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Abstract 
A complex and important task in the cloud resource management is the 
efficient allocation of virtual machines (VMs), or containers, in physical 
machines (PMs). The evaluation of VM placement techniques in real-world 
clouds can be tedious, complex, and time-consuming. This situation has 
motivated an increasing use of cloud simulators that facilitate this type of 
evaluations. However, most of the reported VM placement techniques based 
on simulations have been evaluated considering one specific cloud resource 
(e.g., CPU), whereas values often unrealistic are assumed for other resources 
(e.g., RAM, awaiting times, application workloads, etc.). This situation 
generates uncertainty, discouraging their implementations in real-world 
clouds. This paper introduces CloudBench, a methodology to facilitate the 
evaluation and deployment of VM placement strategies in private clouds. 
CloudBench considers the integration of a cloud simulator with a real-world 
private cloud. Two main tools were developed to support this methodology, 
a specialized multiresource cloud simulator (CloudBalanSim), which 
oversees evaluating VM placement techniques, and a distributed resource 
manager (Balancer), which deploys and tests in a real-world private cloud the 
best VM placement configurations that satisfied user requirements defined in 
the simulator. Both tools generate feedback information, from the evaluation 
scenarios and their obtained results, which is used as a learning asset to carry 
out intelligent and faster evaluations. The experiments implemented with the 
CloudBench methodology showed encouraging results as a new strategy to 
evaluate and deploy VM placement algorithms in the cloud.  
Keywords Load balancing · Cloud simulator · Cloud resource management · 

1 Introduction 

Cloud computing is a paradigm in which computing resources, such as 
computing units, storage, servers, applications, etc., are offered as an on-
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demand services throughout the Internet [7, 13, 27]. Cloud resources are 
accessed without the need for users to be aware of their physical location and 
configurations. In the cloud computing paradigm, virtualized hardware, e.g., 
a virtual machine (VM), is provided following the infrastructure as a service 
(IaaS) model. In this model, VMs are instantiated in different physical 
machines (PMs) of the cloud infrastructure. The problem of deciding which 
PM will be the best option to host a VM is called the VM placement problem 
[8, 26]. This problem is a NP-hard problem [17] that has been formulated as 
the bin-packing problem [6], where analogously the VMs are packaged into 
PMs. To address this problem, exact and heuristic algorithms have been 
proposed. Exact algorithms guarantee delivering an optimal solution usually 
considering theoretical scenarios, whereas heuristic algorithms present 
practical procedures that do not offer such a guarantee but some feasible 
solutions, being the latter the majority of the current proposals [25]. 

Live migration plays a key role for the efficient placement of virtual 
machines (VMs) in data centers. It consists in moving an instantiated VM 
from one physical machine (PM) into another one, caused by a reaction to 
changes in the VM requirements or overloading problems in the hosting PM. 
Live migration is a process used by load balancing schemes to distribute 
resource consumption in the cloud. However, it usually implies a cost, e.g., it 
can be a resource and time-consuming process that can affect the fulfillment 
of the service level agreements (SLAs) [8]. In this context, VM placement 
strategies must control the number of live migrations [21], avoiding negative 
impact in the quality of the service. In a cloud infrastructure, load balancing 
algorithms are applied at two levels: at the application level and at the VM 
level. In the former, the load balancing algorithm is integrated into the 
application scheduler; while in the latter, it can be integrated into a VMs 
manager, which are the type of algorithms considered in the CloudBench 
proposal. Load balancing algorithms can also be centralized or distributed. In 
the centralized algorithms, one controller manages the entire system, which 
represents a single point of failure [22, 24, 36]. Distributed algorithms avoid 
this problem, but their complexity is higher due to the need of more 
coordination and control requirements. The cloud deployment models, public, 
private and hybrid, also present different considerations [36] that should be 
taken into account when analyzing a load balancing algorithm, for instance: 
(a) public clouds usually do not provide complete information over data, 
network and security settings and, in addition, their APIs change constantly 
due to the lack of standardization, which makes it difficult to capture all the 
information of the PMs and VMs; (b) private clouds are more suitable for 
evaluating VM load balancing strategies, since they allow users to include 
restrictions such as limiting the number of migrations and performance of 
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PMs; and (c) hybrid clouds can face communication restrictions and 
limitations defined by a specific data center and migration operations may 
require moving VMs from one cloud into another. The evaluation of different 
load balancing or VM placement strategies for an efficient deployment of 
VMs in clouds is not a trivial task [23, 24]. One of the difficulties in testing 
on real cloud environments is that it could be tedious, time-consuming and 
most of the time the cloud resources are not available for this purpose [4]. 
Most of the existing load balancing algorithms have been implemented in 
simulators, where there is usually a limited evidence that the proposed 
strategies can be implemented in real environments [29]. 

This paper presents CloudBench, a methodology for evaluating and 
deploying virtual machine placement strategies in an infrastructure as a 
service (IaaS) model in private clouds. Two supporting tools were developed 
for implementing the CloudBench methodology, a cloud simulator 
(CloudBalanSim) and a distributed resource manager (Balancer). 
CloudBalanSim allows users to evaluate different multi-resource load 
balancing strategies for VM placement in clouds according to specified 
performance metrics. Balancer is a distributed resource manager designed to 
test VM placement algorithms in a real-world private cloud, reproducing the 
test scenarios that showed satisfactory results during the CloudBalanSim 
simulation. In the CloudBalanSim methodology, the settings, algorithms, test 
scenarios and results generated during the simulation and real cloud tests are 
saved in a historical repository. This information becomes a learning asset to 
support the generation of more intelligent evaluations of VM placement 
algorithms. The major contribution of this work is:  

1. A methodology (CloudBench) to improve cloud resources management, 
using an incremental learning approach, from evaluating different VM 
placement algorithms on a test infrastructure that combines a cloud 
simulator with a real cloud implementation. As a proof of concept, it was 
necessary to develop two tools, CloudBalanSim and Balancer, which are 
also contributions of this work. 

2. An IaaS cloud simulator (CloudBalanSim) that allows the evaluation of 
different multi-resource strategies for VMs selection and placement, 
which is the only simulator of its kind that provides information of the 
following performance metrics: level of resource imbalance in the cloud 
(RAM and CPU), number of VM migrations and level of CPU 
performance degradation based on the Service Level Agreement Violation 
Time per Active Host (SLATAH) measurement [2]. 

3. A distributed and fault-tolerant cloud resource manager (Balancer), for 
testing and deploying VM placement algorithms in a real-world cloud. 
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4. Results of the evaluation of different state-of-the-art VM selection and 
placement strategies using CloudBench, identifying those whose results 
are very similar in both simulated and real clouds. 

The rest of this document is organized as follows: Sect. 2 presents the related 
work, Sect. 3 describes the CloudBench methodology, Sect. 4 introduces 
CloudBalanSim and Balancer, which are the two main tools developed for 
supporting the CloudBench methodology, Sect. 5 presents the experiments 
and results obtained as a proof of concept of the CloudBench methodology, 
and finally in Sect. 6 the conclusions and future work are given. 
 
2 Related work 

This section presents relevant proposals that address the problem of load 
balancing in the Cloud, focusing mainly on two aspects: (a) solutions for the 
VM placement problem and (b) cloud simulators to evaluate different aspects 
of cloud resource management. 

