Document downloaded from:

http://hdl.handle.net/10251/160764
This paper must be cited as:

Puche-Lara, J.; Petit Marti, SV.; Sahuquillo Borras, J.; Gdbmez Requena, ME. (2019). FOS: a
low-power cache organization for multicores. The Journal of Supercomputing (Online).
75(10):6542-6573. https://doi.org/10.1007/s11227-019-02858-x

The final publication is available at

https://doi.org/10.1007/s11227-019-02858-x

Copyright - gpringer-Verlag

Additional Information

Journal of Supercomputing manuscript No.
(will be inserted by the editor)

FOS: a Low Power Cache Organization for Multicores

José Puche - Salvador Petit - Julio Sahuquillo -
Maria Engracia Gomez

Received: date / Accepted: date

Abstract The cache hierarchy of current multicore processors typically consists of one or
two levels of private caches per core and a large shared last level cache (LLC). This approach
incurs area and energy wasting due to oversizing the private cache space, data replication
through the inclusive cache levels, as well as the use of highly set-associative caches. In this
paper, we claim that although this is the common adopted approach, it presents important
design issues that can be addressed by a more energy efficient organization.

This work proposes Flat On-chip Storage (FOS), a novel cache organization that, aimed
at addressing energy and area on low-power processors, resolves the mentioned issues. For
this purpose, FOS combines L2 and L3 cache levels into a single one, organized as a flat
space, and composed of a pool of private small cache slices. These slices are initially pow-
ered off to save energy and they are powered on and assigned to cores provided that the
system performance is expected to improve. To provide fast and uniform access from the
private L1 caches to the FOS’s cache slices, multiple architectural challenges are overcome,
which entails the design of a custom Optical Network-on-Chip (ONoC).

Experimental results show that FOS achieves significant energy savings on both static
and dynamic energy over conventional cache organizations with the same storage capacity.
FOS static energy savings are as much as 60% over an electrically-connected shared cache;
these savings grow up to 75% compared to optically-connected baselines. Moreover, despite
deactivating part of the cache space, FOS achieves similar performance values as those
achieved by conventional approaches.

Keywords Cache Hierarchy - Multicores - Energy efficiency

1 Introduction

Multicore processors have highly evolved during the last decade. Early multicores consisted
of only two cores, and progressively the core count increased with technology advances.
Multicores, especially tiled multicores, are designed as a set of cores, each one including

J. Puche E-mail: jopucla@gap.upv.es

S. Petit E-mail: spetit@disca.upv.es

J. Sahuquillo E-mail: jsahuqui@disca.upv.es
M. E. Gémez E-mail: megomez@disca.upv.es

2 José Puche et al.

private L1 and L2 caches. Private caches are of fixed size, thus the storage capacity can
be larger than that needed for some applications, which wastes energy and area, especially
in second level caches. Additionally, the size could not be sufficient for other applications,
which causes performance losses. This means that when running multiprogram workloads,
if the working set of a given application exceeds its L2 cache capacity, its performance
can be harmed even if other L2 private caches are scarcely used or even not used at all.
Cooperative caching approaches [8] address this issue by enabling a core to access the L2
cache of neighboring cores.

Nevertheless, recent advances in memory technologies have allowed, mainly in high
performance processors, to hide the huge memory latencies by providing large shared L3
caches, which makes cooperative caching less effective. However, a large fraction of the
processor die is used to implement these L3 caches. Therefore, because of area and power
requirements [41], this design choice is not considered in low-power or embedded processor
designs. On the other hand, cooperative caching is not a suitable solution for embedded
processors since it does not reduce neither the total cache area nor its energy consumption.

The previous rationale means that there are important design concerns dealing with per-
formance, area, and energy consumption of caches in embedded and low-power processors.
This paper proposes Flat On-chip Storage (FOS), a novel cache hierarchy that introduces
two main cache design features to deal with these concerns: unified cache space and efficient
coarse-grain energy management. Unified cache space refers to the fact that FOS replaces
the second and subsequent cache levels (e.g. third level if any) of a conventional cache hier-
archy with a single flat storage space that can be accessed by all the processor cores.

To ease energy management, FOS is organized as consisting of relatively small and in-
dependent cache slices (e.g. 64KB). Slices, initially powered off for energy, are powered on
and allocated dynamically at run-time to a particular application or deallocated from it ac-
cording to specific criteria. This way reduces energy management and hardware complexity,
since static energy is managed at coarse granularity (i.e. cache slice) instead of deactivating
small cache lines (e.g. 64B) [22,28], whose overload area required to layout the additional
wires could be prohibitive.

The proposed approach is suitable for both inclusive and exclusive caches; however, to
focus the research this paper concentrates on inclusive caches, which are dominant in current
processors. Exclusive caches present important shortcomings, mainly because they compli-
cate the implementation of the coherence protocol when dealing with multicore processors.

To trade off performance and energy, FOS’ design must face three main challenges:
1) efficient policies should be devised to assign/deassign slices to applications, ii) strate-
gies/mechanisms should be defined to identify the FOS slice to be accessed on an L1 cache
miss, and iii) an efficient interconnection that communicates the processor cores to the FOS
slices needs to be designed. This work presents the first attempt to address these challenges
and makes the following main contributions:

— We propose a novel cache organization that combines L2 and L3 cache levels. This
approach consists of a common pool of cache slices, which are dynamically powered on
and allocated to specific cores.

— We present a low-overhead algorithm to assign (or deassign) cache slices.

— We devise an ad-hoc optical network on chip (ONoC) that provides uniform access
latency to the pool of slices.

Experimental results show that FOS reduces dynamic energy consumption by up to 4 x
and leakage power up to 60% over conventional cache organizations with the same storage

FOS: a Low Power Cache Organization for Multicores 3

IPC =%= L2_MPKI
astar perlbench gcc xalancbmk bzip2

IPC

2 _ 2 _ 2 _ 2 _ 2 _

0¥ 20§ 0¥ 0¥ 0¥

I) I I 3

S 5 N 5 ~

X 10~ e 10~ B 107 B 10~ 1'\,\'§’~’~’_‘_'m)
0 0 0 0 0 0

12345678 12345678 12345678 12345678 12345678

of slices # of slices # of slices # of slices # of slices

soplex GemsFDTD gamess libquantum zeusmp

IPC
L2 MPKI
IPC
L2 MPKI
IPC
L2 MPKI
IPC
L2 MPKI
IPC
L2 MPKI

i o
o o o o o o o o
12345678 12345678 12345678 12345678 12345678
of slices # of slices # of slices # of slices # of slices

Fig. 1 IPC and L2 MPKI values varying the number of slices (1 slice is 64KB - 8 slices are 512KB).

capacity. Moreover, performance is not harmed by these energy savings, since FOS achieves
similar performance values as those achieved by conventional approaches.

2 Taxonomy of Applications

This section characterizes the cache demands of a representative subset of the SPEC CPU2006
benchmarks to provide insights on the cache space required by the applications and to guide
the design of FOS. In these experiments, L2 caches are assumed to be composed of slices of
64KB, and the maximum FOS cache space has been fixed to 512KB (8 slices). The experi-
mental setup is described in Section 5. To characterize the applications, we vary the number
of slices from 1 to 8, and measure the performance (i.e. IPC) and the number of misses per
kilo instruction (MPKI) of the L2 cache. The goal of this study is twofold: i) to analyze
the relationship between these metrics and the cache space, and ii) to evaluate the potential
performance gains of increasing the cache capacity up to the entire 512KB FOS space for
individual applications. Figure 1 presents the results. Applications can be categorized into
three main groups according to how applications evolve when adding more cache space:

— Minimum Slice Needs (MSN): Applications in this group are characterized by their
performance insensitivity to the number of available slices due to two main reasons.
First, some applications, like 1ibgquantum and zeusmp, present an inherent low lo-
cality so their MPKI does not change regardless of the amount of available cache slices.
Second, the working set of applications like GemsFDTD and gamess fits in a single
64KB slice, thus their performance scarcely improves or even remains constant with
additional slices.

— Limited Slice Needs (LSN): Applications like astar, gcc or perlbench reach their
maximum performance when they are executed with 4 or 5 slices. In this category, in-
creasing the number of slices over the saturation point does not impact on the application
performance.

— Non-limited Slice Needs (NSN): Applications belonging to this group are called cache-
hungry, since they always improve performance with higher cache capacities. For in-
stance, both in xalancbmk and bzip?2 performance keeps growing with the number
of slices.

This study shows that a flexible distribution of slices among the competing applications
can potentially achieve important benefits. First, it can provide significant energy savings

4 José Puche et al.

over conventional L2 caches by powering off slices that are not in use, especially for appli-
cations falling in the first two categories. Second, in multiprogram workloads, the perfor-
mance of LSN and NSN applications can be enhanced since LSN applications benefit from
the reduction of interferences and cache trashing while NSN ones can get a high number of
slices. Additionally, applications which, due to the small size of their working set, are clas-
sified as MSN can also experience performance improvements. This occurs because FOS
can prevent other cache-hungry applications from replacing the blocks exhibiting a high
cache-locality of the MSN applications, which is critical for their performance. Finally, low
locality MSN applications are expected to present the same performance in FOS as in any
conventional cache organization.

3 Flat On-chip Storage

As mentioned above, the key idea behind the proposal is to have a common pool of cache
slices that replaces all the cache levels (e.g. second and third) except the private L1 caches
implemented in the core pipeline. All these slices should be properly interconnected with
the cores to avoid high NoC latency deviations. A high-level block-diagram of this proposal
is depicted in Figure 2.

