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Abstract: Removing motion blur has been an important issue in computer vision 
literature, and some achievements were obtained in the research of image deblur by 
using deep learning algorithm in recent years. Motion blur is caused by the relative 
motion between the camera and the photographed object. In this paper, we proposed 
an enhanced adversarial networks model. A convolution unit constructed by 
Squeeze-and-Excitation Networks (SENet) and Residual Networks (RseNet) together 
with a new mixed loss function are used in our model to restore the motion 
blurred image. In addition, we exploit resize-convolution as the upsampling 
method to eliminate the chessboard artifacts in the generated image. Our model 
could greatly shorten the running time compared to the previous method which 
bypasses the process of blur kernel estimation. Our approach is tested using 
GOPRO datasets and Lai datasets, the peak signal-to-noise ratio (PSNR)of our 
approach is up to 29.435537/29.762314, and the structural similarity measure 
(SSIM) can be achieved upto0.974123/0.686638. Furthermore, we simulate the 
images obtained from the China’s Chang’e 3 Lander to test the new algorithm. 
Due to the elimination of the chessboard effect, the deblurred image has a better 
visual appearance. Our method was proved to achieve higher performance and 
efficiency in the qualitative and quantitative aspects using the benchmark 
datasets experiments. The results also provided various insights into the design 
and development of the Camera Pointing System which was mounted on the 
Lander for capturing images of the moon and rover for Chang’e space mission.  

Keywords: Blurred image, Camera Pointing System, Chang’e space 
mission, GANs, Resize convolution 

1. Introduction
Motion blur is one of the most common types of image blurring. Shorter exposure

time and fast moving objects or camera shaking will cause motion blur in the final 
image, resulting in poor image perception, affecting image information transmission 
and postprocessing [1, 2]. In the field of computer vision, motion blur could cause the 
reduction of accuracy and efficiency of image recognition and classification. 
Therefore, the restoration of motion blurred image is of great signification. 

Most of the early blurred image restoration approaches are based on following 
blur model [3-6]: 

NIKI SB += * ……… (1) 

where BI , SI , K and N are blurred image, latent sharp image, blur kernel and 

noise,∗ represents convolution operation. The process could be seen as a convolution 
operation between sharp image and blurred image kernel, and blurred image is formed 
after the effect of random noise. Image restoration algorithm could be divided into 
blind restoration and non-blind restoration algorithm base on whether the blur kernel 
is known or not. The non-blind restoration algorithm restores the blurred image by 



estimation of the inverse process of equation [1] using the known blur kernel. The 
classical algorithm has LR(Lucy-Richardson) algorithm, Wiener filter, Kalman filter 
[7]. A partial blind restoration algorithm is used to reconstruct the image by estimation 
the blur kernel. It is time-consuming and inefficient to restore image by blur kernel， 

due to the unknown blur kernel function; the blur types in reality are complex and 
uncertain in most cases. 

GAN’s excellent performance in the image conversion task and the existing image 
deblur algorithm still have many shortcomings. It is a new direction to apply GAN to 
motion blur image restoration task. In this paper, an enhanced GANs model, which 
may obtain higher PSNR and SSIM on motion blur removal, is proposed. In addition, 
the deblurred image will have a better visual appearance and quality. In Section II, the 
related work on image restorations is discussed. In Section III, the proposed method 
and algorithm are described, and the mathemat�ical analysis is elaborated. In 
Section IV, the proposed method is validated by the experiments, and the benchmarked 
datasets are used to compare the results. The experiments are also simulated on images 
obtained from the Chang’e 3 space mission. In Section V, the summary of the work, 
conclusions, and implications for the design of Chang’e mission’s camera pointing 
systems is also given. The contributions of this paper are as follows: 

1. A new work structure and a hybrid loss function are proposed, which can recover
the motion blurry image efficiently;
2. Experiments on different datasets prove that the algorithm can be applied to real
scenes.

