
This is a postprint version of the following published document:

Gomez-Rodriguez, M.A., Sosa-Sosa, V.J., Carretero, J.
et al. CloudBench: an integrated evaluation of VM
placement algorithms in clouds. J Supercomput 76,
7047–7080 (2020).

DOI: 10.1007/s11227-019-03141-9

© 2020, Springer Science Business Media, LLC, part of Springer
Nature

https://doi.org/10.1007/s11227-019-03141-9

 1

CloudBench: an integrated evaluation of VM placement
algorithms in clouds

Mario A. Gomez-Rodriguez· Víctor J. Sosa-Sosa · Jesus Carretero
· José Luis González

Abstract
A complex and important task in the cloud resource management is the
efficient allocation of virtual machines (VMs), or containers, in physical
machines (PMs). The evaluation of VM placement techniques in real-world
clouds can be tedious, complex, and time-consuming. This situation has
motivated an increasing use of cloud simulators that facilitate this type of
evaluations. However, most of the reported VM placement techniques based
on simulations have been evaluated considering one specific cloud resource
(e.g., CPU), whereas values often unrealistic are assumed for other resources
(e.g., RAM, awaiting times, application workloads, etc.). This situation
generates uncertainty, discouraging their implementations in real-world
clouds. This paper introduces CloudBench, a methodology to facilitate the
evaluation and deployment of VM placement strategies in private clouds.
CloudBench considers the integration of a cloud simulator with a real-world
private cloud. Two main tools were developed to support this methodology,
a specialized multiresource cloud simulator (CloudBalanSim), which
oversees evaluating VM placement techniques, and a distributed resource
manager (Balancer), which deploys and tests in a real-world private cloud the
best VM placement configurations that satisfied user requirements defined in
the simulator. Both tools generate feedback information, from the evaluation
scenarios and their obtained results, which is used as a learning asset to carry
out intelligent and faster evaluations. The experiments implemented with the
CloudBench methodology showed encouraging results as a new strategy to
evaluate and deploy VM placement algorithms in the cloud.
Keywords Load balancing · Cloud simulator · Cloud resource management ·

1 Introduction

Cloud computing is a paradigm in which computing resources, such as
computing units, storage, servers, applications, etc., are offered as an on-

 2

demand services throughout the Internet [7, 13, 27]. Cloud resources are
accessed without the need for users to be aware of their physical location and
configurations. In the cloud computing paradigm, virtualized hardware, e.g.,
a virtual machine (VM), is provided following the infrastructure as a service
(IaaS) model. In this model, VMs are instantiated in different physical
machines (PMs) of the cloud infrastructure. The problem of deciding which
PM will be the best option to host a VM is called the VM placement problem
[8, 26]. This problem is a NP-hard problem [17] that has been formulated as
the bin-packing problem [6], where analogously the VMs are packaged into
PMs. To address this problem, exact and heuristic algorithms have been
proposed. Exact algorithms guarantee delivering an optimal solution usually
considering theoretical scenarios, whereas heuristic algorithms present
practical procedures that do not offer such a guarantee but some feasible
solutions, being the latter the majority of the current proposals [25].

Live migration plays a key role for the efficient placement of virtual
machines (VMs) in data centers. It consists in moving an instantiated VM
from one physical machine (PM) into another one, caused by a reaction to
changes in the VM requirements or overloading problems in the hosting PM.
Live migration is a process used by load balancing schemes to distribute
resource consumption in the cloud. However, it usually implies a cost, e.g., it
can be a resource and time-consuming process that can affect the fulfillment
of the service level agreements (SLAs) [8]. In this context, VM placement
strategies must control the number of live migrations [21], avoiding negative
impact in the quality of the service. In a cloud infrastructure, load balancing
algorithms are applied at two levels: at the application level and at the VM
level. In the former, the load balancing algorithm is integrated into the
application scheduler; while in the latter, it can be integrated into a VMs
manager, which are the type of algorithms considered in the CloudBench
proposal. Load balancing algorithms can also be centralized or distributed. In
the centralized algorithms, one controller manages the entire system, which
represents a single point of failure [22, 24, 36]. Distributed algorithms avoid
this problem, but their complexity is higher due to the need of more
coordination and control requirements. The cloud deployment models, public,
private and hybrid, also present different considerations [36] that should be
taken into account when analyzing a load balancing algorithm, for instance:
(a) public clouds usually do not provide complete information over data,
network and security settings and, in addition, their APIs change constantly
due to the lack of standardization, which makes it difficult to capture all the
information of the PMs and VMs; (b) private clouds are more suitable for
evaluating VM load balancing strategies, since they allow users to include
restrictions such as limiting the number of migrations and performance of

 3

PMs; and (c) hybrid clouds can face communication restrictions and
limitations defined by a specific data center and migration operations may
require moving VMs from one cloud into another. The evaluation of different
load balancing or VM placement strategies for an efficient deployment of
VMs in clouds is not a trivial task [23, 24]. One of the difficulties in testing
on real cloud environments is that it could be tedious, time-consuming and
most of the time the cloud resources are not available for this purpose [4].
Most of the existing load balancing algorithms have been implemented in
simulators, where there is usually a limited evidence that the proposed
strategies can be implemented in real environments [29].

This paper presents CloudBench, a methodology for evaluating and
deploying virtual machine placement strategies in an infrastructure as a
service (IaaS) model in private clouds. Two supporting tools were developed
for implementing the CloudBench methodology, a cloud simulator
(CloudBalanSim) and a distributed resource manager (Balancer).
CloudBalanSim allows users to evaluate different multi-resource load
balancing strategies for VM placement in clouds according to specified
performance metrics. Balancer is a distributed resource manager designed to
test VM placement algorithms in a real-world private cloud, reproducing the
test scenarios that showed satisfactory results during the CloudBalanSim
simulation. In the CloudBalanSim methodology, the settings, algorithms, test
scenarios and results generated during the simulation and real cloud tests are
saved in a historical repository. This information becomes a learning asset to
support the generation of more intelligent evaluations of VM placement
algorithms. The major contribution of this work is:

1. A methodology (CloudBench) to improve cloud resources management,
using an incremental learning approach, from evaluating different VM
placement algorithms on a test infrastructure that combines a cloud
simulator with a real cloud implementation. As a proof of concept, it was
necessary to develop two tools, CloudBalanSim and Balancer, which are
also contributions of this work.

2. An IaaS cloud simulator (CloudBalanSim) that allows the evaluation of
different multi-resource strategies for VMs selection and placement,
which is the only simulator of its kind that provides information of the
following performance metrics: level of resource imbalance in the cloud
(RAM and CPU), number of VM migrations and level of CPU
performance degradation based on the Service Level Agreement Violation
Time per Active Host (SLATAH) measurement [2].

3. A distributed and fault-tolerant cloud resource manager (Balancer), for
testing and deploying VM placement algorithms in a real-world cloud.

 4

4. Results of the evaluation of different state-of-the-art VM selection and
placement strategies using CloudBench, identifying those whose results
are very similar in both simulated and real clouds.

The rest of this document is organized as follows: Sect. 2 presents the related
work, Sect. 3 describes the CloudBench methodology, Sect. 4 introduces
CloudBalanSim and Balancer, which are the two main tools developed for
supporting the CloudBench methodology, Sect. 5 presents the experiments
and results obtained as a proof of concept of the CloudBench methodology,
and finally in Sect. 6 the conclusions and future work are given.

2 Related work

This section presents relevant proposals that address the problem of load
balancing in the Cloud, focusing mainly on two aspects: (a) solutions for the
VM placement problem and (b) cloud simulators to evaluate different aspects
of cloud resource management.

2.1 Virtual machine selection and placement for load balancing in the
cloud

The VM placement problem is formulated as the bin-packing problem [6], in
which objects of a given size must be packed in a minimum number of
containers of a certain capacity [16]. In this analogy, the objects to be packed
are the VMs, and the PMs represent the containers that have to be managed
in the Cloud [25]. There are heuristics to solve the bin-packing problem, such
as [21]: the First-Fit (FF), where each object is placed in the first container
where it fits; the Best-Fit (BF), where each object is placed in the container
where it fits and the rest of the remaining capacity is minimal; and the Worst-
Fit (WF), where each object is placed in the container where it fits and the
rest of the remaining capacity is maximum. Such heuristics can be improved
if the objects are first sorted in decreasing order according to a determined
weight, leading to modified algorithms such as the Best-Fit Decreasing
(BFD). Sato et al. [26] considered the bin-packing formulation for the VM
placing problem with the purpose of reducing the number of unnecessary live
migrations. They proposed a dynamic optimization of the VMs placement by
predicting the future resource usage through an auto-regressive model and
solving the bin-packing problem through dynamic programming, based on the
previous prediction of the resource usage. Its main objective is to manage the
VMs in order to save energy and prevent the lack of resources.

 5

Chen et al. [5] proposed a proactive load balancing model based on Markov
decision processes (MDP) that serves to select the VM to be migrated and the
destination PM, with the aim of reducing SLAs violations, overload and delay
caused by load balancing. Kuo et al. [18] proposed an algorithm for VMs
placement, the resource-based first-fit algorithm (RFFA), to find the first PM
that met the resource constraints (CPU, memory, disk and network
bandwidth) of a VM, to finally assign such VM to the PM. Beloglazov and
Buyya [3] proposed and implemented an architecture for dynamic and energy-
efficient VMs consolidation in OpenStack clouds, called OpenStack Neat.
They addressed the VMs placement problem as the bin-packing problem for
which they used a modified version of the BFD heuristic, in which the
selection of the PM that would host the VM is done using BFD based on the
CPU requirements and subsequently used the FF heuristic on the RAM
requirements.

