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Abstract The coexistence of parallel applications in shared computing nodes,
each one featuring different Quality of Service (QoS) requirements, carries out
new challenges to improve resource occupation while keeping acceptable rates
in terms of QoS. As more application-specific and system-wide metrics are in-
cluded as QoS dimensions, or under situations in which resource-usage limits
are strict, building and serving the most appropriate set of actions (applica-
tion control knobs and system resource assignment) to concurrent applications
in an automatic and optimal fashion becomes mandatory. In this paper, we
propose strategies to build and serve this type of knowledge to concurrent
applications by leveraging Reinforcement Learning techniques. Taking multi-
user video transcoding as a driving example, our experimental results reveal
an excellent adaptation of resource and knob management to heterogeneous
QoS requests, and increases in the amount of concurrently served users up to
1.24× compared with alternative approaches considering homogeneous QoS
requests.

Keywords Resource management · Heterogeneous Quality of Service ·
Reinforcement Learning · Multi-core architectures · HEVC video transcoding

1 Introduction and motivation

The integration of intelligent policies for resource management and application
tuning in shared computing systems is becoming a field of paramount inter-
est to efficiently exploit the potential of the underlying architectures without
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human intervention. In situations where external limitations in terms of Qual-
ity of Service (QoS), tight per-application SLA (Service Level Agreements)
or energy consumption are imposed, the development and application of such
policies becomes a hurdle difficult to be automatically addressed [14].

Two of the main properties of any generic autonomous system, includ-
ing resource managers in the fields of Cloud Computing or HPC, are self-
configuration (ability to adapt to environmental changes) and self-optimization
(capability to improve performance and reduce overloading or underloading the
underlying resources) [10]. Resource managers can be actually considered in
terms of the IBM Autonomic Model [7], which encompasses four main generic
steps. This sequence of steps is repeated in a control loop, that usually fea-
tures sensoring and acting capabilities towards the underlying architecture or
application. These actions are commonly cast in terms of selecting values for
architectural knobs (e.g. core frequency) or application-specific knobs. In addi-
tion, these cyclic steps orbit around the existence of a shared Knowledge Base
(KB) storing rules that, properly orchestrated, can fulfill the requirements and
restrictions imposed without further human intervention.

The development of the KB, however, can become a daunting task when
the amount of architectural and application-level knobs increase and their
interplay is nontrivial. In stochastic environments such as shared nodes in
cloud deployments, in which the application of a given rule does not always
yield the same result in terms of performance and/or energy consumption, the
creation, maintenance and effective application of the knowledge of the KB is
even a more complex task. The challenge is harder in scenarios in which the
request arrival rate and its distribution are unknown, or when the throughput
or quality attained are content-dependent, and hence unpredictable.

Reinforcement Learning (RL) [12] is a field of Artificial Intelligence that
has shown to be effective in problems that feature complex and large state
spaces, dynamic environments and without any pre-established knowledge. In
this paper, we leverage RL to build, maintain and enrich the Knowledge Base of
a centralized resource manager in shared servers in order to attain automatic
and efficient resource management and assignation for multiple concurrent
applications exhibiting heterogeneous QoS demands.

This idea, that can be considered as Knowledge-as-a-service (KaaS), is
illustrated in this paper by means of a practical yet illustrative example: QoS-
aware multi-user video transcoding. In this scenario, multiple users demand
the execution of multiple concurrent transcoding processes, each one with dif-
ferent QoS requirements. We consider two types of users with different QoS
requirements (regular and premium users), and optional resource-minimization
strategies.

Resource allocation and management in shared computing environments
has been thoroughly studied in the past from different perspectives. [9] stud-
ied the differences between static and dynamic resource allocation for media
processing. Dynamic resource provisioning has also been tackled in terms of
multiple priorities for heterogeneous QoS requirements in [4, 5]. Based on sim-
ulation, [3] studies policies for allocating and deallocating virtual machines to
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attend multiple QoS requirements by concurrent applications. Typically, delay
time is the metric considered in these works as the only QoS target, ignoring
other application-specific quality metrics and architecture-specific considera-
tions (e.g. energy consumption). Many of these works propose predictions or
model-based projections for resource usage and QoS violations to apply heuris-
tics and policies for resource management. Reinforcement Learning has been
shown to be a useful technique to develop self-adaptive policies for multi-QoS
scenarios, with model-based approaches [6] or model-free approaches [8].

