
1

The final publication is available at https://link.springer.com/article/10.1007/s11227-020-03223-z

The Journal of Supercomputing

Job Scheduler for Streaming Applications in Heterogeneous Distributed
Processing Systems

Ali Al-Sinayyid and Michelle Zhu

Abstract In this study, we investigated the problem of scheduling streaming applications on a heterogeneous cluster

environment and, based on our previous work, developed the maximum throughput scheduler algorithm (MT-Scheduler)

for streaming applications. The proposed algorithm uses a dynamic programming technique to efficiently map the

application topology onto the heterogeneous distributed system based on computing and data transfer requirements, while

also taking into account the capacity of the underlying cluster resources. The proposed approach maximizes the system

throughput by identifying and minimizing the time incurred at the computing/transfer bottleneck. The MT-Scheduler

supports scheduling applications structured as a directed acyclic graph (DAG). We conducted experiments using three

Storm microbenchmark topologies in both simulation and real Apache Storm environments. In terms of the performance

evaluation, we compared the proposed MT-Scheduler with the simulated round robin and the default Storm scheduler

algorithms. The results indicated that the MT-Scheduler outperforms the default round robin approach in terms of both

the average system latency and throughput.

Keywords Apache Storm, DataStream, Distributed systems, Heterogeneous scheduling, DAG scheduling

1 Introduction

At present, we live in the big data era, in which a variety of applications such as stock trading, banking systems, healthcare

databases, IoT sensors, and social media networks [1] generate colossal amounts of real time data. Such distributed data

stream processing systems (DDSPSs) usually compute unbounded streams of data in real time, and they are dynamic in

terms of their resource capacities [4-5]. To realize such continuous data generation via streaming applications, the under-

lying distributed processing systems must perform prompt yet efficient management and analysis, especially in the case

of heterogeneous systems [2-3]. One of the key objectives of scheduling streaming applications is to maximize the frame

rate, which corresponds to the number of instances of the datasets that can be processed per unit time. To achieve this

goal, the scheduling algorithm must consider the data locality, resource heterogeneity, communicational aspects, and

computational latencies.

Data locality and location awareness factors arise due to the high data transfer latency in cases in which the data sources

often reside in distant DDSPSs, which can negatively impact the system performance [6]. Researchers have addressed

and solved this problem by performing the computing as close as possible to the data source [7]. An efficient mapping

strategy should thus constrain the significant data traffic onto the same machine or nearby machines to minimize the

communication time and mitigate the data transferring latencies

Furthermore, the presence of cluster heterogeneity in a distributed environment results in different capabilities for task

execution and data transmission, because of which, the related scheduling algorithm pertains to an NP-complete problem

[43-45]. Both heterogeneous DDSPSs and job applications can have a variety of resource capacities and task complexi-

ties, respectively [8]. Consequently, a scheduling approach that does not consider the aspects of resource heterogeneity

and task complexity variation in communication and computation might impact the performance and reduce the system

frame rate [9-12].

In this work, we aim to minimize the bottleneck time for the transfer time and node computing time along the execution

path to achieve the maximal frame rate for the streaming applications. The main contributions can be summarized as

follows:

I. We propose a maximum throughput scheduling algorithm named MT-Scheduler to maximize the system

throughput by using dynamic programming. The maximization is performed by strategically assigning the task

components to the appropriate nodes based on their computational and communicational requirements, based

on our previous work [44]. The MT-Scheduler supports scheduling applications that are structured as a DAG,

such as Amazon Timestream, Google Millwheel, Yahoo S4, and Twitter Heron [15-18], [47-49].

II. We implement the MT-Scheduler algorithm in a simulation environment. The testing results show that the MT-

Scheduler can significantly improve the system throughput compared with the corresponding performance of

the simulated round robin algorithm.

2

III. Furthermore, we implement the MT-Scheduler in Apache Storm 0.9.7 [19] with a cluster of 8 heterogeneous

physical machines. For the evaluation, we test three well known microbenchmark topologies [26-28,38], specif-

ically, the linear, star, and diamond topologies. The results are compared with those for the default Apache Storm

scheduler and an adaptive online scheduler [20]. The test results indicate that the MT-Scheduler outperforms

both the schedulers in terms of the system latency and frame rate.

IV. We propose a polynomial time heuristic solution to a known NP-complete problem [43-45] by utilizing the

dynamic programming technique in our MT-Scheduler algorithm.

V. The proposed scheduling algorithm covers the knowledge gap in the existing literature, corresponding to both

the cluster and topology characteristics as scheduling parameters, in addition to transparently allowing the user

to control the data locality aspect.

The remaining paper is organized as follows. Section 2 provides a review of the related works. Section 3 presents the

mathematical model for the system and the scheduling problem formulation. Section 4 describes the MT-Scheduler algo-

rithm. Sections 5 and 6 present the evaluation results obtained using the simulation and real environment experiments,

respectively. Finally, Section 7 concludes the paper and discusses future work.

2 Related Work

Extensive research on scheduling strategies for distributed streaming processing systems has been performed [6, 13, 14,

21-24]. Most of the proposed algorithms aimed to improve the system performance by reducing the time and cost incurred

by scheduling. In Apache Storm [19], a simple round robin (RR) was used as the default scheduler [25]; however, a

satisfactory performance was not ensured. In addition, several Storm scheduler algorithms have been proposed to opti-

mize the system performance.

Aniello et al. [20] proposed two types of scheduling algorithms for Storm, namely, offline and online schedulers, using

which, the tuple transfer latency between the components could be reduced. The offline scheduler identified the most

connected components from the job DAG topology and mapped them to the same node. During runtime, the online

scheduler monitored the tuple transfer latency and adjusted the mapping schema accordingly by using a best fit greedy

approach to minimize the interslot and internode traffic. In this approach, each component task pair was examined sepa-

rately from the other topology components, likely resulting in two extensively communicating components being mapped

to different nodes.

Peng et al. [26] proposed an offline resource aware scheduler, namely, R-Storm, to achieve the maximum throughput and

resource utilization within the user predetermined resource budget. This algorithm conducts topological sorting by using

the breadth first search (BFS) principle to minimize the internode traffic latency. Later, the input information specified

by the users regarding the resource constraints are passed as parameters to a quadratic multiple 3D knapsack problem.

The R-Storm can outperform the default scheduler; however, the users are extensively involved in this process.

Likewise, a traffic aware scheduler named T-Storm [27] was used to minimize the internode and interprocess traffic. This

solution, in contrast to R-Storm, was transparent to users; however, the intercommunication between the tasks was ig-

nored.

