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Abstract In heterogeneous systems, load balancing policies allow acceleration
of tasks by distributing work among devices, thus delivering performance and
energy efficiency. However, a key challenge that remains is programmability;
specifically, releasing the programmer from the burden of managing data and
devices with different architectures.

To this end, we extend EngineCL, a high-level framework built on top of
OpenCL to support FPGA devices. Our proposal fully integrates FPGAs into
the framework, enabling effective cooperation between CPU, GPU, and FPGA
devices. With command overlapping and judicious data management, our work
improves performance by up to 96% compared with single device execution
and delivers energy-delay gains of up to 36%. Besides, adopting FPGAs does
not require programmers to make big changes in their applications because the
extensions do not modify the user-facing interface of EngineCL.

Keywords Heterogeneous scheduling · FPGA · Load Balancing · OpenCL

1 Introduction

Moore’s Law and Dennard Scaling have driven the astonishing improvement
of general purpose processors, CPUs, for the last decades. Their decline has
helped the flourishing of heterogeneous systems, promising better performance
and energy efficiency [10].

Such heterogeneous systems are often comprised of a CPU and an accelera-
tor, with GPU being the most widely used accelerator. GPUs have delivered
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excellent performance for gamut of application domains including high perfor-
mance computing. Further, a rich software ecosystem enables programmers
to adopt them without suffering a high entry barrier. However, GPUs require
substantial power dissipation that can be unaffordable in many environments.
As a result, other devices such as FPGAs have emerged as complementary
accelerators.

In comparison to other accelerators, FPGAs can provide better performance
to power ratio. The down side, however, is that application development on
FPGAs requires knowledge of digital design, which often is the main obstacle
preventing their broad adoption by programmers. To mitigate this problem,
high-Level synthesis frameworks with languages like C, C++, or OpenCL have
emerged to improve programmer’s productivity [19].

To program applications for heterogeneous systems, OpenCL provides
an open standard supporting a general-purpose parallel programming model.
It defines low-level primitives and core functionalities without masking the
hardware architecture and allows portability across devices [28]. While OpenCL
enables parallel execution between accelerator devices, it does not provide any
support for load balancing between them. Load balancing is critical in order
to minimize execution time in heterogeneous systems. This problem has been
extensively studied, specifically in the context of two device systems; CPU
coupled with either a GPU, a Xeon Phi, or an FPGA [7,15–17,22,24].

EngineCL is a high-level framework that provides scheduling and data
management primitives on top of OpenCL, easing the programmability of
heterogeneous systems [21]. While EngineCL has been successful in systems
coupling a CPU with either a GPU or Xeon Phi device, it does not yet
provide support for FPGAs. As FPGAs have already been deployed in HPC
systems, and furthermore, future systems will probably integrate more and
more accelerators on a single die [9], it is going to be increasingly important
for high level frameworks to provide efficient support for FPGAs.

This paper significantly extends EngineCL to provide FPGA support and
load balance parallel for constructs among both CPU, GPU, and FPGA, so
that programmers can improve performance and energy efficiency without
dealing the complexities of cooperative execution and device management.
Such transparent cooperative execution has entailed a substantial number of
modifications in the design and implementation of EngineCL. These include the
communication mechanism between the host and the FPGA, how arguments
are passed to the kernel, support for different kernels for each device, and the
queuing system to overlap computation and communication.

Our experimental results show that for all the scenarios under consideration,
heterogeneous systems deliver significant performance over using the fastest
available device. This conclusion even holds when the heterogeneous system is
comprised of unbalanced devices. This is crucial in presence of FPGAs for kernel
performance can dramatically vary depending on the kernel implementation
[31]. The average improvement using the best balancing algorithm is 58.1%. On
the other hand, it should be noted that the improvements in performance are
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not always followed by a reduction in energy consumption, for energy efficiency
strongly depends on both the devices and the benchmark.

The main contributions of this paper are the following:

– We extend EngineCL to add FPGA support without changing user-facing
APIs, so that FPGAs can effectively cooperate with other hardware accel-
erators in the co-execution of a single massive data-parallel kernel.

