
The Journal Of Supercomputing manuscript No.
(will be inserted by the editor)

Efficiency Analysis of Modern Vector Architectures

Vector ALU Sizes, Core Counts and Clock Frequencies

Adrian Barredo · Juan M. Cebrian
Mateo Valero
Marc Casas · Miquel Moreto

Received: date / Accepted: date

Abstract Moore’s Law predicted that the number of transistors on a chip
would double approximately every two years. However, this trend is arriving
at an impasse. Optimizing the usage of the available transistors within the
thermal dissipation capabilities of the packaging is a pending topic.

Multi-core processors exploit coarse-grain parallelism to improve energy
efficiency. Vectorization allows developers to exploit data-level parallelism, op-
erating on several elements per instruction and thus, reducing the pressure to
the fetch and decode pipeline stages.

In this paper we perform an analysis of different resource optimization
strategies for vector architectures. In particular we expose the need to break
down voltage and frequency domains for LLC, ALUs and vector ALUs if we
aim to optimize the energy efficiency and performance of our system. We
also show the need for a dynamic reconfiguration strategy that adapts vector
register length at runtime.

Keywords Vector · Efficiency · DVFS · Power Wall

Adrian Barredo
E-mail: adrian.barredo@bsc.es

Juan M. Cebrian
E-mail: juan.cebrian@bsc.es

Mateo Valero
E-mail: mateo.valero@bsc.es

Marc Casas
E-mail: marc.casas@bsc.es

Miquel Moreto
E-mail: miquel.moreto@bsc.es

This is a post-peer-review, pre-copyedit version of an article published in Journal of supercomputing. 
The final authenticated version is available online at: http://dx.doi.org/10.1007/s11227-019-02841-6



2 Adrian Barredo et al.

1 Introduction

The ever-increasing computational requirements of applications has always
been a challenge for hardware and software designers. The end of Dennard
scaling translated into a stagnation of CPU clock frequency. After 2010 the
frequency increase would be limited to about 5% on a per year basis [13], lim-
iting the main source of performance gains. Therefore, computer architects
and software developers focus nowadays on parallelism to improve perfor-
mance. Parallelism is one of the most important keystones in high performance
computing (HPC). While instruction-level (ILP) and thread-level parallelism
(TLP) have been extensively studied, data-level parallelism (DLP) is usually
underutilized in CPUs, despite its huge potential.

ILP can be understood as the freedom to choose the most convenient in-
struction interleaving, while maintaining program order. Superscalar (out-of-
order) processors exploit ILP to execute independent instructions in parallel.
One key problem of such designs is the increasing speed gap between the
memory subsystem and cores. This made the memory access latency difficult
to hide (Memory Wall [47]). In addition, the continuous ILP enhancements
exponentially increased the complexity per unit area, leading to a heat density
that can not be easily handled. This problem is known as the Power Wall [34].

Multi-cores can further increase performance by exploiting TLP. In fact,
processor vendors focus nowadays on multi-core designs, even in the mobile
market. These designs can alleviate the Power and the Memory Wall problems,
but not without limitations. Multi-cores in conjunction with low voltage/fre-
quency can improve the performance per watt, but also significantly increase
the circuit sensitivity to electrical noise. Therefore, future processors will have
greater tendencies towards hardware faults [42]. Second, heterogeneity of the
hardware builds up a Programmability Wall [12]. When the programmer is
faced with this kind of complex architectures, optimizing for the hardware
becomes almost impossible [9].

Finally, DLP can be exposed to the hardware by means of vector compu-
tations, where a single instruction operates over several input elements [5,17].
Vector supercomputers appeared in the 1970s [38,14,17,6,45]. These designs
exploited DLP with long vectors of thousands of bits. Nowadays, hardware
manufacturers focus on short-vector designs (up to 2048-bits), although there
are some exceptions (NEC’s SX-Aurora features 16,384-bit vectors [35]).

The Single-Instruction Multiple-Data (SIMD) execution model is a far
more common vector implementation. The usage of SIMD Instruction Set Ar-
chitecture (ISA) extensions is ubiquitous in microprocessors from all market
segments [23,24,4,41,18,3]. DLP exploitation is not limited to CPUs, Graphic
Processing Units (GPUs) are alternative architecture implementations that
benefit greatly from DLP. GPUs use a massive multi-core architecture able to
execute sets of threads in a lock-step model.

The current trend shows that the vector register size has doubled every four
years [20]. 512-bit SIMD implementations from Intel [40,24] and Fujitsu [49]
are recent commercial examples. However, the generation of efficient vector



Efficiency Analysis of Modern Vector Architectures 3

code with increasing register size has several obstacles to overcome. Key per-
formance limiting factors include: a) at a design level, horizontal operations,
data structure conversion and divergence control, and b) at a hardware level,
register bank size, cache and memory bandwidth and resource underutiliza-
tion. Ultimately, the effectiveness of a vector architecture depends on its ability
to vectorize large quantities of code [39].

In the next chapters, we analyze different resource optimization strategies
for vector architectures. In particular, this paper makes the following contri-
butions over the state-of-the-art:

– Create a realistic implementation of a Generic SIMD (G-SIMD) architec-
ture with variable register size based on Intel’s SIMD extensions.

– Design a set of vectorized benchmarks representative of different applica-
tion patterns that are compatible with the G-SIMD ISA.

– Analyze the impact of the vector register size in power and memory.
– Study the influence of DVFS in G-SIMD architectures.
– Analyze the effects of different clock domains on G-SIMD.
– Propose micro-architectural changes to deal with the resource requirements

of future vector applications.

The paper is organized as follows. Section 2 discusses the related work and
the multi-dimensional optimization problem we are facing. Next, Section 3
presents the simulation environment and the benchmarks used in the evalu-
ation. Section 4 shows the performance and energy evaluation of our design
space exploration. Finally, Section 5 summarizes the main conclusions and
future work.

