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Cloud computing systems are splitting compute and data intensive jobs into smaller tasks to execute them in a parallel 

manner using clusters to improve execution time. However, such systems at increasing scale are exposed to stragglers, 

whereby abnormally slow running tasks executing within a job substantially affect job performance completion. Such 

stragglers are a direct threat towards attaining fast execution of data intensive jobs within cloud computing. Researchers 

have proposed an assortment of different mechanisms, frameworks, and management techniques to detect and mitigate 

stragglers both proactively and reactively. In this paper, we present a comprehensive review of straggler management 

techniques within large-scale cloud datacenters. We provide a detailed taxonomy of straggler causes, as well as proposed 

management and mitigation techniques based on straggler characteristics and properties. From this systematic review, we 

outline several outstanding challenges and potential directions of possible future work for straggler research. 
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1. INTRODUCTION AND MOTIVATION  

Nowadays, applications spanning various domains including social networks, e-commerce sites, 

and healthcare generate vast quantities of data. The growing velocity and volume of such data 

generation has subsequently required the substantial computing capacity in order to store and 

process such data effectively [1]. Such large-scale computing systems, encompassing datacenter 

clusters, comprise hundreds and thousands of individual machines interconnected together that 

underpin application operation consumed by both businesses and consumers alike. 

 

A combination of increasing application demand and technological innovations has resulted in 

greater system scale in the regions of tens of thousands of servers within an individual cluster [12]. 

However, such complexity has subsequently resulted in an increase in complexity within such 

systems, manifesting in the form of emergent phenomena whereby system operation exhibits 

behaviour unforeseen at design time. Such emergent phenomena manifesting within large-scale 

cloud datacenters has observed to negatively impact application performance. One such 

phenomena, known as the Long Tail Problem, is characterized by a minor subset of task stragglers 

that operate unusually slower in comparison to normal task behaviour within a job. Task 

stragglers occur within any highly parallelised system and become even more apparent for jobs 

containing many tasks executing across a large number of machines.  

 

Frameworks such as MapReduce, Spark, and Dryad [1] [40] [41] process vast quantities of data via 

parallelizing jobs into a smaller sub-set of tasks, and thus makes such applications susceptible to 

stragglers. For example, within MapReduce, a job can only complete once all tasks have completed 

their execution. However, the occurrence of stragglers results in an atypically long task execution 

duration, thus degrading the performance of the entire job. The challenge in effectively addressing 

stragglers is that their root-cause is not well-understood [80] and can be resultant due to various 

reasons spanning daemon processes, data skew, failures, resource contention, and energy 

management tools [49] [42], manifesting within the application, Operating Systems (OS), or 

physical hardware. This can subsequently lead to subsequent applications that depend on job 

outputs to also fail pending on its completion [7] [11]. 

 

This has resulted in a growing body of straggler research pertaining to analysing their underlying 

causes [11] [28], straggler forecasting [15] [46], and straggler mitigation techniques [4] [5] [16] [21] 

including speculative execution [6], replication, load balancing and scheduling [18]. Each of these 
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works predominantly focus on a certain sub-set phenomenon within a particular context of system 

operation of application framework. Thus, straggler research has reached sufficient level of 

maturity whereby it is worthwhile to appraise the landscape of research within the field, identify 

cross-cutting challenges within areas, and evaluate future challenges on the horizon for future 

generation computing systems. 

 

1.1 Motivation 

 

The core motivation behind this methodical survey is to conduct a systematic review of straggler 

research within large-scale cloud datacenters. This systematic review encompasses clearly defining 

and analysing the impact of stragglers, a taxonomy of various straggler management techniques 

for forecasting and mitigations, as well as identify future directions within the field. 

1.2 Article Organization  

The rest of the article is structured as follows: Section 2 presents the background information for 

straggler definition as well as straggler management within large-scale systems. Section 3 

presents the taxonomy of straggler causes. Section 4 explores the existing literature for straggler 

management techniques. Section 5 presents the comparison of straggler management techniques 

based on the taxonomy of straggler causes and outlines the observation, trend analysis and future 

research directions. Finally, Section 6 summarizes the article. 

2. BACKGROUND 

2.1 Straggler Definition and Impact  

Applications execute within large-scale computing systems such as datacenters and clusters by 

submitting jobs via a resource manager (YARN, Mesos, Borg, etc). In this context, a job is composed 

of multiple smaller tasks (defined as the smallest unit of computation observable by the resource 

manager) [82]. Such jobs and subsequent tasks are scheduled onto different machines in a 

parallelized manner to accelerate job completion and are often divided into phases creating a Direct 

Acyclic Graph (DAG) [83]. Application frameworks (such as MapReduce) attempt to sub-divide jobs 

so that tasks will approximately complete within the same timeframe for each phase [84]. This is 

achieved by providing a sub-set of data (known as shards) to each task, and allocating the 

appropriate resources to tasks (CPU, memory, etc). This is calculated via the resource requirement 

module of the resource manager [85]. 

However, even with such measures in place, within large-scale cloud datacenters a sub-set of tasks 

within a job will manifest as stragglers [86] [87]. In this context, a straggler is defined as task 

which execute abnormally slow in comparison to the average task duration within a job [12]. The 

phrase ‘abnormally slow’ is typically identified as any task with a task completion time 50% greater 

than the (average) task completion time for a job phase [14] [88]. Slowly executing tasks 

(stragglers) affect the performance and completion time of the entire job [5], increasing resource 

utilisation and performance degradation of applications at increased scale [22] [25], thus reducing 

system availability and incurring additional operational costs [89]. It has been identified from 

analysis of production systems at scale [25] that approximately 4-6% of task stragglers negatively 

affect over 50% of the overall jobs within the greater system.  

2.2 Straggler Management  

Due to the impact of long-tail problem within distributed computing systems, there has been 

concentrated efforts in order to effectively mitigate their effects. This has been tackled by the 

research community via the creation of various straggler management techniques. In this context, 

straggler management comprises all mechanisms that have been created in order to mitigate the 

effects and impact of straggler manifestation. Figure 1 shows the depiction of straggler tasks and 

non-straggler tasks.   
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Figure 1: Depiction of straggler tasks and non-straggler tasks 

Such straggler management techniques can be predominantly considered into two main classes: 

detection and mitigation [93] [94]. Detection focuses on approaches to identify straggler 

manifestation a priori or post priori job execution within the cloud datacenter, such as offline 

analytics and online monitoring mechanisms [90] [91] and an example of straggler detection is 

NearestFit [1]. Mitigation approaches focus on avoiding or tolerating (detected) straggler 

manifestation during job execution such as scheduling, load balancing and replication [88] [71] 

[92]. The examples of straggler mitigation are Dolly [4], GRASS [5], LATE [21] and Wrangler [16].   

2.3 Related Surveys and Our Contributions 

To present data, to the best of our knowledge, only two works have conducted a survey pertaining 

to straggler research. Umesh and Jitendar [34] discuss an overview of straggler handling 

algorithms for MapReduce framework, while Ashwin [35] reviewed several straggler handling 

techniques. Whilst these reviews cover specific cases of stragglers related to specific frameworks 

and installations, they do not necessarily provide a comprehensive survey of the straggler causes 

and straggler management techniques which exist within the research community. Furthermore, 

these works do not discuss in detail the precise root-causes and analysis of straggler behaviour, 

which underpin the design of straggler management techniques. Therefore, this paper attempts to 

provide a systematic review and taxonomy of straggler causes and map them directly to straggler 

management techniques along with trend analysis. 

3. TAXONOMY OF STRAGGLER CAUSES 

As mentioned in Section 1, the challenge within this research area is the myriad of potential causes 

of straggler manifestation. According to our comprehensive appraisal of the literature, we have 

identified eight key causes for straggler occurrence that manifest within large-scale cloud 

datacenters. Figure 2 shows the taxonomy of straggler causes. 

1. Data Abstraction: Stragglers can occur due to information obfuscation at different levels of the 

system. Literature [43] [14] [45] [95] has identified that information can be hidden at two different 

levels: i) OS Level and ii) Application Level. During the execution of resources, the master node 

(controller) hides information from workers (cluster nodes) at OS level. ii) at application level, the 

information regarding platform services and infrastructure services are kept hidden from the 

software services.  