Slices of the pool are assigned to specific cores at run-time based on the predicted ap-
plication requirements, and once a slice is assigned to a core it is set to private mode for that
core. Having a common pool avoids the constraint of a fixed-size private cache, which has
been identified as a key concern in previous research [30], since it usually incurs area and
energy wasting due to over-provisioning cache space. Previous approaches [22] handle en-
ergy savings at a very small cache line granularity (e.g. 64B), which complicates the layout
of wires and increases area overhead, which makes this approach impractical from an imple-
mentation perspective. However, acting on the entire slice itself as an activation/deactivation
unit (e.g. 64KB) helps the implementation of cache energy saving mechanisms.

A flexible distribution of the cache resources, in which each application is provided with
the cache size that is predicted for performance, can help improve both energy savings and
performance. To provide a good trade-off between energy and performance, however, three
main architectural challenges must be addressed:

— When should a slice be allocated/deallocated to/from a core?
— Which slice must be accessed by a given core upon an L1 cache miss?
— Which interconnect should be used, considering that slices are not beside the core?

The design decisions made to deal with these issues are discussed below.

3.1 Slice Management Mechanism

This section presents the Slice Management Mechanism (SMM), which implements both a
Slice Allocation Algorithm and a Slice Deallocation Algorithm, discussed below.

Slice Allocation Algorithm: This algorithm, summarized in Algorithm 1, assigns slices
to applications based on performance and energy considerations. The algorithm is triggered
at fixed-length (X execution cycles) intervals during the application execution.

During each interval, the number of cache misses in the FOS pool is measured to quan-
tify the MPKI of the current interval (M PKI,,—1). Then, the algorithm predicts if the
performance of each application would improve in case the application was provided with

FOS: a Low Power Cache Organization for Multicores 5

Photonic ring MG,

f L2 Slicey H H \
fpeeas D> k-
Core 0 : - Core 2
L1, . . L1,
o000 > =
Core 1 : H H : Core 3
L1, Al | L1,
k H H L2 Slicen J
——
MC,

Fig. 2 Schematic of the proposed architecture.

one additional slice. The key challenge is that the algorithm needs to estimate the number
of cache misses that each application would have experienced with an additional cache slice
s+ 1, while running with only s slices. To deal with this issue, we have modeled extra hard-
ware that works similar to the Auxiliary Tag Directory (ATD) [30]. To reduce the area of
this structure, it only implements a tag array corresponding to 32 sets, which are randomly
selected among all the sets in the cache.

Using the collected data, the algorithm estimates, for each interval, how much the MPKI
would have improved with an additional slice. For this purpose, the expected MPKI decrease
rate (M PK I jec_rate) Of each application with s+1 slices is computed in step 2. This metric
alone, however, only considers performance, so it is complemented with the M PK Ij ;¢
metric, which helps improve energy efficiency by providing the average M PK I during a
sliding window composed of the last w intervals. This metric can be used, for instance, to
check if adding an extra slice provides marginal system performance benefits, which might
not justify in terms of energy consumption the activation of a new slice. Lastly, one more
metric is computed to obtain the weight of the last interval MPKI in the mentioned sliding
window (M PK L yeight).

Step 3 aims to check the conditions that must be fulfilled for energy efficiency. The
M PK Iy;s¢ must be greater than a minimum threshold (T'h7yindow), and the number of
FOS misses (M PK1I,_1) must be greater than a threshold (T'hr,ir). If none of these
conditions is satisfied Step 4 is skipped and no slice is activated.

Finally, Step 4 checks the conditions for performance provided that Step 3 conditions
have been fulfilled. The M PK I jec_rate Of the application must be higher than the Thr e,
threshold, or the weight of the last interval MPKI in the sliding window (M PK Lyeight)
must exceed threshold Threignt. The last condition enables the proposal to react to sharp
application phase changes that cannot be detected by M PK I jec rate-

The proposal requires keeping track of which slices are assigned to each core. To do so,
the slice allocation logic is accessed at the end of each interval through the devised optical
network (ONoC). When a slice is requested, the allocation logic selects, powers on and
assigns a slice to the requesting core by sending the corresponding acknowledgment to it.
If several requests take place simultaneously, the allocation logic serves them following a

6 José Puche et al.

Algorithm 1 Slice Management Mechanism.

Algorithm Inputs: n: current interval number; s: slices currently assigned to the applica-
tion; w: size of the history window (measured in number of intervals); {Thr, }: thresholds.

-Allocation Algorithm——

1. Initialization. At the beginning of interval n, for each running application, gather its M PK I,,_1 and
MPKI,_1(s+1).
2. Metric computation. For each running application, calculate:

MPKI, _1(s+1)

MPKljecrate = MPKI,,_,

1,

srol MPKI,

w

MPKIp;st = , and

MPKI,_,
MPEKIp 00"

MPKIyeight =
3. Filtration. Skip step 4) iif:
MPKIhist < Thryindow 0 MPKI, 1 < Thrpin.
4. Request. Request a new slice iif:

MPKljecrate > Thrgee or MPKIweight > Th""weight-

- Deallocation Algorithm

1. Initialization. At the beginning of interval n, for each running application, gather its M PK I,,_1 and
MPKI,_1(s—1).
2. Metric computation. For each running application, calculate:

MPKI,_ 1

MPKIincrate =1— MPKI,_1(s—1)°

3. Release. Release an allocated slice iif:
MPKIincrate < Thrine and IddleInts > Thr,.;.

simple FIFO order. Note that the allocation logic is simple and only works between intervals
upon requests of slices.

Slice Deallocation Algorithm: The operation of releasing a slice allows feeding the
common pool of free slices and prevents an application from unnecessarily holding a high
number of slices after a hungry phase. The release mechanism is summarized in the bot-
tom of Algorithm 1. This algorithm aims to estimate whether the performance of a given
application on a long-enough steady state would remain the same or similar in case a slice
is deallocated from it. For these estimates, the ATD is used.

First, on each interval, the algorithm obtains the M PK I,,—1(s — 1) of the application.
This value is used to estimate the number of cache misses that a given application would
have experienced during the last interval with one slice less. Using the value provided by
the ATD, we obtain the estimated M P K I;y,c_rqte metric, which is the ratio that the MPKI
is expected to be increased in case one slice was deallocated from the cache space of each
application. The M PK I;nc_rate is compared to the Thr;,. threshold and, if it is smaller
enough and the application is in a steady state (i.e. it has not requested any new slice during
the last T'hr,; intervals), one slice is released. The Least Recently Used (LRU) policy is
employed to choose which slice is deallocated.

The deallocation process is carried out by draining all the blocks in modified state that
are stored in the slice to be powered off. During the draining interval, the dirty blocks are
written back to main memory over time, and the blocks not being evicted are kept accessible

FOS: a Low Power Cache Organization for Multicores 7

—— MPKI —— #Slices_SMM #Slices_NA

xalancbmk gcc libquantum

MPKI
S
#Slices
MPKI

o
8
S
#Slices

8
2 5 5 I 5
20
6 Ll

0
0 20 40 60 80 100 120 140 0 50 100 150 200 o 50 100 150 200 250
Execution time (ints) Execution time (ints) Execution time (ints)

Fig. 3 MPKI and allocated slices for xalancbmk, gcc and 1ibgquantum along execution time.

to the application while the draining process is being carried out. When the draining phase
finishes, the slice is powered off and becomes available to be assigned.

3.2 Slice Management Mechanism Evaluation

We evaluate the behavior of the allocation/deallocation algorithms of the Slice Management
Mechanism (SMM) across different types of applications. To this end, Figure 3 depicts
a histogram of the MPKI and the number of slices allocated to xalancbmk, gcc and
libquantum along the execution time. The figure also shows the number of slices used
by FOS under no slice allocation restrictions (NA). Under this setup, slices are assigned
without restriction as soon as more cache space is required, they are never deallocated and
there is no constraint regarding the number of slices that a single core can allocate.

In xalancbmk, an application previously identified as NSN, it can be observed that
SMM allocates slices from the beginning of the execution until the application gets 14 slices,
which is the maximum number of slices per core that has been set in these experiments. No-
tice that the deallocated slices are quickly recovered by the SMM since MPKI improvements
are expected along all the execution time. This means that the devised algorithm correctly
identifies the slice needs for xalancbmk.

In gcc, an LSN application, the algorithm must face different stages during the execu-
tion. During the initialization stage (intervals 0 to 40), SMM assigns up to 6-7 slices to the
application. Then, a sharp increase in the MPKI is observed, thus the allocation algorithm
increases the number of slices up to 8. After that, the application returns to a steady state
and the deallocation algorithm turns off two slices, coming back to 6. At the end, the appli-
cation enters in an irregular stage where several MPKI peaks are observed. The final stage
is managed by the algorithm by reacting to these sharp increases turning on more slices,
while simultaneously trying to deallocate slices. This example shows how SMM is able not
only to identify slice needs in different applications but also to react to sharp increases in
the MPKI.

Lastly, libgquantum is studied as an example of an MSN application. As observed,
the SMM only allocates two slices even when the MPKI is higher than that observed in
xalancbmk. This means that the ATD-based algorithm correctly detects that allocating
more space for this application is pointless because an MPKI reduction is not expected.