2 Motivation and Related Work

In the 1980s and early 1990s, quantitative performance evaluations became the
predominant driver to determine how to build effective, cutting-edge micro-
processors and computer systems. In contrast, other metrics like cost and area
were not specially restrictive. In the mid- to late- 1990s, power per unit area
became a concern for architects [27]. While Moore’s Law scaling succeeded
in reducing the feature sizes of semiconductor devices, their power density
and high processor clock rates resulted in microprocessor designs difficult or
impossible to cool down.

2.1 The Power Problem

Power and cooling concerns are a twenty-first century issue for computing but
they have existed for a long time. For example, the ENIAC machine built in
1947 dissipated 174 kW.

CMOS power consumption can be divided into several categories: dynamic
power, leakage power, glitching power, and others. The first two factors are
explained below:



4 Adrian Barredo et al.

– Dynamic Power. It has been the dominant power component for many
years, and is given by the equation P = CV 2Af , where:
– Capacitance (C): Total capacitance of the circuit components largely

depends on the wire lengths of on-chip structures. Circuit designers are
the ones that can influence this metric.

– Supply voltage (V): Supply voltage (V or Vdd) has dropped steadily
with each technology generation. Because of its quadratic influence on
dynamic power, this has a large impact on power-aware design.

– Activity factor (A): It is a fraction between 0 and 1 that refers to
how often wires actually transition from 0 to 1 or 1 to 0. Clock signal
typically has the highest switching activity, most other wires in the
design have activity factors below 1.

– Clock frequency (f): The clock frequency has a huge impact on power
dissipation. Not only does clock frequency directly influence power dis-
sipation, but it also indirectly shapes power by its effect on supply volt-
age. Typically, maintaining higher clock frequencies may require main-
taining a higher supply voltage. This way, the combined V 2f portion of
the dynamic power equation has a cubic impact on power dissipation.

– Leakage Power. While dynamic power dissipation represented the predom-
inant factor in CMOS power consumption for many years, leakage energy
has been increasingly prominent in recent technologies. It represents 20%
[27] or more of power dissipation in current designs and its proportion is
expected to increase in the future. Leakage energy can come from several
sources, including gate leakage and sub-threshold leakage.

2.1.1 DVFS

Most power control mechanisms focus on dynamic adjustments to supply volt-
age, clock frequency, or both, and they go under the broad title of Dynamic
Voltage and Frequency Scaling (DVFS). In the dynamic power equation, a re-
duction on voltage translates into quadratic power reduction. Reducing supply
voltage, however, might possibly reduce the performance of systems as well.
In particular, reducing supply voltage often slows transistor switching speed,
reducing their maximum working clock frequency.

Unfortunately, the useful voltage range of transistors is rapidly shrinking,
to the point of having a negligible effect in the power equation [15]. In practice,
we can no longer expect quadratic reductions in power as a trade-off for linear
reductions in frequency. Fortunately, it is also well known that performance
is not always proportional to frequency [28]. For example, the performance of
memory-bound programs is largely unaffected by frequency scaling. Memory-
bound code is characterized by a high miss ratio in the last level cache (LLC),
which creates long stalls in the processor pipeline. In this case, scaling down
frequency causes computation to overlap with memory access without harm-
ing the total execution time (as long as we can keep similar memory level
parallelism, or MLP) [36,26].



Efficiency Analysis of Modern Vector Architectures 5

2.2 Vector Processors

Vector processors are known to be very energy efficient and yield high per-
formance whenever there is enough Data Level Parallelism (DLP) [29]. DLP
is extracted by applying the same operation on more than one data element
simultaneously. The vector paradigm goes back as early as the 1940s [46,19,
25]. Seymour Cray developed a high-performance vector machine called the
Cray-1 [37], which used a register-to-register design and included fast non-
vector functional units. This set the stage for an era between the mid-1970s
until the early 1990s where vector architectures were the design choice for
high-performance machines [17].

The ideas found in vector architectures matured and evolved over time.
Espasa [16] showed that vector processors can improve their performance and
hide latency by applying techniques such as decoupling, out-of-order execution
and multithreading. Vector architectures behave well when it comes to appli-
cations with high DLP, outperforming scalar designs while saving energy in
the process. However, large registers have several drawbacks. For example, if
an application can not make full use of every register, then a hardware resource
is being wasted. For this reason, fabricating chips with long vector registers
for commodity processors has been considered senseless for a long time. More-
over, as the authors in [44] explained, many applications have small data sets
or iterate over an iteration space which is smaller than the vector register
length.

Nowadays, multimedia applications (rich in DLP) have seen an increas-
ing usage. This trend is expected to continue in the next years. Multimedia
extensions or Single-Instruction Multiple-Data (SIMD) extensions have been
introduced to deal with the requirements of such applications. SIMD exten-
sions are ubiquitous in all market segments [23,24,4,41,18,3].

2.2.1 Power in Vector Processors

Lemuet at al. [30] discussed the potential of energy efficiency of vector proces-
sors as accelerators for high performance computing systems. Lee at al. [29]
confirmed that vector-based micro-architectures are more area and energy effi-
cient than scalar-based micro-architectures, even for fairly irregular data-level
parallelism. They also explored a series of micro-architectural optimizations
to improve performance, area, and energy efficiency of baseline vector cores.

Low-power techniques such as clock gating [31], power gating [43] [21]
or DVFS can be combined with vector micro-architectures to further reduce
power consumption and increase energy efficiency. H. Inoue presented in [22] a
paper studying the impact of SIMD processors in power and energy efficiency
in sorting algorithms. They tried different configurations of SIMD width and
memory bandwidth and explained the need of balancing memory bandwidth,
SIMD width and the number of threads to minimize energy consumption. In
[11], the authors perform a similar study for multiple benchmarks from dif-
ferent fields of application. S. Majzoub performed a study of SIMD power



6 Adrian Barredo et al.

Table 1 Configuration of the gem5 simulations (similar to Intel Icelake).

