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bParallel and Distributed Systems Group, Faculty EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

Abstract

Cloud schedulers that allocate resources exclusively to single workflows are not work-conserving as they may be forced to leave
gaps in their schedules because of the precedence constraints in the workflows. Thus, they may lead to a waste of financial resources.
This problem can be mitigated by multiple-workflow schedulers that share the leased cloud resources among multiple workflows
or users by filling the gaps left by one workflow with the tasks of other workflows. This solution may even work when users have
di↵erent performance objectives for their workflows, such as budgets and deadlines. As an additional requirement, we want the
scheduler to be fair to all workflows regardless of their performance objectives.

In this paper, we propose a multiple-workflow scheduler that is able to target di↵erent quality of service goals for di↵erent
workflows and that considers fairness among di↵erent users. To this aim, we propose an unfairness metric and four workflow
selection policies. We prove that the resource selection that decides based on a task’s sub-budget, sub-deadline, finish time, and
cost on di↵erent resources is selecting the best resource based on the given information, while using the smallest number of
calculations. Simulations show that there is a trade o↵ between overall cost, makespan, and fairness. We conclude that the best
workflow selection policy to reduce unfairness is the direct policy, which explicitly selects the workflow that minimizes the value
of the proposed unfairness metric in each round.

Keywords: Scheduling, multiple workflows, fairness, budget constrained workflow, deadline constrained workflow

1. Introduction

Today, many large-scale (scientific) collaborative distributed
applications are designed as workflows. A suitable platform for
the execution of these workflows is the cloud, which is utiliz-
able through workflow scheduling methods. Whereas much re-
search has been done on single-workflow scheduling methods,
in order to reduce the monetary cost for users, when scheduling,
it may be beneficial to consider multiple workflows. However,
many users may encounter delays or even more costly sched-
ule plans, because most of research done in this area focus on
optimizing one criterion and the fairness is not considered. In
this paper, we propose a fair multiple-workflow scheduler for
workflows with known task runtimes, and evaluate it using sim-
ulation.

Scheduling workflows in distributed environments is an im-
portant topic in classical scheduling theory, and finding an opti-
mal solution for it can be reduced to the multiprocessor schedul-
ing problem, which has been classified as an NP-complete
problem [1][2]. There are many methods which consider the
problem of scheduling a single workflow on multiple resources
[3][4][5]. Since workflows contain dependent tasks, task start
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times may be postponed until their preceding tasks are com-
pleted. Therefore, the schedule map of some resources rented
in the cloud may contain idle time periods. Several researchers
have used these idle times for scheduling more workflows
on fewer resources, leading to multiple-workflow scheduling
[6][7]. However, most of this research considers the optimiza-
tion of only one metric such as makespan or cost for all work-
flows. In addition, only few researchers have considered fair-
ness among the workflows [8][9]. In this paper, we consider
both criteria of time and monetary cost as well as fairness.

The concept of resource sharing in multi-workflow schedul-
ing on the cloud can be addressed from two di↵erent points of
views. One point of view considers the perspective of optimiz-
ing the global quality of service (QoS) metrics, such as mini-
mizing the overall execution cost. The second perspective has
as its main objective the optimization of each individual user’s
QoS metrics. These two perspectives can have conflicting out-
comes. For example, minimizing the overall execution cost of
all the workflows can have a detrimental e↵ect on some individ-
ual users’ QoS metrics. In order to overcome this trade o↵, in
this paper we propose a notion of unfairness, and a scheduling
method for reducing it. It is considered that each workflow has
an acceptable plan, and we want to merge these plans in order
to find a better solution, i.e. improving their soft constraints. In
this paper we assume workflows to have two constraints, viz.,
time and cost, each of which can be either hard or soft. The
hard constraints are imposed as deadlines and budgets, while
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the soft constraints must be optimized. Thus, for a deadline-
constrained workflow, the execution cost must be minimized,
while for a budget-constrained workflow, the makespan must
be minimized.

In order to reach a fair schedule, each workflow must be
scheduled considering other workflows. Therefore, we add a
workflow selection step. After each workflow selection, we
select a task from the workflow. There are methods that are
proposed to order the tasks of a workflow [3]. In this paper,
we divide the multiple workflow scheduling problem into two
steps of workflow selection and task scheduling and propose a
fast task scheduling technique besides four workflow selection
policies. We test the performance of the proposed method us-
ing simulations. The role of using each policy is investigated in
the tests. In addition, the e↵ect of workload size, user defined
constraints, the rate of budget constrained workflows against
deadline constrained workflows in the workload, and several
other measures are also inspected. In the experimental results,
the earned fairness, total cost, and the level of loyalty to users’
schedule are reported. In the experimental results we answer
the questions of which workflows are suitable for and can par-
ticipate in resource sharing, and how well the soft constraints
of workflows can be met in relation with their hard constraints.

The problem we address in this paper is minimizing the un-
fairness when scheduling multiple workflows while maintain-
ing the hard constraints and optimizing the soft constraints. The
main contributions of this paper are the following:

• We define a multi-criterion notion of unfairness (Section
2).

• We propose a multi-workflow scheduler that takes fairness
into account (Section 4).

The other contributions are:

• We propose four workflow selection policies (Section 4).

• We provide the necessary mathematical model to prove
the main idea of the proposed scheduling technique works
(Section 4).

• The role of the gaps inside each workflow plan and its in-
fluence on the final multi-workflow scheduling is concen-
trated on (Section 6).

