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Abstract In this study, we investigated the problem of scheduling streaming applications on a heterogeneous cluster 

environment and, based on our previous work, developed the maximum throughput scheduler algorithm (MT-Scheduler) 

for streaming applications. The proposed algorithm uses a dynamic programming technique to efficiently map the 

application topology onto the heterogeneous distributed system based on computing and data transfer requirements, while 

also taking into account the capacity of the underlying cluster resources. The proposed approach maximizes the system 

throughput by identifying and minimizing the time incurred at the computing/transfer bottleneck. The MT-Scheduler 

supports scheduling applications structured as a directed acyclic graph (DAG). We conducted experiments using three 

Storm microbenchmark topologies in both simulation and real Apache Storm environments. In terms of the performance 

evaluation, we compared the proposed MT-Scheduler with the simulated round robin and the default Storm scheduler 

algorithms. The results indicated that the MT-Scheduler outperforms the default round robin approach in terms of both 

the average system latency and throughput. 
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1 Introduction 

At present, we live in the big data era, in which a variety of applications such as stock trading, banking systems, healthcare 

databases, IoT sensors, and social media networks [1] generate colossal amounts of real time data. Such distributed data 

stream processing systems (DDSPSs) usually compute unbounded streams of data in real time, and they are dynamic in 

terms of their resource capacities [4-5]. To realize such continuous data generation via streaming applications, the under-

lying distributed processing systems must perform prompt yet efficient management and analysis, especially in the case 

of heterogeneous systems [2-3]. One of the key objectives of scheduling streaming applications is to maximize the frame 

rate, which corresponds to the number of instances of the datasets that can be processed per unit time. To achieve this 

goal, the scheduling algorithm must consider the data locality, resource heterogeneity, communicational aspects, and 

computational latencies.  

Data locality and location awareness factors arise due to the high data transfer latency in cases in which the data sources 

often reside in distant DDSPSs, which can negatively impact the system performance [6]. Researchers have addressed 

and solved this problem by performing the computing as close as possible to the data source [7]. An efficient mapping 

strategy should thus constrain the significant data traffic onto the same machine or nearby machines to minimize the 

communication time and mitigate the data transferring latencies 

Furthermore, the presence of cluster heterogeneity in a distributed environment results in different capabilities for task 

execution and data transmission, because of which, the related scheduling algorithm pertains to an NP-complete problem 

[43-45]. Both heterogeneous DDSPSs and job applications can have a variety of resource capacities and task complexi-

ties, respectively [8]. Consequently, a scheduling approach that does not consider the aspects of resource heterogeneity 

and task complexity variation in communication and computation might impact the performance and reduce the system 

frame rate [9-12].  

In this work, we aim to minimize the bottleneck time for the transfer time and node computing time along the execution 

path to achieve the maximal frame rate for the streaming applications. The main contributions can be summarized as 

follows:  

I. We propose a maximum throughput scheduling algorithm named MT-Scheduler to maximize the system 

throughput by using dynamic programming. The maximization is performed by strategically assigning the task 

components to the appropriate nodes based on their computational and communicational requirements, based 

on our previous work [44]. The MT-Scheduler supports scheduling applications that are structured as a DAG, 

such as Amazon Timestream, Google Millwheel, Yahoo S4, and Twitter Heron [15-18], [47-49].  

II. We implement the MT-Scheduler algorithm in a simulation environment. The testing results show that the MT-

Scheduler can significantly improve the system throughput compared with the corresponding performance of 

the simulated round robin algorithm. 
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III. Furthermore, we implement the MT-Scheduler in Apache Storm 0.9.7 [19] with a cluster of 8 heterogeneous 

physical machines. For the evaluation, we test three well known microbenchmark topologies [26-28,38], specif-

ically, the linear, star, and diamond topologies. The results are compared with those for the default Apache Storm 

scheduler and an adaptive online scheduler [20]. The test results indicate that the MT-Scheduler outperforms 

both the schedulers in terms of the system latency and frame rate.  

IV. We propose a polynomial time heuristic solution to a known NP-complete problem [43-45] by utilizing the 

dynamic programming technique in our MT-Scheduler algorithm. 

V. The proposed scheduling algorithm covers the knowledge gap in the existing literature, corresponding to both 

the cluster and topology characteristics as scheduling parameters, in addition to transparently allowing the user 

to control the data locality aspect.  

The remaining paper is organized as follows. Section 2 provides a review of the related works. Section 3 presents the 

mathematical model for the system and the scheduling problem formulation. Section 4 describes the MT-Scheduler algo-

rithm. Sections 5 and 6 present the evaluation results obtained using the simulation and real environment experiments, 

respectively. Finally, Section 7 concludes the paper and discusses future work. 

2 Related Work 

Extensive research on scheduling strategies for distributed streaming processing systems has been performed [6, 13, 14, 

21-24]. Most of the proposed algorithms aimed to improve the system performance by reducing the time and cost incurred 

by scheduling. In Apache Storm [19], a simple round robin (RR) was used as the default scheduler [25]; however, a 

satisfactory performance was not ensured. In addition, several Storm scheduler algorithms have been proposed to opti-

mize the system performance.  