– We improve the implementation of EngineCL for FPGAs in several as-
pects via addition of: (a) host-device synchronization, (b) command queues
management, (c) mechanisms to better overlap computation with commu-
nication, and (c) runtime workers to allow task kernels.

– We carry out an exhaustive evaluation of the both co-execution and the
load-balancing algorithms on a 3-device heterogeneous platform. In these ex-
periments three different metrics have been evaluated: performance, energy
consumption, and energy-delay product.

The rest of the paper is organized as follows. Section 2 presents previous
work. After that, Section 3 introduces the EngineCL runtime. Section 4 describes
our approach, while Section 5 presents the methodology that we use to obtain
the results showed in Section 6. Finally, Section 7 concludes the work.

2 Related Work

High-Level Synthesis (HLS) has enabled to widen the programmers audience
for FPGA and its inclusion in heterogeneous systems [14,20].

Many different applications have benefited from heterogeneous execution in
a plethora of systems; e.g., DNA/RNA alignment on a CPU+GPU system [8],
graph analytics on a CPU+FPGA system [4]. Even a fully heterogeneous
system, CPU+GPU+FPGA, has been proposed for accelerating a real-time
location problem and a pipeline HPC application [5, 27].

Load balancing is a challenging aspect of heterogeneous computing that has
been widely addressed. When benchmark behavior is defined and/or remains
constant, static scheduling tuned for the application tends to provide the
best results. Tsoi et al. divide the problem between devices with an analytic
model [29]. However, static load balancers require an exploration phase, and
they do not adapt to unexpected changes on application throughput, which
can lead to load unbalance inefficiencies.

Dynamic balancers face the imbalance problem, but at the cost of potential
penalties due to load balancer activity. Pandit and Govindarajan presented
FluidiCL where a CPU and GPU work on a shared iteration space, and each
device starts from the beginning and end of the iteration space, respectively [24].
In order to avoid load balancer penalties, Qilin, HDSS, and Concord propose
to calculate the computational speed of each accelerator at runtime and then
assign a single chunk of work to each accelerator [6,12,16]. While Qilin relies on
a trained-database that provides execution-time projection for all the programs
it has ever executed, HDSS and Concord rely on a brief exploration phase that
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computes the relative computational speed of each device. The weakness of
these proposals is that they cannot be adapted to irregular applications that are
addressed by the adaptive schedulers like LogFit and H-guided [22,23,25,30].

MKMD maps multiple kernel into multiple devices in a two-phase approach,
the first phase assigns kernels to devices and the second enables work-group level
partitioning to keep all devices busy [15]. Industry solutions include Intel TBB,
supporting GPU offloading with OpenCL [13], or Qualcomm Heterogeneous
Compute SDK, supporting GPU and DSP offloading [3]. For an ample overview
of load balancing techniques, please refer to Mittal and Vetter [17].

In comparison to previous works, ours is the first proposal to face the load
balancing problem for the parallel for paradigm on a heterogeneous platform
composed by three accelerators: CPU+GPU+FPGA.

3 EngineCL Description

EngineCL is a runtime acting as an OpenCL C++ wrapper to simplify the
programming of heterogeneous devices and squeeze their performance out [21]. It
is specially designed to be used in large data-parallel applications and provides
three load balancing algorithms. EngineCL hides the underlying hardware
details by considering a single virtual device to operate with and divides a
single task among all the real devices based on the load balancing algorithm
selected by the programmer.

EngineCL has been designed around three pillars: OpenCL, usability, and
performance.While OpenCL allows code portability on different devices, the
programmer is responsible for managing many concepts related to the ar-
chitecture, such as platforms, devices, contexts, buffers, queues, kernels and
arguments, data transfers and error control sections. As the number of devices
and operations increases, the code grows quickly with OpenCL, decreasing the
productivity and increasing the maintainability effort. EngineCL solves these
issues by providing a runtime with a higher-level API that manages all the
OpenCL resources of the underlying system independently.