Most of these proposals were tested in simulation environments and some
of them are theoretical solutions. Relevant cloud simulators used to analyze
different aspects of cloud resource management are presented in the next
section.
2.2 Cloud simulators

Currently, there exists an increasing interest of simulation tools that allow
users the rapid development and evaluation of different strategies for VM
placement, load balancing, VMs migration, among others [30]. There are
different simulators that have been developed to perform experimentation in
cloud environments. CloudSim [4] is one of the most popular [1, 37] and
sophisticated [20] cloud simulation tool. It is a discrete event simulator
implemented in Java that can be extended to incorporate new features.
CloudSim allows the modeling and simulation of large-scale cloud computing
environments, implements policies for overload detection, VMs selection and
placement and allocation of resources (e.g., memory, processor, etc.). Despite
the fact that CloudSim allows modeling the consumption of resources such as
CPU, RAM and bandwidth, the consumption of a specific resource is
analyzed in an isolated way, which means that the consumption of a
combination of more than one resource is not considered [19].

NetworkCloudSim extends the CloudSim features to allow the modeling of
more specialized and complex applications, e.g., a multi-layer web
application, which consists of several layers, each one running on a different
server with the possibility of communication among them. One of its main
interests was to provide a network flow model that allows the creation of
network topologies, integrating different types of switches, such as:
RootSwitch, AggregateSwitch and EdgeSwitch [1, 11]. In a load balancing
context, NetworkCloudSim does not support the simulation of VM live

 6

migrations, which is an important limitation for VM placement strategies.
MultiRECloudSim [19] is another simulator that extends CloudSim, adding
multi-resource tasks (cloudlets) scheduling and an energy consumption model
mainly based on CPU usage. MultiRECloudSim supports static and dynamic
CPU workloads, whereas the other resources (RAM, I/O and bandwidth) use
static workloads. It has special focus on task scheduling and energy saving,
without carrying out load balancing actions either through tasks or VMs
migration. CloudSched [31] is a simulator (implemented in Java) of IaaS
clouds that takes into account multiple resources (CPU, RAM and bandwidth)
in an integrated way for VMs scheduling. It models the VMs arrival process,
the service time and the users requirements, randomly generating different
VMs types with the required capacity. It also incorporates multi-resource
metrics to measure the PMs average imbalance values. CloudSched does not
support resource over-allocation (e.g., allocating more virtual CPUs—
vCPUs—to VMs than the CPU cores available on the hosting PM), which is
an aspect that fosters PM consolidation. It is not clear if CloudSched allows
VM migrations, because there is not way to know how many migrations are
executed when running a load balancing strategy.

DCSim (Data Center Simulator)1 [32] is a simulator (implemented in Java)
designed to study the VMs management in IaaS cloud data centers. It supports
CPU over-allocation and models replicated VMs that share an incoming
workload. DCSim models PMs power consumption based on CPU usage and
allows VMs migrations. However, DCSim presents limitations when deciding
VMs migration time, because it is calculated using the initial predefined
memory capacities, considering only a dynamic behavior in the CPU.

FlexCloud2 [34] is an open-source simulator (implemented in Java) of
large-scale IaaS clouds that allows modeling the initialization process of
clouds data centers, the assignment and migration of VMs and evaluating the
performance of different load balancing algorithms and energy-efficient
scheduling policies. The VM requests can be generated using the Poisson,
Normal or Random distributions. However, it does not consider the time it
takes to carry out the migration within the simulation time, nor does it take
into account the VMs performance degradation. Like CloudSched, FlexCloud
does not support over-allocation of resources.

As summary, we can say that CloudSim is a robust simulator that has
influenced others but that it still presents limitations for the study of VM
placement algorithms. It is also detected that none of the mentioned
simulators supports the dynamic consumption of multiple resources, so their

1 The DCSim code is public and can be downloaded from: https ://githu b.com/digs-uwo/dcsim .
2 FlexCloud: https ://sourc eforg e.net/proje cts/flexc loud/.

 7

VM placement strategies are limited to only considering: (a) the dynamic
consumption of CPU, with static capacities for the rest of the resources with
which VMs were instantiated; or (b) the static capacity with which VMs were
instantiated for all resources. In this context, there still remains a need for an
integrated evaluation tool that takes into account the dynamism of multiple
resources, allowing users to experiment with VM placement and selection
algorithms that provide load balancing in the cloud, using simulated and real
clouds [19]. This situation motivated us to develop CloudBalanSim and
Balancer tools, as part of the tools supporting the CloudBench methodology.

2.3 Discussion

To the best of our knowledge, there is not a similar methodology to compare
with CloudBench. However, since CloudBench requires a cloud simulator
and a tool to evaluate different VMs placement strategies in real clouds, we
have focused the revision of the state-of-the-art on existing cloud simulators
and VMs placement approaches. We realized that none of the existing work
met the requirements of the CloudBench methodology, making necessary to
develop a new cloud simulator (CloudBalanSim) and a distributed and fault-
tolerant VMs deployment and load balancing tool (Balancer). Next, we
summarize the main aspects that make different CloudBalansim and Balancer
of existing proposals. Table 1 compares different VM placement proposals
with our Balancer tool. We considered features such as the implemented
approach, metrics, type of proposal and its objective. As we can see, Balancer
is the only implemented tool for real-world clouds that allows evaluating and
deployment of different VMs load balancing strategies (VM
selection/placement and PM overload detection), offering fault-tolerance
support (Sect. 4.2).

On the other hand, Table 2 summarizes the important simulation features
that were required by CloudBench, such as: (1) Open Source, (2) VMs
Migration, (3)

 8
 Ta

bl
e 1

 Su
m

m
ar

y o
f V

M
 pl

ac
em

en
t w

or
ks

W

or
k

A
pp

ro
ac

h
M

et
ric

s
Pr

op
os

al

O
bj

ec
tiv

e

Sa
to

 et
 al

. [
26

]
D

yn
am

ic
 pr

og
ra

m
m

in
g

C
PU

, R
A

M

M
et

ho
d

To
 re

du
ce

 un
ne

ce
ss

ar
y l

iv
e m

ig
ra

tio
ns

C

he
n e

t a
l. [

 5
]

M
ar

ko
v d

ec
is

io
n p

ro
ce

ss

C
PU

, R
A

M

M
od

el

To
 re

du
ce

 SL
A

s v
io

la
tio

ns
, o

ve
rlo

ad
 an

d d
el

ay

K
uo

 et
 al

. [
18

]
R

es
ou

rc
e-

ba
se

d F
irs

t-F
it

C
PU

, R
A

M
, d

is
k,

ne

tw
or

k
A

lg
or

ith
m

To

 fin
d t

he
 fir

st
 PM

 th
at

 m
ee

t th
e r

es
ou

rc
e c

on
st

ra
in

ts

B
el

og
la

zo
v a

nd
 B

uy
ya

 [
3]

M
od

ifi
ed

 B
es

t-F
it D

ec
re

as
in

g
C

PU
, R

A
M

Im

pl
em

en
ta

tio
n

En
er

gy
-e

ff
ic

ie
nt

 co
ns

ol
id

at
io

n o
f V

M
s

B
al

an
ce

r (o
ur

 pr
op

os
al

)
V

M
 de

pl
oy

m
en

t a
nd

 lo
ad

 ba
la

nc
in

g
C

PU
, R

A
M

Im

pl
em

en
ta

tio
n

To
 al

lo
w

 di
ff

er
en

t V
M

 lo
ad

 ba
la

nc
in

g s
tra

te
gi

es
 w

ith

fa
ul

t-t
ol

er
an

ce
 su

pp
or

t in
 re

al
-w

or
ld

 cl
ou

ds

 9

 Ta
bl

e 2

 Su
m

m
ar

y o
f c

lo
ud

 si
m

ul
at

or
s

C
lo

ud
 si

m
ul

at
or

O

pe
n s

ou
rc

e
V

M
s m

ig
ra

tio
n

D
yn

am
ic

 C
PU

co

ns
um

pt
io

n
D

yn
am

ic
 R

A
M

co

ns
um

pt
io

n
C

PU
 ov

er
-

al
lo

ca
tio

n
M

ul
ti-

re
so

ur
ce

 V
M

lo

ad
 ba

la
nc

in
g

Im
ba

l -
an

ce

m
et

ric
s

C
lo

ud
Si

m
 [4

]
✔

✔

✔

✔

N

et
w

or
kC

lo
ud

Si
m

 [1
 , 1

1]
✔

✔

M

ul
tiR

EC
lo

ud
Si

m
 [1

9]
✔

C

lo
ud

Sc
he

d [
 31

]
✔

✔

D

C
Si

m
 [3

2]
✔

✔

✔

✔

Fl

ex
C

lo
ud

 [3
4]

✔

✔

C
lo

ud
B

al
an

Si
m

 (o
ur

 pr
op

os
al

)
✔

✔

✔

✔

✔

✔

 10

Fig. 1 The CloudBench methodology

Dynamic CPU Consumption, (4) Dynamic RAM Consumption, (5) CPU
Over-allocation, (6) Multi-resource VM Load Balancing, and (7) Imbalance
Metrics. As we can see, CloudBalanSim is the only cloud simulator that
fulfills most of the features. We are improving documentation, software and
demonstrating its benefits before releasing the first open-source version. The
complete features of CloudBalanSim are explained in Sect. 4.1.