Aniello et al. [20] proposed two types of scheduling algorithms for Storm, namely, offline and online schedulers, using 

which, the tuple transfer latency between the components could be reduced. The offline scheduler identified the most 

connected components from the job DAG topology and mapped them to the same node. During runtime, the online 

scheduler monitored the tuple transfer latency and adjusted the mapping schema accordingly by using a best fit greedy 

approach to minimize the interslot and internode traffic. In this approach, each component task pair was examined sepa-

rately from the other topology components, likely resulting in two extensively communicating components being mapped 

to different nodes.  

Peng et al. [26] proposed an offline resource aware scheduler, namely, R-Storm, to achieve the maximum throughput and 

resource utilization within the user predetermined resource budget. This algorithm conducts topological sorting by using 

the breadth first search (BFS) principle to minimize the internode traffic latency. Later, the input information specified 

by the users regarding the resource constraints are passed as parameters to a quadratic multiple 3D knapsack problem. 

The R-Storm can outperform the default scheduler; however, the users are extensively involved in this process.  

Likewise, a traffic aware scheduler named T-Storm [27] was used to minimize the internode and interprocess traffic. This 

solution, in contrast to R-Storm, was transparent to users; however, the intercommunication between the tasks was ig-

nored.  

Cardellini et al. [29-30] and Nardelli et al. [31-32] performed task scheduling over geographically distributed heteroge-

neous clusters under the QoS constraints. The network aware scheduling algorithm proposed by these researchers mini-

mized the network traffic and improved the system efficiency in terms of the communication latency, cluster resource 

utilization, and application availability.   

Li et al. [33] proposed a scheduling strategy by implementing the dynamic topology adjustment for Apache Storm. The 

topology optimization enabled the identification of the performance bottlenecks by examining the bolt capacity and the 

incoming/outgoing tuple transfer queue.  

Zhang et al. [34] developed a latency aware edge computing platform built on Apache Storm. This approach could be 

used to minimize the end to end latency in the case of a heterogeneous network and node resources (GPUs and CPUs).  

Liu et al. [35] presented a heuristic scheduling algorithm for Apache Storm, in which the historical traffic latencies and 

task topology were used to predict the system performance. The tuple processing latency and tuple failure rate were 

reduced by identifying the overloaded node for task migration. However, this algorithm could only function in a homog-

enous cluster.  

Shukla and Simmhan [36] proposed a heuristic algorithm that used a model driven approach from the queueing theory 

for the resource allocation prediction and task mapping to maximize the throughput. The same task threads were allocated 

and scheduled in the same machine or adjacent nodes to reduce the intercommunication and achieve the peak data rate. 
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Kombi et al. introduced [37] a holistic approach (DABS-Storm) that adapted the task requirements by dynamically con-

trolling the resource usage as a latency aware load balancing strategy in stream processing systems.  

Eskandari et al. [38] presented an online scheduler based on the topology DAG partition as an extension to their P-

Scheduler [28]. The algorithm aimed to minimize the data transfer and maximize the resource utilization by considering 

the network and task characteristics. In addition, Liu et al. [39] proposed a dynamic resource aware scheduler named D-

Storm by using a greedy algorithm to solve the bin packing problem. 

Among the aforementioned scheduling strategies, most of the algorithms consider the topology structure, intercommuni-

cation traffic, or computing node load aspects. However, the heterogeneity in the task, network, and computer resources 

is not always considered. The proposed scheduling algorithm overcomes these limitations pertaining to the algorithms 

reported in the existing literature. Unlike the existing approaches, MT-Scheduler maximizes the throughput of a hetero-

geneous DDSPS by considering both the cluster and application characteristics as scheduling parameters. In addition, the 

algorithm identifies and minimizes the potential computational or communicational bottlenecks by utilizing the dynamic 

programming technique. Furthermore, the proposed algorithm allows the users to transparently select the sites and con-

figure the data locality configuration.  

3 Problem formulation  

3.1 Problem Definition  

As in our previous work [44], an underlying node cluster is modeled as a graph 𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑉𝒞, 𝐸𝒞), with |𝑉𝒞| =  𝓏, where 

𝑉𝒞 denotes a cluster set that consists of 𝓏 geographically distributed heterogeneous nodes (vertices) denoted as 𝓃𝒾 where 

𝒾 = 1,2, . . , 𝓏. Node 𝓃𝒾 has an attribute of a processing power 𝓅𝒾. |𝐸𝒞  | denotes the set of cluster network links (edges), 

where 𝓃𝒾 is connected to its neighbor node 𝓃𝒾𝑠𝑢𝑐𝑐 with a network link of bandwidth ℓ𝒾,𝒾𝑠𝑢𝑐𝑐. The transport network may 

or may not be a complete graph, depending on whether the node deployment environment is the Internet or a network in 

single or multiple distributed sites.  

An application in distributed data stream processing systems such as Apache Storm [19], Apache Flink [41], Apache 

Spark [42], S4 Platform [17], and Twitter Heron [18] can be represented as a (DAG). Let the topology be represented as 

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 = (𝑉𝒯𝒫 , 𝐸𝒯𝒫), where |𝑉𝒯𝒫| = 𝓀 is a set of 𝓀 components (vertices) 𝒸1, 𝒸2, … , 𝒸𝓀. Component 𝒸1 is the data 

source, namely, Spout, which reads data from an external source and transmits it as a data tuple to the successor applica-

tion components. 𝒸𝒿 , termed as 𝐵𝑜𝑙𝑡, where 𝒿 = 2, 3, . . . , 𝓀, performs a computational task of complexity 𝓍𝒿 on the in-

coming data sized 𝓂𝒿−1, sent from its preceding task 𝒸𝒿−1. The computational components process the data tuples re-

ceived from either a source or another computational component before transmitting the processed stream to another 

component. |𝐸𝒯| denotes a set of links (edges) that represents the dependency of the topological components and data 

transfer.  