OoO Core details
Fetch, decode, rename bandwidth 4 insts/cycle
Dispatch, issue, commit bandwidth 4 insts/cycle
Branch Target Buffer 1 way, 2048 entries
Branch predictor Bimode, 8K+8K entries
Fetch Queue 32 entries
Fetch Buffer 16B
Decode Buffer 56-µops
Load Queue 72 entries
Store Queue 56 entries
Physical Registers 168 integer + 168 floating point
Issue Queue 97 entries
Re-order Buffer 224 entries
Functional Units 1 Int ALU + 3 Int/FP/SIMD ALU
L1 instruction cache 32KB, 8-way, 1 cycle access latency
L1 data cache 32KB, 8-way, 4 cycle access latency
L2 unified cache 4MB, 16-way, 12 cycle access latency

consumption in multi-core processors [33]. This work explores the technique
of voltage islands, where a finite number of supply voltages can be applied
to different blocks of a design, depending on the power requirements of the
system. In particular, power supplies are associated to cores depending on the
nature of the instructions being executed.

Albright et al studied the effects of DVFS in Embedded SIMD Multiproces-
sors [2]. For the experiments, they chose an example electroencephalography
(EEG) application. The application is divided into blocks (according to the
application shape), whose granularity was different for every experiment, and
searched for their optimal DVFS settings. Their results outperformed tradi-
tional DVFS methods and demonstrated a minimum of 50% improvement in
performance per watt at 1% performance reduction, whereas a typical DVFS
scheme achieved a maximum of 32% improvement at the same point.

3 Experimental Methodology

3.1 Full-System Simulation Infrastructure

We employ gem5 [7] to simulate an x86 full-system environment that models
the operating system and the architecture in detail. The simulated system
runs 16.04 Ubuntu with a 4.9.4 Linux kernel. gem5 is extended to support
Intel’s SSE, AVX-2 and AVX-512 instructions. These extensions have been
developed to simulate a processor similar to an x86 Icelake processor. ALU
latencies and pipeline stages have been selected to emulate this processor.
Table 1 summarizes the main simulated core parameters. We simulate one,
two and four-core processors using the detailed memory models of gem5 (with
a two-level MESI protocol).



Efficiency Analysis of Modern Vector Architectures 7

3.1.1 Variable Vector-length ISA (G-SIMD)

We have extended the simulated processor with a variable vector-length ISA
(G-SIMD). G-SIMD will help us to perform an extensive evaluation based on
vector register size. In this evaluation the studied register sizes range from
128 to 2048 bits. In a fully configurable hardware, vector registers would have,
in our case, a maximum size of 2048 bits. The most optimal one would be
chosen depending on the application properties. If the selected size was less
than 2048, the upper bits in the vector register would be clock-gated, to avoid
an unnecessary energy consumption.

When it comes to vector units, the CPUs contain 512-bit vector ALUs
(VPUs), that is, VPUs can operate 512-bits of data simultaneously in a SIMD
manner. Whenever G-SIMD operates on registers wider than 512-bits, the op-
eration is pipelined (as in traditional vector processors). Extra latencies due to
pipelining are considered in the results. This decision was taken after an initial
design space exploration that showed unreasonably high energy consumption
for 1024 and 2048-bit VPUs (a similar pipeline design is used by NEC in [35]).

3.1.2 Study of a Potential Dynamic Reconfiguration Mechanism

This paper focuses on a static evaluation that serves as a design space explo-
ration to assess the potential benefits of a dynamic reconfiguration mechanism.
In this case, scenarios are configured at the beginning of the simulations. The
evaluation focuses on three different factors (excluding the register size), that
alter the performance and energy of the applications. These factors are a)
clock frequency for ALUs, b) clock frequency for VPUs and c) last-level cache
frequency. Their consideration is based on the fact that vector architectures
have better tolerance for high memory latency with vector length. There are
two reasons for increased latency: a) if bandwidth does not scale with reg-
ister size, we will require several memory requests; and b) if we cannot fit
all the data into L1 cache the overall latency to access the data will increase
(since we have to reach other levels in the memory hierarchy). Our hypothe-
sis is that reducing VPUs frequency independently of the memory subsystem
can partially hide memory latency, while using less power for computation
in memory-bound codes. For CPU-bound codes, we do the opposite, reduc-
ing the operating frequency of the LLC, since they offer better tolerance for
slow latency. Furthermore, scaling vector register size usually translates into
an increment in the ratio of time that the processor spends running scalar
code (Amdahl’s law). Our second hypothesis is that separating VPUs into a
new clock domain, that operates at a lower frequency than the scalar units,
will reduce power without a significant performance penalty. When it comes
to arithmetic operations, long vectors will not require to operate at a high
frequency, but scalar units will, since they become a bottleneck.

The simulations consider three possible scenarios taking into account the
previous factors. When it comes to the last-level cache, a faster one has a lower
response latency to memory requests.



8 Adrian Barredo et al.

1 int max v length = valib get max vector length();
2 valib set vector length(max v length);
3 vector function call(); // vector−length agnostic function

Fig. 1 Vector length setter/getter

– ALU @2GHz, VPU @1GHz and fast last-level cache.
– ALU @2GHz, VPU @1GHz and slow last-level cache.
– ALU @4GHz, VPU @1GHz and slow last-level cache.

Power consumption is evaluated with McPAT [32] using a process technol-
ogy of 22nm (currently the lowest possible), a voltage of 0.6V and the default
clock gating scheme. We incorporate the changes suggested by Xi et al. [48] to
improve the accuracy of the models. The energy consumption has been dimen-
sioned for the different sizes of the vector register file as well as for the 512-bit
VPUs. The operating frequency of the described scenarios is also considered
in the power model.

