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Abstract In the times of mobility and pervasiveness of computing, contextual
information plays an increasingly crucial role in applications. This kind of infor-
mation becomes a first class citizen in Context-Oriented Programming (COP)
paradigm. COP languages provide primitive constructs for easily writing applica-
tions that adapt their behaviour depending on the evolution of their operational
environment, namely the context. We present these new constructs, the issues and
the challenges that arise, reporting on our recent work on MLgopa. It is a declara-
tive language specifically designed for adaptation and equipped with a clear formal
semantics and analysis tools. We will discuss some experiments done with a pre-
liminary implementation of MLcopa. Through them we will show how applications
and context interactions can be better specified, analysed and controlled.

Keywords Adaptive Software, Context-oriented Programming, Datalog

1 Introduction

In the time of ubiquitous and pervasive computing, software systems are required
to operate every time and everywhere, always beside the users, possibly in a silent
and invisible way. A typical ubiquitous scenario is that of Internet of Things (IoT),
where any everyday object — a phone, a coffee machine, a street lamp, or a medical
device — can be “smartified” by connecting it to a communication infrastructure.
As a consequence, modern software systems should be able to interact and work
together, by coping with changing conditions and highly dynamic operational en-
vironments, i.e. their context of use. Applications need mechanisms to sense the
changes in the surrounding context, and to select the right responses, i.e. they need
mechanisms that are contezt-aware and able to properly adapt their behaviour, with
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little or no user involvement. For example, if you switch the position of your mo-
bile phone, you expect that the screen changes accordingly on its own. The phone
perceives the world on behalf of the user.

At the same time, adaptation mechanisms must also maintain the functional
and non-functional properties of applications, typically security or quality of ser-
vice, that changes could compromise. Suppose, for instance, you are in a hotel
and you want to join the wi-fi hotel network with your phone to check your bank
account: you would like to connect in a secure way, but without bothering with
all the details of the wireless connection, ideally in a fully transparent manner.

Contexts include any computationally accessible information that could be rel-
evant, coming from both outside (e.g. sensor values, available devices, and code
libraries offered by the environment), and from inside the application boundaries
(e.g. its private resources, user profiles, etc.). In the literature, many different
languages endowed with primitives that allow programmers to develop the mech-
anisms mentioned above have been proposed, e.g. [221[18[19,29/[3T}32] (a detailed
discussion on the great deal of work in this area can be found in [28/[14]).

In this field, Context Oriented Programming (COP) [II0I6,172] provides
programming adaptation primitives to support dynamic changes of behaviour, in
reaction to changes in the context. This paradigm neatly separates the working
environment from the application: programming adaptation is expressed using
behavioural variations, chunks of code that can be automatically selected, depending
on the context, dynamically modifying the application dynamic behaviour.

We contributed to COP programming languages, by introducing MLcopa [11,
T21[T4[3], a core of ML with primitives for context-awareness. It presents two tightly
integrated components: a declarative constituent for programming the context and
a functional one for computing, that allows for separating the specific abstrac-
tions for describing contexts from those used for programming applications [27].
In MLcopa a context is a knowledge base implemented as a (stratified, with nega-
tion) Datalog program [25L2I]. The contents of a context can be inspected by
simply querying it, in spite of the possibly complex deductions required.

The behavioural variations of MLgopa offer a sort of pattern matching with
Datalog goals as selectors. They are a first class, higher-order construct that can
then be referred to by identifiers, and used as parameters in functions. This fosters
dynamic, compositional adaptation patterns, as well as reusable, modular code.
The selection of a goal is done by the dispatching mechanism that inspects the
actual context and makes the right choices, by selecting the first expression whose
goal holds. This choice depends on both the application code and on the “open”
context, unknown at development time. If no alternative is viable at run time then
a functional failure occurs, as the application cannot adapt to the current context.
An application can also fail if it does not meet some requirements, e.g. about
quality of service or security. In this case a non-functional failure occurs.