2. CPU Utilization: It has been identified that there is a strong correlation between high system 

CPU utilization and straggler occurrence [46] [47] [48] [49]. The reason for this occurrence is 

resource contention.  This is further compounded due to Head-of-Line blocking (HOL blocking), 

task interference during execution, busy locks, queue issues, hazard rates of task execution and 

launching additional speculative replicas, which requires additional time for execution.   
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3. Scheduling: It has been identified that scheduling and resource allocation decisions also 

influence straggler manifestation [50] [51] [52] [53]. For job scheduling, stragglers can occur due 

to a large number of enqueued jobs within a (machine, master scheduler) that are pending for 

available resources to be revoked (i.e. only a portion of tasks within a job are able to successfully 

acquire their necessary resources to commence execution). Furthermore, straggler may occur due 

to the poor admission control mechanisms, which is using to submit the jobs for execution [54]. The 

poor admission control mechanism launches multiple tasks together resulting in resource 

exhaustion causing slowdown. Lastly, dynamicity of QoS requirements at runtime, result in an 

inability to effectively manage the resources which leads to further the straggler occurrence. In 

terms of resource scheduling, stragglers can occur in following situations [54] [55] [56] [96]:  1) 

when resources are allocated to the jobs in an inefficient manner without available resource 

optimisation, which leading to ineffective scheduling of resources for job execution and 2) 

sometimes resources are still in active stage even they are not utilized for execution of jobs, which 

wastes more energy consumption and effects the performance of other resources because some 

resources need more power to run continuously.  

4. Inaccessible Local Disk: Stragglers may occur when a machine hard disk is not accessible to 

residing tasks. Such inaccessibility is predominantly caused by [8-11] [62-66]: i) Increasing Backup 

Tasks and ii) Failed to Store Output. Stragglers can occur, when it is difficult to find the required 

task due the large backlog of the tasks waiting for execution. Sometimes, an error can occur while 

storing the output on the disk, causing a problem when some task wants to access that data during 

execution.  

5. Data Skew: Straggles can occur due to the data skew, caused by the different data sizes and 

time variation in accessing required data [62] [63] [73] [97]. With several tasks operating on a split 

version of a very large shared dataset, an uneven distribution of the data amongst these tasks 

potentially results in some tasks to progress slow in comparison to tasks within the same phase 

(and subsequently delays the future sub-phases and the entire job). Data non-uniformity can also 

impact data access and processing time data, directly affecting the timing delays between tasks, 

further increasing the probability of straggler occurrence. Moreover, data locality for job execution 

results in lower latencies whilst distant data will take longer to be accessed, incurring additional 

delays in task completion, again, manifesting as a straggler. 

6. Resource Contention: Resource Contention occurs when the same resource is shared by 

multiple tasks [4-6] [8-11] [31-33] [38] [64] [65] [66] [79] [98] [99] [100]. Resource contention occurs 

due to conflict over task access and oversubscription to a resources within multi-tenant machines 

which can be exuberated within different scenarios including: 1) hardware heterogeneity, 2) poor 

user code, 3) extra cloning, 4) ineffective algorithm logic, 5) temporary slowdowns, 6) additional 

task clones requiring more resources and 7) resource usage is being higher than accepted threshold 

value. Hardware heterogeneity is the main reason of resource contention, occurs due to a mismatch 

between hardware specification and specified application constraints (e.g. budget, deadline etc.) 

leading to task performance degradation. The source code of scheduling algorithm also affects the 

performance of the scaling system due to its coding style in terms of space and time complexity. 

Sometimes, poorly written source code schedules resources inefficiently, which can increase 

resource consumption and unavailability of required resources to specific jobs [71]. The cloning of 

tasks is creating a similar of copy to task to run parallel on another resource for fast execution.  

The cloning of tasks needs more resources (increases resource usage), which can also put tasks of 

other jobs on hold and when the tasks are waiting for other resources, then stragglers can occur. 

An ineffective logic in the resource scheduling algorithm can also lead to an inefficient allocation 

of resources and increase resource usage, which leads to resource contention for future tasks. 

Temporary slowdown can occur due to inefficient allocation of resources, which needs to be 

corrected, otherwise it will cause straggler occurrence during execution of resources.  
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Figure 2: Taxonomy of Straggler Causes 
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7. Task Execution: The successful execution of a task is important to avoid straggler occurrence 

during execution of jobs [24-28] [67] [68]. During job execution, stragglers can occur due to 

unhandled requests or ineffective task interference and task incompatibility management. When 

a processing request is unhandled or not fully handled, tasks expecting the results of this request 

will have to wait until the full request output is ready, manifesting in straggling tasks. This occurs 

due to data dependency and task dependency. If the tasks are not oblivious to the heterogeneity of 

the underlying resources of the platform, their incompatibility (non-synchronization) due to 

different types of workloads or requirements can manifest in slower execution and ultimately 

straggler occurrence. 

8. Faults: Faults within software and hardware resulting in to crash-stop and late-timing failure 

can cause straggler occurrence in large-scale systems [6] [18] [32] [33] [69] [70]. The main reasons 

for software-induced faults can be; development, logic or overflow errors as well as 

misconfigurations. In terms of hardware, the main fault occurrence reasons are: physical damage, 

device failures, daemon processes or power-related issues such as effective energy management. 

Ironically, fault-tolerance and recovery mechanisms can themselves result in straggler 

manifestation (for example, checkpointing introduces burst in disk access increasing resource 

contention resulting in a higher system hazard rate). 

3.1 Relationship between Straggler Causes   

Based on different types of causes of stragglers in large scale systems, we have identified the 

correlation among them, as described in Table 1.  

Table 1: Correlation among Straggler Causes 

Stragglers Causes Dependent 

Data Abstraction 

1. OS Level 

2. Application Level 

Resource contention (1), Resource 

contention (6), Inaccessible Local Disk, 

Task Execution. 

CPU Utilization 

1. Increasing Speculative Copies 

2. Additional Time 

Resource contention, Faults (1), 

Scheduling (2b), Scheduling (1c) 

Scheduling 

1. Job Scheduling 

a. Number of Jobs more than available resources 

b. Poor admission control mechanism 

c. Dynamic Requirements 

2. Resource Scheduling 

d. Inefficient resource allocation 

e. Idle resources are still active 

Resource Contention (1), Resource 

Contention (2), Resource Contention (3), 

Resource Contention (4), Faults 

Inaccessible Local Disk 

1. Increasing Backup Tasks 

2. Failed to Store Output 
Task Execution (1), Task Execution (2), 

Task Execution (3), Scheduling (1c) 

Data Skew 

1. “Uneven data distribution among tasks” 

2. “Nonuniform data processing time” 

Inaccessible Local Disk (2), Data 

Abstraction (2), Scheduling (1b) 

Resource Contention 

1. Hardware Heterogeneity 

2. Poor User Code 

3. Extra Cloning 

4. Ineffective Algorithm Logic 

5. Temporary Slowdowns 

6. More number of copies of same task needs more 

resources 

7. Resource Usage is more than Threshold value 

Data Abstraction (1), CPU Utilization, 

Inaccessible Local Disk (1), Data Skew 

(1), Task Execution, Scheduling (2a) 

Task Execution 

1. Unhandled request 

2. Task interference 

3. Task incompatibility 

Resource Contention (1), Resource 

Contention (2), Scheduling (1a) 

Faults 

1. Hardware 

2. Software 

 Resource Contention (6), Resource 

Contention (7), Task Execution (1), 

Task Execution (2) 
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As identified in [25], stragglers are not resultant of a singular cause, but can potentially be 

correlated. For example, data abstraction can occur due to tasks in a queue waiting for execution. 