Based on the user preferences, all the cluster nodes 𝓃𝒾 and topological components 𝒸𝒿 are divided into geographical site 

tags 𝒮𝑡𝑎𝑔, 𝑡𝑎𝑔 ∊ [1, 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙], where 𝑡𝑎𝑔 = 1,2, . . 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙 . After configuring the metadata, each cluster node 𝓃𝒾 and 

component 𝒸𝒿 are tagged with a metadata 𝒮𝑡𝑎𝑔. For 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙  of unique metadata 𝒮𝑡𝑎𝑔 ID, 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙  number of groups 

exist, specifically, 𝒮1, 𝒮2, . . , 𝒮𝑡𝑜𝑡𝑎𝑙. Each group 𝒮𝑡𝑎𝑔 consists of 𝒶 user predetermined tasks and 𝒷 nodes with the same 

metadata value 𝒮𝑡𝑎𝑔 = [𝒸𝜃1 , 𝒸𝜃2 , . . , 𝒸𝜃𝑎 , 𝓃𝜃1 , 𝓃𝜃2 , . . , 𝓃𝜃𝒷], where ∅ ∈ 𝑡𝑎𝑔.  
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Fig. 1 shows one of the possible undesirable scenarios that can be caused by implementing the round robin algorithm. 

The application has different components to be mapped to a heterogeneous cluster. Due to the even distribution strategy, 

the RR scheduler may assign C2, which is a CPU intensive task component to machine N1, although other machines with 

a higher processing power are available. Furthermore, assigning an I/O intensive task between C4 and C5 to nodes from 

different sites (N3 and N4) might incur a larger networking delay.  

3.2 Objective Function 

Based on our previous work [44], the system performance optimization and throughput rate maximization can be realized 

by identifying and minimizing the potential performance bottleneck, in terms of both the computational and communi-

cational latencies.  

The computational task complexity 𝓍𝒿 is a parameter that determines the CPU bound jobs and the associated computa-

tional logic complexity as a data operator. Correspondingly, this parameter helps indicate the processing power necessary 

to compute a function of a task 𝒸𝒿 for its incoming data sized 𝓂𝒿−1. The output data with a size of 𝓂𝒿+1 is in turn 

transferred to the incoming message queue of its succeeding component 𝒸𝒿+1 for further processing. The processing 

power of a node 𝓃𝒾 in a heterogeneous cluster 𝓅𝒾 represents the assigned executors’ capability for processing 𝓃𝒾. There-

fore, we can estimate the average computing time 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒 for task 𝒸𝒿 on a node 𝓃𝒾 as follows: 

𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝓃𝒾, 𝒸𝒿) =
𝒸𝒿(𝓍 (𝓂𝒿−1))

𝓃𝒾(𝓅) 
    (1) 

The estimated computing time 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝒸𝒿, 𝓃𝒾) is the average time required to compute a task 𝒸𝒿 with a computational 

complexity of 𝓍𝒿 for tuple data sized 𝓂𝒿−1, which is executed on a supervisor node 𝓃𝒾 with an executor of processing 

power 𝓅𝒾, to produce a fully processed data unit. Practically, in the Storm environment, this time refers to the time period 

that starts as soon as the Storm _execute() method is called, which executes the required job of the task, and ends when 

the tuple is fully processed and ready to be transferred to the next subscribed components. In a heterogeneous cluster, the 

execution latency varies from high, as a potential bottleneck, to low. This latency depends on the task complexity and its 

tuple size, as well as the assigned executor processing power. 

In DDSPSs, the tasks are communicated through the transfer of messages over the underlying network links. ℓ𝒾,𝒾𝑠𝑢𝑐𝑐  

denotes the bandwidth of the transferring link that transfers a data tuple of size 𝓂𝒿 between node 𝓃𝒾 and its successor 

node  𝓃𝒾𝑠𝑢𝑐𝑐 .  

We can compute the estimated average transfer time 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟  as 

𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟(ℓ𝒾,𝒾𝑠𝑢𝑐𝑐 ,𝓂𝒿) =
𝓂𝒿

ℓ𝒾,𝒾𝑠𝑢𝑐𝑐
 (2) 

The estimated tuple transfer latency 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟  is the average time to transfer an already processed tuple from the outgoing 

buffer of one component to its successor incoming queue.  

The proposed mapping scheme divides the cluster nodes 𝓃𝒾 and topological components 𝒸𝒿 into user defined geographical 

site tags 𝒮𝑡𝑎𝑔. Next, for each 𝒮𝑡𝑎𝑔, a group of 𝒶 components and 𝒷 nodes are used to combine the topological components 

into 𝓆 groups of tasks denoted by 𝑔1, 𝑔1, … , 𝑔𝑞 . These tasks are mapped onto a selected network path P of 𝓆 supervisors 

Figure 1 Default Storm scheduler that does not take into account the data locality or performance bottleneck. 