In the execution model of MLcopa, the context acts as an interface between
each application it hosts and the system running it. Applications have a predefined
set of APIs that provide handles to resources and operations to interact with the
system. Also, they interact with each other via the context. The system and the
applications may behave maliciously, by altering some parts of the context, e.g.
one application can alter some parts of the context so driving another in an unsafe
state; see a discussion on this and on non-functional failures in Section 5] We aim
at detecting both functional and non-functional failures as early as possible, and
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for this reason a two-phase static analysis has been proposed, one at compile and
one at load-time [I5}[I2L[T4L[5], briefly summarised below. Functional failures are
mainly due because applications operate in an open environment, and the actual
value and even the presence of some elements in the current context are only
known when the application is linked with it at run time. The first phase of our
static analysis is based on a type and effect system that, at compile time, computes
a safe over-approximation of the application behaviour, namely an effect. We use
the effects at load-time to verify that the resources required by the application are
available in the current context, and in the future ones. If an application passes
this analysis, then no functional failure can arise at run time.

Besides the formal aspects, MLcopa lends itself to provide a single and fairly
small set of constructs sufficient for becoming a practical programming language,
as shown in [§]. MLcopa has been easily embedded in the real programming eco-
system .NET [24]. Being part of a well supported programming environment min-
imises the learning cost; lowers the complexity of deploying and maintaining appli-
cations; preserves compatibility with future extensions and with legacy code. The
prototypical implementation of MLcopa in [§] extends the (ML family) functional
language F#, without requiring any modification to the available compiler and
to its runtime. The F# metaprogramming facilities, such as code introspection,
quotation and reflection, have been exploited, as well as all the features provided
by .NET, including a vast collection of libraries and modules. In particular, Just-
In-Time mechanisms are used for compiling MLcop, constructs to .NET code.
Consequently, MLcopa becomes a standard .NET library. The formal description
of the language and its semantics, which highlight and explain how the two compo-
nents of ML¢op, interact, was crucial for driving the implementation. Moreover,
they helped in identifying and describing the key parts of the implementation
toolchain, compilation, generated code and runtime structures.

Here, we will discuss on some applications we developed in MLgopato assess our
language, showing how context interactions can be better specified, analysed and
controlled. We also discuss some extensions that will make our language more ex-
pressive and applicable. The next section introduces the main features of MLcopa,
with the help of our first case study. Two more case studies are summarised in
Section [ Section [3] shortly illustrates the Just-In-Time compiler of MLcopa. We
conclude in Section [5] where we discuss the planned extensions to our approach,
in particular those required to handle many applications that run concurrently. A
preliminary version of this paper appeared in [4].

2 A Walk through MLcopa on a Smart Home Scenario

We illustrate the main features of MLcopa by considering a typical scenario of the
Internet of Things, namely a smart home, where a user exploits a tablet to interact
with appliances. In particular, we assume that the capabilities of the tablet depend
on its current location and on the profile of who is using it. Moreover, we show
how the context represents both the physical and the virtual resources, and how
programs can access and manage them through Datalog queries.

The interested reader can find further examples of MLcopa applications in
the field of the Internet of Things in [§] and in [I4]. The first simulates an e-
healthcare system, where physicians use tablets to take care of patients, with
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different capabilities depending on the context. The second example is about a
multi-media guide for a smart museum that offers vistors a guided tour, based on
their preferences.

Below, we first intuitively introduce the mechanisms for defining contexts, then
those for adaptation, and finally we briefly discuss the new kind of run time errors
that may arise in the COP paradigm.

Context description. We describe a small portion of the context, in particular we
focus on that part concerning the user localization and profile, some virtual re-
sources, like a mailbox, and physical ones, like a fridge. Basic data are represented
by Datalog facts, and one can retrieve further information using the inference
machinery of Datalog, which uses logical rules, also stored in the context.

For instance, as it is often the case, the tablet can be used by many users,
who can perform different actions depending on their profiles. Assume to have two
profiles (i) adult and (i) kid. Thus, a user’s profile is represented in the context
by the binary fact profile. The following facts render that Alice and Jonh are
adult, whereas Charlie is a kid:

profile("alice", "adult").
profile("charlie", "kid")
profile ("john", "adult").