To conclude this study and provide insights on the effect of powering off slices, Figure 4
plots the average number of slices allocated depending on whether the deallocation algo-
rithm is used or not. As can be seen in the figure, the allocate/deallocate approach reduces
in some applications like astar and milc up to almost 2 slices the number of allocated
slices. This directly translates (as it will be shown later in Section 6.1) to a reduction of up

8 José Puche et al.

W Allocate [Allocate/Deallocate

#Slices

Fig. 4 Average amount of slices allocated with and without the deallocation algorithm.

to 30% in the static energy consumed due to leakage currents. Only those applications that
do not allocate any slices (NSN applications) keep the same amount of slices under both ap-
proaches, which means that energy savings are achieved for any other types of applications.
Therefore, activating the deallocation algorithm has a significant effect on the energy con-
sumed by FOS. Moreover, performance is scarcely affected when the deallocation algorithm
is active (less than 1% performance degradation in the worst case).

3.3 Implementation Issues and Shared Data Support

Private Tag Array: Each application will have assigned a subset of the FOS slices. Then,
upon a L1 cache miss, a given core only needs to check those slices assigned to it to locate
the block in the pool of slices. For this purpose, we decoupled the tag arrays of the slices
from the data arrays and moved these tag arrays close to the L1 caches similarly as done in
some processors (e.g. the L3 of the IBM POWERS).

The tags of the decoupled slices are managed on each core by the Private Tag Ar-
ray (PTA), which corresponds with the L2 tags modules shown in Figure 2. The PTA
block diagram is presented in Figure 5. As observed, the PTA is organized in multiple (e.g.
MazxSlices) banks, where each bank, when active, keeps the tags associated to one of the
assigned slices. Those banks that are not in use (depicted in darker color in the figure) are
switched off. The operation of the PTA is described as follows:

1. The PTA is indexed with the address of the block to be accessed in the FOS pool.

2. The active banks are accessed in parallel by the logic and the results (hit or miss) are
notified to the Selection Logic.

3. Upon a hit, the Selection Logic provides the slice, set, and way identifiers where the
target block is stored.

FOS: a Low Power Cache Organization for Multicores 9

Tag arrays

A
N
S o = I —

Inputs: ADDRESS

VALID| TAG L2 SLICE,

SEARCH
ENGINE

; ——TT slice_id
i [Outputs: set
e Eat

Fig. 5 High-level hardware schematic of a PTA module.

4. If the tag is not present in any bank, i.e. on a FOS pool miss, the Selection Logic re-
places the LRU line in the LRU slice. The decision of retrieving the LRU slice follows
a hierarchical LRU approach [2], much simpler than a strict LRU.

Hardware Overhead: The main hardware overheads introduced by FOS are the PTA
and the two ATD structures required by the SMM. Below, the overhead associated to these
structures is studied. First, a PTA requires as many banks as the maximum number of slices
that a single core can be assigned. Theoretically, the maximum number of slices in the PTA
is given by the equation MaxSlices = NumSlices — 2 * (n — 1), where n is the num-
ber of cores. For scalability reasons we limit this parameter to 12 slices. This parameter
should be limited in order to provide scalability to the system. However, this can not be
done at the cost of performance. In this work, the effect of this parameter on performance
has been experimentally explored, and results showed that setting this parameter to 12 slices
allows the system to achieve the maximum performance in almost all the studied cases.
Hence, this is a reasonable value that trades off performance and scalability. Then, the hard-
ware overhead per PTA is obtained by multiplying M axSlices by: i) the number of blocks
that can be stored in a slice Slicesize/Blocksize and ii) the number of bits in a tag entry
Validy;t +Tagpirs- Second, the overhead associated to an ATD that leverages Set Sampling
is up to 32 replicated sets per core [30], which is translated to 960 bytes.

Overall, the tag area required for PTAs and ATDs in a 2-core, 16-slice CMP is 82 KB (39
KB PTA + 2KB ATD on each core), which is by 7.4% of the total area (data plus tag array)
of a IMB shared cache. Compared to a conventional cache (which occupies 4.65% of the
total area), this represents a relatively small (i.e. by 2.97%) overhead. To clearly expose this
overhead, Table 1 lists the different tag capacity of FOS and a conventional cache scaling
with the number of cores and slices. In this table, the tag space of FOS has been computed
assuming MaxSlices = 12 and a 25-bit tag size.

Finally, we discuss the hardware cost associated to the implementation of the Slice Man-
agement Mechanism. First, little hardware is needed to compute the four MPKI related
metrics (i.e. MPKIn_1(s), MPKIn_1(s+ 1), MPKIp;st, MPK I ycignt) used in the
algorithm. This hardware compute the metrics with a small set of hardware counters that
keep track of the target event. For instance, two counters are needed to gather the number
of committed instructions and the amount of cache misses, which are required to obtain
MPKI,_1(s). In addition, five registers are used to store the threshold values. As dis-

10

José Puche et al.

Table 1 Evolution of size devoted to tag-storing structures in FOS .

Conventional Cache

FOS

Data Array

Tag Array

Data Array

Tag Array

Overhead

1024 KB (95.35%)
2048 KB (95.35%)
3072 KB (95.35%)
4096 KB (95.35%)
5120 KB (95.35%)
6144 KB (95.35%)

50 KB (4.65%)
100 KB (4.65%)
150 KB (4.65%)
200 KB (4.65%)
250 KB (4.65%)
300 KB (4.65%)

16 x 64 = 1024 KB (92.6%)
32 x 64 = 2048 KB (92.6%)
48 x 64 = 3072 KB (92.6%)
60 x 64 = 4096 KB (92.6%)
72 x 64 = 5120 KB (92.6%)
88 x 64 = 6144 KB (92.6%)

82KB (7.41%)
164 KB (7.41%)
246 KB (7.41%)
328 KB (7.41%)
410 KB (7.41%)
492 KB (7.41%)

32 KB (2.98%)
64 KB (2.98%)
96 KB (2.98%)
128 KB (2.98%)
160 KB (2.98%)
192 KB (2.98%)

cussed below, there is no need to use additional logic neither to compute the metrics nor
to check the thresholds, since these fast computations can be carried out with the available
functional units of the core at the time the core is stalled.

Execution Time Overhead: Note the SMM does not need to act at strictly fixed-length
periods of time. Therefore, to mitigate the overhead in time, the logic of the devised ap-
proach could be triggered during the core stall cycles (e.g. when the ROB is blocked due
to long memory latencies). According to our experiments, the period of time when the pro-
cessor is blocked, referred to as the core slack time, is on average a 24% of the total time.
Therefore, taking into account the low complexity of the required computations (e.g. just
tens of processor cycles every 40M cycles), there is no appreciable impact on the system
performance even if the core is stopped to perform these computations.

Shared Data Support: This work focuses on multiprogram workloads composed of
sequential applications. To support the execution of shared memory multithreaded applica-
tions, FOS needs to be extended to avoid multiple non-coherent copies of the same block
to be present in the slice pool. To address this issue, FOS could be extended with a small
number of distributed directory nodes, similarly to distributed cooperative caches schemes
(e.g. [18]). With this structure, after a PTA miss, FOS would be able to notify the accessing
core if the block is already present in the slice pool, so preventing the replication of shared
blocks. In addition, the sharer vector and other coherence protocol information could be
stored either in the distributed directories or in the slices. The design of such structures and
FOS for multi-threaded applications is out of the scope of this paper.

4 Optical Network-on-Chip

FOS provides a novel and flexible management of a common pool of slices. This disrupting
approach relies on a Network on-Chip (NoC) that must fulfill two main conditions: speed
and low latency variability. Speed is needed since most of the accesses that miss in the
L1 cache result in (by using the PTA) hits in the FOS pool, thus the network must be fast
enough to avoid delaying these hits. With respect to low latency variability we mean that
the access to the target slice must present similar latency regardless of the accessed slice.
Distinct NoCs might be devised fulfilling these conditions, although in this work we focus
on Optical Networks-on-Chip (ONoCs).

Current advances in silicon nanophotonics allow the integration of a complete functional
optical network on a single chip [9, 27, 36]. Optical networks present several features that
meet the mentioned requirements. First, fast transmissions are possible even with a reduced
number of optical resources. Second, the impact of distance on performance in optical net-
works is much lower than in traditional electrical networks. Nevertheless, an ONoC must

FOS: a Low Power Cache Organization for Multicores 11

Node A Node B
A sends 1 bit B receives 1 bit
Waveguid—le Wavelength filtered I_
Mogdulator A @ Q Photodetector B
Resonator A Resonator B
Laser Light source

Fig. 6 End-to-end transmission using optical interconnects.

be properly designed in order to avoid a prohibitive increase in the overall network energy
consumption.

4.1 Background on ONoC Components

To make this paper self-contained, next we describe the main components needed to fully
integrate an ONoC in a silicon die and to achieve a point-to-point communication with op-
tical interconnects. First, a laser source is employed to inject light into the chip. On-chip
lasers are considered the most suitable solution in ONoCs in terms of energy efficiency and
energy proportionality [14]. The light signal introduced by the laser is transmitted through
waveguides, which are narrow slots made over one layer of the die and confined between
cladding layers [37]. The signal transmitted over a single waveguide can be multiplexed in
different wavelengths using the Dense Wavelength Division Multiplexing (DWDM) tech-
nique. DWDM allows higher bandwidth density and avoids introducing a prohibitive num-
ber of waveguides into the chip [7]. Resonators are ring-shaped components that filter a
certain wavelength from the multiplexed light signal. Microring resonators can be tuned to
filter different wavelengths by applying an electrical pulse to them or by rising their tem-
perature (using a well-known process called thermal tuning). Finally, electro-optical and
opto-electrical conversions are performed by modulators and photodetectors, respectively.
Modulators are electro-optical components that convey the digital signal inside the wave-
lengths filtered by the resonators. Similarly, photodetectors transform the filtered optical
signal in an electrical signal.