2.1 Virtual machine selection and placement for load balancing in the 
cloud 

The VM placement problem is formulated as the bin-packing problem [6], in 
which objects of a given size must be packed in a minimum number of 
containers of a certain capacity [16]. In this analogy, the objects to be packed 
are the VMs, and the PMs represent the containers that have to be managed 
in the Cloud [25]. There are heuristics to solve the bin-packing problem, such 
as [21]: the First-Fit (FF), where each object is placed in the first container 
where it fits; the Best-Fit (BF), where each object is placed in the container 
where it fits and the rest of the remaining capacity is minimal; and the Worst-
Fit (WF), where each object is placed in the container where it fits and the 
rest of the remaining capacity is maximum. Such heuristics can be improved 
if the objects are first sorted in decreasing order according to a determined 
weight, leading to modified algorithms such as the Best-Fit Decreasing 
(BFD). Sato et al. [26] considered the bin-packing formulation for the VM 
placing problem with the purpose of reducing the number of unnecessary live 
migrations. They proposed a dynamic optimization of the VMs placement by 
predicting the future resource usage through an auto-regressive model and 
solving the bin-packing problem through dynamic programming, based on the 
previous prediction of the resource usage. Its main objective is to manage the 
VMs in order to save energy and prevent the lack of resources. 
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Chen et al. [5] proposed a proactive load balancing model based on Markov 
decision processes (MDP) that serves to select the VM to be migrated and the 
destination PM, with the aim of reducing SLAs violations, overload and delay 
caused by load balancing. Kuo et al. [18] proposed an algorithm for VMs 
placement, the resource-based first-fit algorithm (RFFA), to find the first PM 
that met the resource constraints (CPU, memory, disk and network 
bandwidth) of a VM, to finally assign such VM to the PM. Beloglazov and 
Buyya [3] proposed and implemented an architecture for dynamic and energy-
efficient VMs consolidation in OpenStack clouds, called OpenStack Neat. 
They addressed the VMs placement problem as the bin-packing problem for 
which they used a modified version of the BFD heuristic, in which the 
selection of the PM that would host the VM is done using BFD based on the 
CPU requirements and subsequently used the FF heuristic on the RAM 
requirements. 

Most of these proposals were tested in simulation environments and some 
of them are theoretical solutions. Relevant cloud simulators used to analyze 
different aspects of cloud resource management are presented in the next 
section. 
2.2 Cloud simulators 

Currently, there exists an increasing interest of simulation tools that allow 
users the rapid development and evaluation of different strategies for VM 
placement, load balancing, VMs migration, among others [30]. There are 
different simulators that have been developed to perform experimentation in 
cloud environments. CloudSim [4] is one of the most popular [1, 37] and 
sophisticated [20] cloud simulation tool. It is a discrete event simulator 
implemented in Java that can be extended to incorporate new features. 
CloudSim allows the modeling and simulation of large-scale cloud computing 
environments, implements policies for overload detection, VMs selection and 
placement and allocation of resources (e.g., memory, processor, etc.). Despite 
the fact that CloudSim allows modeling the consumption of resources such as 
CPU, RAM and bandwidth, the consumption of a specific resource is 
analyzed in an isolated way, which means that the consumption of a 
combination of more than one resource is not considered [19]. 

NetworkCloudSim extends the CloudSim features to allow the modeling of 
more specialized and complex applications, e.g., a multi-layer web 
application, which consists of several layers, each one running on a different 
server with the possibility of communication among them. One of its main 
interests was to provide a network flow model that allows the creation of 
network topologies, integrating different types of switches, such as: 
RootSwitch, AggregateSwitch and EdgeSwitch [1, 11]. In a load balancing 
context, NetworkCloudSim does not support the simulation of VM live 
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migrations, which is an important limitation for VM placement strategies. 
MultiRECloudSim [19] is another simulator that extends CloudSim, adding 
multi-resource tasks (cloudlets) scheduling and an energy consumption model 
mainly based on CPU usage. MultiRECloudSim supports static and dynamic 
CPU workloads, whereas the other resources (RAM, I/O and bandwidth) use 
static workloads. It has special focus on task scheduling and energy saving, 
without carrying out load balancing actions either through tasks or VMs 
migration. CloudSched [31] is a simulator (implemented in Java) of IaaS 
clouds that takes into account multiple resources (CPU, RAM and bandwidth) 
in an integrated way for VMs scheduling. It models the VMs arrival process, 
the service time and the users requirements, randomly generating different 
VMs types with the required capacity. It also incorporates multi-resource 
metrics to measure the PMs average imbalance values. CloudSched does not 
support resource over-allocation (e.g., allocating more virtual CPUs—
vCPUs—to VMs than the CPU cores available on the hosting PM), which is 
an aspect that fosters PM consolidation. It is not clear if CloudSched allows 
VM migrations, because there is not way to know how many migrations are 
executed when running a load balancing strategy. 

DCSim (Data Center Simulator)1 [32] is a simulator (implemented in Java) 
designed to study the VMs management in IaaS cloud data centers. It supports 
CPU over-allocation and models replicated VMs that share an incoming 
workload. DCSim models PMs power consumption based on CPU usage and 
allows VMs migrations. However, DCSim presents limitations when deciding 
VMs migration time, because it is calculated using the initial predefined 
memory capacities, considering only a dynamic behavior in the CPU. 

FlexCloud2 [34] is an open-source simulator (implemented in Java) of 
large-scale IaaS clouds that allows modeling the initialization process of 
clouds data centers, the assignment and migration of VMs and evaluating the 
performance of different load balancing algorithms and energy-efficient 
scheduling policies. The VM requests can be generated using the Poisson, 
Normal or Random distributions. However, it does not consider the time it 
takes to carry out the migration within the simulation time, nor does it take 
into account the VMs performance degradation. Like CloudSched, FlexCloud 
does not support over-allocation of resources. 

As summary, we can say that CloudSim is a robust simulator that has 
influenced others but that it still presents limitations for the study of VM 
placement algorithms. It is also detected that none of the mentioned 
simulators supports the dynamic consumption of multiple resources, so their 

 
1 The DCSim code is public and can be downloaded from: https ://githu b.com/digs-uwo/dcsim . 
2 FlexCloud: https ://sourc eforg e.net/proje cts/flexc loud/. 
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VM placement strategies are limited to only considering: (a) the dynamic 
consumption of CPU, with static capacities for the rest of the resources with 
which VMs were instantiated; or (b) the static capacity with which VMs were 
instantiated for all resources. In this context, there still remains a need for an 
integrated evaluation tool that takes into account the dynamism of multiple 
resources, allowing users to experiment with VM placement and selection 
algorithms that provide load balancing in the cloud, using simulated and real 
clouds [19]. This situation motivated us to develop CloudBalanSim and 
Balancer tools, as part of the tools supporting the CloudBench methodology. 

2.3 Discussion 

To the best of our knowledge, there is not a similar methodology to compare 
with CloudBench. However, since CloudBench requires a cloud simulator 
and a tool to evaluate different VMs placement strategies in real clouds, we 
have focused the revision of the state-of-the-art on existing cloud simulators 
and VMs placement approaches. We realized that none of the existing work 
met the requirements of the CloudBench methodology, making necessary to 
develop a new cloud simulator (CloudBalanSim) and a distributed and fault-
tolerant VMs deployment and load balancing tool (Balancer). Next, we 
summarize the main aspects that make different CloudBalansim and Balancer 
of existing proposals. Table 1 compares different VM placement proposals 
with our Balancer tool. We considered features such as the implemented 
approach, metrics, type of proposal and its objective. As we can see, Balancer 
is the only implemented tool for real-world clouds that allows evaluating and 
deployment of different VMs load balancing strategies (VM 
selection/placement and PM overload detection), offering fault-tolerance 
support (Sect. 4.2). 

On the other hand, Table 2 summarizes the important simulation features 
that were required by CloudBench, such as: (1) Open Source, (2) VMs 
Migration, (3)  
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Fig. 1  The CloudBench methodology 

Dynamic CPU Consumption, (4) Dynamic RAM Consumption, (5) CPU 
Over-allocation, (6) Multi-resource VM Load Balancing, and (7) Imbalance 
Metrics. As we can see, CloudBalanSim is the only cloud simulator that 
fulfills most of the features. We are improving documentation, software and 
demonstrating its benefits before releasing the first open-source version. The 
complete features of CloudBalanSim are explained in Sect. 4.1. 