2. Problem Definition

In this section we define the main assumptions and an ab-
stract model for scheduling multiple workflows with di↵erent
QoS requirements on a cloud infrastructure.

2.1. Resource model
In our model, cloud resources consist of processing devices

connected via a network that can be leased for specific periods
of time, e.g., multiples of one hour. Resources are assumed to
be heterogeneous in that they may have di↵erent speeds, which
are measured by the ratio of the processing capacity of each re-
source and that of the resource with lowest processing capacity.
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Figure 1: The system model with a scheduler scheduling multiple workflows
on resources of a cloud.

The bandwidth of the connecting network is limited which
causes communication latencies, though the bandwidth for
tasks on the same resource is assumed infinite. The system is
depicted in Figure 1.

2.2. Application model
In this paper we consider workflow applications that can be

modeled as directed acyclic graphs (DAG), with nodes repre-
senting computational tasks and edges representing data depen-
dencies. A task can only start executing after it has received all
data from its predecessors. Tasks are considered rigid, and their
runtimes vary in proportion to the speeds of the resources they
run on. Every DAG has a single entry and a single exit node,
which can be guaranteed by possibly adding dummy tasks with
zero runtime.

2.2.1. Hard and soft constraints of workflows
It is assumed that each workflow has either a budget or a

deadline, set by the user, as a hard constraint; a workflow
is called a budget or a deadline workflow accordingly. The
makespan of a workflow is length of the time interval between
the start time of its entry task and the finish time of its exit
task. Similarly, the execution cost of a workflow is the overall
billing cost of the resources over the rented time periods. For
budget workflows, the scheduler must minimize the makespan
while spending at most its budget. For deadline workflows, the
cost of the schedule plan must be minimized while meeting the
given deadline. We call the metric to be minimized for each
workflow its soft constraint.

2.2.2. Preliminary scheduling
Prior to scheduling the workflows collectively, each work-

flow’s schedule plan without resource sharing is developed.
This process is called preliminary scheduling, and its result
is called the reference plan, which will be used during the fi-
nal scheduling. In the reference plan, it is assumed that the
cloud resources are enough to schedule each workflow. In other
words, there is a scheduling plan to meet the deadline or budget
of a workflow. The number and type of resources used by the
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plan of each workflow may vary based on the workflow proper-
ties such as number of tasks, their interrelationship, the budget
or deadline, etc. In order to determine the number of resources
in the shared system used for scheduling all workflows, all the
resources used in the individual reference plans are combined.

For a budget workflow (w), we indicate its budget by Bw, and
in case of a deadline workflow, its deadline is indicated by Dw.
The makespan and cost of the reference plan for w are indicated
by Rw and Cw, respectively, while its makespan and cost in the
shared system are denoted by rw and cw.

2.2.3. Cost calculation
A timeslot is the shortest period of time that a resource can

be leased. In our model, the scheduler may map tasks of dif-
ferent workflows to the same timeslot, which will be called a
shared. In that case, all participating workflows must pay for
that timeslot. Since the amount of a timeslot workflows are us-
ing may vary from close to zero percent to the whole timeslot,
we assume that the share of the cost of each workflow for a
shared timeslot is proportional to the cost of the timeslot mul-
tiplied by the usage ratio of the tasks of that workflow in the
timeslot. So, if ti,c is the amount of time used by tasks of work-
flow wi in timeslot c with price pc, the cost share for workflow
wi is pcti,c/(

P
t j,c), where

P
t j,c denotes total usage of timeslot

c.

2.3. Unfairness definition

In this paper, we also consider fairness. Since there are work-
flows with di↵erent quality of service requirements, and re-
source sharing is arbitrary (i.e. users are able to participate or
not), the definition of fairness is di↵erent from that of Zhao et
al. [8].

We calculate the unfairness using the speedup of the bud-
get workflows and the savings of the deadline workflows. The
speedup and the savings of a workflow w are defined as S w =
Rw/rw and as Ew = Cw/cw, respectively. The larger these values
are, the more advantage the corresponding workflows benefit
from resource sharing.

In order to maintain fairness, all speedups and savings must
be relatively the same. Let WB be the set of budget workflows,
let WD be the set of deadline workflows, and let W be the set of
all workflows. Then, defining

A =

P
w2WB

S w +
P

w2WD

Ew

|W | (1)

as the average resource sharing benefit, the unfairness U is de-
fined as

U =

P
w2WB

|S w � A| + P
w2WD

|Ew � A|

|W | , (2)

which is equal to zero when all the S w and Ew are equal.
The problem we want to address in this paper is minimiz-

ing the unfairness U while satisfying the hard constraints and
optimizing the soft constraints of the workflows.

3. Background and Related Work

Scientific workflows are usually represented by Directed
Acyclic Graphs (DAG) which consist of tasks as vertices. The
edges in the workflow reveal the data dependencies and the
precedence constraints between the interrelated tasks. Some
researchers have also modeled scientific workflows as Hybrid
DAGs in which super-tasks can be composed of tasks that may
have data interactions during executions [10].

The vast majority of researchers in Cloud computing area
have focused on single workflow scheduling algorithms in or-
der to satisfy the users QoS constraints, namely deadline and
budget [11][4][12]. Furthermore, there are algorithms that have
been proposed to schedule multiple workflows [8][9].