Resource contention is the main reason of stragglers due to the sharing of resources among 

different applications, which are running on different nodes, which further affects the CPU 

utilization by overloading the resources. Straggler occurrence during scheduling of jobs as well as 

resources and the reasons of straggler occurrence during resource scheduling can be heterogenous 

resources, poor user code or logic error and too many copies of straggler tasks are running 

simultaneously. The reasons of inaccessible local disk can be large copies of backup tasks and failed 

to store required output, which happens due to task interference and its incompatibility with other 

tasks. The other reason can be requirements are changing dynamically. Data skew happens due 

to straggler happens at application level due to data hiding or fail to write data. The other reason 

can be inefficient allocation of resources for processing of data, which can increase running time of 

resource. The resource contention occurs at OS level, when master node hides the information from 

workers. Further, the overutilization of CPU causes the resource contention due to increasing 

speculative copies as well as when the performance of node degrades. Moreover, poor admission 

control can also affect the resource utilization and creates resource contention when the value of 

required resources is increased than the available resources. Further, resource contention affects 

the task execution due to unavailability of shared resources. Fault occurrences during job execution 

can happen due to resource failure and resource misconfiguration [39].  

4. STRAGGLER MANAGEMENT TECHNIQUES: CURRENT STATUS  

Straggler management techniques can be categorized into two broad categories: straggler detection 

and straggler mitigation. Each category can be further sub-divided into specific areas as shown in 

Figure 3. 

 

 

 

 

 

 

 

 

Figure 3: Taxonomy of Straggler Management Techniques 
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Ouyang et al. [24] proposed a technique for Modelling and Ranking Node-Level Stragglers 

(MRNLS) in CDCs based on analysing the execution trace log data of parallel jobs. This was 

conducted by a graph-based algorithm is used to partition the server nodes into small nodes to 

execute more jobs in parallel. The proposed techniques improve the performance of computing 

systems by reducing task stragglers occurrence. Cong et al. [27] proposed a Machine Learning 

based Straggler Detection (MLSD) technique using unsupervised clustering method. The proposed 

technique effectively manages the resources while executing the jobs and diagnosing the stragglers 

at runtime. Wei et al. [28] proposed Straggler Detection Approach (SDA) for data-intensive 

computing in cloud environment to detect stragglers at early stage to preserve the efficiency of the 

CDC. Further, statistical method for outlier detection called Turkey is developed to detect straggler 

at run time because it starts the speculative execution earlier than the standard deviation method.   

4.1.2 Online Straggler Detection  

Online straggler detection technique detects the straggler to improve speculative execution using 

online monitoring tools.  

Farshid [2] analysed that map phase of MapReduce (MR) framework takes longer with the increase 

in number of servers, which further affects negatively the execution time of MapReduce job. 

Moreover, authors designed an analytical model to identify the impact of stragglers on efficiency 

of computing system using map phase in terms of application, system and hardware parameters. 

Experimental results show that model reduces the execution time during execution of MapReduce 

applications. Zaharia et al. [3] proposed a Resilient Distributed Datasets (RDD), a distributed 

memory abstraction, which enables developers to provide a fault tolerant module while performing 

in-memory computations on a huge number of clusters. RDDs uses coarse grained transformations 

to offer controlled form of shared memory to perform different memory intensive computations in 

an iterative manner.  Further, Spark is used to implement RDDs in a controlled environment to 

evaluate its performance.  

Da et al. [6] proposed Heuristic Algorithm (HA) to search for the best replication to reduce latency 

in computing systems. The proposed algorithm is used to implement the proposed algorithm and 

experimental results demonstrate that this is capable to reduce latency and its impact on cost of 

execution of workloads. Jeffrey and Sanjay [9] explored Data Processing on Large Clusters (DPRC) 

to perform different aspects such as 1) provide fault tolerance by distributing computations, 2) 

optimize network bandwidth by decreasing the quantity of data transferred throughout the 

network and 3) decrease impact of slow machines and improve fault tolerance. In DPRC [9], 

speculative copy of task is executed by MapReduce on another node for increasing job completion 

time and reduce response time. It is challenging to select the task for which to execute speculation 

because it is not trivial to identify the machine or node, which is running slower than average. To 

implement DPRC effectively, stragglers are recognized at the earliest possible stage calculated by 

progress scores.  

Garraghan et al. [25] explored the Root-Cause of Stragglers (RCS) and provided a method to 

analyse the root-cause analysis in a massive scale virtualized CDCs to solve the Long Tail 

challenge effectively. Authors used online analytic agents and offline execution patterns modelling 

for straggler detection while monitoring tasks dynamically. Heecheol et al. [29] proposed Secure 

Distributed Computing (SDC) approach using recovery threshold value to efficiently deal with the 

impact of straggling [59], which uses polynomial codes on sub-tasks allocated to nodes.  

4.2 Straggler Mitigation Techniques 

Straggler mitigation technique comprise all mechanisms and approaches to tolerate or avoid the 

impact of straggler manifestation [57]. Such techniques can be further sub-divided into three sub-

categories [44] [100] [101] [81]: load balancing based, replication based, and scheduling based.  

 



 

Preprint submitted to The Journal of Supercomputing  

4.2.1 Load Balancing based Straggler Mitigation 

Load balancing based straggler mitigation technique manages the load during mitigation of 

stragglers.  

Ouyang et al. [12] proposed a method to reduce Late-Timing Failure (LTF) and analyse the root-

cause of stragglers in Cloud Data Centres (CDC) such as server failures or task concurrency and 

resource contention. Further, this study identified the high temporal resource contention as a main 

root-cause of stragglers. Further, the output of experiments demonstrate that this technique 

maintains the efficiency of the computing systems while tolerating the system failures effectively. 

Yanfei et al. [23] proposed a user transparent task slot management approach called FlexSlot, 

which identifies the stragglers automatically and resize their slots to improve the speed of 

execution of task. Further, it balances the usage of resources by automatically changing the 

number of available slots of nodes to improve its utilization. Moreover, FlexSlot uses adaptive 

speculative execution approach to improve mitigation of skew data.  

Neda et al. [26] proposed Log-Assisted Straggler-Aware (LASA) I/O scheduler for high-end 

computing to mitigate the impact of storage server stragglers. Further, a scheduling algorithm is 

proposed to make effective decisions to manage stragglers at runtime. The output of experiments 

demonstrate that LASA is performing better in load balancing while mitigating the storage server 

stragglers dynamically. Eman et al. [31] proposed a parallel model for straggler mitigation in 

distributed spatial simulation called Priority Asynchronous Parallel (PAP) to exploit data 

dependencies of parallel processes to be computed and synchronized based on data priority to the 

other workers. Moreover, load balancing and partitioning method is proposed to balance the 

workloads among different nodes and help to improve the performance speedup by a large extent. 

Haozhao et al. [37] proposed Heterogeneity-aware Gradient Coding (HGC) scheme to execute the 

jobs in heterogenous environment and efficiently tolerate the stragglers without degrading the 

effectiveness of the cloud services [58]. The output of experiments demonstrates that HGC scheme 

outperforms in computation time.  

4.2.2 Replication based Straggler Mitigation 

Replication based straggler mitigation technique replicates the adequate number of tasks during 

mitigation of stragglers.  

Mehmet et al. [7] analysed the Trade-off between Latency and Cost (TLC) using simple replication 

or erasure coding for straggler mitigation in executing jobs with many tasks. Experimental results 

show that delaying redundancy is not effective in reducing cost. Further, Mehmet et al. [10] 

developed a Straggler Mitigation (SM) technique using delayed relaunch of tasks, which helps to 

reduce cost and latency effectively. Da et al. [11] proposed an idea of an efficient Task Replication 

Technique (TRT) for straggler management to improve the response time in parallel computations. 

Further, this technique is implemented in [13], demonstrate empirically that replicating all 

operations can result in significant mean and tail latency reduction in real world systems including 

Domain Name System (DNS) queries, database servers, and packet forwarding within networks.  

Tien-Dat [15] [33] proposed Energy-Efficient Straggler Mitigation (EESM) technique for effective 

management of big-data applications in the cloud computing environment to optimize the energy 

consumption during straggler occurrence. Firstly, authors characterize the effect of straggler 

mitigation on energy-efficiency. Secondly, a straggler detection framework is developed, and they 

identified that only 12% of the detected tasks are real stragglers [33]. The usage of huge number 

of speculative copies is the main reason of unnecessary energy consumption. Thirdly, a reservation-

based straggler handling approach is proposed to optimize the energy efficiency by allocating the 

required resources at runtime effectively.  