Cardellini et al. [29-30] and Nardelli et al. [31-32] performed task scheduling over geographically distributed heteroge-

neous clusters under the QoS constraints. The network aware scheduling algorithm proposed by these researchers mini-

mized the network traffic and improved the system efficiency in terms of the communication latency, cluster resource

utilization, and application availability.

Li et al. [33] proposed a scheduling strategy by implementing the dynamic topology adjustment for Apache Storm. The

topology optimization enabled the identification of the performance bottlenecks by examining the bolt capacity and the

incoming/outgoing tuple transfer queue.

Zhang et al. [34] developed a latency aware edge computing platform built on Apache Storm. This approach could be

used to minimize the end to end latency in the case of a heterogeneous network and node resources (GPUs and CPUs).

Liu et al. [35] presented a heuristic scheduling algorithm for Apache Storm, in which the historical traffic latencies and

task topology were used to predict the system performance. The tuple processing latency and tuple failure rate were

reduced by identifying the overloaded node for task migration. However, this algorithm could only function in a homog-

enous cluster.

Shukla and Simmhan [36] proposed a heuristic algorithm that used a model driven approach from the queueing theory

for the resource allocation prediction and task mapping to maximize the throughput. The same task threads were allocated

and scheduled in the same machine or adjacent nodes to reduce the intercommunication and achieve the peak data rate.

3

Kombi et al. introduced [37] a holistic approach (DABS-Storm) that adapted the task requirements by dynamically con-

trolling the resource usage as a latency aware load balancing strategy in stream processing systems.

Eskandari et al. [38] presented an online scheduler based on the topology DAG partition as an extension to their P-

Scheduler [28]. The algorithm aimed to minimize the data transfer and maximize the resource utilization by considering

the network and task characteristics. In addition, Liu et al. [39] proposed a dynamic resource aware scheduler named D-

Storm by using a greedy algorithm to solve the bin packing problem.

Among the aforementioned scheduling strategies, most of the algorithms consider the topology structure, intercommuni-

cation traffic, or computing node load aspects. However, the heterogeneity in the task, network, and computer resources

is not always considered. The proposed scheduling algorithm overcomes these limitations pertaining to the algorithms

reported in the existing literature. Unlike the existing approaches, MT-Scheduler maximizes the throughput of a hetero-

geneous DDSPS by considering both the cluster and application characteristics as scheduling parameters. In addition, the

algorithm identifies and minimizes the potential computational or communicational bottlenecks by utilizing the dynamic

programming technique. Furthermore, the proposed algorithm allows the users to transparently select the sites and con-

figure the data locality configuration.

3 Problem formulation

3.1 Problem Definition

As in our previous work [44], an underlying node cluster is modeled as a graph 𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑉𝒞, 𝐸𝒞), with |𝑉𝒞| = 𝓏, where

𝑉𝒞 denotes a cluster set that consists of 𝓏 geographically distributed heterogeneous nodes (vertices) denoted as 𝓃𝒾 where

𝒾 = 1,2, . . , 𝓏. Node 𝓃𝒾 has an attribute of a processing power 𝓅𝒾. |𝐸𝒞 | denotes the set of cluster network links (edges),

where 𝓃𝒾 is connected to its neighbor node 𝓃𝒾𝑠𝑢𝑐𝑐 with a network link of bandwidth ℓ𝒾,𝒾𝑠𝑢𝑐𝑐. The transport network may

or may not be a complete graph, depending on whether the node deployment environment is the Internet or a network in

single or multiple distributed sites.

An application in distributed data stream processing systems such as Apache Storm [19], Apache Flink [41], Apache

Spark [42], S4 Platform [17], and Twitter Heron [18] can be represented as a (DAG). Let the topology be represented as

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 = (𝑉𝒯𝒫 , 𝐸𝒯𝒫), where |𝑉𝒯𝒫| = 𝓀 is a set of 𝓀 components (vertices) 𝒸1, 𝒸2, … , 𝒸𝓀. Component 𝒸1 is the data

source, namely, Spout, which reads data from an external source and transmits it as a data tuple to the successor applica-

tion components. 𝒸𝒿 , termed as 𝐵𝑜𝑙𝑡, where 𝒿 = 2, 3, . . . , 𝓀, performs a computational task of complexity 𝓍𝒿 on the in-

coming data sized 𝓂𝒿−1, sent from its preceding task 𝒸𝒿−1. The computational components process the data tuples re-

ceived from either a source or another computational component before transmitting the processed stream to another

component. |𝐸𝒯| denotes a set of links (edges) that represents the dependency of the topological components and data

transfer.

Based on the user preferences, all the cluster nodes 𝓃𝒾 and topological components 𝒸𝒿 are divided into geographical site

tags 𝒮𝑡𝑎𝑔, 𝑡𝑎𝑔 ∊ [1, 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙], where 𝑡𝑎𝑔 = 1,2, . . 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙 . After configuring the metadata, each cluster node 𝓃𝒾 and

component 𝒸𝒿 are tagged with a metadata 𝒮𝑡𝑎𝑔. For 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙 of unique metadata 𝒮𝑡𝑎𝑔 ID, 𝑡𝑎𝑔𝑠𝑡𝑜𝑡𝑎𝑙 number of groups

exist, specifically, 𝒮1, 𝒮2, . . , 𝒮𝑡𝑜𝑡𝑎𝑙. Each group 𝒮𝑡𝑎𝑔 consists of 𝒶 user predetermined tasks and 𝒷 nodes with the same

metadata value 𝒮𝑡𝑎𝑔 = [𝒸𝜃1 , 𝒸𝜃2 , . . , 𝒸𝜃𝑎 , 𝓃𝜃1 , 𝓃𝜃2 , . . , 𝓃𝜃𝒷], where ∅ ∈ 𝑡𝑎𝑔.

4

Fig. 1 shows one of the possible undesirable scenarios that can be caused by implementing the round robin algorithm.

The application has different components to be mapped to a heterogeneous cluster. Due to the even distribution strategy,

the RR scheduler may assign C2, which is a CPU intensive task component to machine N1, although other machines with

a higher processing power are available. Furthermore, assigning an I/O intensive task between C4 and C5 to nodes from

different sites (N3 and N4) might incur a larger networking delay.

3.2 Objective Function

Based on our previous work [44], the system performance optimization and throughput rate maximization can be realized

by identifying and minimizing the potential performance bottleneck, in terms of both the computational and communi-

cational latencies.