One of these algorithms is BHEFT which is based on budget
distribution. This is a list-based scheduling approach to sched-
ule single workflow, and it is developed by Zheng et al. [11]
with the aims of minimizing makespan so that the users’ bud-
get and deadline constraints are met. In each step, BHEFT es-
timates a tasks sub-budget. This estimation is done based on
the remaining budget after the assignment of the previous tasks
and the average budget required for scheduling the unassigned
remaining tasks. Then, the algorithm minimizes the execution
time of the task under the tasks sub-budget constraint (based
on the HEFT method). Finally, if the budget is su�cient to
schedule all of the tasks, the workflow application is admitted,
otherwise the scheduler rejects it.

In contrast, in [4], a cluster-based scheduling method to
minimize monetary cost under deadline constraint is proposed.
Their solution has used Partial Critical Path (PCP) length to
cluster tasks and assigned it to a single instance which can
schedule all of the cluster’s tasks before their calculated latest
finish time (LFT). The main idea of PCP is to reduce communi-
cation cost by grouping the tasks of a critical path as a labeled
cluster.

Bittencourt and Madeira used horizontal clustering to ad-
dress the workflow scheduling problem [9]. In their approach,
they have used Path Clustering Heuristic (PCH) [12] to sched-
ule more than one workflow at the same time on grid en-
vironment. Authors introduced four strategies of sequential
scheduling, gap search scheduling, interleave, and group DAGs.
The interleaving algorithm tries to interleave pieces of each
of DAGs in a round robin manner. They illustrated that this
strategy causes to minimize the workflow execution time and
achieve better fairness among four strategies for scheduling
multiple workflows. However, they have not considered the
fairness as an optimization criterion in their scheduling algo-
rithms.

In [8], Zhao and Sakellariou presented two fairness-based al-
gorithms for static scheduling of multiple DAGs. In the first
step, they defined the slowdown parameter as the ratio between
the workflow execution time, when scheduled alone and when
scheduled with other DAGs. In this strategy, the fairness cri-
terion is determined based on the slowdown parameter. Next
DAGs are sorted in ascending order of their slowdown parame-
ter and select unscheduled task from DAG with minimum slow-
down value. For mapping phase, they have used list schedul-
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ing algorithms like HEFT. At each scheduling round, two fair-
ness policies are considered for optimizing makespan and fair-
ness: re-computing the slowdown parameter based on finish
time (FPFT) for the selected DAG, and based on current time
(FPCT) for all DAGs.

With the illusion of unlimited resources, each user may reach
the desired resources for a reasonable workflow size [13][14].
However, it might be either too expensive or too time consum-
ing to reach a predefined constraint, and there may be lots of
idle periods in the schedule plan. Therefore, a multi-workflow
scheduler which is able to utilize the idle periods of di↵erent
plans and make more a↵ordable schedules gains higher impor-
tance in this context.

These methods are proposed for the utility grid environment
and none of them takes into account the cloud features such as
monetary costs based on pay-as-you-go model, timeslot pric-
ing policy and VM heterogeneity. In addition, fairness of shar-
ing resources among multiple workflow applications has not re-
ceived the deserved attention.

4. Creating a Schedule

In order to address the problem of scheduling multiple work-
flows in a way that meets the hard constraints of all workflows
while considering fairness, we propose a method that consists
of four steps. First, we determine the sub-deadline and the sub-
budget of all tasks of all workflows, based on their preliminary
schedule plans. Then we repeatedly select a workflow and a
task from that workflow, and finally we select a cloud resource
for that task. The first step is done only once at the beginning,
while the remaining three steps are repeated until all tasks of
all workflows have been scheduled. The scheduling process is
shown in Figure 2.

4.1. Determining sub-deadlines and sub-budgets
In the first step, preliminary scheduling on the empty refer-

ence system is done for every workflow in order to obtain its
reference plan.

For budget workflows, we apply a modified version of the
BHEFT scheduling algorithm [11], which is able to deal with
timeslot-based resource costs. In order to assign a sub-budget
to Task t scheduled on the Resource p, we use the ratio r of the
task’s weight ht to the sum of all tasks’ weights on p, which can
be written as

r = ht/
X

hp2tasksp

hp, (3)

where tasksp denotes the set of tasks scheduled on Resource p.
Then the sub-budget of t is assigned by (rOp/Cw)Bw, where Op
is the total cost of Resource p, Bw is the budget of workflow
w, and Cw is the cost of the schedule of the BHEFT algorithm.
As resource sharing is used to improve the soft constraints, the
finish times of the tasks in the reference plan are stored as their
sub-deadlines.

For deadline workflows, we use the IC-PCP algorithm [15].
This algorithm computes latest finish time of each task (LFT )
based on the user-defined deadline. We use these values as

Select an unfinished workflow w

Determine sub-budgets and sub-deadlines

Schedule task t

Select an unscheduled task t of w

Any

unscheduled

Workflow?

Get preliminary schedule plans and constraints

Start

End

No

Yes

Figure 2: The proposed scheduling process

sub-deadlines of tasks. Users expect to reach a better plan via
resource sharing, thus sub-budgets are also calculated. Since
there is no budget, rOp is considered as the sub-budget of Task
t.

4.2. Workflow selection
After the calculation of sub-budgets and sub-deadlines, a

loop of scheduling tasks is started. At the beginning of each it-
eration, a workflow is selected. We propose the following four
workflow selection policies.

4.2.1. Ordered workflows
In order to apply this policy, a unique number is assigned to

each workflow. Then, in each iteration, the unfinished workflow
with smallest number is selected. E↵ectively, this means that a
workflow is selected and all of its tasks are scheduled before
the scheduler goes to the next workflow.