3.2 Benchmarks

Our application suite is based on eight real applications. We employ a hash
function (Hash), a quadratic equation benchmark (Quadratic), a matrix-block
multiply (MatMul) and a vector reduction (Vreduction) kernel and the swap-
tions (Swaptions), blackscholes (Blackscholes) and streamcluster (Streamclus-
ter) applications from the ParVec [10] benchmark suite. The former three
benchmarks are single-threaded. The latter ones were programmed using the
pthreads [8] library to simulate their performance in multi-core scenarios.

We have created our own ISA to be capable of simulating several vector
lengths with the same binaries. This new ISA imitates AVX-2 and AVX-512
encoding to provide the same functionalities (e.g. memory addressing, predi-
cation, gather/scatter). This ISA was created using macro-instructions, so no
optimizations are done by the compiler. Whenever an instruction from this
ISA is encountered, our simulator executes it based on the vector length spec-
ified by the programmer. Another option is to allow the application to run
with the maximum hardware register size, but as we will see later, sometimes
it is not the best alternative. The code to perform this process is shown in
Figure 1. When it comes to memory instructions, several memory requests are
generated when the vector length is wider than the blocksize.

The vector function call function contains code, such as loops, which will
adapt themselves to the specified vector register size. Figure 2 depicts the
SIMD function from Streamcluster. Every valib function represents a macro-
instruction, which is converted into a vector-length agnostic ISA instruction
depending on the sources and destination indices specified in the function call.
The instruction opcode is implicit in the function name. For example, line 7
represents a vector substraction for float-type elements, where source registers
are 1 and 2 and destination register is 3. In this case, the number of iterations



Efficiency Analysis of Modern Vector Architectures 9

1 float volatile zero = 0.0f, result = 0.0f;
2 valib set fl(VR0, &zero);
3

4 for (int i = 0; i <= dim − factor; i = factor + i) {
5 valib ld fl(VR1, &p1.coord[i]);
6 valib ld fl(VR2, &p2.coord[i]);
7 valib sub fl fl fl(3, 1, 2);
8 valib mul fl fl fl(1, 3, 3);
9 valib add fl fl fl(0, 0, 1);

10 }
11

12 valib red add fl(VR0, &result);
13 return result;

Fig. 2 Streamcluster vector-length agnostic version

depends on the factor variable, which is obtained at runtime by dividing the
vector register size by the data type.

4 Evaluation

In this section, we show the simulation results for the applications described
in Section 3.2. For every benchmark, we describe the impact of varying the
number of threads, vector register size, VPU frequency and last-level cache
response time on performance, EDP 2 (as an energy metric that emphasizes
performance) and MFlops per watt (as an energy metric that emphasizes low
power, and used in the Green500 classification [1]).

Blackscholes. This benchmark shows a linear benefit in performance as register
size increases (Figure 3-left), until 512 bits, when the vector scaling becomes
sublinear. However, if we increase the frequency of scalar ALUs, the overall
performance scaling of the vectorized code improves. This can be clearly seen
for 4 cores and 2048-bit registers, where the speedup jumps from 34x to almost
49x. This is due to the fact that Blackscholes is a CPU-bound application. Hav-
ing vector and scalar units operating at the same frequency makes the latter
become a bottleneck. A faster last-level cache does not benefit performance
in CPU-bound applications, so we can reduce LLC frequency to save energy.
Figure 3-right shows the EDP 2 metric for Blackscholes. Here we can see that
for register sizes under 512 bits it is not beneficial to run on different ALU and
VPU frequencies, regardless of the number of cores. However, it is critical for
2048-bit registers, where we can see 2x improvements in EDP 2. In addition,
we can see a clear advantage of running with a slow LLC for all register sizes
and core counts.

For Blackscholes, the best performance outcome is obtained when choosing
the configuration: 2048-bit vector registers, fast scalar units and four threads.
However, if we want to maximize the performance per watt, the best results
are obtained running 1024-bit registers with slow LLC (Figure 4).



10 Adrian Barredo et al.

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 1000 2000 3000 4000 5000 6000 7000

9,7
9,3
8,7
64,5
62,4
56,2
232,3
230,5
252,7
351,1
351,5

618,5
37,2
37,1
33,8

256,0
247,3
222,6

906,4
901,0
989,3

1346,5
1349,9

2390,8
155,8
150,2
136,8

1044,1
998,2
907,0

3127,8
2691,8

3026,3
3936,3

3800,4
6340,5

EDP² Reduction Factor

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 10 20 30 40 50 60

2,368
2,371
2,605

4,669
4,675
5,092

7,801
7,869
9,426
9,856
9,955

14,805
4,668
4,730
5,142

9,309
9,314
10,146

15,447
15,594

18,687
19,374
19,583

29,186
9,484
9,497
10,317

18,742
18,673
20,416

29,019
27,623

33,291
33,938
33,786

48,707

Speedup (n times faster)

Fig. 3 Speedup (left) and EDP 2 improvement (right) for Blackscholes (more is better)
normalized to 1 core with 128-bit registers running at 1Ghz with slow LLC. Y axis shows
different combinations of core count, reg. size, and frequencies (scalar, vector and LLC).

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048
1p 2p 4p

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

M
F

lo
p

s/
W

a
tt 

In
cr

e
m

e
n

t F
a

ct
o

r

Fig. 4 MFlops per Watt improvement (more is better) for Blackscholes with different com-
binations of core count, reg. size, and frequencies (scalar, vector and LLC).