The computational task complexity 𝓍𝒿 is a parameter that determines the CPU bound jobs and the associated computa-

tional logic complexity as a data operator. Correspondingly, this parameter helps indicate the processing power necessary

to compute a function of a task 𝒸𝒿 for its incoming data sized 𝓂𝒿−1. The output data with a size of 𝓂𝒿+1 is in turn

transferred to the incoming message queue of its succeeding component 𝒸𝒿+1 for further processing. The processing

power of a node 𝓃𝒾 in a heterogeneous cluster 𝓅𝒾 represents the assigned executors’ capability for processing 𝓃𝒾. There-

fore, we can estimate the average computing time 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒 for task 𝒸𝒿 on a node 𝓃𝒾 as follows:

𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝓃𝒾, 𝒸𝒿) =
𝒸𝒿(𝓍 (𝓂𝒿−1))

𝓃𝒾(𝓅)
 (1)

The estimated computing time 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝒸𝒿, 𝓃𝒾) is the average time required to compute a task 𝒸𝒿 with a computational

complexity of 𝓍𝒿 for tuple data sized 𝓂𝒿−1, which is executed on a supervisor node 𝓃𝒾 with an executor of processing

power 𝓅𝒾, to produce a fully processed data unit. Practically, in the Storm environment, this time refers to the time period

that starts as soon as the Storm _execute() method is called, which executes the required job of the task, and ends when

the tuple is fully processed and ready to be transferred to the next subscribed components. In a heterogeneous cluster, the

execution latency varies from high, as a potential bottleneck, to low. This latency depends on the task complexity and its

tuple size, as well as the assigned executor processing power.

In DDSPSs, the tasks are communicated through the transfer of messages over the underlying network links. ℓ𝒾,𝒾𝑠𝑢𝑐𝑐

denotes the bandwidth of the transferring link that transfers a data tuple of size 𝓂𝒿 between node 𝓃𝒾 and its successor

node 𝓃𝒾𝑠𝑢𝑐𝑐 .

We can compute the estimated average transfer time 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟 as

𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟(ℓ𝒾,𝒾𝑠𝑢𝑐𝑐 ,𝓂𝒿) =
𝓂𝒿

ℓ𝒾,𝒾𝑠𝑢𝑐𝑐
 (2)

The estimated tuple transfer latency 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟 is the average time to transfer an already processed tuple from the outgoing

buffer of one component to its successor incoming queue.

The proposed mapping scheme divides the cluster nodes 𝓃𝒾 and topological components 𝒸𝒿 into user defined geographical

site tags 𝒮𝑡𝑎𝑔. Next, for each 𝒮𝑡𝑎𝑔, a group of 𝒶 components and 𝒷 nodes are used to combine the topological components

into 𝓆 groups of tasks denoted by 𝑔1, 𝑔1, … , 𝑔𝑞 . These tasks are mapped onto a selected network path P of 𝓆 supervisors

Figure 1 Default Storm scheduler that does not take into account the data locality or performance bottleneck.

5

within the 𝒮𝑡𝑎𝑔 from 𝓃𝓈 to 𝓃𝑑 in the Storm cluster network, where 𝓃𝓈 , 𝓃𝑑 ∊ |𝑉𝒞| and 𝓆 ∊ (𝑚𝑖𝑛(𝓀, 𝓏),𝑚𝑖𝑛(𝒶, 𝒷)). The

potential scheduling path P consists of a series of nodes, which are not necessarily distinct supervisors, based on the

metadata configuration. The bottleneck time for each site tag 𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔] is the maximum required time by the dis-

tributed data stream processing system to compute and transfer a data unit (fully processed) by a time unit. The objective

function of identifying and minimizing the bottleneck 𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔] can be defined as in equation (3):

𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔](Path 𝑃 of 𝓆 nodes)

= 𝑚𝑎𝑥
𝑃𝑎𝑡ℎ 𝑃 𝑜𝑓 𝓆 𝑛𝑜𝑑𝑒𝑠

𝒾=1,2,…,𝓆

{
𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒(ℊ𝑖),

 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟 (ℓ𝑃[𝑖],𝑃[𝑖𝑠𝑢𝑐𝑐])
}

= 𝑚𝑎𝑥
𝑃𝑎𝑡ℎ 𝑃 𝑜𝑓 𝓆 𝑛𝑜𝑑𝑒𝑠

𝒾=1,2,…,𝓆

{

1

𝓅𝑃[𝓆]
∑ (𝓍𝒿(𝓂𝒿−1))𝒿∊ℊ𝒾 ,𝒿≥2

,

𝓂(ℊ𝒾)

ℓ𝑃[𝑖],𝑃[𝑖𝑠𝑢𝑐𝑐]

} (3)

4 Proposed MT-Scheduler

Achieving an optimal solution to the considered scheduling problem by maximizing the tuple processing rate can be

difficult and computationally infeasible; thus, a simple yet effective algorithm is required. The scheduling of DAG jobs

in a distributed stream processing system with different job requirements corresponds to an NP-complete problem [43-

45]. Thus, we propose a high throughput scheduler for distributed data stream processing systems, based on our previous

work [44]. The MT-Scheduler algorithm, considers, in addition to metadata groups, the topology job and node attributes,

including the computational complexity, data size, node processing power, and link transfer bandwidth. The proposed

algorithm achieves the maximum tuple processing rate by utilizing a dynamic programming technique for job mapping,

which recursively minimizes the time incurred on the bottleneck and provides a polynomial time solution. The maximal

frame rate that a system can achieve is limited by the slowest element (bottleneck) in the transport link or computing

node along the cluster. This work proposes two algorithms, namely, Algorithm 1 (mapper), which is the main algorithm,

and Algorithm 2, which is the MT-Scheduler (for linear critical path mapping).

The mapper algorithm, expressed as Algorithm 1, inputs the data details for the submitted topology (ID, Name, Submitted

user) and the underlying cluster (nodes, worker slots, and executors). First, the directed acyclic graph topology is linear-

ized by implementing a topological sorting process. Next, the critical path is identified by using the well-known polyno-

mial Longest path algorithm (LP). The linear critical path represents the most time consuming sequence of topological

components that the system must implement sequentially. Please note that we assume a homogenous network when iden-

tifying the critical path using this method. Although this case is not realistic, we adopt this assumption for simplification.