Our work introduces the following novelties compared with previous works:

– We integrate RL techniques into a centralized resource manager, and demon-
strate its effectiveness to attend multi-user environments with heteroge-
neous QoS requirements within a single compute node.

– We formalize a methodology to build different policies based on RL, that
ultimately make it possible to learn different policies serving different QoS
requirements in a feasible amount of time.

– We propose strategies to boost learning time based on the construction of
the transitions table of the system, used to train the RL system.

– We demonstrate the effectiveness of our proposal on a real-time HEVC
encoding application. We deal with extended sets of both application- and
system-level knobs. For multi-user video transcoding, we consider quality,
throughput and energy consumption as target metrics to be simultaneously
improved and/or limited.

– We compare the learning time benefits of our approach against other state-
of-the-art RL approaches.

– We propose heuristics to serve different knowledge to individual users in
real-time on a shared computing node.

– Reported results are based on an actual multi-core architecture, demon-
strating the ability of RL to deal with stochastic (noisy) environments.

The rest of the paper is structured as follows. Section 2 proposes efficient
mechanisms to build ad-hoc policies leveraging Reinforcement Learning. Sec-
tion 3 motivates the use of multi-user video transcoding as an illustrative
example of such techniques and reports the attained results for different poli-
cies designed to adapt multi-user video transcoding to different levels of QoS
and resource usage. Section 4 introduces heuristics to leverage the existence of
different policies in the KB, and to apply them in scenarios with heterogeneous
QoS requirements. In Section 5, we report the observed results and benefits of
such heuristics. Section 6 closes the paper with some final remarks.

2 Policy design

A Markov Decision Process (MDP) is a framework for modelling decision mak-
ing problems in stochastic environments. A MDP=(S,A,P,R) is defined by
a finite set of states the system can be at each moment of the execution,
S, a finite set of actions, A, that can be applied to the system and can
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produce a change in the state the system is, a set of probability functions
P = {Pa(s, s

′) : S × S × A → [0, 1]} which determine the probability of mov-
ing from one state (s) to another (s′) after taking an action (a), and a set of
reward functions R = {Ra(s, s

′) : S × S × A → R} which define how good
or bad was the transition s → s′ due to action a. The final goal of a MDP is
to find a policy π(s) which maximizes the expected accumulated reward when
transitioning through the system. Note that this definition entails that if the
system is provided with different reward functions, the obtained policies will
be different. However, in most real problems, determining the probabilities or
rewards that define a specific MDP is not an easy task, being in most of the
cases unknown, or estimated from noisy observations.

Reinforcement Learning (RL) is an area of Machine Learning which can
tackle the problem of finding an optimal policy π(s) for a MDP where the
probabilities or rewards functions are unknown. Specifically, Q-Learning has
been proved as a valid RL algorithm able to find the optimal policy following
dynamic programming techniques. Q-Learning is a model-free algorithm which
can handle problems with unknown stochastic transitions based on an infinite-
time exploration of the transitions between states when different actions are
applied based on a partially-random policy of choosing actions. However, due
to the infinite-nature of the formulation of the algorithm, the optimality of
the obtained policy π′(s) will be ultimately based on the time the algorithm
has been exploring the system and, in essence, the distribution of the num-
ber of times each pair state/action has been explored. In real-time problems,
where the definition of the state comes from real measurements of the envi-
ronment, this exploration time depends on the frequency the system provides
the different metrics, producing long time training sessions. Even more, if the
final goal is to train the system several times to obtain different behaviours
(changing the reward functions each time), the total training time can extend
to unacceptable times. In the following, we address both questions, namely:
(i) how to define the system to obtain different learned behaviours, and (ii)
how to boost the learning time providing the transition probabilities to the
Q-Learning system.