3 The CloudBench methodology 

CloudBench is a methodology that integrates simulation and real-world cloud 
scenarios for an intelligent evaluation, validation, and deployment of new or 
existing multiresource VM placement strategies in clouds. Figure 1 shows a 
conceptual model of this methodology. The stages that compose this 
methodology are described next. 

Settings The definition of cloud evaluation scenarios, algorithms, metrics, 
user restrictions, workloads, among others is carried out in this stage. Some 
examples of metrics and user requirements are the workload imbalance level, 
maximum performance degradation, CPU or memory saturation thresholds 
and number of VM migrations. Details of these metrics are given in Sect. 
4.1.3. The definition of the simulated cloud infrastructure includes the 
maximum number of physical (PMs) and virtual machines (VMs), the 
resource characteristics (memory, CPU, storage, etc.), workloads (synthetic 
or real) and the VM selection and placement strategies that will be evaluated. 

Simulation test In this stage, a set of simulations are carried out taking as input 
the settings (configuration file) defined in previous stage. CloudBalanSim 
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(Sect. 4.1) is the simulator developed for supporting the CloudBench 
methodology. In every simulation test, the metrics and restrictions are the 
same, the only variant is the combination of the load balancing algorithms 
that will be evaluated. This means that for each combination of algorithms a 
test simulation is executed. Before executing a new simulation test, a query is 
sent to the historical repository to verify if there exists information about a 
previous execution of this test. If historical data exist, it is used to avoid the 
execution of a new simulation. 

Simulation assessment The evaluation and analysis of obtained results in the 
simulation test is done in this stage. Feasible solutions, according to user 
restrictions, are selected. Most relevant information resulting from the 
simulation test is stored in a historical repository. This information will be 
used in a incremental learning process to improve future evaluations. 
Simulation test and simulation assessment stages will work in a loop until all 
of the required combinations of algorithms are evaluated in the simulation 
test. 

Cloud test In this stage, a real cloud is deployed to reproduce those tests that 
were selected as feasible solutions in the simulation assessment stage. We 
have developed a tool called Balancer (Sect. 4.2), which is in charge of 
deploying the real cloud scenario using the OpenStack platform [9] and 
executing the VM selection and placement algorithms. Results obtained in the 
cloud scenario are sent to the next stage for evaluation. 

Cloud assessment This stage has a similar function to the simulation 
assessment stage but considering real cloud test scenarios. All of the relevant 
information and feasible solutions resulting from the cloud test stage are sent 
to the historical repository that will be used in the incremental learning 
process. 

3.1 Algorithm 

The general steps of the CloudBench methodology are summarized in 
Algorithm 1. The set of combined algorithms that are chosen for the 
evaluation (Line 1) belongs to the following universe VMsSelSts × VMsPlaSts × 
PMsOverDecSts . Where VMsSelSts, VMsPlaSts, and PMsOverDecSts identify 
the VM selection, VM placement and PM overload detection functions, 
currently available in the CloudBalanSim simulator. The configuration file 
(CloudInf) will have the definition of the cloud infrastructure, i.e., number of 
PMs, VMs, and characteristics of the resources (CPU, RAM, storage). Two 
main loops represent the core processes of the integrated (simulation and real 
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cloud) CloudBench methodology. In the simulation loop (Line 5), the 
CloudBalanSim simulator is used to execute every combination of algorithms 
(Line 11), taking into account the cloud infrastructure and settings. Before 
executing a specific simulation test, a query is sent to the history repository 
(Line 7) to verify if there exists historical information about this test. If the 
query response is true, results are obtained avoiding a new simulation 
execution (Line 8). Next, a results assessment is carried out (Line 13), where 
satisfactory (positive) and no satisfactory solutions are obtained 
(SimFeasibleSols and SimDiscardedSols respectively). In the real cloud loop 
(Line 21), the distributed cloud manager, Balancer, is used to deploy and 
execute (Line 27) every combination of algorithms that produced feasible 
solutions in the simulation stage. The real cloud scenario considers the same 
settings defined in the simulation. Like the simulation stage, before executing 
a real cloud evaluation, a query is sent to the historical repository to obtain 
previous results (Line 23), if any. An assessment of the real cloud results is 
made (Line 29), where satisfactory and no satisfactory solutions are obtained 
(RCloudFeasibleSols and RCloudDiscardedSols respectively). For learning 
reasons, at the end of the simulation (Line 18) and real cloud tests (Line 34), 
if historical information was not used (previous == False), satisfactory and 
no satisfactory solutions with their respective settings are saved into the 
historical repository (feedback). 
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4 CloudBench supporting tools 

CloudBalanSim and Balancer are two tools that were developed to support 
the implementation of the CloudBench methodology. The following section 
describes these tools and the way they interact. 
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4.1 CloudBalanSim 

CloudBalanSim is a cloud simulator based on CloudSim [4]. It was developed 
for supporting the CloudBench methodology. Its main purpose is to carry out 
simulations to evaluate resources management strategies in clouds that 
implement the IaaS model, with special support for the evaluation of VM 
placement and multi-resource (CPU and memory) load balancing strategies. 
Several metrics are incorporated to measure the workload imbalance that is 
generated on PMs that make up the cloud. These metrics allow to measure the 
impact that VM placement strategies have on resource consumption and the 
CPU quality of service (QoS) offered to users. The modular design of 
CloudBalanSim allows to improve its functionality incrementally. The 
following sections describe the architecture of CloudBalanSim, its 
functionality, and the different multi-resource VM selection and placement 
strategies that are currently implemented. 

4.1.1 Simulator architecture 

Figure 2 shows the two layers, Cloud Services and Cloud Resources, of the 
original CloudSim’s architecture, and the components that were added (dark 
gray module) and modified (light gray modules) to create this new simulator. 

At the cloud resources level, the Data Center module is in charge of 
updating the CPU and RAM consumption every time VMs and PMs receive 
an event. This is different compared with CloudSim, which only updates the 
CPU usage. At cloud services level, the VM Placement module includes 
different VM selection and placement strategies that can be used by the VM 
Provisioning module, considering a specified cloud infrastructure. When VM 
placement strategies are carried out, the VM Provisioning module considers 
both the dynamic CPU and RAM consumption measurements. This 
information also provides a more realistic scenario for CloudBalanSim to 
carry out an efficient VM live migration. The different load balancing 
strategies and main metrics provided by CloudBalanSim are described in the 
following sections. 

4.1.2 Load balancing strategies 

This section describes the VM selection and VM placement strategies with 
the PM overload detection functions implemented in the VM Placement 
module of CloudBalanSim. 
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Fig. 2  Cloud Services and Cloud Resources layers in CloudBalanSim 

VM selection strategies These strategies are in charge of deciding which VM 
should be migrated from a source PM to a destination PM in order to release 
the excess of load in the source PM. We developed a new version of a VM 
selection strategy known as MMTMC [3], which considers the Minimum 
Migration Time and Maximum CPU utilization measurements. In this new 
version, called MMTMC2, the process of VM migration considers the amount 
of current RAM consumption, instead of using the total capacity with which 
the VM was originally instantiated, as is implemented in [3]. The VM with 
the shortest migration time (the least amount of RAM used) and with the 
highest CPU utilization will be chosen for migration in the PM or group of 
PMs that are overloaded (in one of their resources). This strategy is applied 
repeatedly in every PM until the overloading problem disappears. 
CloudBalanSim provides other 4 VM selection strategies that were inherited 
from CloudSim, [2] such as: MU (selects the VM with the lowest CPU usage); 
MMT (selects the VM with the least RAM capacity assigned at its creation 
time); RS (randomly selects the VM using a uniform distribution); and MCC 
(selects the VM with the maximum correlation coefficient between a list of 
VMs to be migrated). 