Hash. For Hash, the results when increasing the register size are far from
the theoretical linear scaling values (Figure 5-left). Hash scales up to 512-bit
registers, and becomes sublinear after that. Faster last-level caches provide
a slight improvement in performance, but overall Hash is CPU-bound. Hash
benefits from faster ALUs, since scalar operations become eventually the main
bottleneck. For 2048-bit registers, going from 2Ghz to 4Ghz improves perfor-
mance by an additional 2.7x. EDP 2 numbers show a similar behavior (Figure



Efficiency Analysis of Modern Vector Architectures 11

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

256

512

1024

2048

1p

0 20 40 60 80 100 120 140 160 180

7,5

8,3

7,7

27,0

32,6

35,3

55,4

74,1

92,5

81,0

116,9

161,0

EDP² Reduction Factor

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

256

512

1024

2048

1p

0 1 2 3 4 5 6 7 8 9

2,120

2,248

2,421

3,333

3,659

4,213

4,419

5,032

6,172

5,359

6,260

8,059

Speedup (n times faster)

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

256 512 1024 2048
1p

0

0,5

1

1,5

2

2,5

3

3,5

M
F

lo
p

s/
W

a
tt 

In
cr

e
m

e
n

t F
a

ct
o

r

Fig. 5 Speedup (left) EDP 2 improvement (center) and MFlops per Watt improvement
(right) for Hash (more is better) normalized to 1 core with 128-bit registers running at
1Ghz with slow LLC. Y axis shows different combinations of reg. size, and frequencies
(scalar, vector and LLC).

5-center), showing significant benefits from both fast LLC and faster ALUs as
we increase the register size.

From a performance perspective, the best configuration for Hash would
be using fast ALUs and fast LLC, however, from a pure energy efficiency
perspective, a 2048-bit register size with fast LLC and running ALUs at 2Ghz
is preferred (Figure 5-right).

MatMul. Scalability with vector register size for MatMul is sublinear (Figure
6-left). Moreover, it stops scaling for a vector register size of 1024 bits, regard-
less of the number of cores. MatMul is a memory-bound application, where
LLC latency is critical to performance. Faster ALUs show an improvement to
execution, meaning that despite of being memory bound, the scalar code is
a bottleneck to vector scalability. When it comes to power consumption, the
cost of faster last-level caches is negligible compared to the baseline.

The best EDP 2 is achieved running a fast LLC and fast ALUs, but with a
register size of 1024 bits. However, from a power perspective, the best efficiency
is achieved limiting the register size to 512 bits at 2Ghz with a fast LLC.

Quadratic. Figure 8-left depicts performance improvements for Quadratic.
This application shows very limited scalability with vector register size. When
running with 512-bit registers, a 2.1x is achieved from the theoretical 4x. Wider
vectors generate the same results. A fast last-level cache does not provide any
performance benefit, but a faster ALU does. This means that scalar operations
are slowing down the application. But a fast ALU is really costly, doubling
the energy requirements of the baseline.

In Quadratic, the best results with regards to EDP 2 are achieved using
512/1024-bit vector registers, slow last-level cache and fast ALUs. However,
from a power perspective, the optimal MFlops per watt are obtained running
512-bit registers with slow LLC and ALUs running at 2Ghz.

Streamcluster. Figure 9-left shows the performance scalability of Streamclus-
ter. Streamcluster is a slightly memory-bound application, which is reflected
in the benefits when working with a faster last-level cache. It is also important



12 Adrian Barredo et al.

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 50 100 150 200 250 300 350 400

9,2
8,7
9,4

29,0
49,4
56,8

28,5
49,0

101,4
24,6

42,5
89,1

9,9
9,4
10,3

30,6
52,7
61,6

29,8
52,0

109,9
25,6

44,8
96,1

39,7
37,8
47,1

93,2
151,7

251,6
92,4

149,7
357,0

79,4
129,0

310,1

EDP² Reduction Factor

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 2 4 6 8 10 12 14 16 18

2,355
2,354
2,741

3,481
4,398

5,305
3,532

4,466
6,891

3,589
4,531

7,091
2,932
2,930
3,412

4,316
5,453

6,578
4,380

5,538
8,544

4,451
5,618

8,792
5,997
5,984

7,506
7,917

9,758
13,606

8,077
9,913

16,093
8,218

10,061
16,547

Speedup (n times faster)

Fig. 6 Speedup (left) and EDP 2 improvement (right) for Matmul (more is better) normal-
ized to 1 core with 128-bit registers running at 1Ghz with slow LLC. Y axis shows different
combinations of core count, reg. size, and frequencies (scalar, vector and LLC).

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048
1p 2p 4p

0

0,5

1

1,5

2

2,5

3

M
F

lo
p

s/
W

a
tt 

In
cr

e
m

e
n

t F
a

ct
o

r

Fig. 7 MFlops per Watt improvement (more is better) for Matmul with different combina-
tions of core count, reg. size, and frequencies (scalar, vector and LLC).

to note that having more than one core improves scalability with vector regis-
ter size. This happens because of the additional cache capacity as we increase
the number of cores. Having ALUs running at faster frequencies prevents the
scalar computations from becoming the bottleneck, as the latency of vector
memory requests can be hidden better. Figures 9-right and 10 show the en-
ergy scalability of this application. Faster ALUs are really costly, whereas a



Efficiency Analysis of Modern Vector Architectures 13

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

256

512

1024

2048

1p

0 2 4 6 8 10 12 14

5,6

5,8

8,1

7,3

7,7

11,2

6,8

7,3

11,6

5,8

6,2

9,9

EDP² Reduction Factor

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

2 1 S

2 1 F

4 1 S

256

512

1024

2048

1p

0 0,5 1 1,5 2 2,5 3 3,5

1,968

2,037

2,622

2,145

2,245

2,926

2,145

2,245

3,047

2,145

2,245

3,051

Speedup (n times faster)

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

256 512 1024 2048
1p

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

M
F

lo
p

s/
W

a
tt 

In
cr

e
m

e
n

t F
a

ct
o

r

Fig. 8 Speedup (left) EDP 2 improvement (center) and MFlops per Watt improvement
(right) for Quadratic (more is better) normalized to 1 core with 128-bit registers running
at 1Ghz with slow LLC. Y axis shows different combinations of reg. size, and frequencies
(scalar, vector and LLC).