2.1 Learning different policies

Traditionally, training a Q-Learning system is a trial and error process in
which the designer of the experiment modifies and tunes the state and reward
function definitions until the obtained policy meets the desired behaviour.
Here, we propose efficient mechanisms to define the state and reward functions
to obtain different policies with different behaviours with minimum effort.

State definition: Instead of having a unique and complete definition of a
state, we propose to divide the states space into different independent sub-
spaces (i.e. the metrics required to build one subspace are not used to create
any other subspace). This state definition allows us to have a more fine-grained
control on the behaviour of the system, and provides a direct way to check how
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a change in the definition of the problem affects to each subspace independently
from the others:

s = (s1, . . . , sn), with s ∈ S = S1 × . . .× Sn, si ∈ Si

Reward definition: Similarly to the state definition, instead of having a
unique definition of reward function, we propose the use of multiple sub-reward
functions, each one valuing the goodness of each sub-state; they can be com-
bined into an unique reward through the use of different coefficients:

R(s) = R(s1, . . . , sn) = α1 ∗R1(s1) + . . .+ αn ∗Rn(sn), with si ∈ Si, αi ∈ R

Given this definition of a reward function, training the system to obtain dif-
ferent policies boils down into tuning each sub-reward to obtain the desired
behaviour, by means of a tuning-and-test cycle as described in Section 3.2.
This tuning process can be carried out in two different ways based on the
desired behaviour:

(a) Modifying the coefficients: Assuming all sub-reward functions have the
same range (i.e., all functions produce values in the same interval), each coeffi-
cient αi represents the importance of each sub-state in the problem. Modifying
these coefficients allows us to give more or less importance to each sub-state,
and consequently to the metrics used to build it.

(b) Modifying the reward functions: Each sub-reward function represents
how the system will behave respectively to each sub-state (and, therefore, to
each metric used to define each sub-state). The goal of modifying the definition
of a sub-reward is not to change the importance given to a set of metrics as
before, but instead to modify the behaviour of the system w.r.t. to these
metrics. For instance, changing one sub-reward function can imply modifying
the behaviour from maximizing certain metric to minimize it.

2.2 Boosting learning time

Classical Q-Learning formulations are based on a table combining all the ac-
tions and states, and representing the expected rewards obtained at each pair.
This table, originally empty, is updated at the same time the system explores
the different transitions. Implicitly, at the same time the table is updated, the
system is learning the unknown probabilities between states and actions (P).

Although at first glance the bottleneck of the algorithm seems to be the
number of the iterations the system needs to perform in order to explore all
the transitions enough number of times, in real-world problems it is limited
by the frequency at which the actions can be applied and the metrics needed
to build the states can be measured. For example, in a situation in which the
system is applied to a video encoding process at 24 frames per second, and
a transition occurs between frames, the speed of the exploration is limited to
24 transitions per second. In the case when multiple policies are required, and
consequently, one training session per policy is needed, this limitation in the
speed of the algorithm can make the problem unfeasible.
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However, if the probability set between states (P) is known a priori, the al-
gorithm does not need to wait for actual readings of the required environmental
metrics to determine movements between states; contrary, it can simulate the
transitions based on the information provided by P. Following this idea, we
propose an offline learning process which dramatically reduces the amount of
time needed to obtain each policy: (1) First, all combinations between states
and actions are explored enough number of times to build a transition table
(P ′) that stores the probabilities of moving from one state to the others when
applying a specific action. (2) Once P ′ has been built, each training process
can proceed with the classical Q-Learning formulation. However the state is
determined based on the information provided by P ′, not by observation. The
process of building P ′ can be carried out independently of the learning pro-
cess, or can be extracted from one previous training process storing explicitly
the probabilities at the same time the classical Q-Learning algorithm explores
the different transitions of the system. The obtained P ′ table will be valid
for all the subsequent learning processes, unless the transitions between states
change due to external factors (for example, processor operating frequency can
be altered by changes in the temperature), or there are changes in the defini-
tion of states or actions. Note that P ′ is used only in the learning process, but
once the system has finished to learn, the states and transitions are obtained
directly from measurements of the system, and not from P ′.