Da et al. [17] analysed the trade-off between latency and cost to find out the best replication 

technique for straggler management based on following parameters: 1) when to perform replication 
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for straggling tasks, 2) number of replicas to be launched and 3) is it necessary to destroy the 

original copy or not. Further, a Straggler Management Approach (SMA) is proposed to calculate 

the value of latency-based empirical distribution of execution time of task. The output of 

experiments demonstrate that this work gives better for two performance parameters such as cost 

and latency. Lei et al. [19] proposed a straggler management technique called CREST 

(Combination Re-Execution Scheduling Technology) for fast speculation of straggler tasks in 

MapReduce framework, which further reduces the response time of MapReduce jobs. The re-

execution of set of tasks on set of computing nodes in CREST improves the speed of task execution.  

Radheshyam et al. [20] proposed a Job-Aware Scheduling (JAS) technique to optimize the running 

time of different jobs by maintaining the harmony among them, which are executing on same 

cluster. JAS technique is implemented using for MapReduce framework. Further, proposed 

algorithm selects the most compatible task with executing task to reduce more execution time. 

Moreover, a heuristic based load balancing technique is developed to avoid the underloading and 

overloading of resources. Matei et al. [21] explored the MapReduce framework for straggler 

management and improved its performance in heterogenous environment. Further, a resource 

scheduling algorithm, Longest Approximate Time to End (LATE) is proposed to improve the 

robustness in regard to heterogeneity and improves response time of tasks. LATE scheduling 

algorithm [3] estimates the longest approximate time and select the task with longest approximate 

time as straggler tasks and execute its speculative copy on another fast node to speed-up the job 

completion time. SAMR scheduling technique [18] computes the completion of tasks at runtime 

and discover the straggler task based on execution time. Further, historic information of node is 

used to detect more reliable node in SAMR and weights of reduce and map stages are updated after 

completion of every task. 

Farhat et al. [32] proposed a Straggler Management technique for Modelling and Optimization 

(SMMO) of straggling mappers to show the stochastic behaviour of mapper nodes and its negative 

effect on completion time of MapReduce jobs. Authors identified task inter-arrival time of jobs to 

map the required nodes of heterogenous CDC in an optimized way. The experimental results 

demonstrate that the proposed technique reduced the execution time of jobs at runtime. Behrouzi-

Far et al. [74] proposed an efficient straggler replication framework in large-scale parallel 

computing to analyze the performance of the system in terms of latency-cost trade-off. Further, it 

identifies the best replication technique based on different criteria such as: (i) number of replicas 

required, (ii) time to replicate straggling tasks and (iii) determine whether to kill the original task. 

Finally, performance evaluation is described that latency and cost is reduced in Google Cluster 

Trace as compared to MapReduce. 

4.2.3 Scheduling based Straggler Mitigation 

Scheduling based straggler mitigation technique schedule the resource for jobs during mitigation 

of stragglers.  

Ganesh et al. [4] explored the straggler mitigation techniques and identified the impact of reasons 

of stragglers in latency sensitive jobs. Further, authors designed workloads with small number of 

jobs and performed cloning of small jobs. It has been identified that the cloning of small jobs uses 

less resources but improves the reliability of computing services. Moreover, a system named Dolly 

is developed to generate multiple clones of jobs and execute jobs within their specified budget. 

Experimental results demonstrate that Dolly sped up jobs by 46% by using only 5% extra resources.  

Ganesh et al. [5] proposed Greedy Speculative scheduling and Resource Aware Speculative 

scheduling (GRASS) technique, which uses speculation to mitigate the impact of stragglers in 

approximation jobs. GRASS uses extra resources for speculation and improves accuracy for 

deadline-bound jobs by 47% and speeds up error-bound jobs by 38%. Aaron et al. [8] addressed the 

straggler problem for Iterative Convergent Parallel (ICP) machine learning technique to identify 

the behaviour (in terms of delay) of the system during execution of jobs by injecting the stragglers. 



 

Preprint submitted to The Journal of Supercomputing  

Amazon EC2 and Microsoft Azure [60] is used to evaluate the performance of system in terms of 

execution time.  

Ouyang et al. [14] proposed a Straggler Management Technique (SMT) to find the task stragglers 

by calculating threshold value at runtime. Further, this technique considers important key 

parameters such as resource utilization, task execution and job QoS timing constraints to manage 

straggler tasks effectively. Neeraja et al. [16] proposed straggler management technique called 

Wrangler to proactively avoid the conditions, which cause stragglers. Wrangler [4] uses 

interpretable linear modelling approach to reduce the resource wastage by eradicating the 

requirement for replicating tasks. It uses fewer resources to complete the job in a faster way and 

avoids the straggler proactively by predicting in advance. A cluster resource utilization based 

statistical learning technique is used for confidence measure to offer reliable task scheduling by 

predicting errors in advance. The output of experiments show that Wrangler produces 

improvements in terms of Job Completion Time and resource utilization as compared to speculative 

execution. 

Quan et al. [18] proposed a Self-Adaptive MapReduce (SAMR) scheduling technique for straggler 

management, which estimates task progress automatically and adapts to the changing conditions 

of environment dynamically. SAMR uses MapReduce mechanism to divide jobs into tasks and 

execute on different available nodes. SAMR does not create backup tasks for regular tasks.  SAMR 

reduces the execution time of MapReduce jobs while executing tasks in heterogenous environment. 

Enhanced SAMR (ESAMR) [22] uses the k-means clustering algorithm to categorize the historic 

data of each node into k-clusters and identifies the straggler task more accurately. Furthermore, 

ESAMR uses weights of reduce and map stages to find the Time to End on different nodes, which 

can easily identify the more reliable node.  

Ganesh et al. [22] studied and explored the straggler management in resource aware techniques 

and identified the main causes of stragglers such as varying bandwidth, network congestion, 

workload imbalance and contention of resources (network, memory and processor). Furthermore, 

Mantri [22] is used monitor task execution and take a proactive action to sustain the efficiency of 

the CDC in the case of resource contention or hardware/software failure [75] [77] [78]. It uses Bing 

traces to evaluate the performance and it improves job completion time to a large extent.  

Ouyang et al. [30] proposed a Straggler Management Mechanism (SMM) to improve the execution 

efficiency of Internet-ware applications by dynamically calculating the straggler threshold, 

considering important parameters such as optimal system resource utilization, task execution 

progress and job QoS timing constraints. Further, YARN architecture is used to implement 

dynamic straggler threshold to test the performance of the proposed mechanism and experimental 

results gives the better outcomes in terms of response time. Rong et al. [36] developed Large-scale 

Multimedia Semantic Concept (LMSC) model to improve the scalability of the computing systems 

with heterogenous environment. Robust Subspace Bagging algorithm is used to improve learning 

process and further, a task scheduling algorithm is proposed to improve the scalability by executing 

heterogenous tasks. Proposed model is tested on MapReduce framework and experimental results 

demonstrate its superiority.   

Figure 4 presents the evolution (2008-2019) of different types of straggler management techniques 

along with their focus of study and QoS. 

Table 2 shows the comparison of different types of straggler management techniques based on 

different parameters. 
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Figure 4: Evolution of Straggler Management Techniques 

2008 
DPLC [9] 

FoS: Fault Tolerance  LATE [21] 

QoS: Response Time and Network Bandwidth  

2009 LMSC [36] 

FoS: Scalability   

QoS: Execution Time   

2010 SAMR [18], MANTRI [22] 

FoS: Resource Contention  

QoS: Execution Time, Job Completion Time  

2011 CREST [19], JAS [20] 

FoS: Execution Speed-Up  

QoS: Execution Time  

2012 RDD [3] 

FoS: Fault Tolerance  

QoS: Fault Rate  

2013 Dolly [4], TRT [11] 

FoS: Reliability 

QoS: Response Time 

2019 SDC [19], HGC [37] 

FoS: Security 

QoS: Computation Time 

2018 SAMR [18] 

FoS: CPU Utilization   

QoS: Cost, Latency, Response Time 

2017 
FlexSlot [23] 

FoS: Data-intensive Jobs   

SDA [28], PAP [31] 

QoS: Cost, Latency, Energy Consumption, Resource Utilization 

2016 MRNLS [24], RCS [25] 

FoS: Resource Contention, Server Failures, Task Straggler Occurrence   

LASA [26], MLSD [27] 