VM placement strategies These strategies are in charge of selecting a 
destination PM, where the chosen VM (using a VM selection strategy) will 
be migrated, freeing resources of its current hosting PM (the overloaded PM). 
The current strategies implemented in CloudBalanSim are LIF, sandpiper, 
vectorDot, random and worstFit, which are explained below. These basic 
implementations do not consider any type of ordering based on the VM 
resource consumption. We also implemented a variant version of every 
strategy, where VMs are first ordered in a descending order, based on their 
RAM and CPU resource consumption, following that order, respectively. The 
corresponding version was identified adding the "Decreasing" word at the end 
of the name of the strategy: LIFDecreasing, sandpiperDecreasing, 
vectorDotDecreasing, randomDecreasing and worstFitDecreasing. For 
simplicity, in this section we describe only the basic implementations.  
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Worst-Fit  In this placement strategy VMs are sequentially assigned into PMs 
that have available resources to host them. Each PM i has a weight 

( weighti 
←∑MWM.size

j=1 () MWM[j]× normPMij ) calculated from the 

aggregation of available resources (previously normalized) 
multiplied by a weight factor that determines the relevance of 
each metric. The PMs that will be taken first are those with the 
greatest weight (the maximum amount of resources to offer). 

Random   Assigns the VMs sequentially into the randomly selected PMs 
that have the available resources for each metric, using a uniform 
distribution. 

Sandpiper  Captures the combined CPU, network and memory load of both a 
VM and a PM. Defines the volume of a VM or PM as the product 
of its CPU, network and memory loads ( Vol = 

1−
1cpu 

× 
1−

1net 
× 

1−mem1 
); and in the case that some resource is being used completely 
(e.g., cpu=1 ), its consumption is set to 1−𝜖 , instead of one, to avoid 
infinite volumes [33]. In our implementation, this metric was used 
to place the VMs sequentially into the PM that has sufficient 
resources for each metric, and with the lowest volume. The 
network resource was not taken into account when calculating 

Vol, so its value will be Vol ←  
×1 −memU1 

(PMi) , where cpuU(PMi) and memU(PMi) represent 

the CPU and RAM utilization percentage, respectively, which are 
in the range  
[0,1 −𝜖]. 

VectorDot  In this placement strategy, VMs are sequentially allocated into the 
PM that has sufficient resources for each metric and that, in turn, 
has the lowest value obtained using the dot product between the 
load fractions vector VVec and the smoothing of the load fractions 
vector LVec with LVec.size() respect to its thresholds vector TVec 
(LVec[i]−TVec[i] val = ∑i=1 VVec[i] ×exp(𝛼 × TVec[i] ) ), where 𝛼 is a 
smoothing constant [28]. In our implementation, VVec represents 
the fractions vector of the amount of required resources for each 
VM metrics and the amount of available resources for each PM 
metrics. LVec represents the resources usage percentage from 
each PM metrics and TVec represents the threshold established 
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for each PM metrics. Only the CPU and RAM metrics were 
considered, and the constant was established to 𝛼=1 to give all 
metrics the same importance. 

LIF  The Lowest Integrated-load First (LIF) strategy assigns the VMs 
sequentially to the PM with the lowest integrated load. Based on 
the VM requirement characteristics (e.g., CPU vC, memory vM, 
network bandwidth vN, etc.), LIF always selects the PMs with the 
lowest inte- 

grated load ( Avgi 
← CPU Ui +MEM3 Ui +NETUi ) that have 

sufficient resources for each metric to assign the VMs [38]. In our 

implementation, the network resource was not taken into account 

when calculating Avgi , so it  

would be: Avgi ← CPU Ui +2MEMUi . 

PM overload detection functions These CloudBalanSim functions have as 
main aim to detect when any of the PMs in the cloud is receiving an excess 
of load in one or more of its resources, avoiding or foreseeing performance 
degradation problems. These functions complement the VM placement 
strategies. Basic PM overload detection functions allow to define static 
thresholds (THR) for CPU and RAM consumption in every PM. Equation 1 
defines a simple function to verify these thresholds with respect to current 
consumption. Where tk represents the current time; UCPU(PM,tk) is the 
percentage of CPU usage of the PM at time tk ; URAM(PM,tk) is the percentage 
of RAM usage of the PM at time tk ; TCPU is the CPU usage overload threshold; 
and TRAM is the RAM usage overload threshold. 

true if UCPU(PM,tk) > TCPU or 
=URAM(PM,tk) > TRAM (1) ⎨⎪⎩ falseoverload(PM,tk) 

 otherwise 

Other PM overload detection functions allow the detection of CPU over-
utilization using dynamic load threshold for CPU based on metrics such as 
the mean absolute deviation (MAD) or the interquartile range (IQR). Some 

⎧ 
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functions predict CPU utilization and detect potential overloading using local 
regression (LR) or local robust regression (LRR) techniques [2]. 

Finally, Table 3 summarizes all the aforementioned VM selection, VM 
placement and PM overload detection strategies, which in turn were 
implemented in CloudBalanSim. 

4.1.3 Performance metrics 

CloudBalanSim provides specific metrics to evaluate load balancing in the 
cloud during the execution of VM placement strategies. Cloud imbalance 
level, percentage of service level agreement (SLA) violations and number of 
VM live migrations are examples of these metrics. 

SLA violation time per active host (SLATAH) Service level agreement (SLA) 
fulfillment involves different aspects of the cloud infrastructure. However, 
currently implementation of CloudBalanSim only defines SLA violations in 
terms of CPU degradation in physical machines (PMs). To measure the CPU 
SLA fulfillment, the SLA Violation Time per Active Host (SLATAH) [2] 
metric is used. This metric shows the percentage of time active PMs have 
experienced 100% CPU utilization (Eq. 2). The reasoning of the SLATAH 
metric is that if a CPU of a PM that is hosting VMs is experiencing 100% of 
utilization, the SLA established for the VMs, in terms of performance, could 
be violated. 

 SLATAH= N1 ∑i=N1 TTasii (2) 

In Eq. 2, N is the number of PMs; Tsi is the total time during which the PM i 
has experienced 100% CPU usage leading to a SLA violation; and Tai is the 
total time that the PM i has remained in an active state (hosting VMs). 

Cloud imbalance level CloudBalanSim provides two metrics for measuring 
the load imbalance level of the cloud, considering the RAM and CPU 
consumption in all of the PMs: IBLCDCavg [31, 35, 38] and TotalIBScore [28]. 
These metrics allow detecting if the RAM and CPU consumption (load) is 
disproportionate in the cloud infrastructure. The definitions of these metrics 
are the following: 

– IBLCDCavg : It measures the average imbalance value by calculating an 
aggregate of the load variances of each resource in the cloud.  
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(RAMUi −RAMAu) (CPUUi −CPUAu)2  CDC

 IBLavg  (3) 
N 

 In Eq. 3 RAMU
i and CPUU

i are the average RAM and CPU utilization of a 
PM i.  

RAMA
u and CPUA

u represent the average utilization of all the RAM and 
CPUs of the cloud, respectively, and N the total number of PMs in the 
cloud. 

– TotalIBScore: It is the measure of the total imbalance in the cloud with 
respect to a defined threshold. The total imbalance score is calculated by 
aggregating the imbalance score of each node in the cloud. Equation 4 
shows such metric.  