As a matter of fact, the user profile enables different applications and features: for
example, Charlie (kid) can play videogames but he cannot access to his parents’
office database; instead the desktop of an adult has an icon for the office database
and mailbox, but none for videogames.

Furthermore, the tablet usage depends on its current location. For the sake
simplicity, we suppose that the tablet is able to recognise three locations each
providing access to the network: (i) office, (i4) home, and (iii) public spots. Infor-
mation on the current location can be retrieved by querying the context, described
by a set of Datalog clauses. In our case, from the following Datalog clauses we can
deduce the user’s local network:

local_network ("office") :- wifi_connected("unipi").
local_network ("home") :— wifi_connected("myplace") .
local_network ("public") :— wifi_connected (X) .

These clauses state that the predicate on the left hand-side of the implication
operator : - holds when the predicate in the right hand-side is true. When the tablet
can connect to a specific network, the argument of the predicate wifi_connected
is the network name and we use it to identifie the current location. For example,
the tablet is in the office when it is connected to the unipi network. Whereas, when
it is connected to a unknown network x the tablet is assumed to be in a public
place, e.g., a bar.

As a matter of fact, the MLcopa context is quite expressive and can model
fairly complex resources, both virtual and physical, and can manage the access to
them in a declarative manner. Some of them depend on the current user’s location
and may be digital (a mailbox) or physical (a fridge or a television set); others are
tightly coupled with the user profile.

The mailbox is a typical digital resource that can be used in different locations.
However, the mailboxes could be different if the users are inside or outside their
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workplaces. The following clauses prescribe that the only mailbox available inside
the office is the professional one, whereas the personal mailbox is accessible outside.
mail_inbox (X) :— local_network ("office"),

available ("mailbox_office_server"),

inbox ("mailbox_office_server", X).
mail_inbox(X) :—- \+ local_network ("office"),

available ("my_mailbox_server"),

inbox ("my_mailbox_server", X).

In the code above the predicate available holds when the tablet can connect to
a given server and the variable x represents the mailbox returned by the server
when the predicate inbox is true. In the second clause the operator \+ denotes the
logical not, a feature supported by our Datalog engine.

An example of resources that depend on the user’s profile is the set of TV
channels accessible at home: those for kids are usually different from those for
their parents. The predicate Tv_chanel_1ist retrieves the channels list x of a user
through the following clauses:

TV_channel_1list (X) :- profile("adult"), collection("adult", "TV", X).
TV_channel_list (X) :- profile("kid"), collection("kid", "TV", X).

where collection returns a playlist of a media device associated with a profile.

As an example of physical resources consider a fridge. As in a typical smart
home scenario the user can retrieve the list of its content through the tablet. The
MLcopa context can easily model this scenario with the clauses below:

current_fridge (Z, X) :— profile("adult"), e_appliances(Z,Y),
fridge (X), is_in(X,Y).

contents (X,Y) :- profile("adult"), fridge(X), list(X,Y).

The first clause returns the identifier of the fridge x in the room z. In particular,
it checks if the user is an adult; it retrieves a list of all appliances v inside z
(e_appliances(z,Y)); and it returns x if it is a fridge occurring in Y (is_in (X, Y)).
The second clause returns the list v of items inside the fridge x.

Adaptation constructs. We now illustrate how one can express behavioural adapta-
tion in our extended F#. The following pay-per-view scenario illustrates in more
detail the context-dependent binding and behavioural variation constructs.

Suppose that users of our tablet can buy particular TV events on the fly, via
a pay-TV provider. Each event has a unique identification number, which can be
obtained by accessing the provider web page or by using a QR-code displayed in a
suitable advertisement. Afterwards, to buy the event, the user can choose between
paying through the web page or by sending a text message, including the event
number in both cases.