4.2.2. Round-Robin
In this policy, a queue of unfinished workflows is maintained

by the scheduler. Iterating over workflows in the queue, work-
flows are selected one by one and for each of them one task is
scheduled. In order to reduce the unfairness, the Round-Robin
(RR) policy interleaves the tasks, not parts of a DAG as pro-
posed in [9].

4.2.3. Weighted Round-Robin
In order to compare workflows according to their resource

utilization, the fraction of idle time in a resource is defined as
its gap ratio. The gap ratio of a workflow schedule plan is de-
fined as the weighted average of the gap ratios of the resources
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in this plan, with the weights of the resources equal to their rel-
ative speeds. Presumably, workflows with higher gap ratios in
their reference plans can take more advantage of resource shar-
ing, and workflows with lower gap ratios tend to be scheduled
without resource sharing. In addition, a workflow which rents
an instance for the duration of a timeslot and pays for it, tends to
keep it and schedules its own tasks. Workflows take advantage
of resource sharing only when a gap appears.

We now propose a weighted round robin (WRR) workload
selection policy which considers both gap ratios and timeslots.
To this aim, for each workflow w, its gap ratio gw is defined as
the average gap ratio among its rented reference resources. The
weight of workflow w is defined as sw = 1/gw. In addition, let
mins be equal to the smallest value of the sw. In every iteration,
the workflow with the largest value of sw is selected. Then, its
sw is decreased by mins. When all s values become negative,
they are increased by their 1/gw.

In addition, if during a workflow task assignment a new
timeslot is rented, its next tasks can be scheduled with high pri-
ority while they are scheduled in current timeslot of the current
resource.

4.2.4. Direct Heuristic
This policy is guided by the definition of unfairness (2). In

fact, the policy selects the workflow that maximizes the value
of U. However, that equation requires the speedups and savings
of the current plan, which are not available until the schedul-
ing finishes. So we propose heuristics to estimate the partial
speedups and the partial saving s of the current plan.

To calculate the partial savings of a workflow, its current cost
cw is computed as the sum of the shares of its tasks on each
resource multiplied by their prices, and the sum of the sub-
budgets of its scheduled tasks is taken as Cw. Now, Ew is com-
puted as Cw/cw.

In order to compute the partial speedup of a workflow, let h
be the set of its tasks scheduled in the current plan that do not
have a successor scheduled in that plan. Now instead of Rw/rw,
the partial speedup of workflow w is computed as the average
ratio of the task sub-deadline sd(t) in the reference plan and the
task finish time f t(t) in the current plan across the tasks t in the
set h:

S w =

P
t2h

sd(t)
f t(t)

|h| . (4)

Prior to starting the scheduling process and using the above
estimations, one task of each workflow is scheduled to prevent
h to be empty.

4.3. Task selection

In the third step, the selection of a task is done. Task selection
is done using upward rank [3]. A task with a longer critical path
(in terms of both execution time and communication time) to
the end of workflow gets a higher upward rank than a task with
the shorter one. The end of a workflow is reached when the last
task with no child is completed.

4.4. Task scheduling

In the final step, the selected task is scheduled on the cloud’s
shared resources. For selecting a resource for the task, we use
di↵erent policies for budget workflows and deadline workflows.

For budget workflows, the a↵ordable cloud resource (which
does not violate sub-budget) with the earliest finish time is
selected. This selection causes to have a schedule with the same
(or lower) budget which finishes earlier. If an a↵ordable re-
source is not found, the cheapest resource that meets the dead-
line is selected.

For deadline workflows, the cheapest resource that meets the
task’s sub-deadline is selected. Here again, if a resource is not
found that meets the deadline, the resource which finishes the
task closer to the deadline is selected.

It is possible that no resource meeting the above mentioned
conditions is found. In order to select then the most appropri-
ate resource, we test the scheduling of the selected task on each
of the resources that have already been leased along with one
resource from each resource type. This gives the scheduler the
opportunity to easily select between using an already leased re-
source and a new resource.

When comparing two resources as candidates for a task, ei-
ther one of them is better in finish time and the other in cost, or
one of them is better (or at least equal) in both criteria of finish
time and cost, in which case the decision is clear. In order to
distinguish all situations when comparing two resources, which
are listed in Table 1, we denote the sub-deadline and the sub-
budget of a Task t and its finish time and cost on Resource ri
by sd(t), bt(t), f ti(t) and cti(t), respectively. The last column of
the table shows the decision, which is the index of the selected
resource.

Row 5 of the table is the ”easy” case when Resource ri is bet-
ter in both criteria than Resource r j. Rows 1–4 cover all cases
when Resource ri (r j) is better than Resource r j (ri) in finish
time (cost). In the situations in Rows 1 and 2, both resources
meet both constraints, and the decision then depends on the type
of the workflow. In Row 1, In case of deadline workflow, since
the deadline is met, the less cost e↵ective resource is selected.
The same is also done for budget workflows in Row 2, whereas
the resource with the earlier finish time is selected. In the sit-
uation in Row 3, both resources still satisfy the sub-deadline,
but at least the most costly Resource ri exceeds the sub-budget.
Then the cheapest resource is preferred. Row 4 covers the re-
maining situations in which the slowest Resource r j exceeds
the sub-deadline, while the most costly Resource ri may or may
not exceed the sub-budget. We assume that the sub-deadline of
a task is more important than its sub-budget, and so, violating
the sub-budget of a task is allowed when this is needed to meet
its sub-deadline, or to finish at the earliest after its sub-deadline.
Therefore, in the situations of Row 4, Resource ri, which fin-
ishes the task earlier, is selected.