3 The CloudBench methodology

CloudBench is a methodology that integrates simulation and real-world cloud
scenarios for an intelligent evaluation, validation, and deployment of new or
existing multiresource VM placement strategies in clouds. Figure 1 shows a
conceptual model of this methodology. The stages that compose this
methodology are described next.

Settings The definition of cloud evaluation scenarios, algorithms, metrics,
user restrictions, workloads, among others is carried out in this stage. Some
examples of metrics and user requirements are the workload imbalance level,
maximum performance degradation, CPU or memory saturation thresholds
and number of VM migrations. Details of these metrics are given in Sect.
4.1.3. The definition of the simulated cloud infrastructure includes the
maximum number of physical (PMs) and virtual machines (VMs), the
resource characteristics (memory, CPU, storage, etc.), workloads (synthetic
or real) and the VM selection and placement strategies that will be evaluated.

Simulation test In this stage, a set of simulations are carried out taking as input
the settings (configuration file) defined in previous stage. CloudBalanSim

 11

(Sect. 4.1) is the simulator developed for supporting the CloudBench
methodology. In every simulation test, the metrics and restrictions are the
same, the only variant is the combination of the load balancing algorithms
that will be evaluated. This means that for each combination of algorithms a
test simulation is executed. Before executing a new simulation test, a query is
sent to the historical repository to verify if there exists information about a
previous execution of this test. If historical data exist, it is used to avoid the
execution of a new simulation.

Simulation assessment The evaluation and analysis of obtained results in the
simulation test is done in this stage. Feasible solutions, according to user
restrictions, are selected. Most relevant information resulting from the
simulation test is stored in a historical repository. This information will be
used in a incremental learning process to improve future evaluations.
Simulation test and simulation assessment stages will work in a loop until all
of the required combinations of algorithms are evaluated in the simulation
test.

Cloud test In this stage, a real cloud is deployed to reproduce those tests that
were selected as feasible solutions in the simulation assessment stage. We
have developed a tool called Balancer (Sect. 4.2), which is in charge of
deploying the real cloud scenario using the OpenStack platform [9] and
executing the VM selection and placement algorithms. Results obtained in the
cloud scenario are sent to the next stage for evaluation.

Cloud assessment This stage has a similar function to the simulation
assessment stage but considering real cloud test scenarios. All of the relevant
information and feasible solutions resulting from the cloud test stage are sent
to the historical repository that will be used in the incremental learning
process.

3.1 Algorithm

The general steps of the CloudBench methodology are summarized in
Algorithm 1. The set of combined algorithms that are chosen for the
evaluation (Line 1) belongs to the following universe VMsSelSts × VMsPlaSts ×
PMsOverDecSts . Where VMsSelSts, VMsPlaSts, and PMsOverDecSts identify
the VM selection, VM placement and PM overload detection functions,
currently available in the CloudBalanSim simulator. The configuration file
(CloudInf) will have the definition of the cloud infrastructure, i.e., number of
PMs, VMs, and characteristics of the resources (CPU, RAM, storage). Two
main loops represent the core processes of the integrated (simulation and real

 12

cloud) CloudBench methodology. In the simulation loop (Line 5), the
CloudBalanSim simulator is used to execute every combination of algorithms
(Line 11), taking into account the cloud infrastructure and settings. Before
executing a specific simulation test, a query is sent to the history repository
(Line 7) to verify if there exists historical information about this test. If the
query response is true, results are obtained avoiding a new simulation
execution (Line 8). Next, a results assessment is carried out (Line 13), where
satisfactory (positive) and no satisfactory solutions are obtained
(SimFeasibleSols and SimDiscardedSols respectively). In the real cloud loop
(Line 21), the distributed cloud manager, Balancer, is used to deploy and
execute (Line 27) every combination of algorithms that produced feasible
solutions in the simulation stage. The real cloud scenario considers the same
settings defined in the simulation. Like the simulation stage, before executing
a real cloud evaluation, a query is sent to the historical repository to obtain
previous results (Line 23), if any. An assessment of the real cloud results is
made (Line 29), where satisfactory and no satisfactory solutions are obtained
(RCloudFeasibleSols and RCloudDiscardedSols respectively). For learning
reasons, at the end of the simulation (Line 18) and real cloud tests (Line 34),
if historical information was not used (previous == False), satisfactory and
no satisfactory solutions with their respective settings are saved into the
historical repository (feedback).

 13

4 CloudBench supporting tools

CloudBalanSim and Balancer are two tools that were developed to support
the implementation of the CloudBench methodology. The following section
describes these tools and the way they interact.

 14

4.1 CloudBalanSim

CloudBalanSim is a cloud simulator based on CloudSim [4]. It was developed
for supporting the CloudBench methodology. Its main purpose is to carry out
simulations to evaluate resources management strategies in clouds that
implement the IaaS model, with special support for the evaluation of VM
placement and multi-resource (CPU and memory) load balancing strategies.
Several metrics are incorporated to measure the workload imbalance that is
generated on PMs that make up the cloud. These metrics allow to measure the
impact that VM placement strategies have on resource consumption and the
CPU quality of service (QoS) offered to users. The modular design of
CloudBalanSim allows to improve its functionality incrementally. The
following sections describe the architecture of CloudBalanSim, its
functionality, and the different multi-resource VM selection and placement
strategies that are currently implemented.

4.1.1 Simulator architecture

Figure 2 shows the two layers, Cloud Services and Cloud Resources, of the
original CloudSim’s architecture, and the components that were added (dark
gray module) and modified (light gray modules) to create this new simulator.

At the cloud resources level, the Data Center module is in charge of
updating the CPU and RAM consumption every time VMs and PMs receive
an event. This is different compared with CloudSim, which only updates the
CPU usage. At cloud services level, the VM Placement module includes
different VM selection and placement strategies that can be used by the VM
Provisioning module, considering a specified cloud infrastructure. When VM
placement strategies are carried out, the VM Provisioning module considers
both the dynamic CPU and RAM consumption measurements. This
information also provides a more realistic scenario for CloudBalanSim to
carry out an efficient VM live migration. The different load balancing
strategies and main metrics provided by CloudBalanSim are described in the
following sections.

4.1.2 Load balancing strategies

This section describes the VM selection and VM placement strategies with
the PM overload detection functions implemented in the VM Placement
module of CloudBalanSim.

 15

Fig. 2 Cloud Services and Cloud Resources layers in CloudBalanSim

VM selection strategies These strategies are in charge of deciding which VM
should be migrated from a source PM to a destination PM in order to release
the excess of load in the source PM. We developed a new version of a VM
selection strategy known as MMTMC [3], which considers the Minimum
Migration Time and Maximum CPU utilization measurements. In this new
version, called MMTMC2, the process of VM migration considers the amount
of current RAM consumption, instead of using the total capacity with which
the VM was originally instantiated, as is implemented in [3]. The VM with
the shortest migration time (the least amount of RAM used) and with the
highest CPU utilization will be chosen for migration in the PM or group of
PMs that are overloaded (in one of their resources). This strategy is applied
repeatedly in every PM until the overloading problem disappears.
CloudBalanSim provides other 4 VM selection strategies that were inherited
from CloudSim, [2] such as: MU (selects the VM with the lowest CPU usage);
MMT (selects the VM with the least RAM capacity assigned at its creation
time); RS (randomly selects the VM using a uniform distribution); and MCC
(selects the VM with the maximum correlation coefficient between a list of
VMs to be migrated).

VM placement strategies These strategies are in charge of selecting a
destination PM, where the chosen VM (using a VM selection strategy) will
be migrated, freeing resources of its current hosting PM (the overloaded PM).
The current strategies implemented in CloudBalanSim are LIF, sandpiper,
vectorDot, random and worstFit, which are explained below. These basic
implementations do not consider any type of ordering based on the VM
resource consumption. We also implemented a variant version of every
strategy, where VMs are first ordered in a descending order, based on their
RAM and CPU resource consumption, following that order, respectively. The
corresponding version was identified adding the "Decreasing" word at the end
of the name of the strategy: LIFDecreasing, sandpiperDecreasing,
vectorDotDecreasing, randomDecreasing and worstFitDecreasing. For
simplicity, in this section we describe only the basic implementations.

 16

Worst-Fit In this placement strategy VMs are sequentially assigned into PMs
that have available resources to host them. Each PM i has a weight

(weighti
←∑MWM.size

j=1 () MWM[j]× normPMij) calculated from the

aggregation of available resources (previously normalized)
multiplied by a weight factor that determines the relevance of
each metric. The PMs that will be taken first are those with the
greatest weight (the maximum amount of resources to offer).

Random Assigns the VMs sequentially into the randomly selected PMs
that have the available resources for each metric, using a uniform
distribution.