QoS: Resource Utilization, Execution Time 

2015

  

NearestFit [1], MR [2] 

FoS: Homogenous Clusters 
HA [6], SMA [17] 

QoS: Running Time, Latency, Cost, Execution Time 

2014 
GRASS [5], Wrangler [16] 

 

FoS: Accuracy, Completion time SMMO [32] 

 

QoS: Resource Utilization, Execution Time  

TLC [7], EESM [15] 

ICP [8], LTF [12], SMT [14] 
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Table 2: Comparison of Straggler Management Techniques 

Work Straggler type Cause Environment Type Dataset Delay Merits Open Challenges 

[1] 

Slow tasks, 

non-local task, 
data skew 

Wall-clock times of 

slow running tasks far 

from prediction from 
linear progress 

assumption 

Hadoop Pro 

50GB archive 

Wikipedia 
articles 

Low 

Higher 
accuracy in 

profile 

optimization 

If a job is too short, 

unable to collect 

enough profiling data 
to obtain accurate 

prediction 

[2] 
Delay time is 

larger 

Shuffle phase 

overlaps with the Map 
phase of MapReduce 

Hadoop Rea 
Word Count 

Data Set (3GB) 
High 

Optimized 

execution 
time 

Inaccurate estimation 

of time to execution 

[3] 
Memory 

utilization 

Lack of data sharing 

abstractions 
Spark Pro 

1TB Wikipedia 

logs (2 years). 
Low 

Efficient 

data 
recovery 

Memory requirements 

grow as the dataset 
size increases 

[4] 
Resource 
contention 

Extra clones cause 

contention for 
intermediate data and 

shared resources 

Hadoop Pro 
Facebook and 

Bing traces 
High 

46% job 

speedup, 
5% extra 

CPU 

1. Homogenous job 

sizes required for 

optimization 
2. Extensive analysis 

needed to determine 
straggler chance 

[5] 
CPU 

Utilization 

Spawning speculative 

copy 

leads to task using 
two (or more) 

resources 

simultaneously 

Spark and 
Hadoop 

Pro 

& 

Rea 

Facebook and 
Bing traces 

Med 

Improves 

deadline job 

accuracy 

47%; error 
jobs 38%, 

Weigh the impact of 

speculating a running 
task with scheduling a 

new task of any job. 

[6] 
Larger 

response time 

Resource contention 
due to resource 

sharing (deadlock) 

Hadoop Rea 
Google Trace 

Data 
High 

“Reduced 

latency and 
cost of 

computing 

resources” 

Develop online 

strategy to learn 

execution time 
distribution to launch 

replica, instead of 

using historical 
traces.” 

[7] 
Delaying 

redundancy 

Delaying redundancy 

increases latency 
NA Rea 

Google Trace 

Data 
High 

Analysed 

trade-off 

between 
cost and 

latency 

Degree of redundancy 
can be reduced 

without affecting 

latency. 

[8] 

Transient 
slowdown 

of worker 

thread 

Temporary 
slowdowns (due to 

resource contention 

with a background 

activity) often occurs 

on non-blacklisted 

machines 

Amazon EC2 

and Microsoft 

Azure 

Pro 

Netflix dataset 

(480k-by-18k 

sparse matrix 

with 100m 

elements) 

High 

Reduced 

execution 

time 

Resource overloading 

[9] 
Inaccessible 

local disk 

Completed map tasks 

are re-executed on 

failure because output 
is stored on local disk 

of failed machine, 

thus inaccessible. 

Hadoop Rea 
Google 

Zeitgeist data 
Low 

Fault-

tolerance, 

locality, 
optimization 

load 

balancing 

Redundant execution 

can be used to reduce 

the impact of slow 
machines, but 

consumes more 

energy 

[10] 

Ineffective 

CPU 

Utilization 

Relaunching tasks 
before minimum task 

completion time 

causes work loss and 
latency 

Hadoop Pro 
Google Trace 

Data 
High 

Reduced 

redundancy, 

cost, latency 

Need of empirical 

evidence to accurately 
model execution 

time for resource load 

[11] 

[13] 

Larger 

response time 

Latency in locating 

small disk file, time 

needed to load file 
from disk 

Apache 

Cassandra 
Pro 

Facebook and 

Google traces 
High 

Reduced 

latency 

using 
redundancy 

Ignoring data locality 

for launching 
speculative map tasks 

leads to performance 

degradation 

[12] 
Resource 

Contention 

Unbalanced workload 

aggregation and poor 

user code 

Hadoop Pro NA Low 

Reduced 

late-timing 

failures 

Request handling 

inefficiency is due to 

overloaded file request 

[14] 

CPU and 

Memory 

Utilization 

Contention of shared 
resources, node disk 

failures, and 

imbalanced task 
workloads 

SEED Rea 
Microsoft Bing 

traces 
High 

Improved 

job 
completion 

time 

To design a cost 

function for further 
optimization of 

proposed method 

[15] 

[33] 

Energy 

consumption, 

resource 
contention 

Large resource cost 

with many speculated 

tasks, increased 
energy usage 

Hadoop Pro 

MapReduce 

Application 

(Wordcount, 
Cloud Burst) 

Med 
Improved 
energy- 

efficiency 

Speculative copies can 

be launched 
adaptively to improve 

further the output 

accuracy 
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[16] 
Resource 

contention 

Local conditions 

exceed fixed 

thresholds defined 

over set of resource 
usage statistics 

 

Hadoop Pro 
Facebook 2009, 

Cloudera 

Hadoop trace 

High 

Improved 

resource 

utilization, 

job 
completion 

time 

Reduce time spent for 
capturing training data 

per node in a cluster 

[17] Long task delay 

Additional time 

needed for original 

copy to finish more 
likely to be shorter 

than new copy 

execution time 

Hadoop Pro 
Google Cluster 

Trace 
High 

Latency and 

cost are 

improved 

Technique can be 

tested on 
heterogeneous servers, 

identify task 

dependencies (some 
tasks need to complete 

prior to others) 

[18] 
Task 

Replication 

Larger number of task 
replication resulting 

in high overhead 

Hadoop Pro 

MapReduce 

Application 

(Wordcount and 
Sort) 

Low 
Reduced 
execution 

time 

Ignoring of data 
locality for launching 

speculative map tasks 

may lead to severe 
performance 

degradation 

[19] 

High 
speculative 

map task 

execution 

Ignoring data locality 

for launching 
speculative map task 

may lead to 

performance 
degradation 

Hadoop Rea 

Specific gene 

segment from 
50GB DNA 

Low 

Reduced 

running 

time of a 
speculative 

map task 

Nonuniform data 

processing time; 

performance 
interference from co-

running jobs. 

[20] 

No 

synchronization 
between tasks 

Task incompatibility 

due to their different 
requirements 

Hadoop Rea 

Terasort, grep, 

webcrawling, 

WordCount, 
video 

conversion 

Low 

Reduced 

execution 
time 

Scale up/down cluster 

by switching on/off 
virtual machines or 

nodes based on 

resource usage to 
reduce energy 

[21] 

Performance 

degradation in 
heterogeneous 

environment 

Many speculative 

tasks may 
launched leading to 

resource exhaustion 

Hadoop and 
EC2 

Pro 
Facebook and 
Yahoo traces 

Low 

Improved 

task 
response 

time 

Workload imbalance 
between workers 

[22] 

Varying 

bandwidth, 
network 

congestion, 

workload 
imbalance and 

resource 

contention 
(network, 

memory, CPU) 

Disk-intensive tasks 

scheduled to a node 

with slow disk 

Hadoop Pro Bing traces Med 

Improved 

job 
completion 

time 

Longer 
communication delays 

[23] 

High resource 
contention 

(CPU 

utilization) 

Uneven data 
distribution among 

tasks, nonuniform 

data processing time; 
performance 

interference from co-

running jobs 

Hadoop Pro 
Wikipedia 

traces 
Med 

Data skew 

mitigation, 

reduced job 
completion 

time 

Adaptive speculation 

execution approach 

can be developed for 
resource management 

in YARN. 