The runtime follows Architectural Principles with well known Design Pat-
terns to strengthen its flexibility. EngineCL is layered in three tiers (see Fig. 1):
Tier-1 and Tier-2 are accessible by the programmer. The lower the Tier, the
more functionalities and advanced features can be manipulated. Most programs
can be implemented in EngineCL with just the Tier-1. The Tier-2 should
be accessed if the programmer wants to select a specific device and provide
a specialized kernel or use more specific options. The Tier-3 consists of the
hidden inner parts that allow a flexible system regarding memory manage-
ment, pluggable schedulers, work distribution, high concurrency and OpenCL
encapsulation.

EngineCL provides high external usability and internal adaptability to sup-
port new runtime features, such as new schedulers, device types or communication-
computation overlapping strategies. This is accomplished through a layered
architecture and a set of core modules well profiled and encapsulated.
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Fig. 1: EngineCL architecture: tiers, modules and applied patterns. The high-
lighted modules are extended to support FPGAs.

A set of well-known load balancing algorithms, described below, are provided
[26]. The programmer should decide which one to use in each case, depending
on the characteristics of the application and the architecture.

– Static This algorithm splits the data-set in as many packages as devices
are in the system, proportionally to their computing capabilities. This
division relies on knowing the percentage of workload assigned to each
device in advance, and therefore the execution time between the devices is
equalized. It minimizes the number of synchronization points, therefore, it
performs well when facing regular loads. However, it is not adaptable, so
its performance might not be as good with irregular loads.

– Dynamic It divides the data-set in packages of equal size, much more
than the number of devices. A master thread in the host assigns packages
to the different devices, including the CPU. This algorithm adapts to the
irregular behavior of some applications. However, each package represents
a synchronization point between the device and the host, where data are
exchanged and a new package is launched.

– HGuided The Heterogeneous Guided algorithm is an attempt to reduce
the synchronization points of the Dynamic, while retaining its adaptiveness.
It makes larger packages at the beginning and reduces the size of the
subsequent ones as the execution progresses, until the minimum package
size, given as a parameter, is reached. Furthermore, the size of the packet is
weighted by the computing power of each device, defined as the amount of
work that this device can complete in a time span. This adjusts the number
of packets to achieve a more accurate load balancing than with all other
algorithms.
The size of the package for device i is calculated as follows:

packet size H = min
(
Min pacakage size, b GrPi

k
∑n

j=1 Pj
c
)

(1)

Where Gr is the number of pending work-groups in each launch, Pi is the
computing power of the device i. Finally, k is a constant, between 2 and 3,
and the smaller k, the faster decreases the packet size. This avoids too big
package sizes when there are few devices.
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4 Coupling FPGA to EngineCL

Compared to other accelerators, FPGAs require a special work-flow for its
integration into EngineCL. For running into a FPGA, an OpenCL kernel has to
be synthesized off-line with a High Level Synthesis tool, such as Xilinx SDSoC
or Intel/Altera OpenCL SDK [1,2]. HLS tools appeared to help the adoption
of FPGAs because they release programmers from learning complex hardware
description languages, such as Verilog or VHDL. In fact, many of the HLS
tools translate a high level programming language to a hardware description
language, and then synthesize the generated code.

By using OpenCL, most of the boilerplate code (platform, device, context,
buffers) can be shared among accelerators, which simplifies the FPGA inte-
gration into EngineCL. The main difference between FPGAs and the rest of
accelerators (GPU, Xeon Phi, ...) is the compilation time. For FPGAs, kernels
have to be compiled off-line, and the process can take up to several hours.

OpenCL kernels for FPGAs are written in C99-like code that contains the
kernel’s functional description and that is portable across devices; however, per-
formance is not so portable because OpenCL hides the underlying architecture.
Unlike a GPU that makes use of a myriad of cores to process many threads
in parallel, an FPGA exposes a pipeline parallelism where multiple threads
run in parallel but at different stages of the processing pipeline. The pipeline
structure is defined by the HLS tools at compilation. Therefore, programmers
have always to keep in mind this pipeline model to ensure good performance.