5 

 

within the 𝒮𝑡𝑎𝑔 from 𝓃𝓈 to 𝓃𝑑  in the Storm cluster network, where 𝓃𝓈 , 𝓃𝑑 ∊ |𝑉𝒞| and 𝓆 ∊  (𝑚𝑖𝑛(𝓀, 𝓏),𝑚𝑖𝑛(𝒶, 𝒷)). The 

potential scheduling path P consists of a series of nodes, which are not necessarily distinct supervisors, based on the 

metadata configuration. The bottleneck time for each site tag 𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔] is the maximum required time by the dis-

tributed data stream processing system to compute and transfer a data unit (fully processed) by a time unit. The objective 

function of identifying and minimizing the bottleneck 𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔] can be defined as in equation (3):  

𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔](Path 𝑃 of 𝓆 nodes) 

= 𝑚𝑎𝑥
𝑃𝑎𝑡ℎ 𝑃 𝑜𝑓 𝓆 𝑛𝑜𝑑𝑒𝑠 

𝒾=1,2,…,𝓆

{
𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒(ℊ𝑖),

 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟 (ℓ𝑃[𝑖],𝑃[𝑖𝑠𝑢𝑐𝑐])  
} 

= 𝑚𝑎𝑥
𝑃𝑎𝑡ℎ 𝑃 𝑜𝑓 𝓆 𝑛𝑜𝑑𝑒𝑠 

𝒾=1,2,…,𝓆

{

1

𝓅𝑃[𝓆]
∑ (𝓍𝒿(𝓂𝒿−1))𝒿∊ℊ𝒾 ,𝒿≥2

,

𝓂(ℊ𝒾)

ℓ𝑃[𝑖],𝑃[𝑖𝑠𝑢𝑐𝑐] 

} (3) 

4 Proposed MT-Scheduler 

Achieving an optimal solution to the considered scheduling problem by maximizing the tuple processing rate can be 

difficult and computationally infeasible; thus, a simple yet effective algorithm is required. The scheduling of DAG jobs 

in a distributed stream processing system with different job requirements corresponds to an NP-complete problem [43-

45]. Thus, we propose a high throughput scheduler for distributed data stream processing systems, based on our previous 

work [44]. The MT-Scheduler algorithm, considers, in addition to metadata groups, the topology job and node attributes, 

including the computational complexity, data size, node processing power, and link transfer bandwidth. The proposed 

algorithm achieves the maximum tuple processing rate by utilizing a dynamic programming technique for job mapping, 

which recursively minimizes the time incurred on the bottleneck and provides a polynomial time solution. The maximal 

frame rate that a system can achieve is limited by the slowest element (bottleneck) in the transport link or computing 

node along the cluster. This work proposes two algorithms, namely, Algorithm 1 (mapper), which is the main algorithm, 

and Algorithm 2, which is the MT-Scheduler (for linear critical path mapping).  

The mapper algorithm, expressed as Algorithm 1, inputs the data details for the submitted topology (ID, Name, Submitted 

user) and the underlying cluster (nodes, worker slots, and executors). First, the directed acyclic graph topology is linear-

ized by implementing a topological sorting process. Next, the critical path is identified by using the well-known polyno-

mial Longest path algorithm (LP). The linear critical path represents the most time consuming sequence of topological 

components that the system must implement sequentially. Please note that we assume a homogenous network when iden-

tifying the critical path using this method. Although this case is not realistic, we adopt this assumption for simplification. 

Next, the mapper algorithm calls Algorithm 2 to determine the mapping schema for the topological components in the 

critical path 𝒞𝒫. The topological components not on the critical path 𝒞𝒫 are mapped using a simple layer oriented greedy 

method. We apply a topological sort to order the non-𝒞𝒫 components into layers and sort these components in a descend-

ing order based on the 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒 and 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟 . The components that require more computations and communications are 

assigned higher priorities. Subsequently, we map the components linearly layer by layer; the component with a higher 

priority is mapped to a node with higher resources. In the Storm cluster, two types of nodes exist: The master, which runs 

a daemon named Nimbus, and worker nodes that run a daemon named Supervisor. Nimbus periodically calls the scheduler 

to update the mapping process. The mapper algorithm verifies the topology scheduling if required, to avoid repetitive 

scheduling implementation and system overloading. Finally, the mapper algorithm utilizes the pluggable scheduler fea-

ture in Storm, and,  
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via the Nimbus node, implements the final mapping schema by assigning all the critical and noncritical path components 

for the submitted topology 𝒯𝒫 to the underlying 𝐶𝑙𝑢𝑠𝑡𝑒𝑟. 

In Algorithm 2, the input for the MT-Scheduler is the underlying cluster data details along with the critical path list and 

𝑀𝑒𝑡𝑎𝐾𝑒𝑦𝑠{𝑆𝑡𝑎𝑔} as the user defined data list of the site ID/tag. First, the algorithm generates Tags_Pairs, which is a list 

of critical path pairs, with each pair consisting of a node and a task belonging to the critical path set {(𝑛𝑜𝑑𝑒, 𝑡𝑎𝑠𝑘) ∈ 𝒞𝒫}. 
Through the dynamic programming technique, the MT-Scheduler recursively chooses a critical topology path based on 

the previous round of calculation. At each step of the recursion, the algorithm maps the partial components pipeline to 

the underlying network nodes and calculates the new potential mapping cost. 