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 1000 2000 3000 4000 5000

4,1
4,7
5,4
6,9
7,2
9,4
7,2
7,6
10,4
4,9
7,0
9,5
148,2
173,1
208,1

445,3
553,7

754,4
707,2

940,3
1560,7

782,8
1103,9

2077,7
364,0
413,2
560,0

1110,2
1337,3

2055,7
1584,3

2212,0
3962,3

1724,6
2288,2

4714,0

EDP² Reduction Factor

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 5 10 15 20 25 30 35 40 45 50

1,713
1,858
2,124
2,060
2,145
2,612
2,183
2,273
2,827

2,035
2,368
2,973

7,626
8,272

9,907
11,386
12,656

16,047
14,127

16,097
22,371

15,986
18,605

27,693
12,963
13,897

17,436
19,452

21,341
28,400

23,277
26,887

38,611
26,181

29,657
45,904

Speedup (n times faster)

Fig. 9 Speedup (left) and EDP 2 improvement (right) for Streamcluster (more is better)
normalized to 1 core with 128-bit registers running at 1Ghz with slow LLC. Y axis shows
different combinations of core count, reg. size, and frequencies (scalar, vector and LLC).

faster last-level cache is not that much. However, the power consumption on
multicore scenarios remains stable along the different configurations.

In Streamcluster, the best EDP 2 is obtained when using four threads and
2048-bit vector registers with fast ALUs. However, when focusing on pure
energy efficiency, the best Mflops per watt are obtained running on two cores
with 2Ghz ALUs and a fast LLC.



14 Adrian Barredo et al.

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048
1p 2p 4p

0

1

2

3

4

5

6

7

8

M
F

lo
p

s/
W

a
tt 

In
cr

e
m

e
n

t F
a

ct
o

r

Fig. 10 MFlops per Watt improvement (more is better) for Streamcluster with different
combinations of core count, reg. size, and frequencies (scalar, vector and LLC).

Swaptions. When analyzing the performance scalability of Swaptions (Figure
11-left) we see a sublinear benefit from register size. In fact, vector length
stops being important for performance at 512 bits. Swaptions is a CPU-bound
application, as it does not benefit from a faster last-level cache. Faster ALUs
accelerate the scalar execution, which was slowing down the application execu-
tion time. Running on several cores provides really good outcomes. However, a
four-threaded scenario does not get much benefit from longer vectors (maybe
input related). Figures 11-right and 12 show the energy scalability of this
application. Power per core on multicore scenarios remains stable along the
different configurations.

The best EDP 2 for this application is obtained when running: four threads,
1024-bit vector registers, slow last-level cache and fast scalar units. However,
fast scalar units should only be considered if there are no power constraints,
as they have a huge effect on MFlops per watt for all core configurations.

Vreduction. Figure 13-left shows very limited scalability with vector regis-
ter size, that disappears after 512-bit registers. This is probably because our
memory subsystem is limited to 512-bit memory movements, doing several
memory requests when dealing with wider registers. Faster last-level caches
do not provide much benefit, supporting the assumption that we are dealing
with a bandwidth issue. Faster ALUs are of help in this benchmark, but is not
as critical as for other applications.

Figure 13-right shows that the best EDP 2 is achieved running four cores,
512-bit registers and fast ALUs. MFlops per watt vary little with core count,
and peak at 512-bit registers with slow LLC and ALUs running at 2Ghz (Fig-
ure 14).

Evaluation Summary Previous results demonstrate the need for a runtime re-
configuration strategy that adapts vector register length at runtime. There can
be two options depending on whether the objective is to obtain best perfor-
mance or a trade-off between performance and energy. In the case of compute-
bound applications, wider vector registers provide the best performance but it



Efficiency Analysis of Modern Vector Architectures 15

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 50 100 150 200 250

5,0
4,9
5,7
9,1
8,9
10,8
10,8
10,7
13,2
9,6
9,6
12,3

19,8
19,4
22,4

35,7
35,1
42,5
43,2
43,0

53,0
38,1
38,3

48,2
77,8
76,7

89,5
138,9
139,3

170,3
169,4
167,8

211,9
147,9
148,8

191,8

EDP² Reduction Factor

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 2 4 6 8 10 12 14 16 18

1,947
1,957
2,351
2,482
2,497

3,091
2,837
2,856

3,605
3,031
3,063

3,979
3,873
3,892

4,676
4,930
4,962

6,132
5,662
5,713

7,210
6,048
6,114

7,892
7,668
7,745

9,351
9,747
9,892

12,276
11,234
11,313

14,419
11,949
12,080

15,757

Speedup (n times faster)

Fig. 11 Speedup (left) and EDP 2 improvement (right) for Swaptions (more is better)
normalized to 1 core with 128-bit registers running at 1Ghz with slow LLC. Y axis shows
different combinations of core count, reg. size, and frequencies (scalar, vector and LLC).