Next, the mapper algorithm calls Algorithm 2 to determine the mapping schema for the topological components in the

critical path 𝒞𝒫. The topological components not on the critical path 𝒞𝒫 are mapped using a simple layer oriented greedy

method. We apply a topological sort to order the non-𝒞𝒫 components into layers and sort these components in a descend-

ing order based on the 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒 and 𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟 . The components that require more computations and communications are

assigned higher priorities. Subsequently, we map the components linearly layer by layer; the component with a higher

priority is mapped to a node with higher resources. In the Storm cluster, two types of nodes exist: The master, which runs

a daemon named Nimbus, and worker nodes that run a daemon named Supervisor. Nimbus periodically calls the scheduler

to update the mapping process. The mapper algorithm verifies the topology scheduling if required, to avoid repetitive

scheduling implementation and system overloading. Finally, the mapper algorithm utilizes the pluggable scheduler fea-

ture in Storm, and,

6

via the Nimbus node, implements the final mapping schema by assigning all the critical and noncritical path components

for the submitted topology 𝒯𝒫 to the underlying 𝐶𝑙𝑢𝑠𝑡𝑒𝑟.

In Algorithm 2, the input for the MT-Scheduler is the underlying cluster data details along with the critical path list and

𝑀𝑒𝑡𝑎𝐾𝑒𝑦𝑠{𝑆𝑡𝑎𝑔} as the user defined data list of the site ID/tag. First, the algorithm generates Tags_Pairs, which is a list

of critical path pairs, with each pair consisting of a node and a task belonging to the critical path set {(𝑛𝑜𝑑𝑒, 𝑡𝑎𝑠𝑘) ∈ 𝒞𝒫}.
Through the dynamic programming technique, the MT-Scheduler recursively chooses a critical topology path based on

the previous round of calculation. At each step of the recursion, the algorithm maps the partial components pipeline to

the underlying network nodes and calculates the new potential mapping cost.

The recursion process in the MT-Scheduler algorithm continues until the mapping results converge to a mapping scheme

that achieves the objective and minimizes the system bottleneck for the critical path components in the submitted appli-

cation.

Equation (4) presents the recursion based on dynamic programming, which leads to a potential mapping for the critical

path components in the MT-Scheduler algorithm. Let 1/𝒫𝑚𝑎𝑝𝑗(𝓃𝒾) denote the maximal tuple rate with the first j topology

components mapped to a path from a source node 𝓃𝑠 to a node 𝓃𝒾 in an arbitrary computer network. Let SJ (𝓃𝒾) represent

the sum of the tuple sizes of all the components on a node 𝓃𝒾 with the first j tasks mapped from node 𝓃𝑠 to 𝓃𝒾 in metadata

group 𝒮𝑡𝑎𝑔. Consequently,

𝒫𝑚𝑎𝑝𝑗(𝓃𝑖)[𝒮𝑡𝑎𝑔]
𝑗=1 𝑡𝑜 𝓀, 𝓃𝑖∈𝑉, 𝑡𝑎𝑔=1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙

= 𝑚𝑖𝑛

{

 𝑚𝑎𝑥 (

𝒫𝑚𝑎𝑝 j-1(𝓃𝒾),

 𝒯𝑐𝑜𝑚𝑝𝑢𝑡(𝓍𝒿+1(S j-1(𝓃𝒾) + (𝓂𝒿)), 𝓅𝓃𝒾)
)

𝑚𝑖𝑛
𝑢∈𝑎𝑑𝑗(𝓃𝒾)

(

𝑚𝑎𝑥 (

𝒫𝑚𝑎𝑝 j-1(𝑢),

 𝒯𝑐𝑜𝑚𝑝𝑢𝑡(𝓍𝒿+1(𝓂𝒿), 𝓅𝓃𝒾),

𝒯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑒𝑟(𝓂𝒿, ℓ𝓊,𝓃𝒾)

)

)

}

Algorithm 1 Mapper implements IScheduler interface in Storm Nimbus.

Input: 𝒯𝒫 as the submitted task topology

 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 as the underlying 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_Details (supervisors 𝑛, workerslots 𝓌, executors ℯ𝓍),

Output: Implement final scheduling schema

𝒯𝒫 ← TopologyDetails.get();

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← SupervisorDetails.get();

Critical Path 𝒞𝒫 ← Extract Critical Path (𝒯𝒫) ;

CP_HashMapping ←MT-Scheduler (Critical Path 𝒞𝒫, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟);
NCP_HashMapping ←Map noncritical path tasks using layer based greedy algorithm;

Final_ HashMapping ← Join (CP_HashMapping, NCP_HashMapping)

 if (𝒯𝒫 needs_Scheduling ==True) then

 get 𝒯𝒫 ’s tasks as (𝑐);
 for each 𝑐𝒾 in Final_ HashMapping do // Assign all tasks to supervisor workers and executers in the mapped node

 find corresponding 𝑛 in Final_ HashMapping

 if ((supervisor workers 𝑛.𝓌 ≠ 𝑁𝑢𝑙𝑙) AND

 (supervisor executers 𝑛. ℯ𝓍 ≠ 𝑁𝑢𝑙𝑙) then

 Cluster.Assign (𝑐𝒾 , 𝑛);
 end if

 end for

 end if

7

= 𝑚𝑖𝑛

{

𝑚𝑎𝑥 (

𝒫𝑚𝑎𝑝 j-1(𝓃𝒾),

(S
j-1(𝓃𝒾)+ 𝓍𝒿+1(𝓂𝒿))

𝓅𝓃𝒾

)

𝑚𝑖𝑛
𝑢∈𝑎𝑑𝑗(𝓃𝒾)

(

𝑚𝑎𝑥

(

𝒫𝑚𝑎𝑝 j-1(𝑢),
(𝓍𝒿+1(𝓂𝒿))

𝓅𝓃𝒾
,

 𝓂𝒿

ℓ𝓊,𝓃𝒾)

)

}

 (4)

with the base conditions computed as

𝒫𝑚𝑎𝑝1(𝓃𝑖)
 𝓃𝑖∈𝑉 𝑎𝑛𝑑 𝓃𝑖≠𝓃𝑠

= {
𝑚𝑎𝑥 (

𝓍2 (𝓂1)

𝓅𝓃𝒾
,
𝓂1

ℓ𝓃𝑠,𝓃𝒾
) ∀𝑒𝓃𝑠,𝓃𝒾 ∈ 𝐸

+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

and 𝒫𝑚𝑎𝑝𝓉(𝓃𝑠) = ∑ (𝓉
𝑖=1 𝓍𝒾+1 𝓂𝒾/𝓅𝑠) 𝑤ℎ𝑒𝑟𝑒 𝓉=1, 2,..,𝓀

Every link, node, or task is a potential bottleneck and needs to be checked. The recursive dynamic programming process

expressed in Equation 4 generates a 2D matrix [44]. As shown in Algorithm 2, after calculating the recursion base con-

ditions, at each step of the recursion process, the bottleneck times are calculated for all potential mapping schemas, and

the minimum time is selected to achieve the maximum frame rate.