In order to avoid mutually comparing all resources, which
would lead to a complexity of order O(n2), we use the selection
process to create a transitive partial order on the set of candidate
resources to schedule a task. In many methods such as HEFT
[3], PCH [16] and IC-PCP [15], only one criterion (finish time)
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Table 1: Resource selection decision for a task based on its constraints and its
cost and finish time on two resources.

Row Situation Decision

1 f ti(t) < f t j(t) < sd(t) and i
ct j(t) < cti(t) < bt(t) (budget wf)

2 f ti(t) < f t j(t) < sd(t) and j
ct j(t) < cti(t) < bt(t) (deadline wf)

3 f ti(t) < f t j(t) < sd(t) and j
ct j(t) < cti(t) and bt(t) < cti(t)

4 f ti(t) < f t j(t) and sd(t) < f t j(t) i

5 f ti(t)  f t j(t) and cti(t)  ct j(t) i

is used to select the best resource, while the decision making in
the present paper is based on both time and cost.

Using a transitive relation, a Resource ri that is found in a
linear search is better than all other resources, say for any Re-
source rx, we have ri is preferred over rx. In other words, it is
enough to compare the candidate Resource ri with a resource
that is preferred over some resources, to be sure that we can
prefer ri over all of them or not. Below we define the preferred
relation, and next we prove that it is transitive.

Definition 1. The preferred relation �t on the set of resources
on which Task t can be scheduled, written ri �t r j, is defined
by Resource ri being preferred over Resource r j according to
Table 1.

We now show that the preferred relation is transitive.

Theorem 1. The preferred relation is transitive.

Proof. Assume that for Task t of a workflow ri �t r j and r j �t
rk are decided based on Rows p and q of Table 1, respectively.
If q is one of Rows 1 to 4, then ri �t rk is decided based on
either Row 5 or Row q. If q is Row 5, then ri �t rk is decided
based on either Row 5 or Row p. The only exception is for
p = 3, which the decision can also be made on Row 4.

Since the task scheduling policy defined above is proven to
be e�cient, we fix it for the rest of the paper, and we evaluate
the di↵erent workflow selection policies to see how they a↵ect
fairness.

5. Experimental Setup

In this section, we describe the simulation environment and
applied parameters to workloads and the scheduler.

In the reference system, we consider two types of resources
a and b. The speed of Type a is half of the speed of Type b
and the price of Type b is three times the price of Type a [11].
We assume that the reference system includes 100 resources of
each type. Timeslot lengths of the resources are selected to be
5 or 60.

The speed, price, and timeslot of resources in the shared sys-
tem is set to the same values as in the reference system. In order

to set the amount of resources in the shared system, the refer-
ence resources used for scheduling the examined workflows are
combined. In order to set a scale on using combined resources,
we defined a parameter called resource factor. It is defined as
the fraction of combined resources that is used in the shared
system. The number of combined resources is multiplied by
resource factor, to determine the number of resources. The re-
source factor ranges between 0.4 and 1.2.

We use di↵erent workload sizes to examine how the work-
load size a↵ects the scheduler performance. Each workload
contains l workflows, where l = 10, 20, 30, ..., 160. All work-
flows of the workload are present at the start time. The budget-
ratio is defined in each workload as the ratio of budget work-
flows to the total number of workflows. This factor is assumed
to be 0, 0.5 or 1.

In order to get realistic results, we use scientific workflows of
di↵erent domains. We select bioinformatics (Epigenomics and
SIPHT workflows [17], [18], [19]), astronomy (Montage work-
flow), gravitational physics (LIGO workflow) and earthquake
science (CyberShake workflow). The Epigenomics workflow
is a data processing pipeline which automates various genome
sequencing operations. SIPHT workflow automates the search
for sRNAs. Montage [20] workflow is used to process several
images of the sky in order to make a final mosaic, and calcu-
late the geometry of the output image from the input images.
LIGO Inspiral workflow is used to detect gravitational waves
[21][22]. CyberShake workflow is used to apply the Proba-
bilistic Seismic Hazard Analysis (PSHA) technique, in order to
characterize earthquake hazards [23].

In order to generate random workflows, we use the WF gen-
erator [24]. The processing load consists of scientific work-
flows of Montage, Epigenomics, Cybershake and LIGO Inspi-
ral with equal chances of appearance. We also have done ex-
periments with the SIPHT workflow.

For the total execution time of workflows, we use the two-
stage hyper-Gamma distribution that is also used in [25]. The
shape and scale parameters (↵, �) of two component Gamma
distributions are set to (5.0, 501.266) for 30% of the workload
and (45.0, 136.709) for the rest. We normalize the runtimes of
the tasks of each workflow in such a way that its overall runtime
is equal to the processing load specified by the hyper-Gamma
random generator.

The size of the workflows varies uniformly between [30,38]
and [90,138]. The average task runtime on a Type a resource is
26.4 with standard deviation of 37.8. These sizes are selected
for two reasons. First, because of the type of work performed by
each workflow, its possible sizes are limited to certain values.
Second, the proposed method applies fairness and improves
QoS constraints using the aggregation of tasks’ improvements.
These improvements are achieved by finishing a task earlier
than its sub-deadline and/or cheaper than its sub-budget. These
are very tight for workflows with lots of tasks, which restricts
the improvement. Therefore we avoid very large workflows.