2. Related work
2.1 Related study

In recent years, numerous blurred image restoration approaches based on deep 
learning have been proposed. Sun et al. [9] used CNN to predict the probability 
distribution of motion blur in every block of image and restored the image by the 
motion blur probability distribution of each image block. Nah et al. [10] used a 
multi-scale CNN to directly correct the deblurred image. However, the algorithm has 
high complexity and low efficiency, so it cannot process images quickly. 
Ramakrishnan et al. [11] proposed a novel network structure to improve the efficiency 
of the network, while maintaining the effect of deblurring. Although this algorithm 
improved the efficiency, the clarity of the generated images was similar to that of 
Nah’s method. Kupyn et al. [12] proposed a motion blur removal algorithm based on 
condition generation against a network. This approach uses WGAN-GP [13] and 
perceptual loss [14] as the final loss function and achieved a high image restoration 
effect. Deep learning is also applied to motion blurred video restoration. Su et al. [15] 
adopt CNN to aggregate multiple images to generate a sharp output. Zhang et al. [16] 
used GAN with 3D convolution to capture spatial and temporal information encoded 
in neighbouring frames to restore blurred video. Chen et al. [17] used self-supervised 
fashion to fine-tune existing deblurring neural networks, which improves the 



performance of video deblurring algorithm. 
2.2 GANs 

GANs consists of a generator and a discriminator. The basic principle is that the 
generator receives a random noise signal to generate new data samples, and the 
discriminator determines whether the samples are from the real sample set or the 
simulated samples generated by the generator. The purpose of the generator is to 
generate a sample that is close to the data distribution of the real sample set, making it 
impossible for the discriminator to determine the data source. 

The optimization objective function of the generation of GANs is as follows: 

)))]((1[log()]([log),(maxmin )(~)(~ zGDxDGDV zpzxpxDG zdata
−Ε+Ε=  ……… (2) 

Where )(xpdata  , )(zpz , );( gzG θ ,and )(xD  are data distribution, predefined noise 

variable, mapping from noise space to data space and the probability that x from the 

real sample set. The discriminator was trained to minimize )(log xD , and the 

generator is trained to minimize ))(1log( zD− .In order to enable the network to 

output data according to our expectation, researchers added the extra conditional 

information y on the original GANs, and y could be any kind of 

information[25].The optimal objective function of conditional generation adversarial 
networks is as follows: 

)))]|((1[log()]|([log),(maxmin )(~)(~ yzGDyxDGDV zpzxpxDG zdata
−Ε+Ε=  ……… (3)

However, training of original GANs suffer from many problems such as mode 
collapse, training instability and vanishing gradients etc. The reason for these 
problems is that the original GANs uses JS Divergence to measure the differences 
between the two distributions.JS Divergence is a constant log2 when two distributions 
do not overlap completely, which leads to the mutation properties of JS Divergence. 
Thus, Wasserstein GAN (WGAN)[14] uses Wasserstein Distance to measure the 
differences between the two distributions. 

][inf),( ,),(~
yxPPW yxPPgr
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 ……… (4) 

For two distribution rP and gP ,their joint distribution is ),( gr PPΠ .Calculating the 

distance between x and y sampled from each joint distribution which takes 

all x and y to calculate the expected value. The smallest value is chosen as the 

Wasserstein Distance. Compared with JS Divergence, Wasserstein Distance has 
continuous transformation regardless of whether the two distributions overlap. 



3. Proposed method
The proposed method is to improve the performance of existing end-to-end

deblurring adversarial network model by making the network to have the ability to 
extract the weight of feature channels and remove the draughtboard artefacts. The key 
idea is to use a novel convolution unit constructed by squeeze and excitation networks 
and residual network to extract image feature. In addition, using resize convolution as 
up-sampling method, he contrastive experiments showed that chessboard effect could 
be effectively removed by resize convolution. 

3.1 Generator 
The generator structure is shown in Figure 1 which is similar to the structure used 

by Kupyn et al [12]. It contains two strided convolution blocks with stride 2, nine 
residual blocks, and two transposed convolution blocks. In order to improve the 
quality of the image, we have made some improvements on the basis of the network 
structure of Kupyn et al. [11], they are elaborated as follows. 