Sandpiper Captures the combined CPU, network and memory load of both a
VM and a PM. Defines the volume of a VM or PM as the product
of its CPU, network and memory loads (Vol =

1−
1cpu

×
1−

1net
×

1−mem1
); and in the case that some resource is being used completely
(e.g., cpu=1), its consumption is set to 1−𝜖 , instead of one, to avoid
infinite volumes [33]. In our implementation, this metric was used
to place the VMs sequentially into the PM that has sufficient
resources for each metric, and with the lowest volume. The
network resource was not taken into account when calculating

Vol, so its value will be Vol ←
×1 −memU1

(PMi) , where cpuU(PMi) and memU(PMi) represent

the CPU and RAM utilization percentage, respectively, which are
in the range
[0,1 −𝜖].

VectorDot In this placement strategy, VMs are sequentially allocated into the
PM that has sufficient resources for each metric and that, in turn,
has the lowest value obtained using the dot product between the
load fractions vector VVec and the smoothing of the load fractions
vector LVec with LVec.size() respect to its thresholds vector TVec
(LVec[i]−TVec[i] val = ∑i=1 VVec[i] ×exp(𝛼 × TVec[i])), where 𝛼 is a
smoothing constant [28]. In our implementation, VVec represents
the fractions vector of the amount of required resources for each
VM metrics and the amount of available resources for each PM
metrics. LVec represents the resources usage percentage from
each PM metrics and TVec represents the threshold established

 17

for each PM metrics. Only the CPU and RAM metrics were
considered, and the constant was established to 𝛼=1 to give all
metrics the same importance.

LIF The Lowest Integrated-load First (LIF) strategy assigns the VMs
sequentially to the PM with the lowest integrated load. Based on
the VM requirement characteristics (e.g., CPU vC, memory vM,
network bandwidth vN, etc.), LIF always selects the PMs with the
lowest inte-

grated load (Avgi
← CPU Ui +MEM3 Ui +NETUi) that have

sufficient resources for each metric to assign the VMs [38]. In our

implementation, the network resource was not taken into account

when calculating Avgi , so it

would be: Avgi ← CPU Ui +2MEMUi .

PM overload detection functions These CloudBalanSim functions have as
main aim to detect when any of the PMs in the cloud is receiving an excess
of load in one or more of its resources, avoiding or foreseeing performance
degradation problems. These functions complement the VM placement
strategies. Basic PM overload detection functions allow to define static
thresholds (THR) for CPU and RAM consumption in every PM. Equation 1
defines a simple function to verify these thresholds with respect to current
consumption. Where tk represents the current time; UCPU(PM,tk) is the
percentage of CPU usage of the PM at time tk ; URAM(PM,tk) is the percentage
of RAM usage of the PM at time tk ; TCPU is the CPU usage overload threshold;
and TRAM is the RAM usage overload threshold.

true if UCPU(PM,tk) > TCPU or
=URAM(PM,tk) > TRAM (1) ⎨⎪⎩ falseoverload(PM,tk)

 otherwise

Other PM overload detection functions allow the detection of CPU over-
utilization using dynamic load threshold for CPU based on metrics such as
the mean absolute deviation (MAD) or the interquartile range (IQR). Some

⎧

 18

functions predict CPU utilization and detect potential overloading using local
regression (LR) or local robust regression (LRR) techniques [2].

Finally, Table 3 summarizes all the aforementioned VM selection, VM
placement and PM overload detection strategies, which in turn were
implemented in CloudBalanSim.

4.1.3 Performance metrics

CloudBalanSim provides specific metrics to evaluate load balancing in the
cloud during the execution of VM placement strategies. Cloud imbalance
level, percentage of service level agreement (SLA) violations and number of
VM live migrations are examples of these metrics.

SLA violation time per active host (SLATAH) Service level agreement (SLA)
fulfillment involves different aspects of the cloud infrastructure. However,
currently implementation of CloudBalanSim only defines SLA violations in
terms of CPU degradation in physical machines (PMs). To measure the CPU
SLA fulfillment, the SLA Violation Time per Active Host (SLATAH) [2]
metric is used. This metric shows the percentage of time active PMs have
experienced 100% CPU utilization (Eq. 2). The reasoning of the SLATAH
metric is that if a CPU of a PM that is hosting VMs is experiencing 100% of
utilization, the SLA established for the VMs, in terms of performance, could
be violated.

 SLATAH= N1 ∑i=N1 TTasii (2)

In Eq. 2, N is the number of PMs; Tsi is the total time during which the PM i
has experienced 100% CPU usage leading to a SLA violation; and Tai is the
total time that the PM i has remained in an active state (hosting VMs).

Cloud imbalance level CloudBalanSim provides two metrics for measuring
the load imbalance level of the cloud, considering the RAM and CPU
consumption in all of the PMs: IBLCDCavg [31, 35, 38] and TotalIBScore [28].
These metrics allow detecting if the RAM and CPU consumption (load) is
disproportionate in the cloud infrastructure. The definitions of these metrics
are the following:

– IBLCDCavg : It measures the average imbalance value by calculating an
aggregate of the load variances of each resource in the cloud.

 19

(RAMUi −RAMAu) (CPUUi −CPUAu)2 CDC

 IBLavg (3)
N

 In Eq. 3 RAMU
i and CPUU

i are the average RAM and CPU utilization of a
PM i.

RAMA
u and CPUA

u represent the average utilization of all the RAM and
CPUs of the cloud, respectively, and N the total number of PMs in the
cloud.

– TotalIBScore: It is the measure of the total imbalance in the cloud with
respect to a defined threshold. The total imbalance score is calculated by
aggregating the imbalance score of each node in the cloud. Equation 4
shows such metric.

TotalIBScore = ∑IBscore(u)

u
IBscore(u) =IBscore(NLFVeci(u),NTVeci(u))

(4)
if f < T

IBscore(f,T) = otherwise

 Where NLFVeci(u) is the i-th element of the load fraction vector calculated
by dividing the resource consumption by the capacities of the PM u.
NTVeci(u) is the i-th element of the thresholds vector of the PM u, and
IBscore(f,T) is an exponential weighting function, where f is the resource’s
load fraction and T is the corresponding threshold.

The objective of a load balancing strategy is to reduce the value of the
imbalance metrics as much as possible by migrating VMs [28].

Number of migrations The number of VM migrations is a metric that can be
used in a complementary way to measure the load balancing. It is advisable
to use this metric as a complement to others, since using it as the only
reference metric to evaluate the load balancing effects can produce
undesirable results. For example, a high number of VM migrations could lead
the cloud to a state of balanced loads, but they could also cause a significant
performance degradation.

 20

4.2 Balancer

This section describes the architecture and implementation of Balancer, a
distributed and fault-tolerant resource manager for virtual machine (VM)
deployment and load balancing in the cloud. Balancer is the component of
CloudBench that allows to reproduce and verify, in a real-world cloud, the
simulations and results obtained by CloudBalanSim. The current
implementation of Balancer is developed on the OpenStack platform [9].

Fig. 3 Balancer architecture

4.2.1 Architecture

Balancer has a modular architecture (see Fig. 3) mainly composed of the
following components: Physical machine (PM) overload detection, VM
selection, VM placement and monitoring service. These modules work as
distributed services in the cloud nodes. Scalability and fault tolerance are two
non-functional aspects included in Balancer. The following sections describe
the most important Balancer modules.

Monitoring This service is in charge of gathering performance metrics from
both the physical and virtual cloud infrastructure. Monitoring provides timely
information that improves the decision-making process during the execution
of the load balancing strategies. This service is used by all modules of
Balancer. Current implementation of Balancer integrates the Monasca 3
monitor, which provides monitoring and logging as-a-service for the
OpenStack platform. The Monasca monitoring service was modified so that,
in addition to sending the data to a central database of metrics, each node can
store its own metrics locally in a time series database (InfluxDB). In this way,
Balancer keeps the monitoring data distributed to facilitate its use to the load
balancing strategies. Monasca is a well-supported monitor that has showed
good performance in very overloaded environments [12].

3 http://monas ca.io/about .html, https ://wiki.opens tack.org/wiki/Monas ca.

 21

Ta
bl

e 3

 Su
m

m
ar

y o
f lo

ad
 ba

la
nc

in
g s

tra
te

gi
es

V

M
 se

le
ct

io
n s

tra
te

gi
es

V

M
 pl

ac
em

en
t s

tra
te

gi
es

PM

 ov
er

lo
ad

 de
te

ct
io

n f
un

ct
io

ns

M
M

TM
C

, M
M

TM
C

2,
 M

U
, M

M
T,

 R
S,

 an
d M

C
C

LI

F,
 LI

FD
ec

re
as

in
g,

 sa
nd

pi
pe

r, s
an

dp
ip

er
D

ec
re

as
in

g,

ve
ct

or
D

ot
, v

ec
to

rD
ot

D
ec

re
as

in
g,

 ra
nd

om
, ra

nd
om

D
e

-
cr

ea
si

ng
, w

or
st

Fi
t, a

nd
 w

or
st

Fi
tD

ec
re

as
in

g

M
ul

ti-
re

so
ur

ce
: s

ta
tic

-m
ul

ti-
re

so
ur

ce
 th

re
sh

ol
d.

 Si
ng

le
-

re
so

ur
ce

: st
at

ic
 th

re
sh

ol
d,

 M
A

D
, IQ

R
, L

R
 an

d L
R

R

 22

PM overload detection This module is responsible for the overload detection
of PMs, implementing the same strategies used in CloudBalanSim, as were
explained in Sect. 4.1.