3 Policy extraction for heterogeneous QoS

3.1 A case study: video transcoding with heterogeneous QoS requirements

In previous works [2], authors have showed that a multi-agent Q-Learning
approach can be applied to a real-world HEVC (High Efficiency Video Cod-
ing) [11] encoding application to obtain simultaneous real-time encoding pro-
cesses (that is, with a tight lower bound in throughput of 24 frames per second
–FPS–), and meeting at the same time constraints in terms of quality, band-
width, and power consumption. In that work, number of threads (Nth), core
operating frequency (freq) and the value of the QP encoding parameter [11]
(higher QP values imply lower encoding quality) were considered as dynamic
knobs, and their values were periodically tuned while throughput, power con-
sumption and quality were constantly monitored. However, in that scenario,
a single common policy was applied to all the videos concurrently processed
by the system. We report next the necessary changes to consider multiple
heterogeneous QoS demands, and hence multiple policies.

Consider a similar formulation of the problem in which each state is de-
composed into three different sub-states: throughput (in terms of FPS), quality
(PSNR, measured in dB) and power consumption (W). Consider also a reward
function composed by three different sub-rewards functions, each one associ-
ated to a specific sub-state, and its coefficients as described before. In this
scenario, and assuming the state definition stays constant, this simple formu-
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Fig. 1 Rewards obtained in the different states for different combinations of sub-reward
definitions (left) and coefficients (right)

lation offers 9 different dimensions (3 reward definitions × 3 coefficient values)
the designer of the experiment can tune to obtain different policies.

Figure 1 shows different combinations of sub-rewards and coefficient values.
Each dot in the plot represents a state value; its color represents the reward
given to that state (higher is better). On the left, three different examples of
sub-reward functions are shown: (1) RPSNR−H which gives maximum reward
to the states with maximum quality; (2) RPSNR−L which minimizes quality,
but ensures a minimum quality (giving a reward of 0 to the states below the
threshold); and (3) RFPS which aims at obtaining real-time encoding processes
giving no reward to the states with throughput below 24 FPS, maximum
reward to the states between 30 and 40 FPS, and a decreasing reward to
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the states above. Observe how modifications in the sub-reward functions alter
which are the better solutions, or goal states (yellow points in the figure). This
fact can be clearly seen in the first two plots: while the first one maximizes
quality, changing the definition in the other one turns the states with minimum
quality, but above the constraint (36dB in the plot), into the goal states.
On the right, different combinations of the same sub-reward functions with
different coefficients are shown. For the sake of clarity, only the states with
reward ≥ 0.75 are colored. Here, RPOWER minimizes the power consumption.
Observe how small changes in the way functions are combined dramatically
alter the goal states of the system. For example, results vary from maximizing
quality and ensuring real-time throughput on the top, to restricting the goal
space to those with minimum power, meeting real time requirements in the
middle, and a combination of both behaviours on the bottom. This figure shows
how our proposal offers a plethora of different combinations the designer of
the experiment can test, and how a huge number of different policies can be
obtained following the methodology described next.

3.2 Methodology to extract multiple policies

Consider a scenario in which a video provider needs to attend multiple video
encoding requests from different users with different requirements: regular
users which require a minimum of quality, and premium users which need
encoded videos with maximum quality, with real-time results for both. In this
scenario, two different policies are desirable: one which maximizes quality for
premium users (πP ), and another which guarantees a minimum quality for
regular users (πR). Additionally, when the server load increases, it would be
desirable to apply different policies to minimize the resources used by each
user, satisfying a minimum quality to each type of user, and still maintaining
real-time throughput (24 FPS) (policies πP and πR).