In terms of parallelism, the deeper the pipeline is, the greater the number of
threads that can simultaneously advance. As a result, the FPGA performance
mainly depends on two factors: initiation interval and frequency. Initiation
interval is the number of clock cycles between two consecutive kernel threads
(work-items) start, and frequency is the cycle time of the largest pipeline stage.
Discussing the programming patterns that influence these two factors is out of
scope of this work and has been previously discussed [18,31].

EngineCL provides support for heterogeneous environments composed by
CPU, GPU, and Xeon-Phi devices. The inclusion of FPGAs in EngineCL is not
straightforward and requires modifications in several key points of the runtime:
host device synchronization, kernel arguments management, and command
queues management. Besides, to launch a kernel, EngineCL has to load the bit
stream from a file to the FPGA.

Originally, EngineCL relied on asynchronous callbacks to notify kernel
completion to the scheduler. Unfortunately, Intel’s FPGA OpenCL runtime
v17.1 requires a subsequent OpenCL function invocation to evaluate event status
and call pending registered callbacks, which could not always be guaranteed in
EngineCL. To operate with FPGA, callbacks are replaced with synchronous
OpenCL commands managed by multiple host threads and command queues
for each device.

To use the schedulers, we extend the EngineCL arguments in workers of
Tier-2 and change data management of Tier-3, Fig. 1. In workers of Tier-2, we
add iterations argument, which are the amount of work, because task-based
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kernels have statically defined just one work-item per execution. Originally,
EngineCL copied every input data into memory of all devices, limiting the
maximum problem size to the size of the smallest memory device, in our case the
FPGA. To support any problem size, we have performed two modifications: 1)
replacement of the offset argument with two item range (begin, end) arguments
at each kernel invocation, 2) support for sending input data as required. Since
each device has its own memory, the runtime keeps track of each size and sends
chunks small enough to fit into the device memory.

Finally, to improve performance, we add a second command queue and
two output device buffers (A and B in Fig. 2) to overlap memory read and
computation commands as depicted in Fig. 2. Each kernel invocation alternates
output buffers, A and B, to avoid write-after-write hazard. Since the FPGA
driver only allows one transaction over PCI-e at a time, there is no opportunity
to overlap read and write commands. To ensure overlapping with the single
transaction requirement, we enqueue the write and compute of chunk i on
queue 0 before enqueue the read command of chunk i− 1 on queue 1, and then
wait for both to complete with a finish barrier and a blocking read command,
respectively. This change improves performance up to 30% (PCIe write speed
is lower than the read one) for communication-bound problems and has little
effect in performance-bound ones.

write
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compute
chunk 1
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queue 0 

write
chunk n-1 

compute
chunk n-1 
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command
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Fig. 2: Overview of command queue overlapping with the two command queues
and the two buffer sets (A and B).

Please note that all these changes do not entail any modification in the
apps built on top of EngineCL because user-facing APIs remain the same.

5 Experimental Methodology

The experiments have been conducted in a heterogeneous system composed
by an Intel core i7-6700k CPU (64 GB of RAM), a NVIDIA GeForce GTX
TITAN X GPU (12GB of RAM), and an Altera DE5NET Stratix V GX FPGA
(4GB of RAM); each device runs OpenCL version 2.0 (LINUX), 1.2 (CUDA
9.1.83), and 1.0 (Intel SDK v17.1) for the CPU, GPU, and FGPA, respectively.

Six benchmarks from different domains have been considered: Matrix Mul-
tiplication, Mersenne Twister, and Sobel Filter from the Intel Altera OpenCL
repository, Watermarking and AES decrypt from the Xilinx SDAccel repository,
and Nearest Neighbor from Rodinia optimized for FPGA [32]. To improve
application performance, we implemented different kernel versions tuned for
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each device. For example, FPGA devices work better with task-based kernels
and very long shift register loops, while CPU and GPU perform better with
NDRange kernels and smaller shift registers. But there are two exceptions,
Matrix Multiplication and Nearest Neighbor that obtain the best results with
an NDRange-based kernel on the FPGA. Table 1 shows the benchmark size
(measured in work-items), main parameters, and FPGA resource utilization.
In general, lower FPGA resource utilization translates into higher frequency.