Figure 6 shows an example of an end-to-end optical transmission between two nodes
A and B. In the figure, the ring resonator in node A absorbs a given \; wavelength and
modulates a bit stream over it. The modulated optical signal is carried along the waveguide
to the destination node (node B), whose resonator filters the mentioned wavelength and uses
its photodetector to reconstruct the electrical bit stream, completing the transmission.

4.2 FOS ONoC

The main features of the devised network are:

— A rather uniform and low transmission latency regardless of the accessed slice.

12 José Puche et al.

Table 2 Optical network-on-chip parameters and latencies.

ONoC Parameters

Frequency 10 GHz
Wavelengths per channel 32-128-8 A
Signal propagation 11.4 ps/mm
Modulation bandwidth 10 Gbps
ONoC Latencies (ps)
Token transmission Varying in range [100..500]
Microring tuning delay 400
Data modulation (64b-576b) 100 - 500
Trans. latency Varying in range [100..900]

— Reduced number of optical resources and network complexity.

Table 2 summarizes the modeled ONoC parameters and latencies. Considering the afore-
mentioned network characteristics, a ring topology can be used since it does not involve the
use of optical switches and it has an inherent low complexity. Optical rings [16] have been
studied in previous research work and have been proved to work with a reduced number of
optical components.

With the aim of reducing the data access time, the FOS ring is configured with three
separated, spatially multiplexed channels Cp, C1 and C2, which interconnect the L1 and
the pool of slices. Channel Cyp, provided with 32 wavelengths, is used to send requests and
data from L1 caches to the FOS level. Next, the C channel is used to deliver the requested
blocks from the FOS slices to the L1 caches. This channel is critical for performance, so in
order to provide a reduced latency, it is configured with 128 wavelengths. Finally, a third
channel is employed to communicate the FOS slices with the PTA structure described in
section 3.3. FOS slices use this channel to notify the PTA when writing and replacement
operations are finished. Since notification messages are small (4B), this channel is provided
with just 8 wavelengths. Channels use different waveguides, so transmissions can take place
in all of them simultaneously.

Communication on each channel follows a custom Multiple Writer Multiple Reader
(MWMR) [7] approach. MWMR requires several steps before a transmission is performed.
First, a sender node must get access to the channel, which is granted by an arbitration logic.
Token-based arbitration is widely used in optical rings since it guarantees collision-free
transmissions and barely introduces extra overhead [42]. Token-based arbitration requires
to acquire 1-bit token before transmitting data, and optical tokens help reduce the token ac-
quiring latency [42]. The implementation of optical tokens only requires an additional wave-
length on each channel. Token transmission latency mainly depends on the silicon lightspeed
and the path length; assuming a signal propagation of light of 11.4 ps/mm [43] in silicon, a
10GHz ONoC, and a ring length of 44.8 mm, token transmission latencies range from 100
ps to 500 ps, depending on the distance.

After getting ring access, the sender must notify the receiver that a message is going to be
sent using a given wavelength \;. This action is performed using several extra wavelengths
to ask the receiver to turn on its ring resonators in order to read the received wavelength.
Regarding tuning/detuning latencies, recent work [43] assumes a 400 ps tuning delay.

Once a communication path has been established between two nodes, the data trans-
mission can be carried out. The overall transmission latency (leaving apart communication
setup) comes from delays associated to electrical-to-optical conversion, data transmission

FOS: a Low Power Cache Organization for Multicores 13

Table 3 Loss values of the photonic components.

Component Value Reference
Laser Efficiency 5dB [43]
Coupler 1dB [25]
Waveguide path loss 0.1 dB/mm [43]
Waveguide bend/cross | 0.005/0.5 dB [43]
Ring drop 1dB [25]
By/Through ring loss 0.001/0.1 dB [25]
Photodetector 0.1dB [25]
Receiver sensitivity -25dB [25]

along the waveguide, and optical-to-electrical conversion. The former conversion introduces
a delay by 9.5 ps/bit and the latter by 4.0 ps/bit [3]. In the studied system, request messages
are 8B (64 bits) long, data messages are 72B (576 bits) long and notification messages are
4B (32 bits) long. Considering the number of wavelengths available on each channel (32,
128, 8) and 10 Gbps conversion speeds, each conversion requires 200 ps, 500 ps and 400 ps,
respectively, on each channel. Analogously, the data transmission delay also depends on the
length and the width (number of wavelengths) of the optical path. For a 44.8 mm ring and
depending on the number of wavelengths, the maximum transmission latencies for 64-, 576-
and 32-bit messages are 600, 900 and 900 ps, respectively. These latencies can be lower for
path lengths shorter than 44.8 mm.

Overall, for a 2 GHz core clock frequency and assuming no contention, the whole trans-
mission latency (i.e. considering the latencies of tuning resonators, both conversions, and
the message size) of any message varies, depending on the distance, between 2 and 4 clock
cycles. In short, from an experimental perspective, the NoC latency variability does not ex-
ceed two clock cycles regardless of the location of the end-to-end points, hence becoming
rather uniform in the studied system. Notice that other alternative networks, like an electrical
mesh or a crossbar, might be much slower and present a higher latency variability.

4.3 Energy Consumption in the FOS ONoC

To satisfy the latency requirements, in addition to include a relatively high number of wave-
lengths on the C channel, FOS ONoC replicates some optical resources to allow simulta-
neous transmissions on channels Cp and C2. This section analyzes the energy consumption
of these components.

The components that determine the power consumption in an ONoC are mainly the laser
and the microring resonators. First, regarding the microrings power consumption, according
to previous research [13] we consider 5 W/ring for the thermal tuning of resonators. Al-
though a huge number of microrings performing filtering actions might increase the power
loss and the crosstalk noise power, the FOS ONoC does not present this technological con-
straint because all its rings never work simultaneously. The worst case scenario for FOS
occurs when all the three channels are communicating simultaneously and, in this case, only
requires a reduced number of tuned microrings.

Second, laser power in ONoCs depends on the total losses that optical devices introduce
along the communication path. To estimate the minimum laser power needed to reach all the
components in the FOS ONoC we use the power model provided by Morris et al. in [25],
given by the equation Pjqser = Prz 4 Closs + Ms, where Py ser is the laser power, Pry is
the receiver sensitivity, C,ss is the channel loss, and M is the system margin. The model

14 José Puche et al.

Table 4 Baseline system parameters.

Core
Number of cores 2 -4, 000, 4 issue/commit width
Frequency 2 GHz
ROB size 128 entries

Cache Hierarchy

L1 Inst-Data cache Private, 32KB, 8-way, 64Bytes, 2 cc
L2 Private, 512KB, 16-way, 64Bytes, 8 cc

Interconnect L1-L.2

Frequency 2 GHz
Bandwidth 64 Bytes/cycle

Main Memory & Memory Controller
DRAM bus freq. 1066MHz
DRAM device DDR3 (2133 Mtransfers/cycle) 8 banks
Latency trp,troD, tor 13.09ns each

is fed with the loss values listed in Table 3, and the outcome provides the minimum laser
power to carry a signal strong enough to be possibly received by the photodetectors on every
node.

The energy per bit for the FOS ONoC has been computed using the average number of
transferred bits and execution time across the executed workloads. According to the model,
the energy per bit consumed by the ONoC is up to 1.5 pJ/bit. In contrast, the energy dis-
sipation value expected in electrical links is 0.25 pJ/bit (estimated with ORION 2.0 [21]).
As expected, the ONoC presents higher energy consumption than conventional electrical
links, but it should be noticed that electrical private links only implement point-to-point
communications, while the FOS network interconnects every L1 cache to every FOS slice.
Nevertheless, the power savings reached by FOS mainly come from slice deactivation as it
is discussed in Section 6.

5 Experimental Framework and Studied Approaches
5.1 Simulation Setup

We have widely extended the code of the Multi2Sim simulation framework [40] to model
and evaluate our approach. To improve the accuracy of the DRAM memory subsystem,
Multi2Sim has been linked to the DRAMSim?2 framework [32], which is a hardware-validated
DRAM simulator. Also, the CACTI v6.5 [26] tool has been used to estimate the energy con-
sumption and access times of the studied cache structures for a 32nm technology node. Ex-
periments have been carried out using the SPEC CPU2006 benchmark suite [38]. Applica-
tions have been executed until they commit at least SO0M instructions after fast-forwarding
the initial 300M instructions. When evaluating mixes composed of multiple applications,
they are kept running until the slowest one commits the target number of instructions, but
statistics for each individual application are gathered at the time it commits the targeted
500M instructions. This way prevents some applications to run in isolation during the last
part of the execution of the mix, which would result in better IPC values.

FOS: a Low Power Cache Organization for Multicores 15

5.2 Studied Approaches

The FOS implementation mainly modifies the cache hierarchy and the NoC. In order to study
where the achieved benefits come from, the proposal has been compared with four different
systems modifying these components; that is, different L2 cache organizations and L1-L2
interconnection networks have been considered. All the four combinations that have been
considered will be referred to as a tuple X-Y, where X indicates the L2 cache organization
(e.g. shared or private) and Y the underlying NoC technology (e.g. electrical or optical). For
instance, Shared-OPT refers to a system with an L2 shared cache with optical NoC. Below,
the four baseline schemes are discussed.