TotalIBScore = ∑IBscore(u) 

u 
IBscore(u) =IBscore(NLFVeci(u),NTVeci(u)) 

(4) 
if f < T 

IBscore(f,T) =  otherwise 

 Where NLFVeci(u) is the i-th element of the load fraction vector calculated 
by dividing the resource consumption by the capacities of the PM u. 
NTVeci(u) is the i-th element of the thresholds vector of the PM u, and 
IBscore(f,T) is an exponential weighting function, where f is the resource’s 
load fraction and T is the corresponding threshold. 

The objective of a load balancing strategy is to reduce the value of the 
imbalance metrics as much as possible by migrating VMs [28]. 

Number of migrations The number of VM migrations is a metric that can be 
used in a complementary way to measure the load balancing. It is advisable 
to use this metric as a complement to others, since using it as the only 
reference metric to evaluate the load balancing effects can produce 
undesirable results. For example, a high number of VM migrations could lead 
the cloud to a state of balanced loads, but they could also cause a significant 
performance degradation. 
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4.2 Balancer 

This section describes the architecture and implementation of Balancer, a 
distributed and fault-tolerant resource manager for virtual machine (VM) 
deployment and load balancing in the cloud. Balancer is the component of 
CloudBench that allows to reproduce and verify, in a real-world cloud, the 
simulations and results obtained by CloudBalanSim. The current 
implementation of Balancer is developed on the OpenStack platform [9]. 
 
 

 

 

Fig. 3  Balancer architecture  

4.2.1 Architecture 

Balancer has a modular architecture (see Fig. 3) mainly composed of the 
following components: Physical machine (PM) overload detection, VM 
selection, VM placement and monitoring service. These modules work as 
distributed services in the cloud nodes. Scalability and fault tolerance are two 
non-functional aspects included in Balancer. The following sections describe 
the most important Balancer modules. 

Monitoring This service is in charge of gathering performance metrics from 
both the physical and virtual cloud infrastructure. Monitoring provides timely 
information that improves the decision-making process during the execution 
of the load balancing strategies. This service is used by all modules of 
Balancer. Current implementation of Balancer integrates the Monasca 3 
monitor, which provides monitoring and logging as-a-service for the 
OpenStack platform. The Monasca monitoring service was modified so that, 
in addition to sending the data to a central database of metrics, each node can 
store its own metrics locally in a time series database (InfluxDB). In this way, 
Balancer keeps the monitoring data distributed to facilitate its use to the load 
balancing strategies. Monasca is a well-supported monitor that has showed 
good performance in very overloaded environments [12]. 

 

 
3 http://monas ca.io/about .html, https ://wiki.opens tack.org/wiki/Monas ca. 
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PM overload detection This module is responsible for the overload detection 
of PMs, implementing the same strategies used in CloudBalanSim, as were 
explained in Sect. 4.1. 

VM selection It is in charge of selecting the set of VMs to be migrated from 
overloaded PMs to PMs with more available resources. The following VM 
selection strategies are currently part of this module: MMTMC2, RS and MU; 
explained in Sect. 4.1.2. However, it is possible to add all the VM strategies 
already implemented in CloudBalanSim (Sect. 4.1). It is worth mentioning 
that when Balancer is working as part of the CloudBench method (Sect. 3), 
the VM selection module will use only the VM selection strategies that 
showed satisfactory results in the simulation test (CloudBalanSim). 

VM placement The VMs that were chosen by the VM selection module 
represent the input for the VM placement module, which is in charge of 
finding the best possible destinations (PMs) for executing VM live 
migrations. Different VM placement strategies were implemented in this 
module. However, as occurs in the module of VM selection, Balancer will use 
only the strategies that showed satisfactory results in CloudBalanSim if it is 
running as part of the CloudBench method. The current implementation of 
this module includes the following VM placement strategies: 
WorstFitDecreasing, Random, Sandpiper, VectorDot and LIF (Sect. 4.1.2). 
However, it is possible to integrate all of the VM placement strategies 
included in CloudBalanSim. The metrics used in CloudBalansim to measure 
cloud load balancing and quality of service (Sect. 4.1.3) are also supported by 
Balancer. 

4.2.2 Fault tolerance 

The VM placement module needs to maintain a global view of the information 
of all cloud nodes (PMs) that will be managed. This requirement led us to a 
centralized design, limiting fault tolerance and scalability. To address this 
issue, we designed a distributed VM placement module that provides fault-
tolerance and scalability support. In the distributed version, a new algorithm 
for choosing a coordinator (or leader) node was implemented. This algorithm, 
named Dynamically Weighted Bully (DWB), is a variant of the Bully 
algorithm [10]. Unlike the original Bully algorithm, where the selection of a 
coordinator considers a static identification of the nodes, in the DWB 
algorithm a weight dynamically assigned to the node is used as identifier. The 
weight also indicates the amount of available resources in each node. The 
node with the greatest weight is the node that is chosen as the coordinator. In 
this way the coordinator selection follows a similar technique to the Worst-
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Fit strategy (Sect. 4.1.2). The coordinator will be in charge of finding a 
destination PM to a VM chosen for migration. If the coordinator fails, another 
is chosen using the DWB algorithm. 

4.2.3 Scalability 

In the physical cloud infrastructure, Balancer allows to create groups of nodes 
(PMs) to be managed independently. The cloud infrastructure can be divided 
into subgroups of nodes, where every subgroup can choose a coordinator (or 
leader). This group design avoids concentrating the VM placement process in 
only one coordinator node. If a group coordinator cannot find an appropriate 
PM to place the VMs, Balancer can be extended to redirect VMs migration 
requests to a coordinator of another group, performing inter-group load 
balancing (see Fig. 4). This design facilitates Balancer to scale. 

4.2.4 Balancer integration with OpenStack 

Balancer was designed to be integrated into the OpenStack4 cloud platform, 
one of the most popular tools used to build public, private and hybrid clouds 
[14–16].  

 

Balancer’s modules can be installed as additional OpenStack services (e.g., 
novacompute). In this way, when an OpenStack cloud is used, it is not 
necessary to modify the cloud environment or make specialized 

 
4 https ://www.opens tack.org. 



 

 24 

configurations of it, taking advantage of existing OpenStack functional 
services, such as VMs live migration, infrastructure monitoring, etc. 

5 CloudBench: experimental evaluation and results 

This section describes the experiments carried out to evaluate different 
proposals of VM selection and placement strategies to provide load balancing 
in clouds, using the CloudBench methodology. The obtained results are also 
shown. According to the recommendations of the CloudBench methodology, 
the experiments were executed and evaluated on simulated and real-world 
cloud scenarios. CloudBalanSim was used in the simulated scenario, whereas 
Balancer was used in the real-world cloud scenario. It is worth mentioning 
that sudden load peaks for resource demands in VM or PM were not 
considered in these experiments, as they happened in negligible periods of 
time compared to the complete workload. These peaks do not represent a 
consistent overload; therefore, executing VM migrations based on this 
information could be costly. The analysis of this behavior is beyond the scope 
of this article and is left as future work. 

5.1 Simulation settings and test with CloudBalanSim 

This section specifies the different scenarios to evaluate in the simulated 
environment, such as the VMs selection and placement strategies, the 
performance metrics, the cloud infrastructure to be simulated, as well as the 
workloads to be simulated. 
5.1.1 VMs selection-placement strategies and performance metrics 

A total of 5×10×2=100 tests were executed, which result from the combination 
of the 5 VM selection strategies (MMTMC2, MU, MMT, RS, MCC) with the 
10 VM placement strategies (LIF, LIFDecreasing, sandpiper, 
sandpiperDecreasing, vectorDot, vectorDotDecreasing, random, 
randomDecreasing, worstFit and worstFitDecreasing) described in Sect. 
4.1.2, running on 2 cloud infrastructures, one with 41 physical machines 
(PMs) and another with 50 PMs. Different cloud scenarios with different 
number of PMs were tested. However, in this paper, we present the two 
scenarios with the most representative results. The PM overload detection 
function applied in these experiments uses a static threshold (THR) (Sect. 
4.1.2), with RAM and CPU consumption thresholds set to 0.8. The following 
metrics (described in Sect. 4.1.3) were considered in these experiments: (1) 
IBLCDCavg and TotalIBScore, which measure the level of imbalance in resource 
consumption generated by each combinations of strategies; and (2) the 
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number of VM migrations and SLATAH, which measure both the load 
balancing and the SLA violations in terms of CPU performance degradation. 