VM selection It is in charge of selecting the set of VMs to be migrated from
overloaded PMs to PMs with more available resources. The following VM
selection strategies are currently part of this module: MMTMC2, RS and MU;
explained in Sect. 4.1.2. However, it is possible to add all the VM strategies
already implemented in CloudBalanSim (Sect. 4.1). It is worth mentioning
that when Balancer is working as part of the CloudBench method (Sect. 3),
the VM selection module will use only the VM selection strategies that
showed satisfactory results in the simulation test (CloudBalanSim).

VM placement The VMs that were chosen by the VM selection module
represent the input for the VM placement module, which is in charge of
finding the best possible destinations (PMs) for executing VM live
migrations. Different VM placement strategies were implemented in this
module. However, as occurs in the module of VM selection, Balancer will use
only the strategies that showed satisfactory results in CloudBalanSim if it is
running as part of the CloudBench method. The current implementation of
this module includes the following VM placement strategies:
WorstFitDecreasing, Random, Sandpiper, VectorDot and LIF (Sect. 4.1.2).
However, it is possible to integrate all of the VM placement strategies
included in CloudBalanSim. The metrics used in CloudBalansim to measure
cloud load balancing and quality of service (Sect. 4.1.3) are also supported by
Balancer.

4.2.2 Fault tolerance

The VM placement module needs to maintain a global view of the information
of all cloud nodes (PMs) that will be managed. This requirement led us to a
centralized design, limiting fault tolerance and scalability. To address this
issue, we designed a distributed VM placement module that provides fault-
tolerance and scalability support. In the distributed version, a new algorithm
for choosing a coordinator (or leader) node was implemented. This algorithm,
named Dynamically Weighted Bully (DWB), is a variant of the Bully
algorithm [10]. Unlike the original Bully algorithm, where the selection of a
coordinator considers a static identification of the nodes, in the DWB
algorithm a weight dynamically assigned to the node is used as identifier. The
weight also indicates the amount of available resources in each node. The
node with the greatest weight is the node that is chosen as the coordinator. In
this way the coordinator selection follows a similar technique to the Worst-

 23

Fit strategy (Sect. 4.1.2). The coordinator will be in charge of finding a
destination PM to a VM chosen for migration. If the coordinator fails, another
is chosen using the DWB algorithm.

4.2.3 Scalability

In the physical cloud infrastructure, Balancer allows to create groups of nodes
(PMs) to be managed independently. The cloud infrastructure can be divided
into subgroups of nodes, where every subgroup can choose a coordinator (or
leader). This group design avoids concentrating the VM placement process in
only one coordinator node. If a group coordinator cannot find an appropriate
PM to place the VMs, Balancer can be extended to redirect VMs migration
requests to a coordinator of another group, performing inter-group load
balancing (see Fig. 4). This design facilitates Balancer to scale.

4.2.4 Balancer integration with OpenStack

Balancer was designed to be integrated into the OpenStack4 cloud platform,
one of the most popular tools used to build public, private and hybrid clouds
[14–16].

Balancer’s modules can be installed as additional OpenStack services (e.g.,
novacompute). In this way, when an OpenStack cloud is used, it is not
necessary to modify the cloud environment or make specialized

4 https ://www.opens tack.org.

 24

configurations of it, taking advantage of existing OpenStack functional
services, such as VMs live migration, infrastructure monitoring, etc.

5 CloudBench: experimental evaluation and results

This section describes the experiments carried out to evaluate different
proposals of VM selection and placement strategies to provide load balancing
in clouds, using the CloudBench methodology. The obtained results are also
shown. According to the recommendations of the CloudBench methodology,
the experiments were executed and evaluated on simulated and real-world
cloud scenarios. CloudBalanSim was used in the simulated scenario, whereas
Balancer was used in the real-world cloud scenario. It is worth mentioning
that sudden load peaks for resource demands in VM or PM were not
considered in these experiments, as they happened in negligible periods of
time compared to the complete workload. These peaks do not represent a
consistent overload; therefore, executing VM migrations based on this
information could be costly. The analysis of this behavior is beyond the scope
of this article and is left as future work.

5.1 Simulation settings and test with CloudBalanSim

This section specifies the different scenarios to evaluate in the simulated
environment, such as the VMs selection and placement strategies, the
performance metrics, the cloud infrastructure to be simulated, as well as the
workloads to be simulated.
5.1.1 VMs selection-placement strategies and performance metrics

A total of 5×10×2=100 tests were executed, which result from the combination
of the 5 VM selection strategies (MMTMC2, MU, MMT, RS, MCC) with the
10 VM placement strategies (LIF, LIFDecreasing, sandpiper,
sandpiperDecreasing, vectorDot, vectorDotDecreasing, random,
randomDecreasing, worstFit and worstFitDecreasing) described in Sect.
4.1.2, running on 2 cloud infrastructures, one with 41 physical machines
(PMs) and another with 50 PMs. Different cloud scenarios with different
number of PMs were tested. However, in this paper, we present the two
scenarios with the most representative results. The PM overload detection
function applied in these experiments uses a static threshold (THR) (Sect.
4.1.2), with RAM and CPU consumption thresholds set to 0.8. The following
metrics (described in Sect. 4.1.3) were considered in these experiments: (1)
IBLCDCavg and TotalIBScore, which measure the level of imbalance in resource
consumption generated by each combinations of strategies; and (2) the

 25

number of VM migrations and SLATAH, which measure both the load
balancing and the SLA violations in terms of CPU performance degradation.

5.1.2 Cloud infrastructure

This section describes the infrastructure simulated with CloudBalanSim. In
all of the experiments, the same cloud infrastructure and workloads were
used, making the comparison under the same conditions.

PMs characteristics Two types of PMs were simulated, their characteristics
are shown in Table 4. The processor frequency of each PM was mapped to
MIPS (Millions of Instructions Per Second). The server model and the number
of PMs created are shown in Table 5.

VMs characteristics Table 6 shows the characteristics of the simulated VMs.
Four different types of VM were defined for these experiments, varying the
speed of the cores and the capacity of RAM. Every VM instance type was
identified by a name (first column of Table 6). All VMs are single-core in
accordance with the CPU usage traces provided by the workload applied in
these experiments (see details in Sect. 5.1.3). Since at the beginning of the
simulation, the VM resource consumption is not known, at the time of the
VM instantiation the resource requirements are those predefined by the
assigned VM instance type. However, the VMs can use a smaller amount of
resources, depending on the resource consumption generated by the
workload. The number of VMs created was 263 for each of the 4 types showed
in Table 6, producing a total of 1052 VMs created per test configuration. This
is the number of VMs required by the workload explained in the next section.

Table 4 PMs characteristics

Table 5 Model and number of servers created

 PM 1 PM 2

Server Huawei RH2288H V2 DEPO Race X340H
Processor Intel Xeon E5-2609 Intel Core i5-4570
Cores 8 4
MIPS 2400 3200
RAM (GB) 48 16
Storage (GB) 1000 1000

 26

5.1.3 Workloads

CloudBalanSim allows to simulate both RAM and CPU consumptions, either
by using workload traces (real or synthetic) or using a certain distribution. In
each of the experiments the same workload was generated during 24 h. The
VMs CPU consumption was modeled based on the real CPU usage traces of
the PlanetLab network.5 These traces were provided as part of the CoMon
project, a PlanetLab’s monitoring service. The total set consists of 10 days of
collected traces, at a 5 min monitoring interval during periods of 24 h,
between the months of March and April of 2011 [2]. For our tests, we selected
the set of traces of the first day (03/03/2011), which consists of the CPU usage
traces of 1052 VMs that were monitored that day. This workload requires
CloudBalanSim to instantiate 1052 VMs, using a CPU overallocation level ≤
6 (i.e., up to 6 virtual CPUs for each real CPU). The RAM consumption was
modeled by a normal distribution with mean 0.8 and standard deviation 0.2.
RAM consumption must be in the [0, 1] interval; so, in case of RAMU

>1 it
will take the value of 1.

5 https ://githu b.com/belog lazov /plane tlab-workl oad-trace s.

Server model PMs

Huawei RH2288H V2 21 25
DEPO Race X340H 20 25
Total number of servers in the cloud 41 50
Table 6 VMs characteristics
[2]

VM instance type Cores MIPS RAM (GB) Storage
(GB)

High-CPU medium 1 2500 0.85 2.5
Extra large 1 2000 1.7 2.5
Small 1 1000 1.7 2.5
Micro 1 500 0.6 2.5

 27

Fig. 5 CloudBalanSim: average of the IBLCDCavg imbalance metric with a 41 PMs and b 50 PMs

5.1.4 Simulation test and assessment

The simulation tests were mainly focused on two aspects: (a) validation of

the CloudBalanSim functionality, and (b) evaluation and comparison of
different VM selection and placement strategies for load balancing in the
cloud. A successful execution of CloudBalanSim validated the first aspect.
The second aspect determined which of the strategies offers the best load
balancing level in the cloud.