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048
1p 2p 4p

0

1

2

3

4

5

6

7

M
F

lo
p

s/
W

a
tt 

In
cr

e
m

e
n

t F
a

ct
o

r

Fig. 12 MFlops per Watt improvement (more is better) for Swaptions with different com-
binations of core count, reg. size, and frequencies (scalar, vector and LLC).

is also important to make scalar units operate at higher frequency since they
become the bottleneck. Faster last-level caches do not improve performance
since the memory is not a limitation in this type of applications, so a slower one
leads to a reduction in the energy consumption. Vector register sizes should
only be reduced if the energy needs to be decreased but performance will be
lineary affected. In the case of memory-bound applications, vector registers
beyond 512 bits do not translate into significant performance benefits. This is



16 Adrian Barredo et al.

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 2 4 6 8 10 12

1,752
1,791

2,264
1,978
2,021

2,537
2,083
2,145

2,680
2,145
2,207

2,756
3,399
3,410

4,355
3,888
3,887

4,935
4,101
4,154

5,236
4,206
4,270

5,324
6,610
6,800

8,150
7,306
7,455

9,231
7,818

7,270
9,244

7,689
8,378

9,581

Speedup (n times faster)

2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S
2 1 S
2 1 F
4 1 S

256

512

1024

2048

256

512

1024

2048

256

512

1024

2048

1p

2p

4p

0 20 40 60 80 100 120

4,6
4,5
6,8
6,4
6,3
9,3

6,7
6,9
9,9

6,0
6,2
8,7

16,7
15,7

24,4
24,2
22,6

34,5
25,6
24,9

36,8
22,6
22,5

31,4
61,7
62,4

80,7
80,7
79,8

113,5
88,9

67,3
102,1

69,5
84,9

91,9

EDP² Reduction Factor

Fig. 13 Speedup (left) and EDP 2 improvement (right) for Vreduction (more is better)
normalized to 1 core with 128-bit registers running at 1Ghz with slow LLC. Y axis shows
different combinations of core count, reg. size, and frequencies (scalar, vector and LLC).

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

2 
1 
S

2 
1 
F

4 
1 
S

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048
1p 2p 4p

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

M
F

lo
p

s/
W

a
tt 

In
cr

e
m

e
n

t F
a

ct
o

r

Fig. 14 MFlops per Watt improvement (more is better) for Vreduction with different com-
binations of core count, reg. size, and frequencies (scalar, vector and LLC).

a factor which depends on the number of compute instructions per memory
ones. Faster last-level caches should be considered to obtain better speedups
because memory is a limiting element. Scalar units also become the bottleneck
the wider the vector registers, so their frequency should be scaled accordingly.



Efficiency Analysis of Modern Vector Architectures 17

5 Conclusions

This paper shows a detailed analysis of different resource optimization strate-
gies for vector architectures. In particular it assumes different voltage and
frequency islands for the last level cache (LLC), the scalar arithmetic units
(ALUs) and the vector processing units (VPUs).

Scalability with core count and vector register size is shown for perfor-
mance, EDP 2 (as an energy metric that emphasizes in performance) and
MFlops per watt (as an energy metric that emphasizes in low power, and used
in the Green500 classification).

Results expose the need to break down voltage and frequency domains
for LLC. Almost all benchmarks show significant benefits in performance and
EDP 2 when using fast ALUs, especially for wide vector registers, since the
scalar code becomes critical for performance (Amdahl’s law). Energy efficiency
can be further improved on CPU-bound benchmarks by reducing the operating
frequency of the LLC, since latency is not critical, but bandwidth and memory-
level parallelism are.

Results also show the need for a runtime reconfiguration strategy that
adapts vector register length at runtime. This is feasible in architectures such
as ARM’s SVE. Not all benchmarks show perfect scalability with register
size, and we also see a relationship between core count and vector scalability.
We aim at developing a dynamic reconfiguration mechanism that adapts both
frequency and vector register length based on performance counter information
as future work.

References

1. The Green 500 (2018). URL https://www.top500.org/green500/
2. Albright, R.K.: Optimizing Performance/watt of Embedded SIMD Multiprocessors

Through a Priori Application Guided Power Scheduling. Oregon State University (2012)
3. AMD: 3DNow! Technology Manual. Motorola (2000)
4. ARM NEON Technology
5. Asanovic̀, K.: Vector Microprocessors. Ph.D. thesis (1998)
6. Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick, D.L., Stokes, R.A.: The

ILLIAC IV Computer. IEEE Transactions on Computers C-17(8), 746–757 (1968)
7. Binkert, N., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood,

D.A., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower,
D.R., Krishna, T.: The gem5 simulator. ACM SIGARCH Computer Architecture News
39(2), 1 (2011)

8. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (1997)

9. Casas, M., Moreto, M., Alvarez, L., Castillo, E., Chasapis, D., Hayes, T., Jaulmes, L.,
Palomar, O., Unsal, O., Cristal, A., Ayguade, E., Labarta, J., Valero, M.: Runtime-
Aware Architectures. pp. 16–27 (2015)

10. Cebrian, J.M., Jahre, M., Natvig, L.: ParVec: Vectorizing the PARSEC Benchmark
Suite. Computing pp. 1077–1100 (2015)

11. Cebrián, J.M., Natvig, L., Meyer, J.C.: Performance and energy impact of parallelization
and vectorization techniques in modern microprocessors. Computing 96(12), 1179–1193
(2014)

12. Chapman, B.: The multicore programming challenge. Advanced Parallel Processing
Technologies p. 4847 (2007)



18 Adrian Barredo et al.

13. Cogez, P., Graef, M., Huizing, B.: ITRS Executive Summary 2011. International tech-
nology roadmap for semiconductors (2011)

14. Cray Research, I.: Cray X-MP Series Model 48 Mainframe Reference Manual (1984)
15. Dennard, R., Gaensslen, F., Rideout, V., Bassous, E., LeBlanc, A.: Design of ion-

implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State
Circuits 9(5), 256–268 (1974)

16. Espasa, R.: Advanced vector architectures. Ph.D. thesis, Universitat Politècnica de
Catalunya (1997)

17. Espasa, R., Valero, M., Smith, J.E.: Vector Architectures : Past , Present and Future.
Proceeding ICS ’98 Proceedings of the 12th international conference on Supercomputing
pp. 425–432 (1998)