[24] 

Task-level 
stragglers 

during job 

execution 

Lack of correlation 

between straggler 

tasks and available 
slots at system run-

time 

Hadoop Rea Google trace Low 

Reduced 
task 

straggler 

occurrence 

Performance-aware 

algorithm can improve 

straggler mitigation, 
node-level 

identification. 

[25] 
Resource 
contention 

Hardware 

heterogeneity 

 

SEED Pro Google trace Low 

Monitored 
and detected 

straggler 

tasks at 

runtime 

Root-cause analysis 

via 
machine learning to 

cross-correlate 

heterogeneous system 

traces for intelligent 

failure detection. 

[26] 
Storage server 

stragglers 
Workload imbalance 

between workers 
Simulator Rea 

Synthetic 
workloads 

generated based 

on real-world 
traces 

Low 

Mitigate 
storage 

server 

stragglers 
dynamically 

Develop prototype of 
integrating proposed 

I/O scheduling into 

existing parallel file 
systems 

[27] 
Workload 

imbalance 

Datasets on stragglers 

are expected to 

demonstrate 
imbalanced label 

distribution 

Spark Rea Google traces Low 

Run-time 

straggler 
detection 

Fine-grain straggler 
identification by per 

slowest node and 

cluster 
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[28] 

High job 

completion 
time 

Late speculative 

execution on straggler 

tasks does not reduce 

job completion time. 

Simulator Rea NA Low 

Run-time 

straggler 
diagnosis 

Slow task execution 

(e.g., non-local task 
and data skew) 

[29] 

Data 

abstraction 
obfuscation 

Master node wants to 

hide input data from 
workers 

NA Rea NA Med 

Reduced 
straggling 

effects on 

sub-tasks 

Communication 

delays and 
computation delays 

[30] 
High CPU 

utilization 

Imbalanced workload 

or uneven input data 
Sizes 

SEED Pro 

Sort, 

Wordcount, 
Hive query 

Med 

Improved 

response 
time 

Design a cost function 

beyond CPU and 

memory utilization, 
including disk volume 

and network speed 

[31] 

Data 

dependencies 
of parallel 

process 

Workload imbalance 

between workers in 

cloud datacenters 

SMARTS Pro 
OpenStreetMap 

dataset 
High 

Improved 

performance 

speedup 

High resource 

overhead associated 
with increased 

backups 

[32] 
Resource 

contention 

Hardware 

heterogeneity 
Hadoop Rea 

Bing, Facebook 

traces 
High 

Reduced job 

execution 
time 

Hardware/software 
faults identified and 

removed from task 

scheduling 

[36] 

Task-level 

stragglers 

during 

execution of 
jobs 

Hardware 
heterogeneity 

Hadoop Pro Google traces Med 
Improved 
Scalability 

Computation delay is 
larger 

[37] 
Resource 

contention 

Hardware 

heterogeneity 
Simulator Rea NA High 

Reduced job 

completion 
time 

Overloading of 

resources 

Pro = Proactive, Rea = Reactive, High means the value is more than 80%, Medium (Med) means the value between 50% to 

80% and Low means the value less than 50% 

 

5. COMPARISON OF STRAGGLER MANAGEMENT TECHNIQUES BASED ON 

TAXONOMY 

Table 3 shows the comparison of straggler management techniques based on taxonomy of straggler 

causes from Figure 1 and Table 2.  

Table 3: Comparison of Straggler Management Techniques based on Taxonomy of Straggler 

Causes 

Work  Data 

Abstraction  

CPU util. Scheduling Inaccessible 

Local Disk 

Data Skew Resource 

Contention 

Task Execution Faults 

Resource 

Schedule 

Job Schedule 

[1] OS Level NA Inefficient 

Resource 
Allocation 

NA Increased 

Backup Tasks 

Uneven Data 

Distribution 

Extra Cloning Task Interference NA 

[2] NA Additional 

Time 

NA More Resource 

Requirement 

NA NA Hardware 

Heterogeneity 

Task Interference Software 

[3] Application 
Level 

NA Idle 
Resources  

High resource 
requirement 

Failed to store 
output 

Uneven data 
distribution 

Extra cloning Task 
incompatibility 

NA 

[4] OS Level NA  NA NA  Extra Cloning NA Hardware 

[5] NA Increased 

speculative 
copies 

Idle 

Resources 
still Active 

Poor admission 

control 

NA Uneven Data 

Distribution 

Hardware 

Heterogeneity 

Unhandled Request 
 

 

Software 

[6] Application 

Level 

NA Idle 

Resources 
Still Active 

Poor admission 

control 

Failed to store 

output 

Non-uniform 

data 
processing 

time 

Ineffective 

Algorithm Logic 

Unhandled Request 

 

NA 

[7] NA NA NA NA NA Non-uniform 

Data 
Processing 

Time 

Temporary 

Slowdowns 

Task 

Incompatibility 

Hardware 

[8]  OS Level NA NA NA NA NA Temporary 
Slowdowns 

NA Hardware 

[9] NA NA Inefficient 

Resource 

Allocation 

Dynamic 

Requirements 

Failed to Store 

Output 

Uneven Data 

Distribution 

Ineffective 

Algorithm Logic 

Task Interference NA 

[10] NA Additional 

Time 

NA NA NA NA Extra Cloning NA Hardware 
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[11] 

[13] 

Application 

Level 

Additional 

Time 

NA NA Increasing 

Backup Tasks 

NA Hardware 

Heterogeneity 

NA Hardware 

[12] Application 

Level 

NA NA NA NA NA Poor User Code NA NA 

 

[14] NA Increasing 
Speculative 

Copies 

Idle 
Resources 

still Active 

Dynamic 
Requirements 

Increasing 
Backup Tasks 

NA Ineffective 
Algorithm Logic 

Unhandled Request 
 

Hardware 

[15] 

[33] 

OS Level NA NA Dynamic 

Requirements 

NA Uneven Data 

Distribution 

Multiple Copies NA NA 

[16] NA NA NA NA NA NA Extra Resource 

Usage 

NA Software 

[17] NA Additional 

Time 

NA NA NA NA  NA Software 

[18] Application 

Level 

NA Idle 

Resources are 

Still Active 

More Resource 

Requirement 

Increasing 

Backup Tasks 

NA Extra Cloning Unhandled Request 

 

 

[19] OS Level Increasing 
Speculative 

Copies 

NA NA NA Non-uniform 
Data 

Processing 

Time 

Extra Cloning NA Hardware 
and 

Software 

[20] OS Level NA NA NA NA NA Multiple Copies Task 

Incompatibility 

NA 

[21] OS Level Increasing 

Speculative 
Copies 

NA Poor Admission 

Control 

Failed to Store 

Output 

NA Multiple Copies NA NA 

[22] Application 

Level 

NA NA NA NA NA Temporary 

Slowdowns 

Task 

Incompatibility 

Hardware 

[23] NA NA Inefficient 

Resource 

Allocation 

Dynamic 

Requirements 

Increasing 

Backup Tasks 

Uneven Data 

Distribution 

NA  Software 

[24] NA Additional 
Time 

NA NA NA NA NA Task Interference Hardware 

[25] NA NA NA NA NA NA Hardware 

Heterogeneity 

NA Hardware 

[26] NA NA Idle 
Resources are 

Still Active 

More Resource 
Requirement 

Increasing 
Backup Tasks 

NA NA Task Interference Software 

[27] Application and 
OS Level 

Increasing 
Speculative 

Copies 

Idle 
Resources are 

Still Active 

Poor Admission 
Control 

Failed to Store 
Output 

Non-uniform 
Data 

Processing 

Time 

Extra Cloning Unhandled Request 
 

NA 

[28] OS Level Increasing 

Speculative 

Copies 

NA Dynamic 

Requirements 

NA NA Hardware 

Heterogeneity 

NA Hardware 

[29] OS level NA NA NA NA NA Poor User Code Task 
Incompatibility 

NA 

[30] Application 

Level 

Increasing 

Speculative 

Copies 

Inefficient 

Resource 

Allocation 

More Resource 

Requirement 

NA Uneven Data 

Distribution 

Ineffective 

Algorithm Logic 

NA Software 

[31] NA NA Inefficient 

Resource 

Allocation 

Poor Admission 

Control 

Failed to Store 

Output 

Non-uniform 

Data 

Processing 
Time 

Temporary 

Slowdowns 

Task Interference NA 

[32] Application 

Level 

Additional 

Time 

NA More Resource 

Requirement 

Increasing 

Backup Tasks 

Non-uniform 

Data 
Processing 

Time 

Hardware 

Heterogeneity 

Task 

Incompatibility 

Hardware 

[36] OS Level Additional 

Time 

NA Poor Admission 

Control 

Failed to Store 

Output 

NA Hardware 

Heterogeneity 

NA Hardware 

[37] Application 

Level 

NA Inefficient 

Resource 

Allocation 

Dynamic 

Requirements 

NA NA Hardware 

Heterogeneity 

NA NA 

NA: Not Applicable 

5.1 Analysis of Experimental Results: Practical Use-Case 

The existing straggler management techniques have been categorized into two categories i.e. straggler detection 

and mitigation techniques. Table 4 shows the analysis of experimental results of straggler detection and mitigation 

techniques in the context of different performance parameters. Future researchers can use Table 4 to validate their 

research work based on the values of various performance parameters identified from existing literature.  