Since the initialization latency of the OpenCL FPGA runtime is much higher
than that of the other two devices, we launch a work-item kernel command
before starting the heterogeneous execution. Otherwise, the scheduler penalizes
the FPGA for splitting the work.

Table 1: Work-items and FPGA characteristics: Clock frequency(CF),
initialization interval (II), and FPGA kernel resources: adaptive logic
module (AL), logic registers (LR), Memory blocks (MB), and DSP.

Benchmark Work items CF II AL LR MB DSP
(MHz) % % % %

Matrix Multiplication 16×103 238.9 n/a 79 28 47 100
Mersenne Twister 22×107 274.4 ∼ 1 40 5 19 88
Watermarking 11×108 226.8 ∼ 1 16 10 15 3
Sobel filter 12× 109 295.3 ∼ 1 13 8 18 0
AES 11×108 299.9 2 20 9 18 0
Nearest-Neighbor 40×108 210.8 n/a 54 19 31 94

In order to evaluate energy consumption, we rely on reading hardware
counters with Intel RALP and NVIDIA system manager for the CPU and
the GPU, respectively. Since the FPGA does not provide power counters, we
measure its power with the Newtons4th PPA520 power analyzer, sampling at
106 samples per second, and a PCI riser card [11]. FPGA power is the sum
of the power drained from the PCIe edge connector and the auxiliary 6-pin
Molex connector.

6 Results

This section analyzes the inclusion of the FPGA inside EngineCL by exploring
its 3 load balancing algorithms on a CPU+GPU+FPGA heterogeneous system.
First of all, it explains how the parameters of each algorithm have been
optimized. Then, the results obtained in terms of both performance and energy
are analyzed.

Static With static scheduling, the user has to choose the amount of work
each device performs before starting execution. This distribution should be
tuned for achieving good load balancing and unfortunately, it is required an
exhaustive exploration to find out the fine tuned distribution.To make matters
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Fig. 3: Normalized execution time to the worst for the Static scheduler. Work
proportions go up to 50% for two devices, and the third device performs the
remainder work.

worse, this distribution is specific for each problem, input data and, compute
device. For instance, in this paper 100 executions per benchmark have been
performed to achieve these values. Fig. 3 shows the normalized execution time
to the CPU with a percentage sweep in steps of 10% for two devices, while the
third device takes the remainder work (100− (percentage1 + percentage2)).
Overall, setting the optimal percentages improves performance, with gains
ranging between 16 and 79%.

Dynamic With this scheduler, each device fetches and executes chunks of
work (equally-sized for all devices) until there is no work left. Fig. 4 shows how
chunk size has a large impact on throughput, measured in output gigabytes
per second, and, hence, on performance. In general, all benchmarks benefit
from larger chunks except Matrix Multiplication. In Matrix Multiplication,
the number of iterations to split is smaller than in other benchmarks, and
the computational intensity is higher, so that the lower runtime overhead of
smaller chunks does not pay off for the imbalance increment.

HGuided Starts with large chunks that are automatically reduced. Two
parameters tune the chunk size: computing power and minimum packet size.
On this paper, we have used the computing power ratios computed for the static
scheduler, but the sensitivity of HGuided to this parameter is small because
when the minimum packet size is large enough, overall throughput remains
high. This condition is relatively easy to fulfill because most benchmarks reach
good performance with small chunks, as shown in Fig. 4.
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Fig. 4: Dynamic scheduler Throughput (GBs) of CPU, GPU and FPGA with
chunk size variation.