In a deployment over multiple sites, it may be essential to allow users to assign a particular topology component to a

specific supervisor located at a specific site. However, Storm users, by using the default scheduler, cannot predict the

mapping of the topological components in the Storm cluster. The MT-Scheduler allows the users to configure and regulate

Algorithm 2 MT-Scheduler (Critical Path)

Input: Critical path, Cluster (𝑉𝒞, 𝐸𝒞), 𝑀𝑒𝑡𝑎𝐾𝑒𝑦𝑠{𝑆𝑡𝑎𝑔} as the user defined list of site ID/tag

Output: MTPR_HashMapping< 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝒸 , 𝑛𝑜𝑑𝑒 𝓃 > //Scheduling mapping schema

 between node and task component

Generate Tags_Pairsstag (𝒸, 𝓃); //by pairing 𝒸, 𝓃 with the same site tag (Stag)

for each 𝑣𝑖 ∈ 𝑉𝒞 with only 𝒸 1 do //Initialize the 2D matrix and calculate the base condition

 if ℯ1,𝑖 ∈ 𝐸𝒞 then

 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡𝑟𝑖𝑥[𝒾,1] ← Calculate 𝒫𝑚𝑎𝑝1(𝓃𝑖);

 else 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡𝑟𝑖𝑥[𝒾,1] = +∞ ;

 end if

end for

for each 𝒮𝑡𝑎𝑔 ∈ 𝑀𝑒𝑡𝑎𝐾𝑒𝑦𝑠 do

 for each 𝒸 ∈ Tags_Pairsstag do

 for each 𝓃 ∈ 𝑇𝑎𝑔𝑠_𝑃𝑎𝑖𝑟𝑠stag do

 if 𝒸𝒿−1
 mapped to 𝓃𝒾 then //case I

 Map 𝒸𝒿 to supervisor 𝓃𝒾 ;

 𝐵𝑇1 ← Calculate 𝒫𝑚𝑎𝑝𝒿(𝓃𝑖); //case II

 for each ad j(𝓃𝒾) directly connected to 𝓃𝒾 do

 Map task 𝒸𝒿 to 𝓃𝒾;

 𝐵𝑇𝑎𝑑 𝑗(𝓃𝒾) ← Calculate 𝒫𝑚𝑎𝑝𝒿(𝑎𝑑𝑗(𝓃𝑖));

 end for

 end if

 𝐵𝑇2 ← 𝑚𝑖𝑛(𝐵𝑇𝑎𝑑 𝑗(𝓃𝒾));

 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡𝑟𝑖𝑥[𝒾,𝒿] ← 𝑚𝑖𝑛(𝐵𝑇1, 𝐵𝑇2); //choose minimum BT among 2 cases

 end for

 end for

 MTPR_HashMapping ← MTPR_HashMapping (𝒸𝒿𝑡𝑎𝑔 , 𝓃𝒾𝑡𝑎𝑔).𝑎𝑑𝑑;

end for

return MTPR_HashMapping.

8

the data locality aspects by utilizing the metadata configurations of the Storm nodes to execute tasks as close to the data

as possible, which leads to the minimization of the transfer cost. In Apache Storm, the users can transparently establish

the metadata configuration by setting the supervisor.scheduler.meta Storm field in each supervisor’s configuration file to

specify the custom site tags. After tagging the supervisors, the users can tag the components accordingly to ensure that

the scheduler can correctly associate the spouts/bolts with the supervisors. The Storm method addConfiguration processes

the tagging configuration to allow the user to build the topology stage. The metadata for each supervisor can be obtained

by calling the Storm method getSchedulerMeta, which returns the metadata in key-value pairs. By default, if no site

configuration is specified the user, MT-Scheduler considers all the tasks and nodes tagged as one single group.

In Fig. 2, each cell 𝒫𝑚𝑎𝑝𝑗(𝓃𝑖) in the matrix represents a partial mapping solution that maps the first j tasks to a path

between 𝓃𝑠 and 𝓃𝒾 , where both nodes have the same 𝒮𝑡𝑎𝑔. Each iteration step involves the calculation of the bottleneck

value to fill in a new cell 𝒫𝑚𝑎𝑝𝑗−1(𝓃𝑖) and add new tasks to the partial scheduling schema.

In the 2D matrix process, we consider two subcases, the minimum value of which is chosen as the minimum

𝒯𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘[𝒮𝑡𝑎𝑔]. These cases can be described as follows. Case I: The new task is mapped to the same node that has

executed the previous task. We directly place component 𝒸𝒿 at supervisor 𝓃𝑖, at which the last task 𝒸𝒿−1 was executed in

the previous mapping subproblem 𝒫𝑚𝑎𝑝𝑗−1(𝓃𝑖). In other words, the last two or more components are scheduled to the

same node 𝓃𝑖 to minimize the internode communication latency. Therefore, we

 only need to add the computing time 𝒯𝑐𝑜𝑚𝑝𝑢𝑡𝑒 of 𝒸𝒿 on node 𝓃𝑖 to the 𝒫𝑚𝑎𝑝𝑗−1(𝓃𝑖) time.

Case II: The new task is mapped to one of the neighbor nodes 𝓃𝓊, where 𝓃𝓊 ∈ 𝑎𝑑𝑗(𝓃𝒾) and has a direct link to 𝓃𝒾,
which is represented by a dotted line from a neighbor shaded cell on the left column to the supervisor 𝓃𝑖. We recursively

calculate 𝒯𝑏𝑜𝑡𝑡𝑒𝑙𝑛𝑒𝑐𝑘 for all possible mappings to 𝓃𝓊 nodes and choose the minimal value. This minimal value is further

compared with the value calculated in Case 1. The minimum of these two values is selected as the minimum 𝒯𝑏𝑜𝑡𝑡𝑒𝑙𝑛𝑒𝑐𝑘

for the partial mapping to a path between 𝓃𝑠 and 𝓃𝒾 with the same 𝒮𝑡𝑎𝑔.

For further clarification, we explain both the cases in the presented scheduling scenario in the matrix shown in Fig. 2.