5.1.2 Cloud infrastructure 

This section describes the infrastructure simulated with CloudBalanSim. In 
all of the experiments, the same cloud infrastructure and workloads were 
used, making the comparison under the same conditions. 

PMs characteristics Two types of PMs were simulated, their characteristics 
are shown in Table 4. The processor frequency of each PM was mapped to 
MIPS (Millions of Instructions Per Second). The server model and the number 
of PMs created are shown in Table 5. 

VMs characteristics Table 6 shows the characteristics of the simulated VMs. 
Four different types of VM were defined for these experiments, varying the 
speed of the cores and the capacity of RAM. Every VM instance type was 
identified by a name (first column of Table 6). All VMs are single-core in 
accordance with the CPU usage traces provided by the workload applied in 
these experiments (see details in Sect. 5.1.3). Since at the beginning of the 
simulation, the VM resource consumption is not known, at the time of the 
VM instantiation the resource requirements are those predefined by the 
assigned VM instance type. However, the VMs can use a smaller amount of 
resources, depending on the resource consumption generated by the 
workload. The number of VMs created was 263 for each of the 4 types showed 
in Table 6, producing a total of 1052 VMs created per test configuration. This 
is the number of VMs required by the workload explained in the next section. 

Table 4  PMs characteristics 

 
 
 
 
 
 
 
Table 5  Model and number of servers created 

 PM 1 PM 2 

Server Huawei RH2288H V2 DEPO Race X340H 
Processor Intel Xeon E5-2609 Intel Core i5-4570 
Cores 8 4 
MIPS 2400 3200 
RAM (GB) 48 16 
Storage (GB) 1000 1000 
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5.1.3 Workloads 

CloudBalanSim allows to simulate both RAM and CPU consumptions, either 
by using workload traces (real or synthetic) or using a certain distribution. In 
each of the experiments the same workload was generated during 24 h. The 
VMs CPU consumption was modeled based on the real CPU usage traces of 
the PlanetLab network.5 These traces were provided as part of the CoMon 
project, a PlanetLab’s monitoring service. The total set consists of 10 days of 
collected traces, at a 5 min monitoring interval during periods of 24 h, 
between the months of March and April of 2011 [2]. For our tests, we selected 
the set of traces of the first day (03/03/2011), which consists of the CPU usage 
traces of 1052 VMs that were monitored that day. This workload requires 
CloudBalanSim to instantiate 1052 VMs, using a CPU overallocation level ≤ 
6 (i.e., up to 6 virtual CPUs for each real CPU). The RAM consumption was 
modeled by a normal distribution with mean 0.8 and standard deviation 0.2. 
RAM consumption must be in the [0, 1] interval; so, in case of RAMU 

>1 it 
will take the value of 1. 

 
5 https ://githu b.com/belog lazov /plane tlab-workl oad-trace s. 

Server model PMs  

Huawei RH2288H V2 21 25 
DEPO Race X340H 20 25 
Total number of servers in the cloud 41 50 
Table 6  VMs characteristics 
[2] 

   

VM instance type Cores MIPS RAM (GB) Storage 
(GB) 

High-CPU medium 1 2500 0.85 2.5 
Extra large 1 2000 1.7 2.5 
Small 1 1000 1.7 2.5 
Micro 1 500 0.6 2.5 
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Fig. 5  CloudBalanSim: average of the IBLCDCavg imbalance metric with a 41 PMs and b 50 PMs 

5.1.4 Simulation test and assessment 

The simulation tests were mainly focused on two aspects: (a) validation of 

the CloudBalanSim functionality, and (b) evaluation and comparison of 
different VM selection and placement strategies for load balancing in the 
cloud. A successful execution of CloudBalanSim validated the first aspect. 
The second aspect determined which of the strategies offers the best load 
balancing level in the cloud. 

Figure 5 shows a summary of the average imbalance level, IBLCDCavg , 
generated by each combination of the VM selection and placement strategies 
after executing in two cloud infrastructures, one with 41 PMs and another 
with 50 PMs. A lower value in IBLCDCavg means a better load balancing in the 
cloud. It can be seen in Fig. 5a that with a high demand of CPU over-
allocation in PMs (less PMs host more VMs), the combination of strategies 
that generated a lower level of imbalance (0.0077) was Sandpiper and MCC. 
If the number of PMs in the cloud is increased (Fig. 5b), the combinations of 
VM placement strategies that generated the least imbalance (0.0077) were 
LIF, LIFDecreasing, Sandpiper and SandpiperDecreasing, independently of 
the VMs selection strategy that was used. The rest of the VM placement 
strategies generated a greater imbalance. These tests show us that in scenarios 
with high demand for computing resources (high demand of CPU over-
allocation), the VMs selection and placement strategies that present a better 
performance in terms of load balancing are Sandpiper and MCC, 
respectively. While in scenarios with a low demand of CPU over-allocation 
(the cloud has more available PMs), the VM placement strategies that 
performed best were LIF and sandpiper, both in their normal and decreasing 
versions. 
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We also analyzed the average of the TotalIBScore metric, which reflects the 
total cloud imbalance relative to a threshold. In this case, with a smaller 
number of PMs (Fig. 6a) the worstFitDecreasing and MMT strategies 
generated the least imbalance (2.91). By further increasing the number of 
PMs (Fig. 6b), the random and randomDecreasing strategies in combination 
with the majority of the VM selection strategies (except when 
randomDecreasing is combined with MU) produced an imbalance level 
greater than 0, while for the other strategies the level of imbalance was equal 
to 0. This metric shows that the Random strategies are more likely to exceed 
the PM overload detection threshold, while in general the vectorDot and 
worstFit strategies, both in their normal and decreasing versions, converge 
faster to a state of equilibrium, where the thresholds are not exceeded. 

 
 

 
Fig. 6  CloudBalanSim: average of the TotalIBScore imbalance metric with a 41 PMs and b 50 PMs 

The number of VM migrations generated by each combination of strategies 
was also measured for the two cloud infrastructures. It was observed that with 
a high demand of CPU over-allocation in PMs (Fig. 7a), the WorstFit and RS 
strategies generated the lowest number of migrations (1199). By further 
increasing the number of PMs (Fig. 7b) the LIF and Sandpiper strategies, both 
in their normal and decreasing versions, converged to an optimal state, where 
the migration of VMs was no longer required. Considering the IBLCDCavg 
imbalance level shown in Fig. 5b, where the same strategies had the lowest 
level, it is clear that a lower imbalance level generates a smaller number of 

migrations. Something to note is that while the vectorDot, 
vectorDotDecreasing, worstFit and worstFitDecreasing strategies seem to 
converge more slowly toward a balanced state, random strategies keep 
resources in a constant imbalance state and consequently generate a greater 
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number of migrations, which could negatively impact performance in data 
transmission in the cloud. 