In the following function getTvEvent, we declare the context-dependent vari-
able eventList (called also parameter in MLcopa) to contain the list of available
TV events.
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let getTVEvent () =
let eventlist =
let page = getPage()
extract (page) |- wifi_connected("myplace")
in
let eventlList =
let p = take_picture ctx?cam
decode_qgr ctx?decoder p |- use_grcode (ctx?decoder), camera(ctx?cam)
in
selectEvent (eventList)

At lines 2-6 we declare by cases eventList using the syntax let x = expressionl
|- Goal [in] expression2. The parameter is referrred to in line 10, and we can
determine which value is bound to it only at run time, when it is known the
context of use. If the goal at line 4 holds, then the tablet can directly connect and
download the web page through the function getrage () to extract the required
list. Otherwise, if the goal at line 8 is true, the tablet can take a picture of the
QR-code and decodes it to get the list. In this second case, the goal contains two
goal variables ctx?decoder and ctx?cam: if the query succeeds they will be assigned
to the identifiers of the decoder and to that of the camera returned by the Datalog
machinery. These identifiers are used by both the functions take_picture and
decode_gr to interact with the actual tablet resources.

To change the program flow in accordance to the current context, we exploit
behavioural variations. Syntactically, they have the form

match ctx with

| _ when !- Goall -> expressionl
| _ when !- GoalN -> expressionN
where match ctx with explicitly refers to the context; the part | _ when !- Goal

refers to the goal to solve; and -> expression is the sub-expression to evaluate
when the goal holds. The execution triggers a so-called dispatching mechanism that
queries the context and selects the first expression whose goal holds.

Consider the following function buyTvEvent, which allows a user to purchase
the event event_id. As said, the payment can be performed via the web page or
via a text message and it is implemented through a behavioural variation.

let buyTVEvent event_id price =
match ctx with
| _ when !- payByWeb ->
let ¢ = getPage ()
sendData ¢ event_id usr_number
| _ when !- payByText ->
let ¢ = getNumber () in
sendText ¢ event_id usr_number
4

tell <| paidEvent (event_id, price)

Finally, besides queries, the interaction with the Datalog context may also con-
sist of modifying the knowledge base on which the application performs deduction,
by adding or removing facts with the tell and retract operations. For example,
the last line of the function above records the event and the price to pay in the

context through the predicate paidEvent. Similarly, the channel list of parents can
be modified by the following expressions:
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tell <| TV_channel ("adult", channel)
retract <| TV_channel ("adult", channel)

where the predicate TvV_channel holds if the specified channel is in the list of the
user, provided that it is an adult.

Failures. It may happen that no goal is satisfied in a context while executing a
behavioural variation or resolving a parameter. This means that the application in
not able to adapt, either because the programmer assumed at design time the pres-
ence of functionalities that the current context lacks, or because of design errors.
We refer to this new kind of run time errors as adaptation failures. For example,
consider the function getTvEvent above in absence of wireless technology and, at
the same time, of QR-decoder. Since no context will ever satisfy the goals in the
definition of the parameter eventList, the current implementation throws a run
time exception that can be handled as follows by standard exception mechanisms
of F# (try ... with e —> )

let getTVEvent () =
try
let eventlList =
let page = getPage()
extract (page) |- wifi_connected("myplace")
in
let eventlist =
let p = take_picture ctx?cam
decode_qgr ctx?decoder p |- use_grcode (ctx?decoder), camera(ctx?cam)
in
selectEvent (eventList)
with e -> printfn "WARNING: cannot get the list of events"

As described in [12l[14], it is possible to adopt a more sophisticated approach for
statically determining whether the adaptation might fail and reporting it before
running the application, based on a type and effect system, at compile time, cou-
pled with a control flow analysis done at load time (see the concluding remarks).

3 The MLcopa Compiler in a Nutshell

The MLgopa compiler consists of two components that integrate the functional
language F# with a customised version of YieldProloéﬂ serving as Datalog engine.