For scheduling the component 𝒸y, the MT-Scheduler algorithm first calculates the bottleneck time if the component is

assigned to the same node to which the previous component was mapped, and in this scenario, if the node is 𝓃𝑓, the case

corresponds to Case I. Second, each bottleneck time is calculated if the component is assigned to one of the adja-

cent/neighbor nodes (shaded cells); in this scenario, the nodes are adj1, adj2 and adj3 (nodes 𝓃𝑒, 𝓃𝑔 𝑎𝑛𝑑 𝓃𝑏 respec-

tively), which correspond to Case II. Finally, the MT algorithm chooses the minimum bottleneck time and assigns the

task to the correspondent node, namely, 𝓃𝑓 . Another example, as shown in Fig. 2, corresponds to the scheduling of the

last component 𝒸𝒶.

In contrast to in the previous example, instead of assigning this task to the same node executing the previous task (𝓃𝑔),

the algorithm chooses to assign this task to one of the 𝓃𝑔 adjacent nodes adj1 and adj2 (nodes 𝓃𝑒 𝑎𝑛𝑑 𝓃𝑏, respectively)

as in Case II. The MT algorithm calculates the minimum bottleneck time achieved when assigning task 𝒸𝒶 to the adjacent

node (𝓃𝑏).

Fig. 3 shows the architecture and dataflow of the proposed scheduler. The MT-Scheduler algorithm inputs the user defined

list of site tags to generate a Tags_Pairs list from the Storm metadata configurations. Next, according to the input critical

path topological components and cluster characteristic data, the MT-Scheduler algorithm uses the dynamic programming

Pmap
1 n1 Pmap

2 n1 Pmap
3 n1 Pmap

x n1 Pmap
y n1 Pmap

a-2 n1 Pmap
a-1 n1 Pmap

a n1

Pmap
1 n2 Pmap

2 n2 Pmap
3 n2

adj1 Pmap
a-2 ne adj1

Pmap
x nf Pmap

y nf

adj2 Pmap
a-1 .

ng

adj3 adj2

Pmap
a nb

Figure 2 MT dynamic programming and 2D matrix construction [44]

9

to generate MTPRHashMapping < node, component > for the critical path topological components. The main mapper

algorithm builds the final mapping schema by calling the MT-Scheduler for the critical path components and integrates

the components with the mapping schema for the noncritical path components. Finally, the pluggable scheduler feature

in Storm is utilized to implement the final mapping schema via Nimbus over the underlying cluster.

The MT-Scheduler, as shown in Fig. 4, solves the performance bottleneck problem arising in the default scheduler shown

in Fig. 1. The proposed algorithm can minimize the computational bottlenecks by assigning C2 to node N3 with sufficient

processing power and allowing the user to assign a GPU node N4 in Site 2 to execute the GPU required tasks of C3.

Furthermore, the algorithm minimizes the communicational bottlenecks by assigning both C4 and C5 to nodes located at

the same site to minimize the internode transfer latency.

5 Simulation Results

 The proposed MT-Scheduler is implemented in a simulation program, as described in our previous work [46] by using

C++, and it runs on a Windows 10 machine featuring Intel(R) Core (TM) i7-8565U CPU @ 1.80 GHz, RAM 16 GB and

SATA disk of 1 TB. For comparison, we implement the RR default algorithm as the Storm default scheduler in C++.

Three microbenchmark topologies, namely, linear, diamond, and star topologies, are randomly generated with various

computing complexities and data transfer sizes.

We conduct a simple experiment to illustrate the influence of the task parameters on the scheduling decision and perfor-

mance. Scenario 1, which involves a task with low computing and networking load, and scenario 2, which involves a task

with high computing and transfer load, are tested on a cluster of 8 nodes. As shown in Fig. 5, scenario 1, which has lower

loads, generally achieves a higher system performance compared to that in scenario 2, which has higher loads. The highest

frame rates in scenario 1, as obtained using the default RR and MT-Scheduler, are 35 and 45 frames per second, respec-

tively. In contrast, in scenario 2, the highest frame rates, as obtained using the default RR and MT-Scheduler, are 39 and

60 frames per second, respectively. The proposed MT-Scheduler algorithm scales better than the RR. Furthermore, we

test the system throughput performance when the underlying cluster size scales up. The same three task topologies are

Figure 4 MT-Scheduler minimizes the system performance

 bottlenecks

Figure 3 Architecture and dataflow of the MT-

Scheduler

Figure 5 Impact of the computational complexity and data transfer

rate in a distributed heterogeneous cluster scheduling
Figure 6 Simulated system average throughput, scalability and

throughput improvement percentage

10

used, as shown in Fig. 6 in three different colors, and the number of cluster nodes ranges from 4 to 200, as shown in the

x axis. Fig. 6 demonstrates that the MT-Scheduler, as indicated by the height bars, maintains higher frame rates than those

obtained using the default RR, which are represented as connected curves as the cluster scales up. Out of the three linear,

diamond and star topologies, the star topology scales the best.

6 Real Storm Environmental Results

 In addition, we conduct experiments using an Apache Storm cluster of 8 physical machines having hardware configura-

tions as presented in Table 1.

Each machine runs Storm 0.9.7 on top of Ubuntu 10.4 with Java JDK 8u221, ZooKeeper 3.3.6, Zeromq 4.1.3, and the

Java binding JZMQ in addition to other required Storm dependent libraries. A heterogeneous Storm cluster has one node

running Nimbus daemon and ZooKeeper [47] with a relatively high storage capacity for log saving purposes. The other

worker machines run supervisor daemon, each of which has a specific number of worker processes. Each worker process

executes a subset of the topology, and each supervisor node has worker processes equal to the node’s CPU cores.

We collect all the test results regarding the throughput and latency data from the Storm user interface (UI daemon). It is

worth mentioning that the Storm system does not plot all the results and instead samples only 0.05% out of the total

transactions to avoid overburdening the system. However, this aspect does not affect the average throughput because we

run the test for 600 s, which represents adequate time for system stabilization and collecting sufficient samples to calculate

the average throughput rates. In all the tests, the proposed algorithm assumes that a user preference exists in terms of the

site location, and the cluster is distributed over at least two sites.

For our evaluation, the throughput of the overall topology (processed tuples per unit time) is limited by the performance

bottleneck identified and minimized using the MT-Scheduler algorithm.

We use three commonly used microbenchmarks [26-28,38], namely, linear, diamond, and star topologies from [25], as

shown in Fig. 7. The linear topology, as shown in Fig. 7(a), is the simplest structure and consists of 6 linear components.

The diamond topology, as shown in Fig 7(b), includes five components, in which the spout feeds the middle three com-

ponents, and the last bolt receives all the outgoing data. The star application, as shown in Fig. 7(c), is a multiple spout

topology that transmits data tuples to the central bolt, which in turn transfers its processed tuples to the remaining com-

ponents. For comparison, we evaluate our MT-Scheduler against the RR default scheduler and the state of the art adaptive

scheduler [20].