3.1.1 Without Batch Normalization 
Traditional neural networks only normalise the data before it is inputted into the 
network, whereas the batch normalisation [20] layer normalises the input of hidden 
layers. Batch normalisation may solve the problem of gradient disappearance and 
gradient explosion in the back-propagation algorithm, which can also accelerate the 
convergence speed of the network. The batch normalisation layers are removed from 
the network, as Nah et al. [10] and Bee et al. [21] presented in their model. Since 
batch normalisation layers normalise the features, it limits network flexibility 

3.1.2 SE-ResBlock 
The SENet (squeeze and excitation networks) proposed by Hu et al. [22] is used 

to improve the performance of the residual network. During CNN, the convolution 
kernel could be regarded as the aggregate of the spatial information and the 
characteristics of dimension information. To improve the performance of CNN, many 
approaches have been proposed, from spatial dimension, such as the inception module 
[20, 23–25]. The difference is that SENet improves network performance from the 
feature dimension; SENet can learn the relationship between different feature 
channels, obtain the weight of feature channels, and use the weight to promote useful 
features and suppress features that are less useful for the current task.  

SENet includes three key operations: squeeze, excitation, and reweight. Squeeze 
operations achieve feature compression by turning each of the two-dimensional 
characteristic channels into a real number. Excitation operation gives weight to each 
feature channel through the parameter, W, which represents the correlation between 
the feature channels. In the reweight operation, the output of excitation is regarded as 
the importance of different feature channels. By multiplying the output of excitation 
as the weighting of the original feature, the original feature is re-calibrated. SENet has 



been proven to have excellent performance in image classification. In this paper, 
SENet is applied to image processing due to the image processing method adopted in 
this paper to completely reconstruct the image. 

In the reconstruction process, the importance of different feature channels should 
be considered. So the combined convolution unit of SENet and ResNet (residual 
networks) [26], named SE-ResBlock, is used and is shown in Fig. 2. Global average 
pooling is used as a squeeze operation. The excite operation calculates the 
interchannel correlation by using two fully connected layers to make up the bottleneck 
structure. The reweight operation is used to weight the normalised feature into the 
original feature channels. 

3.1.3 Resize-convolution [27] 
Using CNN to generate images is a process that transforms low resolution image 
blocks into high resolution image. It is usually realized by deconvolution. Due to the 
“uneven overlap” in the deconvolution process, it will lead to the artefact similar to 
checkerboard lattice in the details of the image, which is called “chessboard artefacts”. 
To eliminate this phenomenon, one approach is to make sure the kernel size is divided 
by the stride; however, it is still easy to create draughtboard artefacts. The resize 
convolution is used as an up-sampling method instead of deconvolution. The resize 
convolution is implicitly weight-tying in a way that discourages high-frequency 
artefacts. The process of resize convolution is to resize the image (using 
nearest-neighbour interpolation or bilinear interpolation) and then do a convolutional 
layer, as shown in figure 3. 

3.2 Discriminator 
Here, the Markovian discriminator [28], PatchGAN, is used as the discriminator 

for EDGAN. Since content loss (the combination of perceptual loss and gradient loss 
was used in this paper) has been able to process the low-frequency components of the 
image very well, the discriminator only needs to process the high-frequency 
components. Therefore, the receptive field of the discriminator output does not need to 
be the whole input image. The output can be a feature map, and the receptive field of 
each pixel in the feature map is a patch on the input image, which can accelerate the 
discriminator while obtaining high-quality images. According to the experiments in 
the literature of Isola et al. [29], the output of the discriminator is set at 50 × 50, which 
takes into account both image quality and network operation speed. The model 
parameters of the discriminator are shown in Table 1. 



Table1: Model parameters of discriminator. 
# Layer Weight dimension Stride 

1 cov 3× 64× 4× 4 2 

2 LRelu - - 

3 cov 64× 128× 4× 4 2 

4 BN - - 

5 LRelu - - 

6 cov 128× 512× 4× 4 2 

7 BN - - 

8 LRelu - - 

9 cov 512× 512× 4× 4 2 

10 BN - - 

11 LRelu - - 

12 cov 512× 512× 4× 4 1 

13 BN - - 

14 LRelu - - 

15 FC 512× 1× 4× 4 1 

16 Sigmoid - - 

3.3 Loss function 
We formulate the loss function as a combination of adversarial loss, perceptual 

loss and gradient loss: 

gradpercept
Generator

GPWGAN  ⋅+⋅+= − βα ……… (5) 

where α  and β  are the weight parameters of perceptual loss and gradient loss. 