18. Fuller, S.: Motorola AltiVec Technology. Motorola (1998)
19. Haley, A.: Deuce: a high-speed general-purpose computer. Proceedings of the IEEE -

Part B: Radio and Electronic Engineering 103(2S), 165–173 (1956)
20. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Sixth Edition: A Quantitative

Approach, 6th edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2017)
21. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P.: Mi-

croarchitectural techniques for power gating of execution units. In: Proceedings of the
2004 international symposium on Low power electronics and design - ISLPED ’04, p. 32.
ACM Press, New York, New York, USA (2004)

22. Inoue, H.: How SIMD width affects energy efficiency: A case study on sorting. In: 2016
IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XIX), pp. 1–3.
IEEE (2016)

23. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 1: Basic Architecture. (2012)

24. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 2A: Instruction Set Reference. (2015)

25. Jesshope, R.W.H., R., C.: Parallel Computers Two: Architecture, Programming and
Algorithms. IOP Publishing Ltd., Bristol, UK, 2nd edition (1988)

26. Jimborean, A., Koukos, K., Spiliopoulos, V., Black-Schaffer, D., Kaxiras, S.: Fix the
code. Don’t tweak the hardware: A new compiler approach to Voltage-Frequency scaling

27. Kaxiras, S., Martonosi, M.: Computer Architecture Techniques for Power-Efficiency.
Synthesis Lectures on Computer Architecture 3(1), 1–207 (2008)

28. Koukos, K., Black-Schaffer, D., Spiliopoulos, V., Kaxiras, S.: Towards More Efficient
Execution: A Decoupled Access-Execute Approach

29. Lee, Y., Avizienis, R., Bishara, A., Xia, R., Lockhart, D., Batten, C.: Exploring the
Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators pp.
129–140 (2011)

30. Lemuet, C., Sampson, J., Francois, J., Jouppi, N.: The Potential Energy Efficiency of
Vector Acceleration. In: ACM/IEEE SC 2006 Conference (SC’06), pp. 1–1. IEEE (2006)

31. Li, H., Bhunia, S., Chen, Y., Vijaykumar, T.N., Roy, K.: Deterministic Clock Gating
for Microprocessor Power Reduction

32. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and Many-
core Architectures. In: Proceedings of the 42nd Annual ACM/IEEE International Sym-
posium on Microarchitecture (MICRO), pp. 469–480 (2009)

33. Majzoub, S.: Voltage island design in multi-core SIMD processors. In: 2010 5th Inter-
national Design and Test Workshop, pp. 18–23. IEEE (2010)

34. Mudge, T.: Power: A first-class architectural design constraint. Computer 34(4), 52–58
(2001)

35. NEC: Vector Supercomputer SX Series: SX-Aurora TSUBASA (2017)
36. Qiang Wu, Martonosi, M., Clark, D., Reddi, V., Connors, D., Youfeng Wu, Jin Lee,

Brooks, D.: A Dynamic Compilation Framework for Controlling Microprocessor Energy
and Performance. In: 38th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’05), pp. 271–282. IEEE

37. Russell, R.M.: The CRAY-1 Computer System. Proc. Comm. ACM Computer Proc.
WJCC Comm. ACM McCarthy, J. Time Sharing Computer Systems Pt. I, AFIPS Press
N.J. N.J. N.J 36(12), 657–675 (1971)



Efficiency Analysis of Modern Vector Architectures 19

38. Russell, R.M.: The CRAY-1 computer system. Commun. ACM 21(1), 63–72 (1978)
39. Satish, N., Kim, C., Chhugani, J., Saito, H., Krishnaiyer, R., Smelyanskiy, M., Girkar,

M., Dubey, P.: Can Traditional Programming Bridge the Ninja Performance Gap for
Parallel Computing Applications? In: Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), pp. 440–451 (2012)

40. Sodani, A.: Knights landing (KNL): 2nd Generation Intel Xeon Phi processor. In: Hot
Chips (2015)

41. Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., Horsnell, M.,
Magklis, G., Martinez, A., Premillieu, N., Reid, A., Rico, A., Walker, P.: The ARM
Scalable Vector Extension. IEEE Micro 37(2), 26–39 (2017)

42. Transactions, I., Technology, D., Technology, D., Techniques, J.C.m.P.: The Reliability
Wall for Exascale Supercomputing (August 2015) (2012)

43. Usami, K., Goto, Y., Matsunaga, K., Koyama, S., Ikebuchi, D., Amano, H., Nakamura,
H.: On-chip detection methodology for break-even time of power gated function units.
In: IEEE/ACM International Symposium on Low Power Electronics and Design, pp.
241–246. IEEE (2011)

44. Villa, L., Espasa, R., Valero, M.: Effective usage of vector registers in advanced vector
architectures. In: Proceedings 1997 International Conference on Parallel Architectures
and Compilation Techniques, pp. 250–260. IEEE Comput. Soc

45. Watson, W.J.: The TI ASC: A Highly Modular and Flexible Super Computer Architec-
ture. In: Proceedings of the December 5-7, 1972, Fall Joint Computer Conference, Part
I (AFIPS), pp. 221–228 (1972)

46. Wilkinson, J.H.: The {Pilot ACE}. In: Automatic Digital Computation, pp. 5–14 (1954)
47. Wulf, W.A., McKee, S.A.: Hitting the memory wall. ACM SIGARCH Computer Archi-

tecture News 23(1), 20–24 (1995)
48. Xi, S., Jacobson, H., Bose, P., Wei, G.Y., Brooks, D.: Quantifying sources of error in

McPAT and potential impacts on architectural studies. In: International Symposium
on High Performance Computer Architecture (HPCA), pp. 577–589 (2015)

49. Yoshida, T.: Introduction of Fujitsu’s HPC processor for the Post-K computer. In: Hot
Chips (2016)