Figure 5 shows a summary of the average imbalance level, IBLCDCavg ,
generated by each combination of the VM selection and placement strategies
after executing in two cloud infrastructures, one with 41 PMs and another
with 50 PMs. A lower value in IBLCDCavg means a better load balancing in the
cloud. It can be seen in Fig. 5a that with a high demand of CPU over-
allocation in PMs (less PMs host more VMs), the combination of strategies
that generated a lower level of imbalance (0.0077) was Sandpiper and MCC.
If the number of PMs in the cloud is increased (Fig. 5b), the combinations of
VM placement strategies that generated the least imbalance (0.0077) were
LIF, LIFDecreasing, Sandpiper and SandpiperDecreasing, independently of
the VMs selection strategy that was used. The rest of the VM placement
strategies generated a greater imbalance. These tests show us that in scenarios
with high demand for computing resources (high demand of CPU over-
allocation), the VMs selection and placement strategies that present a better
performance in terms of load balancing are Sandpiper and MCC,
respectively. While in scenarios with a low demand of CPU over-allocation
(the cloud has more available PMs), the VM placement strategies that
performed best were LIF and sandpiper, both in their normal and decreasing
versions.

 28

We also analyzed the average of the TotalIBScore metric, which reflects the
total cloud imbalance relative to a threshold. In this case, with a smaller
number of PMs (Fig. 6a) the worstFitDecreasing and MMT strategies
generated the least imbalance (2.91). By further increasing the number of
PMs (Fig. 6b), the random and randomDecreasing strategies in combination
with the majority of the VM selection strategies (except when
randomDecreasing is combined with MU) produced an imbalance level
greater than 0, while for the other strategies the level of imbalance was equal
to 0. This metric shows that the Random strategies are more likely to exceed
the PM overload detection threshold, while in general the vectorDot and
worstFit strategies, both in their normal and decreasing versions, converge
faster to a state of equilibrium, where the thresholds are not exceeded.

Fig. 6 CloudBalanSim: average of the TotalIBScore imbalance metric with a 41 PMs and b 50 PMs

The number of VM migrations generated by each combination of strategies
was also measured for the two cloud infrastructures. It was observed that with
a high demand of CPU over-allocation in PMs (Fig. 7a), the WorstFit and RS
strategies generated the lowest number of migrations (1199). By further
increasing the number of PMs (Fig. 7b) the LIF and Sandpiper strategies, both
in their normal and decreasing versions, converged to an optimal state, where
the migration of VMs was no longer required. Considering the IBLCDCavg
imbalance level shown in Fig. 5b, where the same strategies had the lowest
level, it is clear that a lower imbalance level generates a smaller number of

migrations. Something to note is that while the vectorDot,
vectorDotDecreasing, worstFit and worstFitDecreasing strategies seem to
converge more slowly toward a balanced state, random strategies keep
resources in a constant imbalance state and consequently generate a greater

 29

number of migrations, which could negatively impact performance in data
transmission in the cloud.

The SLA fulfillment with respect to CPU performance in PMs is an aspect
that can be analyzed with the SLATAH metric (Sect. 4.1.3). It was observed
that when the number of PMs is reduced and there is a higher CPU over-
allocation (Fig. 8a), the worstFitDecreasing and MU strategies generated the
lowest SLATAH percentage (0.151%). By increasing the number of PMs
(Fig. 8b), the LIF and Sandpiper strategies converged to the optimum where
there was not CPU performance degradation. This occurred in both their
normal and decreasing versions, independently of the VMs selection strategy.
Considering the IBLCDCavg imbalance level shown in Fig. 5b and the number
of migrations in Fig. 7b, where LIF and Sandpiper strategies had the lowest
level, we can see they favor a better use of the cloud resources in scenarios
where the over-allocation of CPU is used. LIF and Sandpiper also kept a low
level of imbalance and migrations without causing CPU SLA violations.

Table 7 summarizes the CPUs allocation in the two cloud scenarios (with
41 and 50 PMs). The second column shows the total number of cores in the
PMs, considering the characteristics of the PMs shown in Table 4 and the
number and models of server (PMs) described in Table 5. The third column
shows the
Fig. 7 CloudBalanSim: number of VM migrations with a 41 PMs and b 50 PMs

Fig. 8 CloudBalanSim: SLATAH metric with a 41 PMs and b 50 PMs

 30

percentage of cloud CPUs required to satisfy the allocation of the 1052 VMs

demanded in the workload. Recall that it was considered a maximum CPU
overallocation level of 6, i.e., up to 6 VCPUs for each real CPU. A high value
in this column, e.g., 100%, would mean that the VMs demanded 1 real CPU
for each VCPU, whereas a low value means that a reduced number of real
CPUs could host a higher number of VCPUs. The column "% CPUs savings"
shows the complement of the previous values and represents the percentage
of CPUs that remain available in the cloud. We can see that PMs
consolidation produces more CPU or PMs savings (with 41 PMs, 76.43% of
gain). As the number of PMs increases PM consolidation decreases.
Depending of the user interest, the combination of VM selection-placement
strategies can be configured for obtaining high PMs consolidation (which
could be an energy saving approach) or an adequate load balancing (focused
on better performance) or guaranteeing a low number of SLAs violations
(quality of service).

5.2 Real cloud settings and test with balancer

According to the CloudBench methodology shown in Fig. 1, after the
simulation stage, we continue with the real cloud evaluation, where Balancer
comes into play. In this stage, we executed and validated the combination of
VM selection and placement algorithms that showed satisfactory results in
the simulation stage, using CloudBalanSim.

 31

5.2.1 VMs selection-placement strategies and performance metrics

The CloudBalanSim evaluation produced fifteen strategies with satisfactory
results. These strategies are the combination of the next 3 VM selection
algorithms: MMTMC2, MU, RS; with the following 5 VM placement
algorithms: LIF, sandpiper, vectorDot, random and worstFitDecreasing. For
comparison reasons, it was also included an additional test used as baseline,
in which none VM selection and placement strategy is executed, giving a
total of 16 configuration tests. We also used the same PM overload detection
function based on static threshold (THR) with RAM and CPU thresholds set
to 0.8. As with the experiments carried out with CloudBalanSim, in Balancer
the benefits were valued in terms of the load balancing level achieved from
the CPU and RAM consumption in the PMs that make up the cloud. The
metrics considered in these experiments were: IBLCDCavg , TotalIBScore,
number of VM migrations and SLATAH, which are the same metrics used in
CloudBalanSim.

5.2.2 Cloud infrastructure

A private cloud was built using the OpenStack cloud platform, in which the
Balancer tool was integrated to deploy and manage VMs. Different private
cloud scenarios were generated to run the same evaluations. Since most of
them showed a similar behavior, this paper presents a representative scenario.

PMs characteristics The private cloud was built with 5 OpenStack nodes
(PMs), 1 controller and 4 compute, whose characteristics are shown in Table
8.

VMs characteristics Every VM instantiated in the cloud consists of 1 core, 2
GB of RAM and 10 GB of storage capacity. As with the tests performed with
CloudBalanSim, all VMs are single-core in accordance with the PlanetLab
workload specification. Table 9 shows the number of VMs created in every
involved PM. A total of 168 VMs were created for each test configurations.

 32

Table 8 Hardware
characteristics of cloud PMs

Table 9 Number of VMs
created per PM

PM Cores RAM (GB) Storage (GB) Fre-

quency

controller 6 32 754
compute9 12 64 488 2.20
compute10 24 256 488 2.20
compute11 24 128 488 2.20
compute12 24 128 488 2.20

PM # VMs
Compute9 24
Compute10 48
Compute11 48
Compute12 48

5.2.1 Workloads

RAM and CPU consumption were generated by the same workloads used in
CloudBalanSim. CPU consumption was generated by real CPU usage traces,
taken from the PlanetLab network (see Sect. 5.1.3). RAM consumption was
produced by a workload with synthetic traces. The RAM consumption
follows a uniform distribution of random values between 0 MB and 1424
MB. The maximum value (1424 GB) was selected to avoid exceeding the
VM RAM capacity (2 GB). The rest of memory was occupied by the
operating system (Centos 7 x 86-64 bits).

 33

5.2.2 Cloud test and assessment

This section shows the obtained results of two aspects evaluated in Balancer:
(a) the functionality of the fault-tolerance scheme and (b) the validation of
the VM selection and placement algorithms chosen by CloudBalanSim.

Fault tolerance To check functionality of the fault tolerance scheme of
Balancer, the following test was performed. Balancer was executed on the
OpenStack compute nodes described in Table 8. A turn-off process was
activated in the compute10, compute12 and compute11 nodes, in sequential
intervals of 10 min, to simulate failures in the nodes in that order. Later, a
turn-on process was activated in the same nodes, but in reverse order. Figure
9 shows 2 values on the y-axes (Node and Weight). Node identifies a node of
interest and Weight represents the amount of available resources in that node
(higher value means higher availability). A green circle indicates the node
that was chosen as the coordinator (Coord) in a determined time. A red circle
indicates the node that is turned off (Down), simulating a failure. The value
of
Weight is represented by bars. At the beginning of the test (min 0), the
compute10

Fig. 9 Balancer: fault tolerance

node (weight of 2) was chosen as coordinator; 10 min later, after failing
compute10, the compute12 node (weight of 1.35) was elected as coordinator.
10 min later, after failing compute12, the compute11 node (weight of 1.3)
was elected as coordinator; and 10 min later, compute11 was turned off and
the compute9 node (weight of 0) was elected as coordinator. It is possible to
appreciate the downward trend of the weight as the failures were presented

compute9

compute10

compute11

compute12

N
od

e

0 10

21

30

40

50

60

Time (min)
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

W
ei

gh
t

Weight Coord
Down

 34

in the coordinators, always choosing as the new coordinator the active node
with greater weight. Afterward, when the nodes were turned on again in
reverse order, an upward trend can be seen reaffirming that the active node
with the greatest weight is always chosen as the new coordinator.