Following the previous ideas, we propose a simple and concise methodol-
ogy to generate the different policies spending a reasonable amount of time
and effort in the process. In a first step, the definition of the different states
and rewards is done. Each substate needs to be discretized based on expert
knowledge of the problem, while the reward functions are defined based on the
goal the policy has to achieve. In this step, coefficients are set together with
each reward function. In a second step, a detailed simulation of the reward
functions for the different states is performed to check if the goal states are
the right ones (similar to the space exploration shown in Figure 1). If the states
with higher reward are not the desired ones, the previous step is repeated until
the reward functions and coefficients are properly tuned. In the last step, the
system is trained with the previous rewards and coefficients. If the obtained
results are not the desirable ones, the process is repeated until the states, re-
wards and coefficients are tuned. Although this process can traditionally last
for an unacceptable amount of time, note that leveraging the construction of
P ′, as described in Section 2.2, makes this process relatively fast and easy.
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Fig. 2 Sub-reward functions used for the different policies: three sub-rewards for different
levels of quality (above), and the functions for real-time encoding and power (below)

πR : 0.7 ∗RPSNR−L + 0.1 ∗RPOWER + 0.5 ∗RFPS

πP : 0.7 ∗RPSNR−H + 0.0 ∗RPOWER + 0.5 ∗RFPS

πR : 0.7 ∗RPSNR−L + 0.5 ∗RPOWER + 0.5 ∗RFPS

πP : 0.7 ∗RPSNR−M + 0.5 ∗RPOWER + 0.5 ∗RFPS

Fig. 3 Reward functions defined for each policy

Back in our scenario, the sub-rewards shown in Figure 2 where used to
generate the policies: three different reward functions which provide three
different levels of quality (RPSNR−L, RPSNR−M , and RPSNR−H), a reward
function which guarantees real-time encoding (RFPS), and a reward function
which minimizes power (RPOWER). To guarantee a minimum of quality, the
functions shown in Figure 1 were slightly modified to give a negative reward
to those states below the threshold (psnr < 36). Similarly, the definition of
RFPS gives a negative reward to the states below real-time; in this case, a
lower reward is given to ensure that videos are always encoded in real-time,
not having processes with high quality but throughput below 24 FPS. The
maximum reward of RFPS is not given to 24 FPS, but to the next state,
due to the fact that, being close to 24 FPS will produce a higher amount of
frames being encoded below the threshold due to the variability on the con-
tent between frames. To estimate the power consumption of each application,
the model P = nth ∗ (α ∗ freq2 + β) + γ was used, setting experimentally the
parameters for our specific platform, obtaining a root mean squared error of
0.97W and a maximum error of 2.4W , which are negligible in our machine
with a maximum energy consumption of 125W .
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N. frames Learning Time

MonoAgent n× 3000 n× 17h
MultiAgent n× 500 n× 3h
This work 500 + (n− 1)× 500 3h+ (n− 1)× 1min

Table 1 Learning time to obtain n different policies by different approaches. The Mono-
and Multi-agent approaches are those described in [2]. Learning time has been calculated
assuming a learning rate ≈ 24fps

We identify πR as our base policy, used to tune and polish the actions and
state definitions, at the same time the transition table P ′ is recorded. Once
this policy is created, other policies can be easily derived in a reasonable time
by means of the described methodology. Our policies, detailed in Figure 3,
were defined based on the following ideas:

– For defining πR, a combination of a function which minimizes psnr but
ensures a minimum quality (RPSNR−L), and a function which ensures real-
time encoding (RFPS) were used. Additionally, a reward to minimize power
consumption was incorporated with a small coefficient (RPOWER).

– The major difference between πR and πP is the reward function used to
evaluate the quality. The former minimizes quality, and the latter maxi-
mizes it (RPSNR−H). To achieve high quality videos without violations of
throughput, the reward which minimizes power was totally removed. As
real-time encoding is mandatory in both cases, this term was not modified.

– If resource minimization is desired for a regular user, πR achieves that goal
by increasing the coefficient of the function which minimizes the power
consumption respectively to its counterpart πR (from 0.1 to 0.5).

– The design decisions to create πP are similar to the ones used to create πR,
but in this case, because obtaining high quality videos is a resource-hungry
process, the sub-reward function associated with PSNR was changed to
obtain still high quality videos, but lower quality than in πP (RPSNR−M ).