— Private-ELC: This scheme presents 512KB L2 private caches, connected to the corre-
sponding cores through electrical links. This configuration is used to study the perfor-
mance constraints associated to fixed-size private caches. Table 4 summarizes the main
parameters of this baseline system.

— Shared-ELC: Unlike the previous one, this scheme presents a unified shared L2 cache
connected to the L1 cache level with electrical links. This scheme is aimed at comparing
FOS against a common shared space, which exhibits inter-application interference.

— Shared-OPT: This configuration replicates the same cache hierarchy as the Shared-ELC
approach, but electrical links are replaced by an optical ring. The parameters and latency
values used in this ring match those of FOS ’s ONoC (see Section 4.2). This scheme,
together with Shared-ELC, contribute to discern whether the performance enhancements
come from reducing the network latency or from improved performance of the shared
organization.

— NUCA-OPT: A NUCA-based approach is introduced to replicate the FOS system with-
out the SMM algorithm. For this purpose, this scheme is configured as a pool of n
cache slices of k size, where n and k match the values selected for the FOS setup. This
scheme presents the same optical network as FOS. The motivation behind this scheme
is twofold: i) exposing clearly the energy efficiency benefits in terms of cache manage-
ment brought by the SMM algorithm, and ii) comparing FOS against a scheme with
faster cache modules and equal network latencies.

Finally, FOS has been configured in the same way as NUCA-OPT, that is, as a pool of
n slices of k size. Experimental results consider k& equal to 64KB and n equal to 8 times
the number of cores. In this way, the compared schemes have the same storage capacity, i.e.
1024KB and 2048KB for 2- and 4-core systems respectively.

The reason why we select 64KB sized slices for FOS is twofold. First, reducing the slice
size below 64KB increases the demands of networks resources, hence increasing the energy
consumption and the hardware complexity. Second, the larger the granularity, the lower the
number of slices (i.e. the pool size) that SMM has available to distribute, hence the lower
the flexibility of the allocation and the deallocation algorithms which can also affect the
performance. Taking these considerations into account, we experimentally concluded that
64KB is the most suitable slice size for evaluation purposes.

Regarding the SMM algorithm setup, a wide set of experiments has been performed
to tune the SMM parameters. These parameters could be further refined with more ex-
periments, however, this refinement is out of the scope of this work. To illustrate the po-
tential of FOS, this work presents the results with the parameter values that showed the
best energy efficiency on average through most of the experiments; that is, Th7.,,=0.2,
Thrwindow=0.8, Thrgec=0.25, Thryeight=1.5, Thrye;=25. Finally, w and the interval
length have been set to 10 intervals and 40k cycles, respectively.

16 José Puche et al.

Table 5 Composition of the evaluated 2- and 4-benchmark mixes. Legend: M: Minimum Slice Needs, L:
Limited Slice Needs, N: Non-limited Slice Needs.

4-benchmark mixes 2-benchmark mixes
Mix0 astar (L), deallI (L), milc (M), soplex (L) astar (L), bzip (N)
Mix1 GemsFDTD (M), soplex (L), xalancbmk (N), h264ref (M) astar (L), gee (L)
Mix2 xalancbmk (N), gromacs (L), omnetpp (L), zeusmp (M) astar (L), xalancbmk (N)
Mix3 libquantum (M), omnetpp (L), milc (M), xalancbmk (M) gobmk (L), gromacs (L)
Mix4 perlbench (L), povray (M), gamess (M), gromacs (L) gobmk (L), h264ref (M)
Mix5 omnetpp (L), astar (L), libquantum (M), milc (M) milc (M), h264ref (M)
Mix6 gamess (M), perlbench (L), omnetpp (L), xalancbmk (N) omnetpp (L), perlbench (L)
Mix7 gee (L), libquantum (M), milc (M), zeusmp (M) povray (M), libquantum (M)
Mix8 astar (L), gce (L), dealll (L), zeusmp (M) soplex (L), zeusmp (M)

5.3 Mix Design

To evaluate our approach, experiments have been launched for applications running alone
and for multiprogram workloads in conventional 2-core and 4-core multicores. Experiments
with more cores are not required since, as explained in Section 6.3, our approach assigns the
same cache space to each application regardless of the number of co-runners. The multipro-
gram mixes were randomly generated varying the ratio of applications belonging to each one
of the three categories identified in Section 2. The list of studied multiprogram workloads
for 2-core and 4-core experiments is presented in Table 5.

6 Experimental Results

This section analyzes the impact of the devised FOS’s cache management and slice distribu-
tion on energy and performance of multiprogram workloads. By design, FOS assigns slices
exclusively as private to cores, which means that, provided that there is enough cache space,
FOS will assign the same cache space to each application as it assigns in individual execu-
tion. In other words, FOS behaves similar for each application in multiprogram workloads as
it behaves in individual execution in terms of performance and energy. This behavior is a key
issue of FOS’s design, which is aimed at scaling with the number of cores or concurrently
running applications.

6.1 Energy Consumption of Multiprogram Workloads

This section evaluates the energy consumption of the 2 and 4-benchmark multiprogram
workloads across all the studied approaches. Regarding 2-benchmark mixes, Figure 7 plots
the consumed energy normalized to the Shared-ELC approach and broken down into: i)
static energy consumption due to cache leakage, ii) dynamic energy consumption due to
cache lookups, and iii) network energy consumption. We show the latter energy component
in order to highlight the energy consumption differences between both electrical and optical
approaches, since in this work FOS is implemented with a custom optical ring. Notice that
energy savings directly coming from the proposal, however, are found in the cache’s (static
and dynamic) energy values, and these savings are independent of the underlying network
supporting FOS. In other words, in case that FOS was implemented over a high-performance
electrical network, the energy savings achieved by the cache management would remain.

FOS: a Low Power Cache Organization for Multicores

P
o

1,4 [s Cache_dynamic 0 Cache_static @ Network |

12

Consumed Energy

d
o o0
N o »
| I E—

lizet

mal

5 0,2
z

o
|

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Avg

! Cache_dynamic O Cache_static & Network

Normalized Consumed Energy

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Avg

Fig. 8 Normalized energy consumption of 4-benchmark mixes.

As observed, the static energy (i.e. leakage currents) consumption of caches is the com-

ponent that clearly dominates the overall energy consumption across all the conventional
cache organizations. Notice that this energy component is largely reduced by FOS thanks to
the number of slices that are turned off dynamically at runtime. These savings are especially
significant in Mix4 or Mix7, where FOS improves leakage currents by 60% to 70% over
conventional organizations. Nevertheless, when executing cache-hungry mixes like Mix2
the whole pool of slices needs to be activated for performance, which means that FOS is
correctly working. Of course, performance improvement is achieved at the cost of energy,
which in this case matches the one consumed by Shared-ELC and Shared-OPT approaches.

Dynamic energy consumption (shown in the upper component of each bar) represents

the smallest energy component. NUCA-OPT presents the best results, thanks to the reduced
complexity of their cache modules. FOS implements cache modules with the same size,
although its dynamic energy consumption is slightly higher than in NUCA-OPT because of
the PTA overhead. Since tag lookups in the PTA structure are performed only for the active
slices, however, the corresponding overhead reduces the dynamic energy consumption on
average by a 4x factor over Shared-ELC and Shared-OPT approaches. Moreover, when
executing mixes with a low number of active slices like Mix4 and Mix7, FOS achieves a
dynamic energy consumption similar to that of NUCA-OPT.

Regarding the network energy, it can be observed that, on average, the energy consump-

tion of optical interconnects is by 10x higher than that of electrical links. This overhead
translates to an overall energy consumption increase by 20% from Shared-ELC to Shared-

18 José Puche et al.

Normalized IPC

lPriv;t:e-ELC B Shared-ELC O Shared-OPT ENUCA-OPT OFOS |

> & & N & 0 Q
& X N & & S
& 9 S & $ q@&
I3

Fig. 9 Normalized performance of the individual applications.

[ONework-L2MM_SL2access BNetwork-L1L2 WL1access |

V7zzz]

i

P
W/ |

77z 1
o

V7zzzzzZ 1
vy

) |
Vzzzzz 1

77z
Vzzzz 1

77z 1
Vzzzzz]

VzzzZz]

V7zzzzz_— 1
Vzzzzi 1

Vzzzz— 1
P

7z 1

I
Vzzzi]

V77777]
T

P
V77727

B EEEEREE

1
7/
1
77/

177/
77/
7/, I
77/

2 1
77/

P

77/
7/
1
oA]
2 1
77/ —

Vs 1

7/
77/

1

77/
7/ —
Vo 1

Y —

Stacked Latencies (ps)

i7/—]
|77/ I
1
77/
7/ —
777/ —

N

N

alslclol |alslclol |alslclol alslciol |alslclol |alslclol |alglclol |alslclol |alslclol |alslclol |alglclol (alslclol alslclol |alslclol
bzip2 dealll | gamess | gec IGemsFDTD| gobmk | gromacs | hasdret llibquanwum | milc | omnetpp | perbench | povray xalancbmk | zeusmp

Fig. 10 Memory subsystem latencies broken down in four main categories. Legend: A: Shared-ELC, B:
Shared-OPT, C: NUCA-OPT, D: FOS.