Comparison of the VM selection-placement strategies Figure 10a shows the
results obtained for every VM selection-placement strategy in terms of the
average imbalance level metric, IBLCDCavg . It can be observed that LIF and
MMTMC2 were the combination of algorithms that generated a lower
imbalance level (0.0257) and that the use of the MU algorithm always
generated a higher imbalance level. If we also analyze the average of the
TotalIBScore metric, we see (Fig. 10b) that the worstFitDecreasing and
MMTMC2 strategies generated the least imbalance (1.6). In general, all
strategies had a very similar imbalance level, and in none of the cases a value
of 0 was obtained.

The number of VM migrations generated in each evaluation was also
measured (Fig. 11a). It can be seen that the worstFitDecreasing and
MMTMC2 strategies generated the lowest number of migrations (218),
whereas random and MU generated the highest number of migrations (257).
The combination of strategies that generated a lower imbalance level
IBLCDCavg (LIF and MMTMC2) is one of those that generated a greater number
of migrations (246). In this case, it was possible to execute a greater number
of migrations to maintain equilibrium. However, this was not possible for
other strategies due to the restriction of not overloading the destination PM.

The SLA fulfillment in terms of CPU degradation was measured using the
SLATAH metric. Firstly, we executed our baseline test, which does not
include the VM
 (a) (b)

 VM Placement Strategy VM Placement Strategy

Fig. 10 Balancer: average of the a IBLCDCavg and b TotalIBScore imbalance metrics

WF
 _ decre

asi ng ra ndom

san
dpip

 er
vec
tor_
dot

 LI F

MMTMC2

RS

MU

VM
 S

el
ec

tio
n

St
ra

te
gy

0.02835

0.03537

0.03106

0.03707

0.02843

0.03021

0.03284

0.03193

0.02571

0.031

0.03993 0.04067 0.03975 0.04217 0.03949 0.03
0.035
0.04

WF
 _ d ec r e

 a si n g r ando m

san
dpip

 er
vec
t o r _dot

 L IF

MMTMC2

RS

MU

VM
 S

el
ec

tio
n

St
ra

te
gy

1.604

1.731

1.812

1.658 1.624

1.681

1.732

1.814

1.643

1.666

1.745

1.909

1.879 1.834

1.85

1.65
1.7
1.75
1.8
1.85
1.9

 35

Fig. 11 Balancer: a number of VM migrations and b SLATAH metrics

migration process. In these tests, a SLATAH percentage equal to 0.5% was
obtained. In Fig. 11b, the SLATAH baseline value is showed with the
transparent bars, as a complement of the rest of obtained values (colored
bars). It can be seen that the LIF and RS combination generated the lowest
SLATAH percentage (0%), which means that no CPU performance
degradation occurred. In general, all of the evaluated strategies presented a
reduction of SLATAH in more than 50% with respect to the baseline, which
means the use of the VM selection-placement strategies improved the quality
of service of the cloud.

5.3 Discussion

Figure 12 summarizes the obtained results using the CloudBench method that
combines simulation and real cloud evaluation stages. It shows the
combination of VMs selection (MMTMC2, RS and MU) and VMs placement
(WFD, Random, Sandpiper, VectorDot and LIF) strategies, considering the
different performance metrics described in Sect. 4.1.3. For each combination
of VM Selection/VM Placement strategies, we show the results obtained for
each performance metric (IBLCDCavg , TotalIBScore, Number of migrations
and % SLATAH) in: (a) a simulated cloud, (b) a realworld cloud and (c) the
result of comparing both the simulated and the real-world

 36

Fig. 12 Simulated and real cloud environment
comparison

cloud results. On one hand, the color of the circles in columns Simulated and
Real denote a classification of the obtained value, where green, yellow and
red represent low, medium and high values, respectively. The three marks
used in the Result column denote how similar were the results in both
simulated and real-world environment. The red-cross mark, green-check
mark and yellow-exclamation mark show if the results were the same, close
or totally different, respectively. We can see that, in both simulated and real-
world cloud, the RS (VM selection)-LIF (VM placement) combination
produced the same results in 3 of the 4 metrics used, being IBLCDCavg the
exception. With this metric, the RS-LIF strategy presented a low imbalance
value in the simulated cloud, whereas its value was medium in the real-world
cloud. The combination of RS-Sandpiper also produced the same results in 3
of the 4 metrics, being % SLATAH the exception. In the simulated cloud RS-
Sandpiper presented a low value of % SLATAH, whereas in the real cloud
its value was medium. The combinations that included the Random VM
placement strategy showed the most notable differences in the results
obtained in the simulated and real cloud. For instance, in the Random-RS and

 37

Random-MU combinations only the IBLCDCavg metric coincided. Results in
Fig. 12 confirm that RS-Sandpiper and RS-LIF are the strategies that produce
very similar results in both simulated and real cloud. With the CloudBench
methodology was possible to detect the strategies that have similar results in
simulated and real cloud environments, which motivates its use to evaluate
different simulated scenarios when there is not a real cloud available for
testing.

6 Conclusions and future work

This article introduces CloudBench, a methodology for the evaluation and
validation of VM selection and placement algorithms by integrating
simulated and real-world cloud scenarios. Two tools were developed to
support this methodology, the CloudBalanSim simulator and the Balancer
VM manager. CloudBalanSim and Balancer allow the execution of VM
selection and placement algorithms in a simulated and real-world cloud,
respectively. In addition, the VM placement module of Balancer was
implemented as a distributed, fault-tolerant and scalable service. The use of
the Dynamically Weighted Bully (DWB) algorithm allows Balancer to
dynamically choose the physical machine (PM) with more available
resources as the coordinator node that will execute the VM placement and
migration processes. CloudBalanSim and Balancer demonstrated its correct
functionality after running the different VM selection and placement
algorithms successfully. The performance metrics included in
CloudBalanSim and Balancer allow us to obtain measurements of different
cloud aspects such as load imbalance, SLAs violations in terms of CPU
consumption in PMs and the number of VM migrations. The possibility of
implementing various VMs selection and placement strategies in
CloudBalanSim and Balancer allowed us to verify that some of them, such
as MU and worstFitDecreasing, when are executed in scenarios with high PM
consolidation, do not impact considerably the CPU performance, obtaining a
degree of CPU performance degradation that does not reach 0.2%, which
means a service guarantee of 99.8%. A high PMs consolidation with an
acceptable CPU degradation represents a more efficient cloud resources
consumption, which increases service availability and gives the possibility of
saving energy by deactivating unused PMs. In scenarios with more available
PMs, we found that VM placement strategies such as LIF, LIFDecreasing,
Sandpiper and sandpiperDecreasing produce better imbalance levels in terms
of CPU and RAM consumption, number of migrations and performance
degradation, when are compared with the rest of strategies. The Random VM

 38

placement strategy generates a large number of VM migrations, causing a
significant CPU performance degradation in PMs, affecting quality of
service. The CloudBench methodology proposes that the most satisfactory
strategies found by CloudBalanSim are validated in a real-world cloud, in
this case using the Balancer tool. In this sense, Balancer could validate the
accuracy of the results obtained by CloudBalanSim, offering users more
precise information. Balancer allowed us to determine that the strategy
combining LIF and RS algorithms produce the best cloud load balancing with
no CPU performance degradation. In addition, we found that RS-Sandpiper
and RS-LIF are the strategies that produce very similar results in both
simulated and real cloud, which motivates its use in simulated clouds when
there is not a real cloud available for testing purposes. CloudBalanSim and
Balancer offer support for running a more extensive set of tests in which the
number of nodes is increased, including heterogeneous VMs (e.g., different
number of cores and RAM) in the real environment. Additional to
CloudBalanSim and Balancer tools, CloudBench purposes the use of an
incremental learning layer that is in charge of keeping historical data
(feedback). In our experiments, this layer was used during the evaluations for
avoiding unnecessary tests, saving time and cloud resources.

As future work, different extensions could be made to this research. One
of them is the incorporation to Balancer of other fault tolerance mechanisms
such as those provided by Ceph Monitors6 or Apache Zookeeper.7 Another
issue to be considered as future work is the extension of the CloudBench
prototype implementation tools, CloudBalanSim and Balancer, to consider
more physical and virtual resources, such as network and storage. With this
extension it would be possible to carry out a broader and more complex
analysis of the different management and load balancing strategies in private
IaaS clouds, both in a simulated and in a real-world cloud. For example, the
multi-resource load balancing strategies could take into account the PM’s
network traffic to avoid VM migrations into PMs that are receiving a lot of
traffic. The integration of other metrics related to disk usage (e.g., Disk I/O)
in overload detection strategies and performance metrics is also considered.
Finally, our methodology could also be extended to allow the evaluation of
different container load balancing strategies (container selection and
placement strategies), by using Kubernetes 8 or other container
management/orchestration platforms.

6 https ://docs.ceph.com/docs/maste r/start /intro/ .
7 https ://zooke eper.apach e.org/doc/curre nt/zooke eperO ver.html.
8 https ://cloud .googl e.com/kuber netes /.

 39

Acknowledgements This work was partially funded by the Spanish Ministry of Economy, Industry and
Competitiveness under the Grant TIN2016-79637-P “Towards Unification of HPC and Big Data
Paradigms” and by the Mexican Council of Science and Technology (CONACYT) through a Ph.D. Grant
(No. 212677).