Literature reported that there are four types of data abstraction levels (OS, application, server and VM), where 

straggler can occur. 
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Table 4: Analysis of experimental results of straggler detection and mitigation techniques 

Study Type  Data 

Abstraction 

Level 

Context 

Number 

of 

Nodes/ 

Workers  

 

Energy 

Consumption 

CPU 

Utilization 

Disk 

Utilization 

Data 

Transfer 

Memory 

Utilisation  

Deadline Execution 

Time 

Number 

of Tasks 

Number 

of Jobs 

Data 

Size 

Latency Failure 

Prediction 

Accuracy 

Number 

of 

Failures 

Average 

Error 

Slowdown/ 

Delay  

Interval 

Arrival 

Rate  

Running 

Time 

Response 

Time 

[1]  

 

 

 

 

Straggler 

Detection 

Techniques  

Application  8-32 NA >61% NA NA NA NA NA NA 50-150 NA NA NA NA 2.5-5% 5-15 % NA 0-30 m NA 

[2] Server 40-200 NA NA NA NA >71% NA 0.5s – 

1000s 

NA NA 1-3 GB 6.5-9 s NA NA NA 0.5 s – 2 s 10-30 

J/s 

NA NA 

[3]  Application 25-100 NA NA NA NA NA NA 0-184s NA NA 100 GB 

– 1 TB 

NA NA 1-119 NA NA NA NA 1.7 – 6.6 s 

[6] OS NA 90 kWh >82% NA NA NA NA NA 400-488 1017 NA 4-8 s NA NA NA NA NA 0-3k s NA 

[9]  Server NA NA NA NA 0 – 20k 

MB/s 

NA NA 0-634s 3351 29423 3228 

TB 

NA NA NA NA NA NA 0-1000s NA 

 

[24] Server 132 NA NA >40% NA NA NA 50-300 s NA NA NA NA NA NA NA NA NA NA NA 

[28] Application  NA NA >80% NA NA NA NA 10-14 m 252950 3043 NA NA NA NA NA NA NA 29 days NA 

[25] Application  NA NA >80% NA NA 90% NA 10-14 m 1233879 875 NA 1200-

1500 

ms 

NA NA NA 6% NA 14 days 30 m 

[27] Server 12000 NA NA NA NA NA NA  NA 417 NA NA 62.92% NA NA NA NA NA NA 

[4]  

 

 

 

 

 

 

 

 

 

 

Straggler 

Mitigation 

Techniques 

VM 48 NA NA >60% NA NA NA 0-35 s 1-5 1-500 NA NA NA NA NA NA NA 1-6 h NA 

[5] VM NA NA NA NA NA NA 2-20% 30-50%  50-500 NA  20-52% NA 5-30% NA NA NA NA 

[7] Application  NA NA NA NA NA NA NA 50-110s NA NA NA 0-120s NA NA 1.5-3.5% NA NA NA NA 

[8] Server 90 NA NA NA NA NA NA 0-100s  NA NA NA NA NA NA NA NA 5-32s NA 

[10] Application  NA NA NA NA NA NA NA 50-110s NA NA NA 60-

1600s 

70% NA 1.5-3.5% NA NA NA NA 

[12] Application  60 NA >80% >80% NA NA NA  NA NA NA  NA 6-22 NA 8s NA NA NA 

[11] 

[13] 

Servers 1-10 NA NA NA NA NA NA 0-12s NA 700 NA 0-1sec NA NA NA NA 0-12 

req/s 

NA 1-1000s 

[14]  Application  20-80 NA 27-135% NA NA 27-135% NA 100-1100 NA NA 24.6 

GB 

NA NA NA 2-3% 4-6s NA NA 680-

1080ms 

[15] 

[33] 

Application  NA 14-18 106J NA NA NA NA NA 12-52 s 1759434 1735 20 GB NA 40-60% NA NA NA NA 7-14 103s NA 

[16] Application  50-100 NA NA NA NA NA NA 0-70 s NA 22974 NA NA 20-85% NA NA 0.22-

21.84% 

NA 9 days NA 

[17] Application NA NA NA NA 2.87 

MB/s 

NA NA NA NA NA NA 1750-

5200 

ms 

NA NA NA NA NA 0-1600 s 18s 

[18] Application 1-8 NA NA NA NA NA NA 210-330s NA NA NA NA NA NA NA NA NA NA NA 

[19] VM 100 NA NA NA NA NA NA NA 1-8 NA NA NA NA NA NA NA NA NA NA 

[20] Application  12 NA NA NA NA NA NA NA NA 0-35 64 MB NA NA 50-91 NA 11% NA 0-125s NA 

[21] VM 871 NA NA NA 52.1 

MB/s 

NA NA 10-70s NA NA 30 GB NA NA NA NA NA NA 0-2.5 s NA 

[22] Server NA NA 20-80% NA NA NA NA 0-300 s NA NA  NA NA NA NA NA 20-80 

req/s 

NA NA 

[23] VM 32 60 kWh NA NA NA NA NA 0-300 s NA NA 150 GB NA NA NA 7-9% NA NA NA NA 

[26] Application  300 NA NA NA NA NA NA 20-200s NA  NA NA NA NA NA NA NA NA NA 

[30] VM 40 NA NA NA 11 

MB/s 

NA NA 5-85s 500-

10000 

NA NA NA NA NA NA NA NA NA 130-213s 

[31] Application  80 NA NA NA NA NA NA 15-80s NA NA NA NA NA 82-98 NA NA NA NA NA 

[32] Server NA NA NA >55% NA NA NA NA NA NA NA NA NA NA 3-6% 4-9 s 0-25 

req/s 

NA NA 

[36] OS  16 NA NA NA NA NA NA NA NA NA NA NA 60-70% NA NA NA NA NA NA 

[37] Application  8-48 NA >40% NA NA NA NA 0-15 s NA NA NA NA NA NA <2% 4s NA NA 50s 

NA: Not Available, s: Seconds, ms: Milliseconds, GB: Giga Bytes, kWh: Kilo Watt Hour, MB/s: Mega Bytes per second, req/s: Number of Requests per Second, m: minutes      
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5.2 Trend Analysis  

Our systematic review has identified different types of result outcomes for different categories of 

straggler management techniques developed from year 2008 to year 2019. The scheduling-based 

straggler mitigation technique appears prominent across the years except year 2012. After the 

scheduling-based techniques, researchers focused on replication-based straggler mitigation, during 

the year 2013 to 2019. The offline, online and load-balancing straggler management techniques 

are less focused on from year 2008 to year 2019 requiring research to improve the straggler 

management in large scale systems. Researchers focused on scheduling and replication-based 

straggler management in years 2018 and 2019. Figure 5 shows the year-wise publications of 

straggler management techniques and it has been clearly depicted that research from year 2008 

to 2016 was highly progressive in this area, declining after 2017 and 2018 while progressing in 

2019. 

Literature reports the research related to straggler management is mostly published in journals 

(31%), followed by conferences (28%), transactions (21%) and book chapters (10%). The rest of the 

research is published in symposiums, workshops, white papers and PhD thesis. Figure 6 shows the 

research conducted related to straggler management at different levels such as Application, 

Server, OS, VM and cooling. Figure 6 clearly shows that most of the research work has been done 

at the application level (46%) and followed by VM level (21%). Only 3% of research work has been 

done at cooling level.  