OPT. In the NUCA-OPT, the optical network overhead, together with the higher leakage
values of 64KB modules, leads to an energy consumption by 35% higher than the Shared-
ELC baseline. On the contrary, and despite experiencing also this network overhead, FOS
presents an energy consumption by 23% on average lower than Shared-ELC, improving
energy consumption over the electrically-connected approaches in seven out of nine mixes.

In summary, it can be observed that the energy savings provided by FOS coming from
cache management nicely compensate the energy expenses coming from the optical net-
work. These results show the high potential of the proposal, which is one of the main aims
of this paper, and let us to conclude that FOS would provide higher energy savings while
sustaining the performance if it was implemented with a low power NoC able to fulfill the
latency requirements.

Lastly, Figure 8 plots the energy results for the 4-benchmark multiprogram workloads.
As observed, FOS provides cache energy savings across most of the mixes. These savings
come from both dynamic and static energy consumptions. Dynamic energy is highly im-
proved, in percentage, compared to Shared-ELC and Shared-OPT approaches. Cache static
energy is also significantly reduced in a wide set of mixes, being in some cases less than
half the energy consumed by conventional approaches. Again, in cache intensive workloads
like Mix1, FOS keeps an energy consumption similar as that exhibited by the Shared-ELC
system, since as mentioned above, FOS activates slices for performance.

FOS: a Low Power Cache Organization for Multicores 19

6.2 Performance Evaluation of Individual Applications

This section evaluates the FOS’s performance considering each benchmark running alone
in one of the cores of a 2-core system, while the other core is left empty. First, we analyze
and compare the normalized performance (in terms of IPC) of FOS and the four studied
schemes: Private-ELC, Shared-ELC, Shared-OPT and NUCA-OPT. Figure 9 shows the re-
sults normalized with respect to Private-ELC. As observed, in spite of the fact that the main
goal of FOS is not related to achieve better performance, our approach improves perfor-
mance, on average, over Private-ELC by 8% (i.e. by 3% higher than that of Shared-ELC).
The schemes with optical network (i.e. Shared-OPT and NUCA-OPT) achieve the highest
speedups, improving performance by 10% and 12% over the Private-ELC scheme.

To provide further insights on where performance improvements come from, we an-
alyzed the memory subsystem latency, breaking this latency down into five main compo-
nents: i) L1 cache access time, ii) L1 to L2 cache NoC latency, iii) L2 cache access time, iv)
L2 cache to memory controller NoC latency, and v) memory controller latency to handle the
main memory access. Figure 10 plots the results for the first four components, since the main
memory subsystem is the same across all the studied approaches. Results are shown for the
Shared-ELC, Shared-OPT, NUCA-OPT and FOS systems, which are referred to as A, B, C
and D, respectively, in the figure. As observed, optical interconnects provide a 1000ps faster
L1-L2 network latency, on average, than the electrical links employed by the Shared-ELC
scheme. This latency reduction explains, at a first glance, why all the optical approaches
outperform both Private-ELC and Shared-ELC systems in individual execution.

Latency differences across the studied systems can also rise, however, because of the
different access times of the L2 cache modules. NUCA-OPT system divides its cache space
in 64KB modules, while Shared-ELC and Shared-OPT implement a single 1024KB module,
whose access time is 3x higher'. On the other hand, the access time presented by FOS
depends on the number of slices actually being allocated. For instance, in xalancbmk, a
cache intensive application, the FOS memory subsystem latency is up to 1100ps; however,
in h264ref, a compute intensive application, this time drops down to 700ps. Notice that
the L2 latency of FOS is slightly higher than that of the NUCA-OPT system. This small
increase is due to the sequential access to the tag and data arrays that FOS performs.

In summary, optical NoC and small L2 cache slices help improve performance for in-
dividual execution. In this regard, both the optical NUCA and FOS present similar perfor-
mance.

6.3 Performance and Cache Space Management Evaluation for Multiprogram Workloads

In addition to the performance in isolated execution, this section presents results for 2- and
4-program mixes. Figure 11 shows the system performance (i.e. IPC harmonic mean) across
the 2-program mixes. As expected, the NUCA-OPT approach is on average slightly the best
performing approach, closely followed by Shared-OPT and FOS. Results, however, are not
homogeneous across all the studied workloads since FOS has to face different scenarios
regarding the cache behavior of each mix.

To provide deeper insights and identify these behaviors, we measured the MPKI of FOS
on the allocated cache slices, and the MPKI of the L2 cache on the remaining schemes. Fig-
ure 12 presents the results for Private, Shared, NUCA and FOS systems, which are referred

' According to CACTI 6.5 cache simulator with a 32n/m technology node.

20 José Puche et al.

Normalized IPC (H. Mean)

W Private-ELC B Shared-ELC @ Shared-OPT CINUCA-OPT OFOS

O ey e e e e o QO .
R R R

Fig. 11 Normalized performance of 2-benchmark mixes.

P | 47,/ @ Appl
N App0

)
1

o
|

Ry
Ay

Ay

Ikt

Absolute L2 MPKI
N w »
1

-
1

Y
NN
NN

o
|

AIBICIDI |AIBICIDI |AIBICIDI |AIBICIDI |AIBICIDI |AIBICID
Mix0 Mix1 Mix2 Mix3 Mix4 Mix5

>
z®

AIBICIDI |AIBICID
Mix7 Mix8

3 0O
© g

Fig. 12 MPKIs of 2-benchmark mixes for: A: Private, B: Shared, C: NUCA, D: FOS.

to as A, B, C and D respectively. The legends App 0 and App 1 refer to the order of the
application in the mix as stated in Table 5. Since FOS trades off performance against cache
space, we should consider MPKI jointly with the number of allocated slices in the analysis.
Figure 13 shows the average number of slices that the SMM algorithm allocates to each
application.

First, we analyze the cache behavior of each mix according to the categories previ-
ously identified in Section 2. Applications with Minimum Slice Needs (MSN) like mi1c or
libquantum (i.e. AppO in Mix5 and Appl in Mix7, see Table 5) do not present major
differences in their MPKIs among the studied approaches due to their inherent low locality.
The SMM algorithm realizes this fact and only allocates 3 and 2 slices to them on each
mix. Secondly, applications with Limited Slice Needs (LSN), like astar in mixes 0 and
1 (App0) or gcc in Mix1 (Appl), are provided with 5 slices each and present MPKI val-
ues similar as the ones shown by conventional configurations. These values, however, are
slightly higher than those with shared L2 caches since FOS has to progressively activate
slices as they are predicted to be needed. Finally, applications included in the Non-limited
Slice Needs (NSN), like xalancbmk in Mix2 (Appl) or bzip2 in Mix0 (Appl), are
provided with 10 and 7 slices on average and clearly present better MPKI values than the
Private cache configuration.

FOS: a Low Power Cache Organization for Multicores 21

‘ O Free 2 Appl B A|

Fig. 13 Average number of slices assigned to each application in FOS.

These MPKI results match the slice sensitivity study carried out in Section 2. When ex-
ecuting multiprogram workloads, however, MPKI can increase due to the inter-application
interference. Nevertheless, since FOS assigns slices as private to cores, the inter-application
interference at the shared space is avoided. For instance, in Mix5, h264ref (Appl) re-
duces its MPKI compared to both Shared and NUCA systems even though in this mix there
are only 4.5 active slices on average during execution. In short, reducing the inter-application
interference in the shared space allows FOS to improve performance over the NUCA ap-
proach in some mixes like Mix5. Notice that MSN applications with small working sets
(like h264ref) are very sensitive to block replacements, hence preventing other applica-
tions from accessing their cache slices translates to relevant performance gains. This is the
reason why h264ref does not present significant performance improvements in individual
execution, but it does in Mix5.

The SMM algorithm covers a wide set of cache demanding scenarios, however, there
are two corner cases where the SMM algorithm does not achieve the best behavior. Next,
we discuss these cases and how they could be addressed. These cases appear due to two
different situations: i) slices are assigned to applications in FIFO order, which means that
an application with high cache needs may obtain a big amount of slices in the earlier stages
of its execution while reducing the available space for the co-running application, and ii)
irregular and fast-changing cache demands are hard to be identified with the experimental
SMM thresholds. An example of the first case can be seen in Mix2, where xalancbmk
(App0) slightly reduces the available space for astar from 5 slices to 4 and, due to this
reason, the MPKI of the latter is higher in this mix than Mix0 and Mix1. This behavior,
however, can be prevented in FOS by adjusting the corresponding threshold to limit the
maximum number of slices that an application can be assigned. An example of the second
case is gromacs (App 1 in Mix3). It can be seen that, when executed in the FOS system,
this application almost doubles the MPKI of the Private system, in spite of having by 45% of
the cache space still available. A more aggressive setup of the SMM algorithm would limit
this behavior but, in this work, only the setup that provides the highest energy efficiency is
shown (see Section 6.1).

To conclude the analysis of 2-benchmark mixes, results have shown that, on average,
FOS assigns only by 55% of the total cache space that the other evaluated approaches,
with none or negligible performance losses. This cache space is dynamically distributed

22 José Puche et al.

1,2

0,8
0,6
0,4

0,2

Normalized IPC (H. Mean)

M Private-ELC B Shared-ELC @ Shared-OPT O NUCA-OPT OFOS

Mix0 Mixl Mix2 Mix3 Mix4d Mix5 Mix6 Mix7 Mix8 Avg

Fi

i

g. 14 Normalized Performance of 4-bench mixes.

according to application needs, which allows some applications to work with a smaller cache
space.