References
1. Ahmed A, Sabyasachi AS (2014) Cloud computing simulators: a detailed survey and future direction.

In: Advance Computing Conference (IACC), 2014 IEEE International, pp 866–872. https ://doi.
org/10.1109/IAdCC .2014.67794 36

2. Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in cloud data centers.
Concurr Comput Pract Exp 24(13):1397–1420. https ://doi.org/10.1002/cpe.1867

3. Beloglazov A, Buyya R (2015) Openstack neat: a framework for dynamic and energy-efficient
consolidation of virtual machines in openstack clouds. Concurr Comput Pract Exp 27(5):1310–1333.
https ://doi.org/10.1002/cpe.3314

4. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50. https ://doi.org/10.1002/spe.995

5. Chen L, Shen H, Sapra K (2014) Distributed autonomous virtual resource management in datacenters
using finite-Markov decision process. In: Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, pp 24:1–24:13. ACM, New York, NY, USA. https ://doi.org/10.1145/26709 79.26710 03

6. Coffman EG, Garey MR, Johnson DS (1996) Approximation algorithms for bin packing: a survey.
PWS Publishing Co., USA, pp 46–93

7. Durao F, Carvalho JFS, Fonseka A, Garcia VC (2014) A systematic review on cloud computing. J
Supercomput 68(3):1321–1346. https ://doi.org/10.1007/s1122 7-014-1089-x

8. El Motaki S, Yahyaouy A, Gualous H, Sabor J (2019) Comparative study between exact and
metaheuristic approaches for virtual machine placement process as knapsack problem. J
Supercomput. https ://doi.org/10.1007/s1122 7-019-02847 -0

9. Foundation O (2016) Openstack installation guide for red hat enterprise linux and centos. http://
docs.opens tack.org/mitak a/insta ll-guide -rdo/. Accessed 15 June 2016

10. Garcia-Molina H (1982) Elections in a distributed computing system. IEEE Trans Comput 31(1):48–
59. https ://doi.org/10.1109/TC.1982.16758 85

11. Garg SK, Buyya R (2011) Networkcloudsim: modelling parallel applications in cloud simulations.
In: 2011 Fourth IEEE International Conference on Utility and Cloud Computing (UCC), pp 105–
113. https ://doi.org/10.1109/UCC.2011.24

12. Gomez-Rodriguez MA, Sosa-Sosa VJ, Gonzalez-Compean JL (2017) Assessment of private cloud
infrastructure monitoring tools—a comparison of Ceilometer and Monasca. In: Proceedings of the
6th International Conference on Data Science, Technology and Applications (DATA 2017), pp 371–
381. SCITEPRESS—Science and Technology Publications, Lda., Madrid, Spain

13. Gupta MK, Amgoth T (2018) Resource-aware virtual machine placement algorithm for IAAS cloud.
J Supercomput 74(1):122–140. https ://doi.org/10.1007/s1122 7-017-2112-9

14. Han SH, Kim HW, Jeong YS (2019) An efficient job management of computing service using
integrated idle vm resources for high-performance computing based on openstack. J Supercomput.
https ://doi.org/10.1007/s1122 7-019-02769 -x

15. Hussain F, Haider SA, Alamri A, AlQarni M (2018) Fault-tolerance analyzer: a middle layer for pre-
provision testing in openstack. Comput Electr Eng 66:64–79. https ://doi.org/10.1016/j. compe lecen
g.2017.11.019

16. Jangiti S, Shankar Sriram VS (2018) Scalable and direct vector bin-packing heuristic based on
residual resource ratios for virtual machine placement in cloud data centers. Comput Electr Eng
68:44–61. https ://doi.org/10.1016/j.compe lecen g.2018.03.029

17. Korte B, Vygen J (2006) Bin-packing. Springer, Berlin, pp 426–441. https ://doi.org/10.1007/3540-
29297 -7_18

 40

18. Kuo CF, Yeh TH, Lu YF, Chang BR (2015) Efficient allocation algorithm for virtual machines in
cloud computing systems. In: Proceedings of the ASE BigData & SocialInformatics 2015, ASE
BD&SI ’15, pp 48:1–48:6. ACM, New York, NY, USA. https ://doi.org/10.1145/28188 69.28188 78

19. Lin W, Xu S, He L, Li J (2017) Multi-resource scheduling and power simulation for cloud computing.
Inf Sci 397–398:168–186. https ://doi.org/10.1016/j.ins.2017.02.054

20. Maarouf A, Marzouk A, Haqiq A (2015) Comparative study of simulators for cloud computing. In:
2015 International Conference on Cloud Technologies and Applications (CloudTech), pp 1–8. https
://doi.org/10.1109/Cloud Tech.2015.73369 89

21. Mann ZA (2015) Allocation of virtual machines in cloud data centers—a survey of problem models
and optimization algorithms. ACM Comput Surv 48(1):11:1–11:34. https ://doi. org/10.1145/27972
11

22. Milani AS, Navimipour NJ (2016) Load balancing mechanisms and techniques in the cloud
environments: systematic literature review and future trends. J Netw Comput Appl 71:86–98. https
:// doi.org/10.1016/j.jnca.2016.06.003

23. Mustafa S, Nazir B, Hayat A, ur Rehman Khan A, Madani SA (2015) Resource management in cloud
computing: taxonomy, prospects, and challenges. Comput Electr Eng 47:186–203. https ://
doi.org/10.1016/j.compe lecen g.2015.07.021

24. Nuaimi KA, Mohamed N, Nuaimi MA, Al-Jaroodi J (2012) A survey of load balancing in cloud
computing: challenges and algorithms. In: Proceedings of the 2012 Second Symposium on Network
Cloud Computing and Applications, NCCA ’12, pp 137–142. IEEE Computer Society, Washington,
DC, USA. https ://doi.org/10.1109/NCCA.2012.29

25. Pires FL, Barán B (2015) Virtual machine placement literature review. CoRR arxiv : abs/1506.01509
26. Sato K, Samejima M, Komoda N (2013) Dynamic optimization of virtual machine placement by

resource usage prediction. In: 2013 11th IEEE International Conference on Industrial Informatics
(INDIN), pp 86–91. https ://doi.org/10.1109/INDIN .2013.66228 63

27. Satpathy A, Addya SK, Turuk AK, Majhi B, Sahoo G (2018) Crow search based virtual machine
placement strategy in cloud data centers with live migration. Comput Electr Eng 69:334–350. https
://doi.org/10.1016/j.compe lecen g.2017.12.032

28. Singh A, Korupolu, M, Mohapatra D (2008) Server-storage virtualization: integration and load
balancing in data centers. In: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pp 1–12. https ://doi.org/10.1109/SC.2008.52226 25

29. Thakur A, Goraya MS (2017) A taxonomic survey on load balancing in cloud. J Netw Comput Appl
98:43–57. https ://doi.org/10.1016/j.jnca.2017.08.020

30. Tian W, Xu M, Chen A, Li G, Wang X, Chen Y (2015) Open-source simulators for cloud computing:
comparative study and challenging issues. Simul Model Pract Theory 58:239–254. https ://doi.
org/10.1016/j.simpa t.2015.06.002

31. Tian W, Zhao Y, Xu M, Zhong Y, Sun X (2015) A toolkit for modeling and simulation of real-time
virtual machine allocation in a cloud data center. IEEE Trans Autom Sci Eng 12(1):153–161. https
://doi.org/10.1109/TASE.2013.22663 38

32. Tighe M, Keller G, Bauer M, Lutfiyya H (2012) DCSIM: a data centre simulation tool for evaluating
dynamic virtualized resource management. In: 2012 8th International Conference on Network and
Service Management (CNSM) and 2012 Workshop on Systems Virtualiztion Management (SVM),
pp 385–392

33. Wood T, Shenoy P, Venkataramani A, Yousif M (2009) Sandpiper: black-box and gray-box resource
management for virtual machines. Comput Netw 53(17):2923–2938. https ://doi.org/10.1016/j.
comne t.2009.04.014

34. Xu M, Li G, Yang W, Tian W (2015) FlexCloud: a flexible and extendible simulator for performance
evaluation of virtual machine allocation. In: 2015 IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity), pp 649–655. https ://doi.org/10.1109/Smart
City.2015.143

35. Xu M, Tian W (2012) An online load balancing scheduling algorithm for cloud data centers
considering real-time multi-dimensional resource. In: 2012 IEEE 2nd International Conference on
Cloud Computing and Intelligence Systems, vol 01, pp 264–268. https
://doi.org/10.1109/CCIS.2012.66644 09

36. Xu M, Tian W, Buyya R (2016) A survey on load balancing algorithms for VM placement in cloud
computing. CoRR arxiv : abs/1607.06269

 41

37. Zhao X, Yin J, Lin P, Zhi C, Feng S, Wu H, Chen Z (2015) SimMon: a toolkit for simulating
monitoring mechanism in cloud computing environments. Springer, Berlin, pp 477–481. https ://doi.
org/10.1007/978-3-662-48616 -0_33

38. Zhong WTLJ (2013) LIF: a dynamic scheduling algorithm for cloud data centers considering
multidimensional resources. J Inf Comput Sci 10(12):3925. https ://doi.org/10.12733 /jics2 01021 11