Performance For the sake of brevity, from here on, all results use the best
found parameters for all 3 schedulers. First, Table 2 compares the performance of
the 3 schedulers, including the percentage of improvement of the heterogeneous
system with respect to the best single device (PI). To measure the effectiveness
of load balancing, it also presents the imbalance percentage (IM), as TLD−TFD

TLD
·

100, where TFD and TLD are the execution time of the device that finished at
first and last, respectively. Finally, the number of chunks is also shown (#C).
On the other hand, Fig. 5 shows the normalized execution time to the CPU of
the three single devices and all 3 devices in cooperation.

Analyzing these results, it should first be highlighted that in all cases a
substantial improvement is achieved by using heterogeneous systems, compared
to using a single device (the best one for each benchmark). Overall, gains
range between 17.8 and 96.6% for Sobel Filter and AES, respectively. The
static achieves the best results in 3 of the 6 benchmarks (Matrix Multiplication,
Watermarking and Nearest Neighbor). The advantages of adaptability do not
outweigh the increase in overload imposed by dynamic algorithms. This is so,
thanks to the great effort optimizating parameters made off-line. The dynamic
algorithm only yields the best result in Mersenne Twister with 87.9%, and
HGuided gets the best in Sobel Filter and AES. In average, the best algorithm
is Dynamic with an improvement of 58.0%, followed by static (50.4%) and
HGuided (50.0%).

However, dynamic algorithms better balance the workloads, except in the
case of Matrix Multiplication and Mersenne Twister. Actually, they achieve a
perfect balance in Watermarking (HGuided), Solbel Filter (Dynamic) and AES
(both). Therefore, it can be concluded that the performance improvements are
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Table 2: Performance Improvement (PI) relative to the fastest single device
execution, imbalance (IM), and average number of chunks (#C) for Static,
Dynamic and HGuided policies and all benchmarks.

Benchmark Static Dynamic HGuided
PI % IM % #C PI % IM % #C PI % IM % #C

Matrix Multiplication 37.3 4.2 3 32.0 5.5 128 37.0 39.1 18.0
Mersenne Twister 42.2 2.0 20 87.9 6.4 60 43.3 8.8 25.0
Watermarking 79.5 1.4 28 69.2 0.8 280 64.3 0.0 36.4
Sobel Filter 16.2 1.1 23 6.7 0.0 11930 17.8 0.6 118.0
Nearest Neighbor 69.4 2.7 13 60.3 0.3 960 41.0 9.2 16.0
AES decrypt 58.1 4.1 23 92.4 0.0 280 96.6 0.0 94.6

Mean 50.4 2.6 58.1 2.2 50.0 9.6

not only due to load balancing, but also to the application’s ability to take
advantage of the architecture features of the different devices.

Finally, Fig. 5, shows that, despite the great difference in devices architec-
ture and performance, EngineCL always achieves a performance improvement
compared to using a single device. Moreover, given the diversity of benchmarks’
behavior, selecting the best device in advance is almost impossible, but with
this proposal, we bring out the best in all of them.

Energy consumption. Table 3 shows the average power for single devices
running all benchmarks. We discern 3 different power metrics: idle (I), which
corresponds to the device sitting idle; programmed (P), which corresponds to
the power of the FPGA after it has been programmed, so P does not apply
for CPU and GPU devices; device and host running (DR and HR), which
corresponds to the power when a kernel is running split between device and
host, when possible (GPU and FPGA). Therefore, HR represents the power
dissipated by EngineCL, and the OpenCL runtime and driver.
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Comparing the values, idle power keeps on the same range for the 3 devices,
and both the CPU and GPU reach much higher DR values, 80.2 and 132.1W
for the CPU and GPU, respectively. On the contrary, the FPGA has a much
lower DR of 28.8 W, but a high programming power (P), from 20.8 to 25.1W,
suggesting that once programmed, running at least a small proportion of
compute in FPGA could be beneficial compared to “waste” the device in
programmed state. The only caveat is that HR impacts on FPGA energy
efficiency because its value is on par with DR.

Table 3: Average Power (W) for single device configurations. I, P, DR, HR repre-
sents idle, programmed, device running, and host running power, respectively.