As performance metrics, we use unfairness, normalized
makespan, normalized cost and utilization. The normalized
makespan of a workflow is defined as its makespan on the
shared system divided by its makespan on the reference sys-
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tem. The same holds for the normalized cost. We measure the
utilization with the average gap ratio of all resources because it
is important to consider only their rented timeslots. All these
metrics must be minimized.

Prior to applying the policies, the preliminary scheduling is
done, and the budget and deadline workflows are scheduled on
the reference system using the BHEFT and IC-PCP scheduling
methods, respectively. We use two types of deadlines, tight and
loose [26][27]. For tight deadlines, the HEFT makespan (which
doesn’t consider the budget) of each workflow is calculated and
multiplied by values that are selected from the normal distri-
bution with average 2 and standard deviation 1.4. For loose
deadlines, the average and standard deviation are 8 and 3, re-
spectively.

For budget workflows, tight and loose budgets are consid-
ered. For tight budgets, the cost of scheduling all tasks of each
workflow in a Type a resource is multiplied by a sample from
the normal distribution with mean and standard deviation 2 and
1.4 respectively. For loose budgets, the average and standard
deviation are 8 and 3, respectively.

In the workloads we use, 20% (80 %) of the workflows have
a tight (loose) constraint (deadline or budget). However, only
deadlines and budgets are accepted that are met by the reference
scheduling methods, and the rest are considered non-realistic
and omitted.

6. Experimental Results

In this section, we examine the impact of the timeslot length,
the resource factor, the workload size, and the budget-ratio on
the performance of the proposed polices. Except for the ex-
periments with the workload size, the simulation is done using
8 workloads consisting of 80 workflows each. These are ran-
domly generated as described in the previous section. The av-
erages of the results are reported. Since this paper focuses on
studying the requirements of fair scheduling, we analyse factors
with more influence on fairness.

6.1. Timeslot length analysis

With the first experiment, we investigate the impact of the
timeslot length on the performance. On the reference system,
the average gap ratio for budget and deadline workflows with
timeslot 60 are 0.10 and 0.12, respectively. The corresponding
values are much lower for timeslot 5: 0.009 and 0.012. This
can be explained by the task size. When the average task size is
longer than the timeslot, almost all of the timeslots are utilized
by tasks, therefore fewer gaps are formed. This makes it hard
and even unnecessary to improve the schedule plan via resource
sharing.

In Figure 3, the gap ratio as a function of the resource factor
for timeslot lengths of 5 and 60 is shown. For timeslot 5, the
average gap ratio of the reference resources is 0.01. It is shown
that it is decreased to 0.003 for the shared system. It means that
gaps are shrunk 0.7% in average, which is hardly an improve-
ment. Therefore, all remaining tests are done using timeslot 60.

W

W

Figure 3: The gap ratio as a function of the resource factor for a timeslot length
of 5 (top) and 60 (bottom) for di↵erent scheduling polices. RR and WRR are
abbreviations for Round Robin and Weighted Round Robin, respectively.

6.2. Cost and makespan analysis

In this section, we examine the impact of the resource factor
on cost, makespan, and unfairness.

6.2.1. Cost- and makespan-resource factor dependency
Figure 4 shows the normalized makespan (top) and the nor-

malized cost (middle) as functions of the resource factor. Re-
gardless of the scheduling policy, it is observed that there is a
trade-o↵ between makespan and cost. When the number of re-
sources in the shared system is limited, the cost is lower but the
makespan is higher, and vice versa. The reason is that when
resources are not su�cient, some tasks that are scheduled on
fast resources in the reference plans, are forced to be scheduled
on slow ones. This causes reduction in cost and increase in the
makespan. On the other hand, when the resources o↵ered by
the shared system are more than by the reference system, it is
more likely that tasks with slow resources in the reference plans
are absorbed by the already rented fast resources. This causes
shorter makespans and more costly plans. However, there is
point of resource factor, on which the performance metrics are
desirable. Based on the desired performance, this point can be
selected from the given figures.

6.2.2. Resource utilization analysis
Another observation in cost in Figure 4 (middle) is that all

policies are taking advantage of resource sharing and they de-
crease the average overall cost. The reason for this decrement
can be found via the resource utilization. Figure 3 (bottom)
shows the gap ratio as a function of the resource factor. It is
observed that for all proposed policies, as the resource factor
is increased, the gap ratio is decreased. It can be explained
from the perspective of tasks’ runtimes and freedom to select
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Figure 4: The normalized makespan (top), the normalized cost (middle) and the
unfairness (bottom) as functions of the resource factor

resources. The average runtime of tasks on Type a and Type b
resources are 13.2 and 6.6, respectively. Therefore, for timeslot
60, the chance to utilize a timeslot of a Type b resource is more
than a Type a resource. Since the number of resources grows by
increasing the resource factor, the chance of the scheduler to se-
lect a better resource is increased. The cost of using an already
rented timeslot for a new task is zero for the scheduler. There-
fore, it is very likely to schedule a task in an already rented
timeslot, instead of launching a new one. Since faster resources
are more likely to be selected by increasing the resource factor,
it also explains the decrease in the makespan.

Another explanation for improving the cost more than the
makespan is that both task scheduling policies (for deadline and
budget workflows) are designed to meet the deadline as their
first priority. Then, between a↵ordable resources they select
the one which suits them the most.