Following the ideas described above to boost learning time, once the first
policy (πR) was defined, the training time to obtain the remaining policies
was reduced from days to hours, as shown in Table 1 when compared against
other traditional approaches described in [2, 8]. Note that, in this example, all
learning times were extracted using the same machine and setup; also, observe
that our approach inherits the advantages of the Multi-agent implementation
(in terms of a reduction in the number of necessary frames to converge from
3000 to 500 compared with a Mono-agent approach), and adds additional
gains as the number of desired policies is increased. In this case, adding a
new policy is translated into roughly one extra minute of computing time. In
the case of the traditional Mono- or Multi-agent approaches, each new policy
would require a complete learning process, adding 17h and 3h per policy,
respectively.
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Table 2 Average knob values learnt by the system for Regular (top) and Premium (bottom)
users with and without resource minimization, and output metrics for the different videos
used to validate the system

Nth Freq QP Quality ∆
πR πR πR πR πR πR πR πR πR πR

v1 4.2 3.3 1.6 1.7 35.2 36.0 39.4 39.1 6.0 2.4
v2 3.1 2.9 1.4 1.5 37.0 36.9 37.8 37.8 0.4 0.4
v3 3.1 2.6 1.3 1.5 37.0 37.0 38.0 38.0 0.3 0.3
v4 3.3 2.9 1.3 1.4 37.0 37.0 37.1 37.1 0.4 0.4

avg. 3.4 2.9 1.4 1.5 36.6 36.7 38.1 38.0 1.8 0.9

Nth Freq QP Quality ∆
πP πP πP πP πP πP πP πP πP πP

v1 4.6 3.6 1.8 1.6 24.9 33.4 43.7 40.2 2.0 6.3
v2 4.2 3.3 1.7 1.4 24.9 32.2 43.2 40.2 2.3 4.2
v3 4.2 3.1 1.6 1.3 23.7 33.0 43.4 39.9 0.6 0.7
v4 4.7 3.1 1.7 1.3 22.1 33.2 43.2 39.0 0.7 0.5

avg. 4.4 3.3 1.7 1.4 23.9 33.0 43.4 39.8 1.4 2.9

3.3 Experimental setup and obtained results

The described framework and techniques have been implemented in a real
server using MAMUT, a centralized resource manager described in [2]. The
HEVC encoder used was Kvazaar [13], an open-source video encoder able to
achieve real-time encoding processes. High Definition/1080p (1080×720pixels)
video sequences were used in all the experiments, mainly extracted from the
JCT-VC benchmark [1], using three sequences to train the system, and four
different sequences to run the experiments and report results (identified as
v1. . . v4). In the following, the reported results correspond to average values
obtained after 5 repetitions of each experiment.

Table 2 reports the behaviour of each described policy applied to each
video, showing the average knob values set for number of threads (Nth), fre-
quency (in GHz) and QP, and the output metrics recorded: quality (psnr
measured in dB), and real time throughput violations (measured as the per-
centage of time the video has been encoded below 24 FPS (-∆-)). First, observe
how changes in one reward function can produce opposite behaviours. Con-
sider, for example, policies πR and πP : by modifying exclusively the reward
function in charge of quality, the obtained psnr changes drastically (38.1 to
43.4 dB, respectively). On the contrary, observe how modifications in the co-
efficients without altering the reward functions can keep the global behaviour
of the system intact, but modify the internal actions chosen by the system.
Comparing policies πR and πR, both achieve comparable quality levels (38.1
vs 38.0 dB), but the number of threads used when the policy πR is acting de-
creases down to 1 thread in average (in the case of v1 sequence) with respect
to πR. Regarding policies πP and πP , observe how the impact in the number
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Fig. 4 System behaviour timelines and metrics obtained when encoding the v1 sequence
with all different policies for Regular users (left) and Premium users (right). The yellow line
indicates real-time encoding (24 FPS)

of threads is the same as in the other policies, but the change in the reward
which affects quality produces slightly lower psnr.

Figure 4 shows a timeline of the encoding process of the sequence v1 with
the different policies. For clarity reasons, only the changes in number of threads
is shown, but dynamic adaptation of frequency and QP values are also per-
formed in the process. In general terms, observe how in the left, in the case
of regular users, both policies πR and πR obtain similar (and low) quality but
the number of threads used in each one changes drastically. On the right, both
policies obtain higher quality results, but there is a clear difference in quality
and resource usage between them as desired in our formulation.