The main goal of the proposed algorithm is to minimize the computational/communicational bottleneck time to achieve

the maximum system throughput. Fig. 8 shows that the proposed algorithm outperforms both the default RR and the

Table 1 Experimental Cluster Specification

Cluster Role (Intel(R)Core(TM)) CPU-Memory-Storage

Nimbus and ZooKeeper i7-2600 3.40 GHz 16 GB - 2 TB

Supervisor 1 i7-2600 3.40 GHz 16 GB - 500 GB

Supervisor 2 i7-8565U 1.80 GHz 16 GB - 1 TB

Supervisor 3 i5-2400 3.10 GHz 10 GB - 500 GB

Supervisor 4 i5-2400 2.4 GHz 10 GB - 500 GB

Supervisor 5 i3-4030U 1.90 GHz 8 GB - 1 TB

Supervisor 6 i3-2330M 2.20 GHz 8 GB - 500 GB

Supervisor 7 Core 2 Duo E8600 3.33 GHz 8 GB - 1 TB

Spout
1

Bolt 1

Bolt 2

Bolt 4

Spout
2

Bolt 3

Spout Bolt 1 Bolt 2 Bolt 3 Bolt 4 Bolt 5

Spout

Bolt 1

Bolt 2

Bolt 3

Bolt 4

Figure 7. Test Topologies

11

adaptive scheduler in terms of the latency (the elapsed time to ack a tuple after it is transmitted) under all the three

topologies. Similarly, the average system throughput of the MT-Scheduler is higher than that of both the algorithms under

all the three topologies, as shown in Fig. 9. The star topology, which has a complicated dependency structure, achieves

the best performance, compared with the linear and diamond topologies.

7 Conclusions and Future Work

The proposed MT-Scheduler algorithm aims to maximize the system throughput for streaming applications in a Storm

environment. The simulation evaluation results show the impact of the task complexity and data transfer rates on the

scheduling performance. The proposed MT-Scheduler demonstrates satisfactory performance scalability when the cluster

size scales up. Furthermore, we implement the MT-Scheduler in Apache Storm and use three microbenchmarks streaming

topologies for testing and evaluation. The experimental results show that the MT-Scheduler outperforms both the default

Storm RR scheduler and the adaptive scheduler. Compared with the default RR Storm scheduler, the MT-Scheduler re-

duces the system latencies by 28–46% and increases the throughput by 17–54%. We plan to implement the proposed MT-

Scheduler in Apache Heron and test it on larger streaming applications in the Cloud environment. Furthermore, we intend

to investigate the use of deep learning algorithms for dynamic workload balancing.

References

[1] M. Dias de Assunção, A. da Silva Veith, and R. Buyya, “Distributed data stream processing and edge computing: A

survey on resource elasticity and future directions,” J. Netw. Comput. Appl., vol. 103, pp. 1–17, Feb. 2018.

[2] Q.-C. To, J. Soto, and V. Markl, “A survey of state management in big data processing systems,” VLDB J., vol. 27,

no. 6, pp. 847–872, Dec. 2018.

[3] F. A. Teixeira, F. M. Q. Pereira, H.-C. Wong, J. M. S. Nogueira, and L. B. Oliveira, “SIoT: Securing Internet of

Things through distributed systems analysis,” Future Gener. Comput. Syst., vol. 92, pp. 1172–1186, Mar. 2019.

[4] S. Imai, S. Patterson, and C. A. Varela, “Maximum Sustainable throughput Prediction for Data Stream Processing

over Public Clouds,” in 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID), 2017, pp. 504–513.

[5] S. Khan, K. A. Shakil, and M. Alam, “Cloud-Based Big Data Analytics—A Survey of Current Research and Future

Directions,” in Big Data Analytics, vol. 654, V. B. Aggarwal, V. Bhatnagar, and D. K. Mishra, Eds. Singapore:

Springer Singapore, 2018, pp. 595–604.

[6] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Applications and Issues,” in Proceedings of the

2015 Workshop on Mobile Big Data - Mobidata ’15, Hangzhou, China, 2015, pp. 37–42.

[7] G. Jansen, I. Verbitskiy, T. Renner, and L. Thamsen, “Scheduling Stream Processing Tasks on Geo-Distributed

Heterogeneous Resources,” in 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA,

2018, pp. 5159–5164.

[8] J. Xue, Z. Yang, S. Hou, and Y. Dai, “When computing meets heterogeneous cluster: Workload assignment in graph

computation,” in 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 2015, pp.

154–163.

[9] W. A. Y. Aljoby, T. Z. J. Fu, and R. T. B. Ma, “Impacts of task placement and bandwidth allocation on stream

analytics,” in 2017 IEEE 25th International Conference on Network Protocols (ICNP), Toronto, ON, 2017, pp. 1–

Figure 8 Total latency for different topologies Figure 9 Throughput for different topologies

12

6.

[10] N. Kaur and S. K. Sood, “Dynamic resource allocation for big data streams based on data characteristics (5Vs),”

Int. J. Netw. Manag., vol. 27, no. 4, p. e1978, Jul. 2017.

[11] M. Mortazavi-Dehkordi and K. Zamanifar, “Efficient resource scheduling for the analysis of Big Data streams,”

Intell. Data Anal., vol. 23, no. 1, pp. 77–102, Feb. 2019.

[12] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Ko\lodziej, “Resource-aware hybrid scheduling algorithm in

heterogeneous distributed computing,” Future Gener. Comput. Syst., vol. 51, pp. 61–71, 2015.

[13] N. Tantalaki, S. Souravlas, and M. Roumeliotis, “A review on big data real-time stream processing and its schedul-

ing techniques,” Int. J. Parallel Emergent Distrib. Syst., pp. 1–31, Mar. 2019.

[14] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Ko\lodziej, “Resource-aware hybrid scheduling algorithm in

heterogeneous distributed computing,” Future Gener. Comput. Syst., vol. 51, pp. 61–71, 2015.

[15] Z. Qian et al., “Timestream: Reliable stream computation in the cloud,” in Proceedings of the 8th ACM European

Conference on Computer Systems, 2013, pp. 1–14.

[16] T. Akidau et al., “MillWheel: fault-tolerant stream processing at internet scale,” Proc. VLDB Endow., vol. 6, no.

11, pp. 1033–1044, 2013.

[17] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream computing platform,” in 2010 IEEE

International Conference on Data Mining Workshops, 2010, pp. 170–177.