The SLA fulfillment with respect to CPU performance in PMs is an aspect 
that can be analyzed with the SLATAH metric (Sect. 4.1.3). It was observed 
that when the number of PMs is reduced and there is a higher CPU over-
allocation (Fig. 8a), the worstFitDecreasing and MU strategies generated the 
lowest SLATAH percentage (0.151%). By increasing the number of PMs 
(Fig. 8b), the LIF and Sandpiper strategies converged to the optimum where 
there was not CPU performance degradation. This occurred in both their 
normal and decreasing versions, independently of the VMs selection strategy. 
Considering the IBLCDCavg imbalance level shown in Fig. 5b and the number 
of migrations in Fig. 7b, where LIF and Sandpiper strategies had the lowest 
level, we can see they favor a better use of the cloud resources in scenarios 
where the over-allocation of CPU is used. LIF and Sandpiper also kept a low 
level of imbalance and migrations without causing CPU SLA violations. 

Table 7 summarizes the CPUs allocation in the two cloud scenarios (with 
41 and 50 PMs). The second column shows the total number of cores in the 
PMs, considering the characteristics of the PMs shown in Table 4 and the 
number and models of server (PMs) described in Table 5. The third column 
shows the  
Fig. 7  CloudBalanSim: number of VM migrations with a 41 PMs and b 50 PMs 

 
Fig. 8  CloudBalanSim: SLATAH metric with a 41 PMs and b 50 PMs 
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percentage of cloud CPUs required to satisfy the allocation of the 1052 VMs 

demanded in the workload. Recall that it was considered a maximum CPU 
overallocation level of 6, i.e., up to 6 VCPUs for each real CPU. A high value 
in this column, e.g., 100%, would mean that the VMs demanded 1 real CPU 
for each VCPU, whereas a low value means that a reduced number of real 
CPUs could host a higher number of VCPUs. The column "% CPUs savings" 
shows the complement of the previous values and represents the percentage 
of CPUs that remain available in the cloud. We can see that PMs 
consolidation produces more CPU or PMs savings (with 41 PMs, 76.43% of 
gain). As the number of PMs increases PM consolidation decreases. 
Depending of the user interest, the combination of VM selection-placement 
strategies can be configured for obtaining high PMs consolidation (which 
could be an energy saving approach) or an adequate load balancing (focused 
on better performance) or guaranteeing a low number of SLAs violations 
(quality of service). 

5.2 Real cloud settings and test with balancer 

According to the CloudBench methodology shown in Fig. 1, after the 
simulation stage, we continue with the real cloud evaluation, where Balancer 
comes into play. In this stage, we executed and validated the combination of 
VM selection and placement algorithms that showed satisfactory results in 
the simulation stage, using CloudBalanSim. 
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5.2.1 VMs selection-placement strategies and performance metrics 

The CloudBalanSim evaluation produced fifteen strategies with satisfactory 
results. These strategies are the combination of the next 3 VM selection 
algorithms: MMTMC2, MU, RS; with the following 5 VM placement 
algorithms: LIF, sandpiper, vectorDot, random and worstFitDecreasing. For 
comparison reasons, it was also included an additional test used as baseline, 
in which none VM selection and placement strategy is executed, giving a 
total of 16 configuration tests. We also used the same PM overload detection 
function based on static threshold (THR) with RAM and CPU thresholds set 
to 0.8. As with the experiments carried out with CloudBalanSim, in Balancer 
the benefits were valued in terms of the load balancing level achieved from 
the CPU and RAM consumption in the PMs that make up the cloud. The 
metrics considered in these experiments were: IBLCDCavg , TotalIBScore, 
number of VM migrations and SLATAH, which are the same metrics used in 
CloudBalanSim. 

5.2.2 Cloud infrastructure 

A private cloud was built using the OpenStack cloud platform, in which the 
Balancer tool was integrated to deploy and manage VMs. Different private 
cloud scenarios were generated to run the same evaluations. Since most of 
them showed a similar behavior, this paper presents a representative scenario. 

PMs characteristics The private cloud was built with 5 OpenStack nodes 
(PMs), 1 controller and 4 compute, whose characteristics are shown in Table 
8. 

VMs characteristics Every VM instantiated in the cloud consists of 1 core, 2 
GB of RAM and 10 GB of storage capacity. As with the tests performed with 
CloudBalanSim, all VMs are single-core in accordance with the PlanetLab 
workload specification. Table 9 shows the number of VMs created in every 
involved PM. A total of 168 VMs were created for each test configurations. 
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Table 8  Hardware 
characteristics of cloud PMs 

Table 9  Number of VMs 
created per PM 

 
PM Cores RAM (GB) Storage (GB) Fre- 

quency  

controller 6 32 754  
compute9 12 64 488 2.20 
compute10 24 256 488 2.20 
compute11 24 128 488 2.20 
compute12 24 128 488 2.20 

 

PM # VMs 
Compute9 24 
Compute10 48 
Compute11 48 
Compute12 48 

 

5.2.1 Workloads 

RAM and CPU consumption were generated by the same workloads used in 
CloudBalanSim. CPU consumption was generated by real CPU usage traces, 
taken from the PlanetLab network (see Sect. 5.1.3). RAM consumption was 
produced by a workload with synthetic traces. The RAM consumption 
follows a uniform distribution of random values between 0 MB and 1424 
MB. The maximum value (1424 GB) was selected to avoid exceeding the 
VM RAM capacity (2 GB). The rest of memory was occupied by the 
operating system (Centos 7 x 86-64 bits). 
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5.2.2 Cloud test and assessment 

This section shows the obtained results of two aspects evaluated in Balancer: 
(a) the functionality of the fault-tolerance scheme and (b) the validation of 
the VM selection and placement algorithms chosen by CloudBalanSim. 

Fault tolerance To check functionality of the fault tolerance scheme of 
Balancer, the following test was performed. Balancer was executed on the 
OpenStack compute nodes described in Table 8. A turn-off process was 
activated in the compute10, compute12 and compute11 nodes, in sequential 
intervals of 10 min, to simulate failures in the nodes in that order. Later, a 
turn-on process was activated in the same nodes, but in reverse order. Figure 
9 shows 2 values on the y-axes (Node and Weight). Node identifies a node of 
interest and Weight represents the amount of available resources in that node 
(higher value means higher availability). A green circle indicates the node 
that was chosen as the coordinator (Coord) in a determined time. A red circle 
indicates the node that is turned off (Down), simulating a failure. The value 
of  
Weight is represented by bars. At the beginning of the test (min 0), the 
compute10  

 
Fig. 9  Balancer: fault tolerance 

node (weight of 2) was chosen as coordinator; 10 min later, after failing 
compute10, the compute12 node (weight of 1.35) was elected as coordinator. 
10 min later, after failing compute12, the compute11 node (weight of 1.3) 
was elected as coordinator; and 10 min later, compute11 was turned off and 
the compute9 node (weight of 0) was elected as coordinator. It is possible to 
appreciate the downward trend of the weight as the failures were presented 
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in the coordinators, always choosing as the new coordinator the active node 
with greater weight. Afterward, when the nodes were turned on again in 
reverse order, an upward trend can be seen reaffirming that the active node 
with the greatest weight is always chosen as the new coordinator. 

Comparison of the VM selection-placement strategies Figure 10a shows the 
results obtained for every VM selection-placement strategy in terms of the 
average imbalance level metric, IBLCDCavg . It can be observed that LIF and 
MMTMC2 were the combination of algorithms that generated a lower 
imbalance level (0.0257) and that the use of the MU algorithm always 
generated a higher imbalance level. If we also analyze the average of the 
TotalIBScore metric, we see (Fig. 10b) that the worstFitDecreasing and 
MMTMC2 strategies generated the least imbalance (1.6). In general, all 
strategies had a very similar imbalance level, and in none of the cases a value 
of 0 was obtained. 