Literature reports 44% of research work considered between 0 and 100 nodes for performance 

evaluation and only 7% research work considered 1000+ nodes. There are four different types of 

studies identified form literature: real testbed based (63%), systematic reviews (7%), conceptual 

models (10%) and simulation based (20%). Most of the technical research papers (63%) consider 

real testbeds for performance evaluation. There are only two reviews [34] [35], which have been 

done in this area. Table 5 shows the different research work related to different performance 

parameters identified from Table 4.  

5.3 Observations 

From the trend analysis, it is observable that current related works focus on studying and 

mitigating specific straggler types, ranging from resource contention to data skew as shown in 

Table 2. This appears to be a necessity given the complexities and management strategies 

appropriate for each straggler type. The challenge is that it is possible for straggler manifestation 

to be correlated in terms of system phenomena, but also management techniques themselves (e.g. 

use of speculative copies to address data skew causes increased resource contention). 

The important research challenges within the large-scale cloud data centres such as latency, 

scalability, energy consumption and data processing are contributing to the rise in research in the 

field of straggler management, which can be solved by using Artificial Intelligence techniques. On 

the other hand, there is a need of real cloud infrastructure (at least 50 physical nodes) to test the 

      

Figure 5: Publications of Straggler Management Techniques  Figure 6: Straggler Type Breakdown in Literature 
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performance of future straggler management techniques but it would be very expensive to afford 

for academic institutes. To solve this problem, industries such as Facebook, Google, Amazon should 

collaborate with academic institutes to provide required infrastructure to do real experiments. 

Table 5: Research Work Related to Performance Parameters  
 

Performance Parameters Study 

Number of Physical Nodes/ Workers  [1] [2] [3] [11] [13] [14] [16] [18] [19] [20] [21] [23] [24] [26] [27] [28] [30] [31] 

Number of Virtual Nodes/ Workers 

Energy Consumption [15] [33] 

CPU Utilization [12] [14] [22] [25] 

Disk Utilization [12] 

Data Transfer [9] [17] [21] 

Memory Utilisation [14] 

Deadline [5] 

Execution Time [2-18] [33] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [36] [37] 

Number of Tasks [4] [6] [9] [15] [33] [25] [30] 

Number of Jobs [4] [5] [6][8] [15] [16] [33] [21] [23] 

Data Size [33] 

Latency [2] [6] [7] [10] [11] [13] [16] [27] 

Failure Prediction Accuracy [5] [16] 

Number of Failures [3] 

Average Error [1] [5] [7] [10] 

Response Time [3] [11] [33] [14] [30] 

Slowdown/ Delay  [1] [2] [16] [32] 

Interval Arrival Rate  [2] [11] [13] [22] [32]  

Running Time [1] [4] [6] [8] [9] [11] [15] [16] [17] [20] [21] [25] [33] 

 

This systematic review also identifies various research directions for perspective researcher 

scholars, who are working in the field of straggler management for distributed systems and 

searching for new research challenges to improve the performance of cloud services. The straggler 

management is an evolving field of research for large scale systems and it is quite challenge ring 

to execute user workloads without occurrence of stragglers. To solve this problem, there is a need 

to recognize the reasons of long-tail problem or stragglers and their correlations, which can help to 

find out the dependency among stragglers. This study [1] developed straggler management 

technique for profile guide more accurately, but accurate predication is difficult to get if job is very 

small to gather required profiling data. An efficient data recovery is achieved in [3], but it has been 

identified that the memory requirements do not grow to intolerable levels as the size of dataset is 

increasing, which further causes the stragglers. The jobs are increasing with time, but there is 

need to analyse the impact of multiple jobs on probability of stragglers [4]. Existing techniques 

uses historic data to estimate resource requirement [6]. However, there is a need to develop an 

online strategy to simultaneously learn the execution time distribution and launch replicas, 

instead of estimating time using historical traces. Further, the replication increases the reliability 

of execution of jobs, but it consumes more energy consumption, which is a global challenge to 

address [7]. The scale up/down infrastructure by switching on/off the virtual machines/nodes based 

on the resource usage of the cluster to save energy is required [20]. The dependency among tasks 

during task execution further effects causes the stragglers because some tasks need to complete in 

order to begin others [17]. Existing straggler management techniques are required to improve to 

attain to reduce straggler occurrence. By using this systematic review, causes of straggler can be 

identified easily. Therefore, an effective straggler management technique can be developed to 

execute the jobs without straggler occurrence while fulfilling the dynamic requirements of job, 

which helps to increase the efficiency of large-scale cloud data centres. 

5.4 Future Research Directions 

Although a substantial progress has been made in straggler management techniques for large scale 

systems, there are still many pressing issues and challenges in this field that need to be addressed. 

Based on existing research, we have identified various open issues pending in this area.   

5.4.1 Data Processing  
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Data processing in straggler management is an important challenge [9]. It happens due to the skew 

in data that the computing system is able to process effectively. There are two types of problems 

which reduce the data processing capability of systems: 1) large variation of data size and 2) non-

uniformity of data. These two reasons degrade the performance of large-scale computing systems. 

To improve the straggler management mechanism, there should be less variation as well as less 

non-uniformity of data. Tackling this challenge can further improve the processing speed of 

computing systems in terms of execution time and latency.  

5.4.2 Heterogeneity  

Hardware heterogeneity is the main reason for resource contention, which occurs due different 

types of resources (with different configurations, different providers etc.) being used and sometimes 

some resources are not compatible to execute jobs in a coordinative manner. There is a need for a 

single interface, which can provide a stable platform for interaction of different types of hardware 

in a collaborative manner.   

5.4.3 Latency  

The latency is another important challenge in straggler management of large-scale systems, which 

can affect the performance of computing systems. There are different types of reasons for latency: 

1) non-uniformity of data, 2) resource contention, 3) poor user code and 4) extra cloning. To improve 

the processing of computing systems, there is the need to make data uniform initially. Further, 

efficient resource scheduling algorithms are required, which can reduce resource contention at 

runtime as well as reduce the latency [61]. The extra cloning of tasks to speed up the execution can 

increase the latency because there is a requirement for more number of resources to process more 

number of copies. There is a need to develop an effective straggler management technique, which 

schedules resources and reduces latency at runtime.  

5.4.4 Scalability  

To improve the performance of computing systems, the systems must be more scalable to serve the 

jobs within their specific deadline without further delay at runtime [72]. The scalability of the 

computing system can increase the capacity of the system when the load increases, which can 

further reduce the problem of occurrence of stragglers.  

5.4.5 Resource Sharing  

The sharing of resources among different jobs can improve resource utilization but it leads to 

resource contention, which can degrade the performance of large-scale computing systems [76]. 

There is a need of an effective resource contention technique, which can identify the reasons of 

resource contention and provide the possible solutions to avoid additional resource over-allocation, 

ultimately contributing to straggler occurrence. 

5.4.6 Energy Management   

The literature reports [45] [61] [72] [102] that the straggler management techniques create several 

copies of the same task to mitigate the effects of stragglers. Copying a task reserves additional 

resources such as the disk, memory of CPU time, increasing use of particular resource. As the 

resource is more continuously used, its energy consumption rises. Depending on the type of the 

resource, its performance can degrade as its energy consumption increases above a certain 

threshold level. 

6. SUMMARY AND CONCLUSIONS  

In this paper, we have provided a comprehensive literature review of current straggler research 

within Computer Science, an important problem which directly debilitates the performance of 

large-scale computing systems. We proposed a taxonomy of straggler causes as identified from 

different types of straggler management techniques. Moreover, various straggler management 
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techniques have been reviewed and classified into two categories: straggler detection and straggler 

mitigation. The comparison of straggler detection and straggler mitigation have been presented in 

detail, and the taxonomy mapping based comparison has been described and various result 

outcomes related to straggler management have been presented. Observations of interest include 

that the focused nature of straggler causes, and mitigation solutions may potential interfere with 

each other due to correlated root-causes. Hence, there is a possibility of designing a multi-purpose 

straggler management technique which profiles and acts based on the type of identified straggler.  
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