6.2.3. Unfairness-resource factor dependency
In Figure 4 (bottom), the unfairness as a function of the re-

source factor is shown. As expected, the Direct policy shows
better performance in this metric. However, for all policies,
a minimum point of unfairness can be found. For all policies,
when there is not enough resources, the chance to rent an appro-
priate resource decreases for all workflows. In order to describe
this situation, consider the scenario when the QoS requirements
of a task are met better with a new resource, and the scheduler
leases the resource. The chance to find an eligible resource be-
tween unleased resources decreases when the total number of
resources is decreased. In addition, the lack of resources causes
newly leased resources to be more eligible for all workflows
than current available resources. However, only limited num-
ber of workflows earn the chance to lease better resources. This
increases the unfairness criterion.

On the other hand, when there are too many resources, it is
easy for the scheduler to find an eligible resource for every task,
but outstanding resources are also found rarely. For example,
some workflows take more advantage of earlier rented times-
lots of faster resources. Parts of these resources are rented by
other workflows previously, and they are not available for every
workflow to use. This causes the unfairness to rise.

Based on the given result, when the resource factor is near
one, i.e 0.9, the Direct policy is more fair and the unfairness
criterion is at its lowest value.

6.3. Budget-ratio analysis

In this section, we examine the impact of budget-ratio on the
scheduling metrics. Budget-ratio is set to determine the ratio
of budget and deadline workflows. Budget-ratio is inspected
to reveal the impact of type of constraints on the scheduling.
In addition to the impact of the resource factor, we notice that
the makespan and cost for deadline and budget workflows are
di↵erent. In Figure 5, the normalized makespan and the nor-
malized cost as functions of the resource factor, for budget and
deadline workflows are shown separately.
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(a) The makespan for budget workflows
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(b) The cost for budget workflows
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(c) The makespan for deadline workflows

W

(d) The cost for deadline workflows

Figure 5: The normalized makespan and the normalized cost as functions of the resource factor, for budget and deadline workflows.

6.3.1. The performance of budget workflows versus deadline
workflows

Considering Figures 8a and 8b leads to an inspiration for the
system setup for workloads consisting of only budget work-
flows.

For example, resource factors of 0.8 or 0.9 give the best min-
imization in cost and meets the reference plans’ makespans in
Figures 8a and 8b. We set budget-ratio to 1.0 and resource fac-
tor to 0.9. The normalized cost is changed as a function of the
workload size. However, for workloads with sizes greater than
10, the changes in the normalized cost is very short, i.e. stan-
dard deviation is 0.005. The mean of this set is 0.87. As it is ex-
pected, the normalized makespan also has no obvious changes,
and its mean and standard deviation are 0.9999 and 1.2 ⇥ 10�5,
respectively. However, the cost is improved 13%. It seems that
this much reduction is the bound of the cost improvement, and
the explanation can be found within the resource utilization.
For workloads with sizes greater than 10, gap ratio values do
not change significantly, i.e. mean and standard deviation are
0.034 and 0.0005. Therefore, it seems that for this set of tests
the highest possible resource utilization is reached and further
improvement is not possible.

For budget workflows, unfairness is measured based on their
makespan, and since there is no improvement in makespans for
all workflows, the calculated unfairness remains too low. Mean
and standard deviation are 3.6⇥10�10 and 2⇥10�5, respectively.
However, considering fairness, again the Direct policy performs
about 50 percent better than other policies.

For scheduling deadline constrained workloads, we consider
Figures 8c and 8d. It seems that resource factor 0.5 gives the

best minimization of cost, while meeting the deadline.

6.3.2. Summarizing budget-ratio analysis
Although the hard constraints are not the aim of the mini-

mization, in both cases of deadline and budget workflows, the
hard constraint is decreased more than the soft constraint. The
explanation for this behaviour can be found via the sub-deadline
and sub-budget assignment process. For budget workflows,
sub-deadlines are defined unchangeable, while sub-budgets are
changed if a task consumes less cost than its sub-budgets. For
deadline workflows, although task sub-budgets are updated via
the scheduling, but their deadlines are independent from the ref-
erence scheduling, and they are assigned using the latest finish
time process [15].

6.4. Workload size analysis
In this section, we inspect the impact of workload size on the

performance metrics. The normalized makespan, the normal-
ized cost and the gap ratio as functions of the workload size,
for deadline constrained workloads are shown in Figure 6. The
normalized makespan is close to 1.0 again, but only the Direct
and Ordered policies meet the deadline. The reason for this is
that in order to attain better cost minimization, we select a small
resource factor value. As the size of the workload grows, the
makespans of di↵erent policies do not change, but their costs
are decreased. This also is explained via the resource utiliza-
tion.

The gap ratio is decreased by increasing the workload size.
This happens because the average gap ratio of deadline work-
flows are greater than that of the budget workflows. In other
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Figure 6: The normalized makespan (top), normalized cost (middle) and gap ra-
tio (bottom) as functions of the workload size, for budget-ratio=0 and resource
factor of 0.5

words, deadline workflows’ reference plans contain more gaps
and therefore, they can take more advantage of resource sharing
than the budget workflows.

From the fairness perspective, it is shown in Figure 7 that the
WRR and RR policies perform better. It can be explained by
the trade-o↵ between makespan, cost, and the fairness. Looking
over all figures, it is revealed that there is a trade-o↵ between
these metrics. In all of our experiments, whenever a policy is
better in two metrics, it loses the third. Therefore, although
WRR and RR policies give smaller unfairness and almost the
same normalized cost as others, they don’t meet the deadline.