The recursion process in the MT-Scheduler algorithm continues until the mapping results converge to a mapping scheme 

that achieves the objective and minimizes the system bottleneck for the critical path components in the submitted appli-

cation.  

Equation (4) presents the recursion based on dynamic programming, which leads to a potential mapping for the critical 

path components in the MT-Scheduler algorithm. Let 1/𝒫𝑚𝑎𝑝𝑗(𝓃𝒾) denote the maximal tuple rate with the first j topology 

components mapped to a path from a source node 𝓃𝑠 to a node 𝓃𝒾 in an arbitrary computer network. Let SJ (𝓃𝒾) represent 

the sum of the tuple sizes of all the components on a node 𝓃𝒾 with the first j tasks mapped from node 𝓃𝑠 to 𝓃𝒾 in metadata 

group 𝒮𝑡𝑎𝑔. Consequently,  

𝒫𝑚𝑎𝑝𝑗(𝓃𝑖)[𝒮𝑡𝑎𝑔]
𝑗=1 𝑡𝑜 𝓀,   𝓃𝑖∈𝑉,   𝑡𝑎𝑔=1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙

= 𝑚𝑖𝑛

{
 
 
 

 
 
 𝑚𝑎𝑥 (

𝒫𝑚𝑎𝑝 j-1(𝓃𝒾),

 𝒯𝑐𝑜𝑚𝑝𝑢𝑡(𝓍𝒿+1(S j-1(𝓃𝒾) + (𝓂𝒿)), 𝓅𝓃𝒾)
)

𝑚𝑖𝑛
𝑢∈𝑎𝑑𝑗(𝓃𝒾)

  

(

 
 
𝑚𝑎𝑥 (

𝒫𝑚𝑎𝑝 j-1(𝑢),

 𝒯𝑐𝑜𝑚𝑝𝑢𝑡(𝓍𝒿+1(𝓂𝒿), 𝓅𝓃𝒾),

𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟( 𝓂𝒿, ℓ𝓊,𝓃𝒾  )

)

)

 
 

}
 
 
 

 
 
 

 

 

Algorithm 1 Mapper implements IScheduler interface in Storm Nimbus.  

Input: 𝒯𝒫 as the submitted task topology  

            𝐶𝑙𝑢𝑠𝑡𝑒𝑟 as the  underlying 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_Details (supervisors 𝑛, workerslots 𝓌, executors ℯ𝓍), 

Output: Implement final scheduling schema  
 

𝒯𝒫 ←  TopologyDetails.get();  

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← SupervisorDetails.get(); 

Critical Path  𝒞𝒫 ← Extract Critical Path ( 𝒯𝒫) ; 

CP_HashMapping ←MT-Scheduler (Critical Path  𝒞𝒫, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟); 
NCP_HashMapping ←Map noncritical path tasks using layer based greedy algorithm;   

Final_ HashMapping ← Join ( CP_HashMapping,  NCP_HashMapping) 

       if (𝒯𝒫 needs_Scheduling ==True) then        

         get 𝒯𝒫 ’s tasks as (𝑐 );  
             for each 𝑐𝒾 in Final_ HashMapping do     // Assign all tasks to supervisor workers and executers in the mapped node 

                 find corresponding 𝑛 in Final_ HashMapping  

                 if ((supervisor workers  𝑛.𝓌 ≠ 𝑁𝑢𝑙𝑙 ) AND  

                          (supervisor executers  𝑛. ℯ𝓍 ≠ 𝑁𝑢𝑙𝑙) then  

                      Cluster.Assign (𝑐𝒾 , 𝑛); 
                 end if 

            end for 

         end if  
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= 𝑚𝑖𝑛

{
 
 
 
 

 
 
 
 

𝑚𝑎𝑥 (

𝒫𝑚𝑎𝑝 j-1(𝓃𝒾),

(S 
j-1(𝓃𝒾)+ 𝓍𝒿+1(𝓂𝒿))

𝓅𝓃𝒾

)

𝑚𝑖𝑛
𝑢∈𝑎𝑑𝑗(𝓃𝒾)

   

(

  
 
𝑚𝑎𝑥

(

 
 

𝒫𝑚𝑎𝑝 j-1(𝑢),
( 𝓍𝒿+1(𝓂𝒿))

𝓅𝓃𝒾
,

 𝓂𝒿

ℓ𝓊,𝓃𝒾 )

 
 

)

  
 

}
 
 
 
 

 
 
 
 

            (4) 

with the base conditions computed as  

𝒫𝑚𝑎𝑝1(𝓃𝑖)
 𝓃𝑖∈𝑉 𝑎𝑛𝑑 𝓃𝑖≠𝓃𝑠

= {
𝑚𝑎𝑥 (

𝓍2 (𝓂1)

𝓅𝓃𝒾
,
𝓂1

ℓ𝓃𝑠,𝓃𝒾
 )  ∀𝑒𝓃𝑠,𝓃𝒾 ∈ 𝐸 

+∞                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

and 𝒫𝑚𝑎𝑝𝓉(𝓃𝑠) = ∑ (𝓉
𝑖=1  𝓍𝒾+1 𝓂𝒾/𝓅𝑠) 𝑤ℎ𝑒𝑟𝑒 𝓉=1, 2,..,𝓀 

Every link, node, or task is a potential bottleneck and needs to be checked. The recursive dynamic programming process 

expressed in Equation 4 generates a 2D matrix [44]. As shown in Algorithm 2, after calculating the recursion base con-

ditions, at each step of the recursion process, the bottleneck times are calculated for all potential mapping schemas, and 

the minimum time is selected to achieve the maximum frame rate.  