Figure 14 presents the performance results for the 4-benchmark mixes. These mixes
have been evaluated with 2MB cache storage capacity for all the evaluated cache approaches.
Results show that, on average, FOS improves performance by 4% over the Private-ELC sys-
tem, while Shared-ELC, Shared-OPT and NUCA-OPT improve by 4%, 5% and 6%, respec-
tively. Performance differences are lower than in 2-benchmark mixes between electrical and
optical approaches, mainly because optical rings present slightly higher contention. Perfor-
mance, however, could be enhanced with an improved optical NoC, but this analysis is out
of the scope of this paper. The performance improvements achieved by FOS are especially
significant in mixes 0, 5 and 7 because in these mixes FOS prevents mi1c from interfering
the other applications in the shared space. Moreover, despite turning off part of the cache
space and making an efficient use of the cache space, FOS just presents by 2% performance
degradation with respect to NUCA-OPT.

6.4 Putting it All Together: Energy Efficiency

To summarize the previously exposed performance and energy results and conclude the
experimental evaluation, in this section it is discussed the overall energy efficiency of FOS
with respect to conventional approaches. To this end, Figures 15 and 16 show the energy
delay squared product (ED2P) for 2- and 4-benchmark mixes, respectively. It can be seen
that, on average, FOS is the approach presenting the best results, reducing the ED2P in
seven out of nine mixes both in 2- and 4-benchmark multiprogram workloads. Moreover, in
some cases this reduction is over 60%. An interesting observation is that, according to the
performance results presented below, the best performing approach (i.e. NUCA-OPT) shows
the worst ED2P values in both figures, while the worst performing approach (i.e. Private-
ELC) presents the second lowest ED2P values. This means that in the former case, NUCA-
OPT increases performance at the expense of energy, mainly due to the optical NoC; while
in the latter it occurs the opposite, that is, energy savings are achieved at the expense of
performance.

FOS: a Low Power Cache Organization for Multicores 23

0,07

B Private-ELCH Shared-ELCH Shared-OPT O NUCA-OPTO FOS

0,06

0,05 -

0,03

0,02

Energy Delay 2 Product

Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Avg

Fig. 15 Energy Delay Squared Product of 2-benchmark mixes.

0,16
M Private-ELCH Shared-ELCE Shared-OPTO NUCA-OPTO FOS

0,14~
R e e | (IR e e | It | |}

Energy Delay 2 Product

0 - - - -
Mix0 Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Avg

Fig. 16 Energy Delay Squared Product of 4-benchmark mixes.

FOS addresses these trade-offs showing that, in spite of presenting an energy consump-
tion even lower than that of Private-ELC in most mixes, it achieves similar performance to
NUCA-OPT, which translates to better ED2P results.

Finally, Table 6 summarizes a quantitative comparison of the energy, performance and
energy efficiency values corresponding to all the studied approaches. Results show that FOS
is the most energy-efficient approach, improving by 16.55% the energy efficiency with re-
spect to Private-ELC. NUCA-OPT is shown as the less efficient scheme, since in spite of be-
ing the best performing approach, it prohibitively increases energy consumption by 27.61%
over Private-ELC. Similarly, Shared-ELC and Shared-OPT configurations achieve marginal
performance gains but increase the energy consumed, which also makes Private-ELC a more
efficient organization than these approaches. This means that, among all the studied ap-
proaches, FOS is the only one that improves performance over the private baseline while
also reducing the energy consumed.

24 José Puche et al.

Table 6 Energy efficiency, performance and energy savings achieved by each architecture normalized to the
Private-ELC approach.

Architecture | Energy efficiency | Performance | Energy savings
Shared-ELC —8.91% 3.33% —14.42%
Shared-OPT —14.8% 4.87% —22.29%
NUCA-OPT —18.24% 7.03% —27.61%
FOS 16.55% 3.79% 8.45%

7 Related Work

Some seminal work [31, 33, 34] showed in the past that splitting the cache organization in
small and independent cache structures does not only allows energy consumption to be re-
duced but also, when properly managed, to enhance the system performance. In this context,
research approaches aimed at improving the utilization and efficiency of the cache hierar-
chy can be classified in two main categories depending on whether they apply to shared
caches [23,30] or to private caches [8, 18, 19].

Approaches belonging to the former category pursue to improve the system performance
by properly assigning specific cache ways to the different applications running on the pro-
cessor cores An interesting piece of research that falls in the first category is the work [30]
by Qureshi and Patt, which partitions the cache ways of the LLC among the co-running
applications depending on the reduction in cache misses that each application is likely to
obtain for a given amount of cache resources. Other works also distributing cache ways
of the LLC are [23,29, 35], some of them focusing on improving performance while oth-
ers focusing on improving system fairness [23, 35]. Regarding the second category, some
approaches [8, 18] allow applications with high cache demands to borrow part of the pri-
vate cache from the neighbor cores. Unlike our approach, both strategies highly restrict the
maximum cache space that is available for a given core.

With the aim of reducing the latency and energy consumption of large caches, other ap-
proaches focus on Non Uniform Cache Access (NUCA) architectures [1,5, 10, 11, 20]. In
these approaches, the cache is organized as a set of interconnected banks. Conventional
NUCA present interleaved access which suffer typical shortcomings associated to rigid
cache hierarchies like multiple lookups and excessive data movement and thrashing. To deal
with these issues some approaches [15, 17,24] have concentrated on placement/migration
approaches in such organization. Recent works like Jigsaw and Jenga [6, 39] propose an
evolution of this organization by allocating specific banks to each core according to the
cache needs of the running applications, hence the number of banks accessed by each core
is not necessarily a power of two. The latter works are the most closely related to our pro-
posal; however, these approaches present important differences: i) both Jigsaw and Jenga
are hybrid software-hardware implemented; ii) allocated banks need to be located near the
core which presents important constraints to the assignment algorithm; and iii) switching
off strategies are not devised.

In summary, the aforementioned works focus on improving performance by carrying
out a more efficient management of the available cache resources, but they do not switch off
the unneeded cache space and therefore they do not leverage of the corresponding energy
savings. Moreover, the majority of these approaches are limited by the rigid location of the
cache banks, presenting a lack of flexibility.

Finally, similar to our approach, other works [4,12,43] make use of optical interconnects
to enhance specific aspects of the CMP architecture that affect the cache access.

FOS: a Low Power Cache Organization for Multicores 25

8 Conclusions

In this work, FOS has been presented as a novel cache organization and management ap-
proach to trade off performance for energy consumption. The FOS architecture replaces
conventional low level (e.g. L2 and L3) caches with a single level consisting of a pool of
cache slices, and introduces a novel management approach especially suited for low power
processors. Slices are much larger (i.e. by a thousand times larger) than individual cache
lines, which eases the implementation of practical energy-aware approaches working at this
granularity. For the sake of exploring the impact of FOS on performance, it has been im-
plemented and evaluated with an underlying Optical Network on Chip, since it provides a
rather fast and uniform access latency to the slices. Other networks (not necessarily optical)
might be used, whenever latency requirements are satisfied.

Experimental results have shown that FOS reduces dynamic energy consumption on
average by a factor of up to 4x over a shared cache organization with the same storage ca-
pacity. Energy savings on static energy consumption are also achieved, reaching a reduction
by up to 60% of the total static energy over conventional approaches. As a result, FOS is the
least energy consuming cache approach among all the studied cache organizations. Overall
energy results also include the overhead introduced by the devised ONoC, which means that
energy benefits can be even higher.

Moreover, FOS energy savings do not come at the expense of performance, since mod-
erate performance improvements come from the network and the cache side. That allows
FOS to achieve a similar performance to an optically connected NUCA cache, in spite of
using, on average, by 50% of the cache space. In summary, we have shown that FOS is the
most energy efficient approach, since it does not only achieves the highest energy savings
but also sustains performance.

References

1. Awasthi, M., Sudan, K., Balasubramonian, R., Carter, J.: Dynamic hardware-assisted software-controlled
page placement to manage capacity allocation and sharing within large caches. In: 2009 IEEE 15th
International Symposium on High Performance Computer Architecture, pp. 250-261 (2009). DOI
10.1109/HPCA.2009.4798260

2. Baer, J., Low, D., Crowley, P., Sidhwaney, N.: Memory hierarchy design for a multiprocessor look-up
engine. In: 12th International Conference on Parallel Architectures and Compilation Techniques (PACT
2003) (2003)

3. Bahirat, S., Pasricha, S.: Meteor: Hybrid photonic ring-mesh network-on-chip for multicore architec-
tures. ACM Trans. Embed. Comput. Syst. 13(3s), 116:1-116:33 (2014). DOI 10.1145/2567940

4. Bartolini, S., Grani, P.: A simple on-chip optical interconnection for improving performance of co-
herency traffic in cmps. In: 15th Euromicro Conference on Digital System Design, pp. 312-318 (2012).
DOI 10.1109/DSD.2012.13

5. Beckmann, B.M., Marty, M.R., Wood, D.A.: Asr: Adaptive selective replication for cmp caches. In:
Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 39,
pp. 443-454. IEEE Computer Society, Washington, DC, USA (2006). DOI 10.1109/MICRO.2006.10.
URL https://doi.org/10.1109/MICRO.2006.10

6. Beckmann, N., Sanchez, D.: Jigsaw: Scalable software-defined caches. In: Proceedings of the 22Nd

International Conference on Parallel Architectures and Compilation Techniques, PACT 13, pp. 213—
224. 1EEE Press, Piscataway, NJ, USA (2013). URL http://dl.acm.org/citation.cfm?id=
2523721.2523752

. Bergman K. Carloni L. P. Bibermani, A.C., G., H.: Photonic Network-on-Chip Design, vol. 68 (2014)

. Chang, J., Sohi, G.S.: Cooperative caching for chip multiprocessors. In: Procs. 33rd Annual Int. Symp.

on Computer Arch., pp. 264-276 (2006). DOI 10.1109/ISCA.2006.17

9. Chen, G., Chen, H., Haurylau, M., Nelson, N., Fauchet, PM., Friedman, E.G., Albonesi, D.: Predic-
tions of cmos compatible on-chip optical interconnect. In: Procs. of Int. Workshop on System Level
Interconnect Prediction, SLIP *05, pp. 13-20 (2005)

o0 3

26

José Puche et al.