The first component ypc compiles ahead-of-time each Datalog predicate into
a .NET method. At run time, the generated method computes the assignments of
values to variables of the predicate that make it true. This compilation stragegy
supports the interaction and the data exchange between the application and the
context in a fully transparent way. Note that the impedance mismatch problem [20]
does not arise since the .NET type system is uniformly used everywhere.

The second component leverages the standard F# compiler to deal with MLcopa
adaptation primitives. This has been implemented through just-in-time compila-
tion driven by annotation provided by the programmer. In practice, a programmer
annotates the code using these primitives with custom attributes, the most impor-
tant of which is CoDa.Code. These annotations prevent the F# compiler from

1 Available at https://github.com/vslab/YieldProlog
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generating .NET bytecode but make it to output a symbolic representation in
form of quotation [9]. When a quoted piece of code is about to be executed, the
MLcopa runtime is invoked to transform it into bytecode using the .NET meta-
programming facilities. The generated bytecode is stored in an internal cache by
the MLcopa runtime, and can be re-used when the piece of code is executed again.
CoDa.Code is an alias for the standard ReflectedDefinitionAttribute that
marks modules and members whose abstract syntax trees are used at run time
through reflection. The specific MLcopa operations, typically the adaptation con-
structs and those for interacting wityh the context, are only allowed in methods
marked with CoDa.Code; otherwise an exception is raised when they are invoked.

Note that the compiler fsharpc does not require any change. This is because
the operations needed to support the adaptation primitives are fully handled by
our runtime support.

4 Evaluation of MLcopa Implementation

In this section we illustrate the effectiveness of our MLcopa implementation through
two case studies of small-sized applications. The first is the context-aware editor
FSEdit. It allowed us to test and evaluate how our implementation deals and in-
teracts with existent code, in particular with the standard IO and GUI library of
.NET. Furthermore, it also permitted us to identify some programming patterns
that may be considered as idiomatic of MLcopa programs (see below). The second
one is a small rover robot based on a Raspberry PI [26]. It is endowed with wheels,
an engine control and sensors through which can move around and recognise ob-
jects in the environment. The goal of this case study was to test the portability of
our implementation on hardware typical of IoT solutions.

FSEdit editor. We have implemented FSEdit, a context-aware text editor. It sup-
ports three different execution modes: rich text editor, text editor and programming
editor. A context switch among the different modes changes the GUI, by offering
different tool-bars and menus. In the first mode, the GUI allows users to set size
and face of the font; to change the colour of text; and to adjust the alignment
of the paragraphs. In the second mode, the editor becomes very minimalistic and
allows the user to edit pure text files, where no information of the text formatting
can change. Finally, in the programming mode, the editor shows file line numbers
and provides a simple form of syntax highlighting for source files.

The predicates below show that the context of FSEdit includes the current
execution mode and other information that directly depend on it.

tokens (TS) :— tokens_(TS), execution_mode (programming) .

file_dialog_filter (F) :- execution_mode (M),
file_dialog_filter_(F,M).

For instance, the first predicate only holds in the programming mode; it also
returns the keywords of the programming language chosen by the user for syntax
highlighting. Currently the editor supports the C programming language only. The
kind of files supported by the editor in the different modes (e.g. *.rtf files in rich
text mode, *.txt files in text mode and *.c in programming mode), represents
another possible information concerning the context.
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The execution mode impacts on the behaviour of FSEdit, as can be shown in
the following piece of code. There, if the editor is in the right mode, when the user
changes the text, the syntax highlighter procedure is invoked.
let textChanged (rt : RichTextBox) = // dlet

let def_behaviour () = ... // code not shown
let f_body = def_behaviour () |- True // Basic behaviour
let f_body = (f_body ; syntaxHighlighter rt) |-
execution_mode ("programming")
f_body

Observe in the snippet above the interesting and idiomatic use of context depen-
dent binding. This coding pattern is recurring in the code of FSEdit whenever a
programmer needs to add new behaviour to a basic one. In particular, the first def-
inition of the identifier £_body represents the basic behaviour of the editor that is
independent of the context, while the second definition extends the basic behaviour
with the features that are to be provided when the editor is in programming mode.
Note also the use of f_body on the right-hand side in the fourth line of the snippet.
It is not a recursive definition: it is instead an invocation to f_body defined in the
previous line, i.e. the one that specifyies the basic behaviour of the editor.