In a deployment over multiple sites, it may be essential to allow users to assign a particular topology component to a 

specific supervisor located at a specific site. However, Storm users, by using the default scheduler, cannot predict the 

mapping of the topological components in the Storm cluster. The MT-Scheduler allows the users to configure and regulate 

Algorithm 2 MT-Scheduler (Critical Path) 

Input: Critical path, Cluster (𝑉𝒞, 𝐸𝒞),  𝑀𝑒𝑡𝑎𝐾𝑒𝑦𝑠{𝑆𝑡𝑎𝑔} as the user defined list of site ID/tag  

Output: MTPR_HashMapping< 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝒸 , 𝑛𝑜𝑑𝑒 𝓃 >  //Scheduling mapping schema  

               between node and task component 
 

Generate Tags_Pairsstag (𝒸, 𝓃);                                                 //by pairing 𝒸, 𝓃 with the same site tag (Stag) 

for each 𝑣𝑖 ∈ 𝑉𝒞 with only 𝒸 1 do                                             //Initialize the 2D matrix and calculate the base condition             

      if ℯ1,𝑖  ∈  𝐸𝒞 then   

          𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡𝑟𝑖𝑥[𝒾,1] ← Calculate 𝒫𝑚𝑎𝑝1(𝓃𝑖); 

       else  𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡𝑟𝑖𝑥[𝒾,1] = +∞ ;     

       end if                                                   

end for  

for each 𝒮𝑡𝑎𝑔 ∈ 𝑀𝑒𝑡𝑎𝐾𝑒𝑦𝑠 do 

      for each 𝒸 ∈ Tags_Pairsstag do  

            for each 𝓃 ∈  𝑇𝑎𝑔𝑠_𝑃𝑎𝑖𝑟𝑠stag do  

                  if  𝒸𝒿−1 
 mapped to 𝓃𝒾  then                                     //case I 

                       Map 𝒸𝒿 to supervisor 𝓃𝒾 ; 

                       𝐵𝑇1 ← Calculate 𝒫𝑚𝑎𝑝𝒿(𝓃𝑖);                          //case II  

                       for each ad j(𝓃𝒾) directly connected to 𝓃𝒾 do                     

                             Map task 𝒸𝒿 to 𝓃𝒾; 

                              𝐵𝑇𝑎𝑑 𝑗(𝓃𝒾)  ← Calculate 𝒫𝑚𝑎𝑝𝒿(𝑎𝑑𝑗(𝓃𝑖)); 

                        end for  

                  end if 

            𝐵𝑇2 ← 𝑚𝑖𝑛(𝐵𝑇𝑎𝑑 𝑗(𝓃𝒾) );                            

            𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡𝑟𝑖𝑥[𝒾,𝒿] ← 𝑚𝑖𝑛(𝐵𝑇1, 𝐵𝑇2);                    //choose minimum BT among 2 cases 

            end for                                            

      end for  

      MTPR_HashMapping ← MTPR_HashMapping (𝒸𝒿𝑡𝑎𝑔 , 𝓃𝒾𝑡𝑎𝑔).𝑎𝑑𝑑; 

end for  

return MTPR_HashMapping.  
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the data locality aspects by utilizing the metadata configurations of the Storm nodes to execute tasks as close to the data 

as possible, which leads to the minimization of the transfer cost. In Apache Storm, the users can transparently establish 

the metadata configuration by setting the supervisor.scheduler.meta Storm field in each supervisor’s configuration file to 

specify the custom site tags. After tagging the supervisors, the users can tag the components accordingly to ensure that 

the scheduler can correctly associate the spouts/bolts with the supervisors. The Storm method addConfiguration processes 

the tagging configuration to allow the user to build the topology stage. The metadata for each supervisor can be obtained 

by calling the Storm method getSchedulerMeta, which returns the metadata in key-value pairs. By default, if no site 

configuration is specified the user, MT-Scheduler considers all the tasks and nodes tagged as one single group.  

In Fig. 2, each cell 𝒫𝑚𝑎𝑝𝑗(𝓃𝑖) in the matrix represents a partial mapping solution that maps the first j tasks to a path 

between 𝓃𝑠 and 𝓃𝒾 , where both nodes have the same 𝒮𝑡𝑎𝑔. Each iteration step involves the calculation of the bottleneck 

value to fill in a new cell 𝒫𝑚𝑎𝑝𝑗−1(𝓃𝑖) and add new tasks to the partial scheduling schema.  