4 Combining multiple policies into a global system

In the previous scenario, if the number of simultaneous requests is large enough,
it may be the case that attending all incoming request simultaneously exhausts
the available resources in the server, not being able to encode the different se-
quences on real time. In this situation, it is common to enqueue the requests,
and attend them in order as the previous videos finish and enough resources
are available. Of course, the time a request is hold in the queue does not de-
pend only on the number of videos being encoded, but also on the type of
user who made the request. To reduce the waiting time of each client on the
queue, in this section we propose a 3-tier heuristic that, based on the previous
obtained policies, is able to reduce the delays thanks to choosing the appro-
priate policy to apply to each client at each moment. This heuristic is a simple
example of how a simple approach can benefit from having different policies to
apply, obtaining better results than other static approaches. Moreover, note
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Algorithm 1: 3TierPol

1 begin
2 cl = queue.first;
3 newState = currentState;
4 if (canRunClient(currentState, cl, NReg, NPrem)) then
5 newState = currentState;
6 else if (currentState == S0 and canRunClient(S1, cl, NReg, NPrem)) then
7 newState = S1; // Try to move to S1

8 else if (cl.type==PREMIUM and canRunClient(S2, cl, NReg, NPrem)) then
9 newState = S2; // Try to move to S2

10 else
11 queue.insert front(cl); // Not enough resources

12 return false;

13 currentState = newState; // Update state

14 if (client.type==REGULAR) then nReg++ else nPrem++;
15 return runClient(cl); // Start encoding request

that the methodology described in the previous sections is also valid for any
other approach based on multiple simultaneous policies.

4.1 A 3-tier heuristic leveraging KaaS (3TierPol)

The proposed heuristic is based on a state machine with three different states,
namely: (1) S0, the initial state. This state is active when there are enough
resources for all the clients, so that resource usage reduction is not needed.
In this state, policies πR and πP are applied to regular and premium users
respectively. (2) If there are not enough resources to encode all the requests,
state S1 will try to reduce the resource consumption of the regular users ap-
plying policy πR. In this state, premium users are still allowed to use as many
resources as they require (policy πP ). (3) When there are not enough resources
for the incoming request in the state S1, and only if the incoming request ar-
rives from a premium user, the heuristic will move to state S2, minimizing the
resources for both kind of users, regular and premium. In this state, policies
πR and πP are used. Algorithm 1 shows a detailed pseudocode of the heuristic.

To determine if a new video can be encoded in a given state, or if the system
needs to move to another state in order to free resources, a prediction of the
number of cores in use is performed. 3TierPol stores in an internal table the
average number of cores used by each policy with the training videos, as an
estimation value of the cores used by future videos. Knowing at each moment
the policies that are in use (i.e., the current state), the number of regular and
premium users being attended, and the incoming user type, a prediction of the
total number of cores in use is calculated. If the amount of predicted cores is
lower or equal to the number of physical cores of the machine, the request is
attended and the video encoding can commence. Else, the heuristic will try to
move to the next state. If there is not enough room for the user in any state,
the request is pushed in front of the queue again. Inserting the client in the
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front (instead of enqueueing it again in the back) allows to attend the users
in the arrival order. When a video finishes to be encoded and some resources
are free, the heuristic checks if it can move to a previous state that does not
minimize the resource usage and provides greater quality.

5 Experimental results

For the sake of realism, we assume that several different videos from differ-
ent users arriving over time need to be served simultaneously, minimizing the
waiting time of each client and meeting requirements in quality (based on the
type of user) and throughput (≥24 FPS). Each experiment is determined by
the arrival rate (5s, 10s and 15s), and the percentage of premium users (0%,
25%, 50%, 75% and 100%). Each experiment comprises 10 sequences to be
encoded, randomly selected, with a duration of 2500 frames each (≈ 100 sec-
onds at 24 FPS). To obtain reliable data, each configuration of frequency and
premium/total users relation was explored through 5 different combinations
of 10 videos, and each combination was run 3 times, reporting average values.
Although three different arrival frequencies where explored in the experiments
(5s, 10s and 15s), only the results of 10s are shown in the following, obtaining
similar and comparable measurements at the other frequencies.