Fsc-Rover. We now briefly illustrate the implementation of a small rover robot
developed on the Raspberry Pi hardware platform [26] by Riccardo Rolla, a mas-
ter student of our research group (see https://github.com/riccardorolla/
rpi-iot-fscoda). The rover has two wheels, an engine, a distance sensor, photo
and video cameras. It moves around autonomously, and detects objects and some of
their features. To perform its task, the rover interacts and exchanges messages on
the Internet, using REST APIs. Actually, it uses Microsoft Cognitive Service [23] to
recognise objects and it communicates with users through Telegram messages [30].
In particular, through Telegram a user can order the rover to execute some ac-
tions, called remote. Typical such actions include asking the robot to share the
pictures it has collected in the chat, and to move in a prescribed direction. Besides
these remote actions, the rover can perform its own actions, called local, e.g., those
required to avoid an obstacle.

Regardless of their local or remote kind, the actions the rover can carry out
are stored in the context as Datalog facts. For instance, the following snippet of
code shows how we store in the context the information about remote actions to
take a photo and a video:
tell <| Fsc.Facts.usrcmd("photo","/rpi/photo™)
tell <| Fsc.Facts.cmddesc ("/rpi/photo", "snapshot a photo with camera")

tell <| Fsc.Facts.usrcmd("video","/rpi/video")
tell <| Fsc.Facts.cmddesc ("/rpi/video", "shoot a movie with camera")

Differently from the other case studies this formal executable specification of
a rover makes it evident that the context provides effective support to uniformly
handle both local and remote activities. As a matter of fact, the components of
the rover have been implemented in different languages. For example, the driver
of the wheels is written partly in C and partly in C#, while the logical control
is implemented in MLgopa. Clearly, the context plays here the role of communi-
cation infrastructure, through which the different components interact. Crucial to
the implementation of the rover has been therefore the interoperability feature of
ML¢opa, which is based on .NET.
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As expected, the control loop of the rover, displayed below, repeats the follow-
ing until no-request is found.

Add to the rover program all the remote actions read from the context;
Execute asynchronously local and remote actions;

Collect and process data and store the results in the context;

— Send responses to remote applications.

while (not (get_detected "exit")) do
for _ in !-- request (ctx?idchat,ctx?cmd) do
array_cmd <- array_cmd |> Array.append [|ctx?cmd]]
for _ in !-- next (ctx?cmd) do

array_cmd <- array_cmd |> Array.append [|ctx?cmd]]
listresult <- Async.Parallel
[for ¢ in array_cmd -> execute c]
|> Async.RunSynchronously
for r in listresult do
match r with
|lcmd, res -> for _ in !—-—- result (cmd, ctx?out) do
retract <| Fsc.Facts.result (cmd, ctx?out)
tell <| Fsc.Facts.result (cmd, res)

match ctx with
| _ when !- (request (ctx?idchat,ctx?cmd), result (ctx?cmd, ctx?out))
-> do
let result=send_message ctx?idchat ctx?cmd)
retract <| Fsc.Facts.request (ctx?idchat, ctx?cmd)
| -> printfn "no request"

run ()

The query request (ctx?idchat, ctx?cmd) extracts information from the con-
text to assemble the list of commands to be executed. This is done by checking
for messages arriving at the context from the Internet. The tag idchat identifies
a remote application. Note that both rover commands and results are modelled
as suitable facts inside the context through the tell and retract operations. The
function run sets up the context, e.g. it turns on/off the video camera and the
distance sensor. Its code, not displayed here, also invokes a configuration function
that sets the sequence of local actions.