11.

12.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

. Chishti, Z., Powell, M.D., Vijaykumar, T.N.: Optimizing replication, communication, and capacity al-

location in cmps. SIGARCH Comput. Archit. News 33(2), 357-368 (2005). DOI 10.1145/1080695.
1070001. URL http://doi.acm.org/10.1145/1080695.1070001

Cho, S., Jin, L.: Managing distributed, shared 12 caches through os-level page allocation. In: 2006 39th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06), pp. 455468 (2006).
DOI 10.1109/MICRO.2006.31

Cianchetti, M.J., Kerekes, J.C., Albonesi, D.H.: Phastlane: A rapid transit optical routing network. In:
Procs. of the 36th Annual International Symposium on Computer Architecture, ISCA’09, pp. 441-450
(2009). DOI 10.1145/1555754.1555809

. Demir, Y., Hardavellas, N.: Parka: Thermally insulated nanophotonic interconnects. NOCS 15, pp.

1:1-1:8 (2015). DOI 10.1145/2786572.2786597

Duan, G.H., Fedeli, J.M., Keyvaninia, S., Thomson, D.: 10 gb/s integrated tunable hybrid iii-v/si laser and
silicon mach-zehnder modulator. In: European Conference and Exhibition on Optical Communication
(2012). DOI 10.1364/ECEOC.2012.Tu4.E.2

Dybdahl, H., Stenstrom, P.: An adaptive shared/private nuca cache partitioning scheme for chip multi-
processors. In: 2007 IEEE 13th International Symposium on High Performance Computer Architecture,
pp. 2-12 (2007). DOI 10.1109/HPCA.2007.346180

Garcia, A., Ferndndez, R., Garca, J.M., Bartolini, S.: Managing resources dynamically in hybrid
photonic-electronic networks-on-chip. Concurrency and Computation: Practice and Experience 26(15),
2530-2550 (2014). DOI 10.1002/cpe.3332

. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Reactive nuca: Near-optimal block placement

and replication in distributed caches. SIGARCH Comput. Archit. News 37(3), 184-195 (2009). DOI
10.1145/1555815.1555779. URL http://doi.acm.org/10.1145/1555815.1555779
Herrero, E., Gonzilez, J., Canal, R.: Distributed cooperative caching. In: Procs. of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT °08, pp. 134-143 (2008). DOI
10.1145/1454115.1454136

Herrero, E., Gonzélez, J., Canal, R.: Elastic cooperative caching: An autonomous dynamically adaptive
memory hierarchy for chip multiprocessors. In: Procs. of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, pp. 419-428 (2010). DOI 10.1145/1815961.1816018

Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D., Keckler, S.W.: A nuca substrate for flexible cmp cache
sharing. In: Procs. of the 19th Annual International Conference on Supercomputing, ICS °05, pp. 31-40.
ACM (2005). DOI 10.1145/1088149.1088154

Kahng, A.B., Li, B., Peh, L.S., Samadi, K.: Orion 2.0: A fast and accurate noc power and area model
for early-stage design space exploration. In: DATE, pp. 423-428. European Design and Automation
Association (2009)

Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: Exploiting generational behavior to reduce cache leak-
age power. In: Procs. of the 28th Annual International Symposium on Computer Architecture, ISCA’01,
pp. 240-251 (2001)

Kim, S., Chandra, D., Solihin, D.: Fair cache sharing and partitioning in a chip multiprocessor architec-
ture. In: PACT, pp. 111-122 (2004)

Merino, J., Puente, V., Gregorio, J.A.: Esp-nuca: A low-cost adaptive non-uniform cache architecture. In:
HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture,
pp- 1-10 (2010). DOI 10.1109/HPCA.2010.5416641

Morris, R., Kodi, A.K., Louri, A.: Dynamic reconfiguration of 3d photonic networks-on-chip for max-
imizing performance and improving fault tolerance. In: 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 282-293. DOI 10.1109/MICRO.2012.34

Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: Cacti 6.0: A tool to model large caches. In: HP
Laboratories (2009)

Pang, J., Dwyer, C., Lebeck, A.R.: Exploiting emerging technologies for nanoscale photonic networks-
on-chip. In: Procs. of 6th Int. Workshop on NoC Architectures, NoCArc 13, pp. 53-58

Petit, S., Sahuquillo, J., Such, J.M., Kaeli, D.R.: Exploiting temporal locality in drowsy cache policies.
In: Proceedings of the Second Conference on Computing Frontiers, 2005, Ischia, Italy, May 4-6, 2005,
pp. 371-377

Pons, L., Selfa, V., Sahuquillo, J., Petit, S., Pons, J.: Improving system turnaround time with intel
CAT by identifying LLC critical applications. In: Euro-Par 2018: Parallel Processing - 24th Interna-
tional Conference on Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings,
pp. 603-615 (2018). DOI 10.1007/978-3-319-96983-1_43. URL https://doi.org/10.1007/
978-3-319-96983-1_43

Qureshi, M., Patt, Y.: Utility-based cache partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In: MICRO, pp. 423432 (2006)

FOS: a Low Power Cache Organization for Multicores 27

31.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Rivers, J.A., Tam, E.S., Tyson, G.S., Davidson, E.S., Farrens, M.K.: Utilizing reuse information in data
cache management. In: Proceedings of the 12th international conference on Supercomputing, ICS 1998,
Melbourne, Australia, July 13-17, 1998, pp. 449-456 (1998). DOI 10.1145/277830.277941. URL
http://doi.acm.org/10.1145/277830.277941

. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: Dramsim2: A cycle accurate memory system simulator. IEEE

Comput. Archit. Lett. pp. 16-19. DOI 10.1109/L-CA.2011.4

Sahuquillo, J., Pont, A.: The filter cache: A run-time cache management approachl. In: 25th EU-
ROMICRO ’99 Conference, Informatics: Theory and Practice for the New Millenium, 8-10 Septem-
ber 1999, Milan, Italy, pp. 1424-1431 (1999). DOI 10.1109/EURMIC.1999.794504. URL https:
//doi.org/10.1109/EURMIC.1999.794504

Sahuquillo, J., Pont, A.: Splitting the data cache: a survey. IEEE Concurrency 8(3), 30-35 (2000). DOI
10.1109/4434.865890. URL https://doi.org/10.1109/4434.865890

Selfa, V., Sahuquillo, J., Eeckhout, L., Petit, S., Gémez, M.E.: Application clustering policies to address
system fairness with intel’s cache allocation technology. In: 26th International Conference on Parallel
Architectures and Compilation Techniques, PACT 2017, Portland, OR, USA, September 9-13, 2017, pp.
194-205 (2017). DOI 10.1109/PACT.2017.19. URL https://doi.org/10.1109/PACT.2017.
19

Shacham, A., Bergman, K., Carloni, L.: On the design of a photonic network-on-chip. In: Networks-on-
Chip, NOCS 2007, pp. 53-64

Soref, R., Bennett, B.: Electrooptical effects in silicon. IEEE Journal of Quantum Electronics 23(1),
123-129 (1987). DOI 10.1109/JQE.1987.1073206

SPEC website. URL http://www.spec.org/

Tsai, P.A., Beckmann, N., Sanchez, D.: Jenga: Software-defined cache hierarchies. SIGARCH Comput.
Archit. News 45(2), 652-665 (2017). DOI 10.1145/3140659.3080214. URL http://doi.acm.
org/10.1145/3140659.3080214

Ubal, R., Sahuquillo, J., Petit, S., Lopez, P.: Multi2sim: A simulation framework to evaluate multicore-
multithreaded processors. In: Int. Symp. on Computer Architecture and High Performance Computing.,
pp- 62-68. DOI 10.1109/SBAC-PAD.2007.17

Valero, A., Sahuquillo, J., Petit, S., Lépez, P., Duato, J.: Combining recency of information with selec-
tive random and a victim cache in last-level caches. ACM Trans. Archit. Code Optim. 9(3), 16:1-16:20
(2012). DOI 10.1145/2355585.2355589. URL http://doi.acm.org/10.1145/2355585.
2355589

Vantrease, D., Binkert, N., Schreiber, R., Lipasti, M.: Light speed arbitration and flow control for
nanophotonic interconnects. In: Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Interna-
tional Symposium, pp. 304-315

Werner, S., Navaridas, J., Lujan, M.: Designing low-power, low-latency networks-on-chip by optimally
combining electrical and optical links. 2017 IEEE Int. Symp. of High Performance Computer Architec-
ture