For the sake of comparison, we have implemented two additional alter-
natives to the heuristic approach (3TierPol) presented in Section 4. Both
alternatives implement a static decision making process, choosing the policy
to serve each video based on the kind of user, and not on the environment.
The policy utilized does not change during the whole encoding process:

1. 1Pol-Mamut: This strategy corresponds to a traditional Q-Learning sys-
tem using only one policy (πR) to encode all the sequences as an extreme
case, trading off quality for throughput, as implemented by MAMUT [2].

2. 2Pol: Due to the existence of different user types with different require-
ments, we have implemented a Q-Learning system using two different ta-
bles, depending on the user type attended (πR and πP ). This policy is the
opposite to the previous one: it offers maximum quality to each type of user,
without considering decreasing quality to serve more users simultaneously.

In both cases, the algorithm to determine whether a video can be encoded or
needs to wait on the queue is the same as that used in 3TierPol.

5.1 Comparative performance discussion

The plot on the top of Figure 5 shows the amount of users attended per
minute (on average) based on the number of premium user requests for the
three explored approaches. Depending on the number of premium users, two
different behaviours are observed: when the amount of premium users is below
50%, and when the amount is greater or equal. On the first group, 3TierPol
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Fig. 5 Users per minute attended by each approach with users requests arriving every 10
seconds (top), and quality obtained by each approach when encoding videos from premium
users (bars), and percentage of time 3TierPol is in the S2 state (line)

outperforms the other strategies, and it is able to process more users per
minute reducing slightly the quality obtained (0.13 dB for regular and 1.9 dB
for premium users in the worst case), see the bottom plot in Figure 5.

Diving into details of the behaviour of the second group (premium ≥ 50%),
we observe how the amount of premium users impacts in the performance of
the system: as many premium users are attended, more resources are used to
encode these videos, and less resources are available to encode new incom-
ing requests. This behaviour is shown in 2Pol and 3TierPol, but not in
1Pol-Mamut. In the case of 1Pol-Mamut, the behaviour is to encode all
the videos with the same policy (πR), used by the others approaches to encode
only regular users. On the one hand, this approach uses less resources to pro-
cess each premium user (because they are considered as regular), but on the
other hand, the quality obtained (lower plot on the Figure) is quite lower than
the other approaches, obtaining not admissible levels for premium users (up
to 5.4 less dB in PSNR). Second, when comparing 2Pol and 3TierPol, we
can observe how the latter is able to serve more videos at the same time (up
to 1.24×), reducing slightly the obtained quality (a loss of 2.4 dB in the worst
case). Finally, observing the psnr obtained in each experiment (lower plot) we
can see the internal behaviour of 3TierPol: as the number of premium users
increases, 3TierPol needs to move to states that reduce the resource usage
at the expense of reducing the quality. This can be seen in the plot at the
bottom of Figure 5, showing the percentage of the time 3TierPol is in the
S2 state depending on the number of premium users. Observe how the time
3TierPol is at state S2 increases with the number of premium users.

6 Conclusions

Training a Q-Learning system from scratch can be an ardours work. In ad-
dition, if different policies with different behaviour for the same system are
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needed, training becomes an unfeasible task in practice. To tackle this prob-
lems, in this work we have proposed a methodology to obtain new policies
with minimum effort, once the definitions have been tuned for a first desired
behaviour. To achieve that goal, two different mechanisms were proposed:
defining the reward functions to obtain the desired behaviour, and speeding
up the learning time of the problem. Together, these techniques make it feasi-
ble to explore multiple combinations without much effort and yield dramatic
improvements in terms of learning time. We have shown how our proposal can
be applied to a real scenario obtaining different policies to encode videos on
real-time with different QoS objectives, ensuring a minimum of quality in all
cases and varying the resource usage at will of the policies designer.

By means of a realistic scenario where multiple requests have to be attended
simultaneously, we have shown how a heuristic approach can handle multiple
policies at the same time, being able to decide which policy apply to each user
at each moment, obtaining improvements up to 1.24× in the number of users
attended per unit of time when comparing with less sophisticated approaches.
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