[18] M. Fu et al., “Twitter Heron: Towards Extensible Streaming Engines,” in 2017 IEEE 33rd International Conference

on Data Engineering (ICDE), 2017, pp. 1165–1172.

[19] “Apache Storm.” [Online]. Available: https://Storm.apache.org/.

[20] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive [Online] scheduling in Storm,” in Proceedings of the 7th ACM

international conference on Distributed event-based systems - DEBS ’13, Arlington, Texas, USA, 2013, p. 207.

[21] H. Röger and R. Mayer, “A Comprehensive Survey on Parallelization and Elasticity in Stream Processing,”

ArXiv190109716 Cs, Jan. 2019.

[22] L. Sliwko, “A Taxonomy of Schedulers – Operating Systems, Clusters and Big Data Frameworks,” Glob. J. Comput.

Sci. Technol., pp. 25–40, Mar. 2019.

[23] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy, Survey and Future Directions,”

ArXiv161105539 Cs, pp. 103–130, 2018.

[24] J. Liu, E. Pacitti, and P. Valduriez, “A Survey of Scheduling Frameworks in Big Data Systems,” p. 28, 2018.

[25] M. Rychly, P. Koda, and P. Mr, “Scheduling Decisions in Stream Processing on Heterogeneous Clusters,” in 2014

Eighth International Conference on Complex, Intelligent and Software Intensive Systems, Birmingham, UK, 2014,

pp. 614–619.

[26] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-Storm: Resource-Aware Scheduling in Storm,” in

Proceedings of the 16th Annual Middleware Conference on - Middleware ’15, Vancouver, BC, Canada, 2015, pp.

149–161.

[27] J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-aware [Online] scheduling in Storm,” in 2014 IEEE 34th

International Conference on Distributed Computing Systems, 2014, pp. 535–544.

[28] T. Li, J. Tang, and J. Xu, “A predictive scheduling framework for fast and distributed stream data processing,” in

2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 2015, pp. 333–338.

[29] V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo, “Optimal operator deployment and replication for

elastic distributed data stream processing: Optimal Deployment and Replication for Elastic Data Stream Pro-

cessing,” Concurr. Comput. Pract. Exp., vol. 30, no. 9, p. e4334, May 2018.

[30] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator placement for distributed stream processing

applications,” in Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems

- DEBS ’16, Irvine, California, 2016, pp. 69–80.

[31] M. Nardelli, V. Cardellini, V. Grassi, and F. L. Presti, “Efficient Operator Placement for Distributed Data Stream

Processing Applications,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 8, pp. 1753–1767, Aug. 2019.

13

[32] M. Nardelli, “QoS-aware Deployment and Adaptation of Data Stream Processing Applications in Geo-distributed

Environments,” Ph.D. Thesis, UNIVERSITY OF ROME TOR VERGATA, 2018.

[33] C. Li, J. Zhang, and Y. Luo, “Real-time scheduling based on optimized topology and communication traffic in

distributed real-time computation platform of Storm,” J. Netw. Comput. Appl., vol. 87, pp. 100–115, Jun. 2017.

[34] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-Edge: Orchestration of Real-time Vision

Applications on Heterogeneous Edge Clouds,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Com-

munications, Paris, France, 2019, pp. 1270–1278.

[35] S. Liu, J. Weng, J. H. Wang, C. An, Y. Zhou, and J. Wang, “An Adaptive [Online] Scheme for Scheduling and

Resource Enforcement in Storm,” IEEE ACM Trans. Netw., pp. 1–14, 2019.

[36] A. Shukla and Y. Simmhan, “Model-driven scheduling for distributed stream processing systems,” J. Parallel Dis-

trib. Comput., vol. 117, pp. 98–114, Jul. 2018.

[37] R. K. Kombi, N. Lumineau, P. Lamarre, N. Rivetti, and Y. Busnel, “DABS-Storm: A Data-Aware Approach for

Elastic Stream Processing,” in Transactions on Large-Scale Data- and Knowledge-Centered Systems XL, vol.

11360, A. Hameurlain, R. Wagner, F. Morvan, and L. Tamine, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2019, pp. 58–93.

[38] L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “T3-Scheduler: A topology and Traffic aware two-level Scheduler

for stream processing systems in a heterogeneous cluster,” Future Gener. Comput. Syst., vol. 89, pp. 617–632, Dec.

2018.

[39] X. Liu and R. Buyya, “D-Storm: Dynamic Resource-Efficient Scheduling of Stream Processing Applications,” in

2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, 2017, pp. 485–

492.

[40] M. Caneill, A. El Rheddane, V. Leroy, and N. De Palma, “Locality-Aware Routing in Stateful Streaming Applica-

tions,” in Proceedings of the 17th International Middleware Conference on - Middleware ’16, Trento, Italy, 2016,

pp. 1–13.

[41] “Apache Flink: Stateful Computations over Data Streams.” [Online]. Available: https://flink.apache.org/.

[42] “Apache SparkTM - Unified Analytics Engine for Big Data.” [Online]. Available: https://spark.apache.org/.

[43] M. Zhu, Q. Wu, N. S. V. Rao, and S. Iyengar, “Optimal pipeline decomposition and adaptive network mapping to

support distributed remote visualization,” J. Parallel Distrib. Comput., vol. 67, no. 8, pp. 947–956, Aug. 2007.

[44] Q. Wu, M. Zhu, Y. Gu, and N. S. V. Rao, “System Design and Algorithmic Development for Computational Steering

in Distributed Environments,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 4, pp. 438–451, Apr. 2010.

[45] L. Blum, M. Shub, and S. Smale, “On a theory of computation over the real numbers; NP-completeness, recursive

functions and universal machines,” in Proceedings 1988 29th Annual Symposium on Foundations of Computer

Science, 1988, pp. 387–397.

[46] A. Al-Sinayyid and M. Zhu, “Maximizing The Processing Rate for Streaming Applications in Apache Storm,” in

Proceedings of the 14th International Conference on Data Science (ICDATA’18), 2018.

[47] “Apache ZooKeeper.” [Online]. Available: https://zookeeper.apache.org/.

[48] “Amazon Timestream,” Amazon Web Services, Inc. [Online]. Available: https://aws.amazon.com/timestream/.

[49] “S4 Incubation Status - Apache Incubator.” [Online]. Available: http://incubator.apache.org/projects/s4.html.

The final publication is available at https://link.springer.com/article/10.1007/s11227-020-03223-z

http://incubator.apache.org/projects/s4.html