The behaviour of the rover also depends on the obstacles identified by the
camera in the current environment. The following function is used to detect the
nature of the obstacles by inspecting the context.

let infoimage = get_out "discovery" |> imagerecognition
for tag in infoimage.tags do
discovery tag.name tag.confidence
for _ in !-- recognition(ctx?0obj,ctx?value) do

The idea is that the objects are suitable facts in the context and that object recog-
nition in the current image depends on the parameters of confidence of objects,
such as size, rotation, etc.

Finally, this case study turned out to be useful also to tune our implementation.
In particular, the cache for the bytecode generated by the just-in-time compiler
improved the performance of the code implementing the control logic. The response
time dropped from a few seconds to few milliseconds.
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5 Conclusions, Discussion and Open Problems

After a brief survey of the main features of the COP language MLcopa, we have
reported on some experiments on its usage. We considered some real case studies,
although admittedly simplified in some details. These experiments helped us in
assessing the effectiveness of our adaptation primitives and of their implementa-
tions in F#. They also showed that the expressive power of MLcop, is adequate
for supporting the design of real, non trivial applications. In particular, we found
that its component based on Datalog is easy to use and powerful enough to de-
scribe involved contexts. Indeed, the smart home case study of Section [2] showed
that Datalog predicates easily encode not only data but also complex business
logic rules involving both physical and virtual resources. Furthermore, we found
that the bipartite nature of MLcopa, permits developers to clearly separate the
design of the context from that of the application, yet maintaining their inter-
relationships. This is particularly evident in the rover case study of Section [}
where the context provides the mechanisms to abstract from the communication
infrastructure, thus making the code that controls the rover fully independent
from the actual features of that infrastructure. Finally, our compilation strategy
resulted in an implementation that is portable and interoperable with existent F#
and .NET libraries. Actually, the rover case study of Section [d] proved that we can
easily develop MLcopa applications that run on hardware architectures different
from standard PCs. Moreover, the FSedit case study of Section [] showed that
our adaptation constructs integrated well with standard .NET libraries, as no glue
code was required. However, our case studies also revealed some limitations of our
current prototypical implementation. Indeed, further functionalities are required
to make MLcopa more effective. Below we discuss some lines of improvement, both
pragmatic and theoretical.

Non-functional properties. Context-aware security and privacy is a crucial aspect
in pervasive IoT systems. For example, implementing the e-healthcare system dis-
cussed in [8], we found it necessary to protect patients’ data and to regulate the
usage of the hospital equipment by doctors and users through suitable access con-
trol policies. We approached both these problems within a linguistic point of view.
Therefore, we extended MLcopa with constructs to express security policies and
with mechanisms for checking and enforcing them [5]. Actually, security policies
are expressed just as logical predicates and their enforcement exploits the deduc-
tion machinery of Datalog. In addition, controlling safety properties, like access
control or other security policies, only requires lightweight modifications to the
knowledge base and to its management. Also we have devised a mechanism for
instrumenting the code of an application, so as to incorporate in it an adaptive ref-
erence monitor, ready to stop the execution when a policy is about to be violated.
We also extended the static analysis mentioned in Section [1] to identify the risky
operations that may lead to a violation. Note that the execution context and the
security policies therein are only known when the application is about to run, thus
our static analysis can detect the potentially dangerous actions only at load-time,
not at compile time. Thus, when an application enters a new context, the results
of the static analysis are used to suitably drive the invocation of the reference
monitor that is switched on and off depending on whether the action about to
occur is risky or not. In this way we avoid redundant invocations.
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There are also other non-functional properties that are of interest in real appli-
cations, and thus worth investigating. Typical example are properties concerned
with quality of service. They requires enriching both our logical knowledge base
and our applications with quantitative information, first of all with time. These
extension are also useful for evaluating the performance of both applications and of
contexts. For instance, on the one hand statistical information about performance
can help in choosing the most suitable application among those functionally equiv-
alent. On the other hand, contexts that guarantee a better performance can be
suggested to the users depending on the statistical information on the usage of
contexts or reliability of resources therein.

We also intend to enlarge our investigation to resources, an important and
critical aspect of contexts, starting from the resource-aware model in [0].