Average Power (W)
CPU GPU FPGA

I DR+HR I DR HR I P DR HR

Matrix Mult.

13.6

77.7

15.8

132.1 29.2

14.3

25.1 28.8 27.7
Mer. Twister 33.0 88.5 25.8 23.3 23.6 17.2
Watermarking 45.2 45.2 29.6 20.8 21.2 19.7
Sobel Filter 76.2 87.4 31.1 20.8 21.4 14.4
Near. Neighbor 32.1 82.3 32.1 23.3 23.6 22.5
AES Decrypt 80.2 112.1 27.3 21.2 21.7 30.2

Fig.6 shows the normalized total energy compared to CPU-only energy.
While in terms of performance, all three schedulers improve execution time
compared to the best single-device, for energy they do not. In all but Matrix
Multiplication and Sobel, heterogeneous execution degrades energy.
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Fig. 6: Overall energy of cooperative execution CPU(C)+GPU(G)+FPGA(F)
with Static(St), Dynamic (Dy) and HGuided (HG) load balancers for each
benchmark. Energy are normalized to the CPU device in every benchmark.
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Within the groups of benchmarks than improve/degrade energy, behavior is
similar, so, for the sake of brevity, we only comment on a representative bench-
mark per group: Mersenne Twister and Sobel Filter. The former experiences
an energy degradation around 2.5× for the heterogeneous configurations with
regards to CPU because of the high GPU consumption; e.g., for the dynamic
scheduler, GPU only processes 6% of the work-items and consumes 70W DR 1.
In terms of energy efficiency (work-items/joule), the GPU is around 23× worst
than the CPU and the FPGA. The later, Sobel Filter, presents an opposite
behavior compared with Mersenne Twister. In HGuided, normalized energy
improves by 60 and 11% compared with CPU and GPU only, respectively. In
this case, the GPU and FPGA DR consume 80 and 21.4W and computes 65 and
17% of the work-items, respectively. For both devices, their energy-efficiency is
3× better than CPU’s.

Since we are comparing different device architectures, we compute the
energy-delay product, EDP, as shown in Fig. 7. The cooperative execution
in Matrix Multiplication, Watermark, Sobel Filter, Nearest Neighbor and
AES Decrypt improves EDP over the best single device, with a maximum
improvement of 36% for HGuided in Watermarking compared to CPU. In those
cases, the performance gains of multiple devices pays off for the extra energy
consumption.

7 Conclusions and Future Work

FPGAs can provide excellent performance with limited energy consumption,
presenting an improvement opportunity for supercomputing systems. Never-
theless, FPGA programming with hardware description languages requires

1 This value corresponds to the cooperative execution and is lower than GPU-only DR,
see Table 3, because there is less continuous work on the device.
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more expertise than programming other accelerators such as GPUs. Therefore,
FPGA adoption requires high-level programming tools to facilitate this task.
EngineCL is an OpenCL-based framework allowing the automatic heteroge-
neous execution of parallel loops in multiple devices thanks to its load balancing
algorithms. This article proposes an EngineCL extension to support FPGAs, so
that users can cooperatively execute parallel loops in CPU+GPU+FGPA sys-
tems. To boost performance, the extension overlaps data transfer and compute
operations by implementing multiple command queues and allows to execute
per-device tuned kernels. To ease the adoption of the FPGAs, the extension
does not change any user-facing APIs of EngineCL.

The results show that EngineCL provides performance improvements rang-
ing between 16 and 96% on a system with computationally unbalanced devices.
Load balancing policies do not manage to do so well in the case of total energy
consumed and energy efficiency. In case of energy consumption, the cooperative
approach never beats the best single device in any benchmark. On the other
hand, the cooperative approach is more energy efficient in 5 out of 6 bench-
marks. These results indicate that it would be interesting study energy-aware
load balancing policies.

Besides, future work could assess which is the best composition for a
supercomputer node, whether to provide all nodes with different accelerators
such as GPU and FPGAs, or have nodes with a single type of accelerator.
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