In the 2D matrix process, we consider two subcases, the minimum value of which is chosen as the minimum 

𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔]. These cases can be described as follows. Case I: The new task is mapped to the same node that has 

executed the previous task. We directly place component 𝒸𝒿 at supervisor 𝓃𝑖, at which the last task 𝒸𝒿−1 was executed in 

the previous mapping subproblem 𝒫𝑚𝑎𝑝𝑗−1(𝓃𝑖). In other words, the last two or more components are scheduled to the 

same node 𝓃𝑖 to minimize the internode communication latency. Therefore, we 

 only need to add the computing time 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒 of 𝒸𝒿 on node 𝓃𝑖 to the 𝒫𝑚𝑎𝑝𝑗−1(𝓃𝑖) time.  

Case II: The new task is mapped to one of the neighbor nodes 𝓃𝓊, where 𝓃𝓊 ∈ 𝑎𝑑𝑗(𝓃𝒾) and has a direct link to 𝓃𝒾, 
which is represented by a dotted line from a neighbor shaded cell on the left column to the supervisor 𝓃𝑖. We recursively 

calculate 𝒯𝑏𝑜𝑡𝑡𝑒𝑙𝑛𝑒𝑐𝑘  for all possible mappings to 𝓃𝓊 nodes and choose the minimal value. This minimal value is further 

compared with the value calculated in Case 1. The minimum of these two values is selected as the minimum 𝒯𝑏𝑜𝑡𝑡𝑒𝑙𝑛𝑒𝑐𝑘  

for the partial mapping to a path between 𝓃𝑠 and 𝓃𝒾 with the same 𝒮𝑡𝑎𝑔. 

For further clarification, we explain both the cases in the presented scheduling scenario in the matrix shown in Fig. 2. 

For scheduling the component 𝒸y, the MT-Scheduler algorithm first calculates the bottleneck time if the component is 

assigned to the same node to which the previous component was mapped, and in this scenario, if the node is 𝓃𝑓, the case 

corresponds to Case I. Second, each bottleneck time is calculated if the component is assigned to one of the adja-

cent/neighbor nodes (shaded cells); in this scenario, the nodes are adj1, adj2 and adj3 (nodes 𝓃𝑒, 𝓃𝑔 𝑎𝑛𝑑 𝓃𝑏 respec-

tively), which correspond to Case II. Finally, the MT algorithm chooses the minimum bottleneck time and assigns the 

task to the correspondent node, namely, 𝓃𝑓 . Another example, as shown in Fig. 2, corresponds to the scheduling of the 

last component 𝒸𝒶.  

In contrast to in the previous example, instead of assigning this task to the same node executing the previous task (𝓃𝑔), 

the algorithm chooses to assign this task to one of the 𝓃𝑔 adjacent nodes adj1 and adj2 (nodes 𝓃𝑒  𝑎𝑛𝑑 𝓃𝑏, respectively) 

as in Case II. The MT algorithm calculates the minimum bottleneck time achieved when assigning task 𝒸𝒶 to the adjacent 

node (𝓃𝑏). 

Fig. 3 shows the architecture and dataflow of the proposed scheduler. The MT-Scheduler algorithm inputs the user defined 

list of site tags to generate a Tags_Pairs list from the Storm metadata configurations. Next, according to the input critical 

path topological components and cluster characteristic data, the MT-Scheduler algorithm uses the dynamic programming 
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Figure 2 MT dynamic programming and 2D matrix construction [44]  
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to generate MTPRHashMapping < node, component > for the critical path topological components. The main mapper 

algorithm builds the final mapping schema by calling the MT-Scheduler for the critical path components and integrates 

the components with the mapping schema for the noncritical path components. Finally, the pluggable scheduler feature 

in Storm is utilized to implement the final mapping schema via Nimbus over the underlying cluster.    

The MT-Scheduler, as shown in Fig. 4, solves the performance bottleneck problem arising in the default scheduler shown 

in Fig. 1. The proposed algorithm can minimize the computational bottlenecks by assigning C2 to node N3 with sufficient 

processing power and allowing the user to assign a GPU node N4 in Site 2 to execute the GPU required tasks of C3. 

Furthermore, the algorithm minimizes the communicational bottlenecks by assigning both C4 and C5 to nodes located at 

the same site to minimize the internode transfer latency. 

5 Simulation Results 

 The proposed MT-Scheduler is implemented in a simulation program, as described in our previous work [46] by using 

C++, and it runs on a Windows 10 machine featuring Intel(R) Core (TM) i7-8565U CPU @ 1.80 GHz, RAM 16 GB and 

SATA disk of 1 TB. For comparison, we implement the RR default algorithm as the Storm default scheduler in C++. 

Three microbenchmark topologies, namely, linear, diamond, and star topologies, are randomly generated with various 

computing complexities and data transfer sizes. 