3.3.1 Adversarial loss 
To overcome the problems existing in the original GANs, we use WGAN-GP as 

adversarial loss. Although WGAN reduces the difficulty of training for GANs, it is 
still difficult to converge under certain conditions, and the effect of generating the 
picture does not satisfy with ourexpectations. WGAN will limit the weight to a certain 
extent after updating the weight of each iteration, while WGAN-GP calculates the 
weight gradient according to the input of the discriminator, and corrects the weight 
according to the norm of the gradient. WGAN-GP effectively solves the problem of 
WGAN, which is calculated as the following, where IB is blurry image: 

∑
=

− −=
N

n

BGenerator
GPWGAN IGD

GD
1

))(( θθ ……… (6) 

3.3.2 Perceptual loss 
The basic idea is to use the features extracted by CNN as part of the target 



function. By reducing the Euclidean distance between feature maps generated by 
CNN and target images, the generated images is more consistent with the target 
image than the pixel level loss function. Perceptual loss is a kind of high-level 
loss. The definition is as follows: 
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where jiW , and jiH , are the dimensions of the feature maps, ji ,φ is the feature map 

obtained by the j-th convolution before the i-th maxpooling layer within a CNN. The 
CNN used in this paper is a VGG19 (layer 1 - 14) network [31], pretrained on 
ImageNet [32]. 

3.3.3 Gradient loss [33] 
 In addition, image information in gradient domain is also leveraged as a high-level 
loss term as follows: 
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where h∇  and v∇  indicate the horizontal and vertical gradients. N indicate the 

number of training images pairs. 
WGAN-GP is used as the critic function, the discriminator loss, as the following: 

……… (9) 
where λ is the penalty coefficient, pg is the sample distribution of the generator, pr is 
the sample distribution of the sharp image, and px is the distribution uniformly 
sampled along the straight lines between pg and pr. 

4.Experimental evaluation
4.1 Experimental Settings
The following describes the validations of the proposed method and algorithms.
Firstly, we used benchmarked datasets to test the performances, and then it is tested
with the images obtained from Chang’e 3 space missions. All of the proposed models
using the PyTorch deep learning framework are implemented. The experimental
model training and testing hardware platform is NVIDIA GTX 1070 GPU and Intel
i7-4790 CPU. The first model is referred for using SE-ResBlock as EDGANSE. The
second model used SE-ResBlock and gradient loss as EDGANSE−G. The third model
used SE-ResBlock and a resize convolution as EDGANSE−R. A random crop size of
250 × 250 from a GOPRO dataset [10] is used to train the proposed model. The model
optimisation algorithm is ADAM [34], a set learning rate of 10−4. To speed up the
convergence rate of the model, the learning rate in the first 150 rounds was fixed, and



in the second 150 rounds, the learning rate was gradually reduced to zero. To balance 
the performance of the generator and the discriminator, every five-gradient descent 
algorithms were performed by the discriminator, and the generator was executed once. 
The α and β of generator loss function are 1 and 5. The approaches proposed in this 
paper do not adopt a batch normalisation layer. Other specific differences are shown 
in Table 2. 

4.2 Datasets 

A)GOPRO Dataset
The GOPRO dataset consists of 3214 pairs of images, of which 2103 are training

sets and 1111 pairs are test sets. We compare our model with Kupyn et al.[11] ,and the 
results are shown in Table 2.The details of image are shown in Figure 5.From the 
results, it is found that EDGAN could better restore the image detail. The result of all 
models after different epoch of training are shown in figure4.EDGAN shows superior 
convergence rate and image restoration ability. 

Table2: Mean peak signal-to-noise ratio and structural similarity measure on GOPRO dataset of 
1111 images. 

Method Metric 

DeblurGAN

[11] 

EDGAN

SEEDGAN GSEEDGAN − RSEEDGAN −

PSNR 28.182472 29.435537 29.109105 28.648071 

SSIM 0.963094 0.972200 0.973316 0.967033 

The contrast between SEEDGAN and RSEEDGAN − is shown in figure

6.Deconvolution causes the abnormal color artifacts in the image texture, and
resize-convolution can eliminated it.

