction. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, pp. 261-269.

16. Singh, R. Srivastava, S. (2017) Stock Prediction using Deep Learning, Multi-
media Tools and Application, 76 (18), 18569-18584.

17. Markowitz, H. (1952) Portfolio Selection. 7(1):77-91

18. Fama, E. and French, K. (1992) The cross-section of expected stock returns.
Expert Systems with Application 47:427-465

19. Black, F., Litterman, R. (1992) Global portfolio optimization. Financial Ana-
lysts Journal 48(5):28-43

20. Michaud, R. (1998) Efficient Asset Management: A Practical Guide to Stock
Portfolio Optimization and Asset Allocation. Boston: Harvard Business School
Press

21. Haugen, R., Baker, N. (1991) Pairs selection and outranking: An application
to the S&P100 index. Journal of Operational Research 17(3):35-40

22. Choueifaty, Y., Coignard, Y. (2008) Toward maximum diversification. The
Journal of Portfolio Management 35(1):40-51

23. Qian, E (2005) Risk parity portfolios: Efficient portfolios through true diver-
sification. Research Paper https://www.panagora.com/assets/PanAgora-Risk-
Parity-Portfolios-Efficient-Portfolios-Through-True-Diversification.pdf

24. Qian, E (2005) Risk parity portfolios: The next generation. Re-
search Paper https://www.panagora.com/assets/PanAgora-Risk-Parity-The-
Next-Generation.pdf

25. Faber, M. T. (2014) A Quantitative Approach to Tactical Asset Allocation.
The Journal of Wealth Management 9(4): 69-79

26. Keller, W. J., Keuning, J. W. (2014) Momentum, Markowitz, and Smart
Beta, A Tactical, Analytical and Practical Look at Modern Portfolio Theory.
https://ssrn.com/abstract=2759734 or http://dx.doi.org/10.2139/ssrn.2759734

27. Keller, W. J., Bulter, A. (2014) A Century of Generalized Momentum,;
From Flexible Asset Allocations (FAA) to Elastic Asset Allocation (EAA).
https://ssrn.com/abstract=2543979 or http://dx.doi.org/10.2139/ssrn.2543979

28. Keller W. J., Keuning J. W. (2009) Protective Asset Allocation (PAA): A
Simple Momentum-Based Alternative for Term Deposits. Expert Systems with
Applications 36(3):5932-5941


http://dx.doi.org/10.2139/ssrn.2759734
http://dx.doi.org/10.2139/ssrn.2543979

18 Sang Il Lee, Seong Joon Yoo

29. Campbell, J. Y., Sanford J. G., Jiang, W. (1993) Trading volume and serial
correlation in stock returns. Quarterly Journal of Economics 108: 905-939

30. Choueifaty, Y., Coignard, Y. (2000) Trading volume and cross-autocorrelations
in stock returns. The Journal of Finance 55:913-935

31. Bao, W., Yue, J., Rao, Y. (2017) A deep learning framework for financial
time series using stacked autoencoders and long-short term memory. PLoS ONE
12(7): €0180944. https://doi. org/10.1371/journal.pone.0180944.

32. Freitas, F.D., De Souza, A.F., de Almeida, A.R. (2009), Prediction-based port-
folio optimization model using neural networks, Neurocomputing 72: 2155-2170.

33. Mishra, S., K., Panda, G., Majhi, B. (2016) Prediction based mean-variance
model for constrained portfolio assets selection using multiobjective evolutionary
algorithms. Swarm and evolutionary computation. 28: 117-130

34. Ganeshapillai, G., Guttag, J., Lo, A. (2013) Learning connections in financial
time series, in: ICML.

35. Elman, Jeffrey L. (1990) Finding Structure in Time. Cognitive Science 14:179—
211

36. Bengio, Y. and Simard, P., Frasconi, P. (1994) Learning Long-Term Dependen-
cies with Gradient Descent is Difficult. IEEE Transactions on Neural Networks
5(2):157-166

37. Hochreiter, S., Schmidhuber, J. (1997) Long short-term memory. Neural Com-
putation 9(8): 1735-1780

38. Cho, K., van Merrienboer B., Giilgehre C., Bougares, F., Schwenk, H., Bengio,
Y. (2014) Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. CoRR abs/1406.1078

39. Diederik P. K., Jimmy B. (2014) Adam: A Method for Stochastic Optimiza-
tion. http://arxiv.org/abs/1412.6980

40. Chollet, F. (2016) Keras: Deep learning library for theano and tensorflow.
https://keras.io, 2016.

41. Jegadeesh, N., Titman, S. (2001) Profitability of momentum strategies: an
evaluation of alternative explanations. Journal of Finance 56: 699-720.

42. Y. Plyakha, R. Uppal, Vilkov, G,. (2012) Why does an equal-weighted portfolio
outperform value-and price-weighted portfolios? Available at SSRN 1787045.

43. Merton, R. C. (1980) On estimating the expected return on the market: an
explatory investigation. Journal of financial economics 8: 323-361


http://arxiv.org/abs/1412.6980

Threshold-Based Portfolios 19

44. Jorion, P.(1985) International portfolio diversification with estimation risk.
Journal of business 58(3): 259278

45. Best, M., Grauer, R. (1992) Positively weighted minimum-variance portfolios
and the structure of asset expected returns. The journal of financial and quan-
titative analysis 27(4): 513-537

46. Broadie, M., (1993) Computing Efficient Frontiers using Estimated Parame-
ters. Annals of Operations Research, 45: 21-58.



	1 Introduction
	2 Related Work
	3 Models: S-RNN, LSTM, GRU
	4 Experiment
	5 Applications
	6 Conclusion