6.4.1. Mixed workload analysis
We also analyse the impact of the resource factor, when

budget-ratio is 0.5. We try to find the resource factor which
gives better performance and lower unfairness.

According to Figure 4 (c), when the resource factor is 0.9,
the lowest unfairness is achieved. Although, from the perfor-
mance perspective, it is not useful. The normalized makespan
(a), the normalized cost (b), and the unfairness (c) as functions
of the workload size, for budget-ratio equal to 0.5 and resource
factor of 0.9 are shown in Figure 8. Although the Direct policy
outperforms other policies in fairness and cost metrics, it has

W

Figure 7: The unfairness as a function of the workload size, for budget-ratio=0
and resource factor of 0.5

higher makespan than the others. Again, the trade-o↵ between
three metrics is observed. For the Direct policy, since it main-
tains the normalized makespan close to 1, and the impact of
increasing the workload size is decreasing in normalized cost,
we expect the increase in unfairness in our experiments.

It is also observed that increasing the workload from 10 to 60
causes the normalized makespan for almost all of the polices to
be improved in Figure 8 (a). It shows the positive e↵ect of
resource sharing on the schedules with more workflows. How-
ever, for larger workloads, the high competitions to grab the
best resources stops the improvement.

The percentage of workflows that fulfilled their QoS require-
ments (budget and deadline) are shown in Figure 8 (d). It is
calculated by dividing the number of successful schedules by
the total number of schedules. In case of failing the QoS re-
quirements, the preliminary schedule plans of the workflows
are applied. Almost all policies perform the same for relatively
large workloads. However, for smaller workloads, since the re-
source sharing is still limited, the chance of having unsuccessful
schedules increases.

6.4.2. Minimizing cost and makespan
In order to find a resource factor which serves for both bud-

get and deadline workflows, we select the mean of the resource
factors that are found before. Those resource factors are 0.5 and
0.9 for deadline and budget workflows, respectively. The nor-
malized makespan , the normalized cost and the unfairness as
functions of the workload size, for budget-ratio equal to 0.5 and
resource factor of 0.7 are shown in Figure 9. In this experiment,
although direct policy shows a great decrease in unfairness, it
doesn’t perform well in the makespan. The best overall perfor-
mance is achieved using WRR and ordered policies.

On the other hand, we compare the results in Figure 9, with
resource factor equals 0.7 in Figure 5. Despite the mixed selec-
tion of budget and deadline workflows, the results are similar
to the results of deadline workflows, shown in Figure 5 (c) and
(d). It is caused by the preference of the deadline over budget
in task scheduling algorithm.

6.5. Workflow type analysis
In this section, we inspect the impact of workflow types on

the fairness and the performance of the scheduling. The gap
ratio of di↵erent workflow types on timeslots of 5 and 60 are
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(c) The unfairness (d) The percentage of workflows that fulfilled their QoS
requirements

Figure 8: The normalized makespan (a), the normalized cost (b), the unfairness (c), and the percentage of workflows that fulfilled their QoS requirements (d) as
functions of the workload size, for budget-ratio=0.5 and resource factor of 0.9.

Table 2: The gap ratio of di↵erent workflow types on timeslots of 5 and 60

Workflow type timeslot 5 timeslot 60
SIPHT 0.003 0.038

Cybershake 0.008 0.082
Epigenomics 0.010 0.083

Montage 0.011 0.118
LIGO Inspiral 0.010 0.130

provided in Table 2. The results indicate that the gap ratio for
SIPHT workflow is between one third to one half of the other
workflows. The reason is that the SIPHT workflow consists of
several tasks with very short execution times. These tasks are
finished in minutes. However, the workflow includes one to
three tasks with long execution times which take hours to be
finished. This caused the SIPHT schedule plan to be very tight.

We omit the SIPHT workflow from our experiments, because
its gap ratio is too low. In other words, in comparison with other
tested workflow types, it doesn’t leave that much gaps that can
be used during the resource sharing.

7. Conclusion

In this paper, we have proposed a multi-criterion multi-
workflow scheduler and we have studied the e↵ect of four work-
flow selection policies on the fairness, the overall cost and the

makespan. In order to evaluate the proposed method, in ad-
dition to unfairness calculation, we examined the changes in
makespan and cost of the workflows, with and without the re-
source sharing. We also inspected the e↵ect of the number of
scheduled workflows in achieving fairness and decreasing the
cost and makespan. Our first conclusion is that there is a trade-
o↵ between three factors of overall cost, makespan, and the fair-
ness.

We also measured the gaps in the preliminary schedule of
each workflow, and examined their e↵ect in the final multi-
workflow scenario. We found that workflows with larger gap
averages take more advantages from multi-workflow schedul-
ing, and they can save more budget and finish earlier than work-
flows with smaller gap ratios. Our simulation shows the same
condition when time-slots are small. Therefore, the shorter the
time-slots, the less fair is the multi-schedule.

As another conclusion, we showed that in presence of more
than one criterion, the most suitable resources cannot be found
using a linear search, unless it is proved that the comparing
operator is transitive.

The empirical analysis shows that using the direct workflow
selection policy decreases the unfairness in almost all cases.

As future work, we plan to change the scheduler to work
dynamically. Although a reference schedule plan is necessary
for the current method, we intend to determine the sub-deadline
and sub-budget analytically.
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Figure 9: The normalized makespan (top), the normalized cost (middle) and the
unfairness (bottom) as functions of the workload size, for budget-ratio=0.5 and
resource factor of 0.7
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