B)Lai Dataset [24]
The Lai dataset includes a real dataset and a synthetic dataset. The real dataset is 

made up of 100 blurred images collected from real world scenes. These images use 
different shooting devices, shooting settings and shooting themes. The synthetic 
dataset includes 100 blurred images generated by convolution between 25 sharp 
images collected from Internet and 4 different blur kernels. By recorded 6D camera 
trajectories to generate blur kernels. In the experiment we only use synthetic dataset, 
and the results are shown in Table 3. EDGAN shows superior results both in 



qualitative and quantitative ways. Deblurred images from test on Lai dataset are 
shown in figure 7. 

Table3:Mean peak signal-to-noise ratio and structural similarity measure on Lai dataset of 100 
images. 

Method Metric 

DeblurGAN

[11] 

EDGAN

SEEDGAN GSEEDGAN − RSEEDGAN −

PSNR 29.670198 29.762314 29.729374 29.674767 

SSIM 0.675933 0.686638 0.676432 0.680609 

C) Chang’e 3 space mission images

The impact of the proposed algorithm is also evaluated using the open source

data images available for Chang’e 3 space mission. The Chang’e 3 space mission from

China was successfully launched and the rover “Yutu” landed on the moon’s surface

in December 2013. It was considered one of the many successful space missions from 
the chineses for several decades. One of the many projects that was led by the 
author of this paper Prof. KL Yung [29,30,31] and his team at the Hong kong 
Polytechnic University being the design and development of Camera Pointing System 

mounted on the lander of the moon’s surface. The equipment had been operated for

over three years on the moon and was terminated in 2017. The following simulated 
experiments was conducted to test the algorithm which can be used to improve the 

design and implementation of future Chang’e missions:

5. Discussion
This paper demonstrates that the image generated by the proposed algorithm is
sharper through comparative experiments on different datasets. Although the
algorithm performs well in image deblurring, it is unable to process high-resolution
images in real time due to the lack of further optimisation of network structure for
algorithm efficiency. In addition, for image frames from video, because the algorithm
proposed in this paper does not support multiple images as input, the interframe
information cannot be extracted. The future work will focus on the speed
improvement and way to extract information of this algorithm.



6. Conclusion
In this paper, the EDGAN is proposed, and it is a novel model designed to restore 
motion blurred images. And the EDGAN sets a new state-of-the-art technology to 
public benchmark datasets in terms of the PSNR and SSIM metric [37]. In addition, 
using resize convolution as an up-sampling method can effectively eliminate 
“draughtboard artefacts” on the generated images is confirmed. However, the resize 
convolution would reduce the quality of the image details. It will be part of future 
work to eliminate colour artefacts without reducing the performance of EDGAN. 
Moreover, the method is tested and evaluated for future space missions of Chang’e. 
The camera pointing system developed by the Hong Kong Polytechnic University in 
early 2013 was used to capture images of the moon, as well as the movement of the 
rovers. It was capable of 360 degrees of image capturing, as well as positioning and 
navigating of the rover. Based on the past experience, a new algorithm with a deep 
learning approach for future space missions is proposed. The results indicate that deep 
learning can achieve good performances for high-precision image restorations and can 
be incorporated into the design of cylindrical projection of sequential images of the 
camera pointing system for image constructions, as well as feature recognition in 
future deep space explorations.
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Figure2.SE-ResBlock network structure 
Figure3.Deconvolution and resize-convolution 
Figure4.Performance (PSNR/SSIM) with respect to the train epoch 
Figure5. Comparison of deblurred images by our model and DeblurGAN [11] on one of the image 
taken from GOPRO Dataset 
Figure 6. Comparison of deblurred images by deconvolution and resize-convolution 
Figure7. Comparison of deblurred images by our model and DeblurGAN [11] on one of the image 
taken from Lai Dataset 
Figure 8.(a)(d)(g)blurred image. (b)(e)(h)ground truth. (c)(f)(i) Our deblurring result 
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