We conduct a simple experiment to illustrate the influence of the task parameters on the scheduling decision and perfor-

mance. Scenario 1, which involves a task with low computing and networking load, and scenario 2, which involves a task 

with high computing and transfer load, are tested on a cluster of 8 nodes. As shown in Fig. 5, scenario 1, which has lower 

loads, generally achieves a higher system performance compared to that in scenario 2, which has higher loads. The highest 

frame rates in scenario 1, as obtained using the default RR and MT-Scheduler, are 35 and 45 frames per second, respec-

tively. In contrast, in scenario 2, the highest frame rates, as obtained using the default RR and MT-Scheduler, are 39 and 

60 frames per second, respectively. The proposed MT-Scheduler algorithm scales better than the RR. Furthermore, we 

test the system throughput performance when the underlying cluster size scales up. The same three task topologies are 

Figure 4 MT-Scheduler minimizes the system performance           

                bottlenecks 

 

Figure 3 Architecture and dataflow of the MT-

Scheduler 

Figure 5 Impact of the computational complexity and data transfer 

rate in a distributed heterogeneous cluster scheduling 
Figure 6 Simulated system average throughput, scalability and 

throughput improvement percentage 
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used, as shown in Fig. 6 in three different colors, and the number of cluster nodes ranges from 4 to 200, as shown in the 

x axis. Fig. 6 demonstrates that the MT-Scheduler, as indicated by the height bars, maintains higher frame rates than those 

obtained using the default RR, which are represented as connected curves as the cluster scales up. Out of the three linear, 

diamond and star topologies, the star topology scales the best.   

6 Real Storm Environmental Results  

 In addition, we conduct experiments using an Apache Storm cluster of 8 physical machines having hardware configura-

tions as presented in Table 1.  

Each machine runs Storm 0.9.7 on top of Ubuntu 10.4 with Java JDK 8u221, ZooKeeper 3.3.6, Zeromq 4.1.3, and the 

Java binding JZMQ in addition to other required Storm dependent libraries. A heterogeneous Storm cluster has one node 

running Nimbus daemon and ZooKeeper [47] with a relatively high storage capacity for log saving purposes. The other 

worker machines run supervisor daemon, each of which has a specific number of worker processes. Each worker process 

executes a subset of the topology, and each supervisor node has worker processes equal to the node’s CPU cores. 

We collect all the test results regarding the throughput and latency data from the Storm user interface (UI daemon). It is 

worth mentioning that the Storm system does not plot all the results and instead samples only 0.05% out of the total 

transactions to avoid overburdening the system. However, this aspect does not affect the average throughput because we 

run the test for 600 s, which represents adequate time for system stabilization and collecting sufficient samples to calculate 

the average throughput rates. In all the tests, the proposed algorithm assumes that a user preference exists in terms of the 

site location, and the cluster is distributed over at least two sites. 

For our evaluation, the throughput of the overall topology (processed tuples per unit time) is limited by the performance 

bottleneck identified and minimized using the MT-Scheduler algorithm. 

We use three commonly used microbenchmarks [26-28,38], namely, linear, diamond, and star topologies from [25], as 

shown in Fig. 7. The linear topology, as shown in Fig. 7(a), is the simplest structure and consists of 6 linear components. 

The diamond topology, as shown in Fig 7(b), includes five components, in which the spout feeds the middle three com-

ponents, and the last bolt receives all the outgoing data. The star application, as shown in Fig. 7(c), is a multiple spout 

topology that transmits data tuples to the central bolt, which in turn transfers its processed tuples to the remaining com-

ponents. For comparison, we evaluate our MT-Scheduler against the RR default scheduler and the state of the art adaptive 

scheduler [20].  

The main goal of the proposed algorithm is to minimize the computational/communicational bottleneck time to achieve 

the maximum system throughput. Fig. 8 shows that the proposed algorithm outperforms both the default RR and the 

Table 1 Experimental Cluster Specification 

Cluster Role (Intel(R)Core(TM))  CPU-Memory-Storage 

Nimbus and ZooKeeper i7-2600 3.40 GHz                    16 GB - 2 TB 

Supervisor 1 i7-2600 3.40 GHz                    16 GB - 500 GB  

Supervisor 2 i7-8565U 1.80 GHz                 16 GB - 1 TB  

Supervisor 3 i5-2400 3.10 GHz                     10 GB - 500 GB 

Supervisor 4 i5-2400 2.4 GHz                       10 GB - 500 GB 

Supervisor 5 i3-4030U 1.90 GHz                 8 GB - 1 TB 

Supervisor 6 i3-2330M 2.20 GHz                8 GB - 500 GB 

Supervisor 7 Core 2 Duo E8600 3.33 GHz  8 GB - 1 TB 
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Figure 7. Test Topologies 
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adaptive scheduler in terms of the latency (the elapsed time to ack a tuple after it is transmitted) under all the three 

topologies. Similarly, the average system throughput of the MT-Scheduler is higher than that of both the algorithms under 

all the three topologies, as shown in Fig. 9. The star topology, which has a complicated dependency structure, achieves 

the best performance, compared with the linear and diamond topologies.  

7 Conclusions and Future Work 

The proposed MT-Scheduler algorithm aims to maximize the system throughput for streaming applications in a Storm 

environment. The simulation evaluation results show the impact of the task complexity and data transfer rates on the 

scheduling performance. The proposed MT-Scheduler demonstrates satisfactory performance scalability when the cluster 

size scales up. Furthermore, we implement the MT-Scheduler in Apache Storm and use three microbenchmarks streaming 

topologies for testing and evaluation. The experimental results show that the MT-Scheduler outperforms both the default 

Storm RR scheduler and the adaptive scheduler. Compared with the default RR Storm scheduler, the MT-Scheduler re-

duces the system latencies by 28–46% and increases the throughput by 17–54%. We plan to implement the proposed MT-

Scheduler in Apache Heron and test it on larger streaming applications in the Cloud environment. Furthermore, we intend 

to investigate the use of deep learning algorithms for dynamic workload balancing. 
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