The number of VM migrations generated in each evaluation was also 
measured (Fig. 11a). It can be seen that the worstFitDecreasing and 
MMTMC2 strategies generated the lowest number of migrations (218), 
whereas random and MU generated the highest number of migrations (257). 
The combination of strategies that generated a lower imbalance level 
IBLCDCavg (LIF and MMTMC2) is one of those that generated a greater number 
of migrations (246). In this case, it was possible to execute a greater number 
of migrations to maintain equilibrium. However, this was not possible for 
other strategies due to the restriction of not overloading the destination PM. 

The SLA fulfillment in terms of CPU degradation was measured using the 
SLATAH metric. Firstly, we executed our baseline test, which does not 
include the VM  
 (a) (b) 

 
 VM Placement Strategy VM Placement Strategy 

Fig. 10  Balancer: average of the a IBLCDCavg and b TotalIBScore imbalance metrics 
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Fig. 11  Balancer: a number of VM migrations and b SLATAH metrics 

migration process. In these tests, a SLATAH percentage equal to 0.5% was 
obtained. In Fig. 11b, the SLATAH baseline value is showed with the 
transparent bars, as a complement of the rest of obtained values (colored 
bars). It can be seen that the LIF and RS combination generated the lowest 
SLATAH percentage (0%), which means that no CPU performance 
degradation occurred. In general, all of the evaluated strategies presented a 
reduction of SLATAH in more than 50% with respect to the baseline, which 
means the use of the VM selection-placement strategies improved the quality 
of service of the cloud. 

5.3 Discussion 

Figure 12 summarizes the obtained results using the CloudBench method that 
combines simulation and real cloud evaluation stages. It shows the 
combination of VMs selection (MMTMC2, RS and MU) and VMs placement 
(WFD, Random, Sandpiper, VectorDot and LIF) strategies, considering the 
different performance metrics described in Sect. 4.1.3. For each combination 
of VM Selection/VM Placement strategies, we show the results obtained for 
each performance metric ( IBLCDCavg , TotalIBScore, Number of migrations 
and % SLATAH) in: (a) a simulated cloud, (b) a realworld cloud and (c) the 
result of comparing both the simulated and the real-world  
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Fig. 12  Simulated and real cloud environment 
comparison 

cloud results. On one hand, the color of the circles in columns Simulated and 
Real denote a classification of the obtained value, where green, yellow and 
red represent low, medium and high values, respectively. The three marks 
used in the Result column denote how similar were the results in both 
simulated and real-world environment. The red-cross mark, green-check 
mark and yellow-exclamation mark show if the results were the same, close 
or totally different, respectively. We can see that, in both simulated and real-
world cloud, the RS (VM selection)-LIF (VM placement) combination 
produced the same results in 3 of the 4 metrics used, being IBLCDCavg the 
exception. With this metric, the RS-LIF strategy presented a low imbalance 
value in the simulated cloud, whereas its value was medium in the real-world 
cloud. The combination of RS-Sandpiper also produced the same results in 3 
of the 4 metrics, being % SLATAH the exception. In the simulated cloud RS-
Sandpiper presented a low value of % SLATAH, whereas in the real cloud 
its value was medium. The combinations that included the Random VM 
placement strategy showed the most notable differences in the results 
obtained in the simulated and real cloud. For instance, in the Random-RS and 
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Random-MU combinations only the IBLCDCavg metric coincided. Results in 
Fig. 12 confirm that RS-Sandpiper and RS-LIF are the strategies that produce 
very similar results in both simulated and real cloud. With the CloudBench 
methodology was possible to detect the strategies that have similar results in 
simulated and real cloud environments, which motivates its use to evaluate 
different simulated scenarios when there is not a real cloud available for 
testing. 

6 Conclusions and future work 

This article introduces CloudBench, a methodology for the evaluation and 
validation of VM selection and placement algorithms by integrating 
simulated and real-world cloud scenarios. Two tools were developed to 
support this methodology, the CloudBalanSim simulator and the Balancer 
VM manager. CloudBalanSim and Balancer allow the execution of VM 
selection and placement algorithms in a simulated and real-world cloud, 
respectively. In addition, the VM placement module of Balancer was 
implemented as a distributed, fault-tolerant and scalable service. The use of 
the Dynamically Weighted Bully (DWB) algorithm allows Balancer to 
dynamically choose the physical machine (PM) with more available 
resources as the coordinator node that will execute the VM placement and 
migration processes. CloudBalanSim and Balancer demonstrated its correct 
functionality after running the different VM selection and placement 
algorithms successfully. The performance metrics included in 
CloudBalanSim and Balancer allow us to obtain measurements of different 
cloud aspects such as load imbalance, SLAs violations in terms of CPU 
consumption in PMs and the number of VM migrations. The possibility of 
implementing various VMs selection and placement strategies in 
CloudBalanSim and Balancer allowed us to verify that some of them, such 
as MU and worstFitDecreasing, when are executed in scenarios with high PM 
consolidation, do not impact considerably the CPU performance, obtaining a 
degree of CPU performance degradation that does not reach 0.2%, which 
means a service guarantee of 99.8%. A high PMs consolidation with an 
acceptable CPU degradation represents a more efficient cloud resources 
consumption, which increases service availability and gives the possibility of 
saving energy by deactivating unused PMs. In scenarios with more available 
PMs, we found that VM placement strategies such as LIF, LIFDecreasing, 
Sandpiper and sandpiperDecreasing produce better imbalance levels in terms 
of CPU and RAM consumption, number of migrations and performance 
degradation, when are compared with the rest of strategies. The Random VM 
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placement strategy generates a large number of VM migrations, causing a 
significant CPU performance degradation in PMs, affecting quality of 
service. The CloudBench methodology proposes that the most satisfactory 
strategies found by CloudBalanSim are validated in a real-world cloud, in 
this case using the Balancer tool. In this sense, Balancer could validate the 
accuracy of the results obtained by CloudBalanSim, offering users more 
precise information. Balancer allowed us to determine that the strategy 
combining LIF and RS algorithms produce the best cloud load balancing with 
no CPU performance degradation. In addition, we found that RS-Sandpiper 
and RS-LIF are the strategies that produce very similar results in both 
simulated and real cloud, which motivates its use in simulated clouds when 
there is not a real cloud available for testing purposes. CloudBalanSim and 
Balancer offer support for running a more extensive set of tests in which the 
number of nodes is increased, including heterogeneous VMs (e.g., different 
number of cores and RAM) in the real environment. Additional to 
CloudBalanSim and Balancer tools, CloudBench purposes the use of an 
incremental learning layer that is in charge of keeping historical data 
(feedback). In our experiments, this layer was used during the evaluations for 
avoiding unnecessary tests, saving time and cloud resources. 

As future work, different extensions could be made to this research. One 
of them is the incorporation to Balancer of other fault tolerance mechanisms 
such as those provided by Ceph Monitors6 or Apache Zookeeper.7 Another 
issue to be considered as future work is the extension of the CloudBench 
prototype implementation tools, CloudBalanSim and Balancer, to consider 
more physical and virtual resources, such as network and storage. With this 
extension it would be possible to carry out a broader and more complex 
analysis of the different management and load balancing strategies in private 
IaaS clouds, both in a simulated and in a real-world cloud. For example, the 
multi-resource load balancing strategies could take into account the PM’s 
network traffic to avoid VM migrations into PMs that are receiving a lot of 
traffic. The integration of other metrics related to disk usage (e.g., Disk I/O) 
in overload detection strategies and performance metrics is also considered. 
Finally, our methodology could also be extended to allow the evaluation of 
different container load balancing strategies (container selection and 
placement strategies), by using Kubernetes 8  or other container 
management/orchestration platforms. 

 
6 https ://docs.ceph.com/docs/maste r/start /intro/ . 
7 https ://zooke eper.apach e.org/doc/curre nt/zooke eperO ver.html. 
8 https ://cloud .googl e.com/kuber netes /. 
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