Coherency of the contexrt. Handling the context and keeping it coherent is another
important issue, provided that coherency does not hinder adaptation. It is indeed
possible that, e.g. some application e can complete its task even in a context that
became partially incoherent. This is very relevant in practice. Suppose for instance
that a resource becomes unavailable in the context, but was usable by e when a
specific behavioural variation started. Our current approach prevents e even to
start running, thus guaranteeing the absence of adaptation errors at run time.
Nevertheless, it is too restrictive, because it precludes to run an application that
only uses that resource when available, e.g. at the very beginning. A possible but
expensive solution consists in resorting to a continuous run time monitoring. In
general, finding a sound and efficient solution to this issue is pretty hard from
a theoretical point of view. Indeed, solutions are obtained by carefully mixing
static analysis and run time monitoring of the applications that are executing
in a context. Furthermore, “living in an incoherent context” is tightly connected
with how one deals with the needed recovery mechanisms that should be activated
without involving the users.

Concurrency. Similar problems arise when we consider concurrent systems. Actu-
ally, it turns out that every context-aware application is inherently concurrent.
Applications are not isolated when performing their tasks and usually they need
the resources offered by a context where plenty of other applications are running
and can compete for the same resources. An example of concurrency issues can
be found in our implementation of the rover, described in Section [4] where the
control activity of the robot is performed in parallel with the collection and anal-
ysis of data coming from the context. The current ad hoc solution is not yet fully
integrated in MLgopa and relies on the native threads of the operative system.
In [I3], MLcopa is extended to deal with concurrency, by having two threads:
the context and the application. The first thread virtualises the resources, the
communication infrastructure, and other software running within it. In the second
thread, the interactions of the application with the other entities are rendered
as asynchronous events that represent the relevant changes in the context. As a
consequence, all the interactions of the context with the entities it hosts are ab-
stractly described by its updates. More faithfully representations of concurrency
require to explicitly describing the applications that execute in a context, exchange
information using it and that asynchronously update it, as done in [7]. This ap-
proach leads however to the well-known problem of thread-interference, since one
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thread, in updating the context, may make some resources unavailable or may
contradict assumptions that another thread relies upon. The classical techniques
and mechanisms, like locks, cannot solve these issues, in an open world where
applications appear and disappear unpredictably, and freely update the context.
Since designers are only aware of the relevant fragments of the context and cannot
anticipate the effects a change may have, the overall consistency of the context
cannot be controlled by applications, and “living in an incoherent context” cannot
be avoided. This problem is addressed by the semantics introduced in [7], by using
a run time verification mechanism. On the one hand, the effects of the running
applications are checked to be sure that the execution of the selected behavioural
variation will lead no other application to an inconsistent state, e.g. by disposing
a shared resource. On the other hand, the other threads are checked to guarantee
that they are harmless to the application entering in a behavioural variation.

Recovery mechanisms. Above, we briefly mentioned the need of specific recovery
mechanisms when adaptation failures arise at run time that prevent an applica-
tion from completing its task. These mechanisms are especially needed to adapt
applications that raise security failures, in case of policy violations. Since recovery
should be carried out without involving the user too much, the system running the
applications must execute parts of their code “atomically.” A typical way consists
of introducing constructs that allow marking parts of code as all-or-nothing trans-
actions, and to store auxiliary information to support the recovering mechanism.
In case the entire transaction is successfully executed, the auxiliary information
can be disposed; otherwise it is used to restore the application in the previous con-
sistent state, e.g. the one at the start of the transaction. It would be interesting
to investigate recovery mechanisms for behavioural variations that allow the user
to undo some actions considered risky or sensible, and that force the dispatching
mechanism to make different, alternative choices. However, in a concurrent set-
ting the context might have been changed in the meanwhile, and it might not be
consistent any longer. A deep analysis is thus needed to understand the interplay
between the usage of contextual information by the application, and the highly
dynamic way in which contexts change. A future line of investigation can be based
on not requiring a coherent global context, but requiring only coherent portions of
it, i.e. local contexts where applications run and stay for a while.
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