

Preprint submitted to The Journal of Supercomputing

Tails in the Cloud: A Survey and Taxonomy of

Straggler Management within Large-scale

Cloud Datacenters

Sukhpal Singh Gill1, Xue Ouyang2, Peter Garraghan3

1School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
2School of Electronic Sciences, National University of Defense Technology, China

3School of Computing and Communications, Lancaster University, UK

s.s.gill@qmul.ac.uk, ouyangxue08@nudt.edu.cn, p.garraghan@lancaster.ac.uk

Cloud computing systems are splitting compute and data intensive jobs into smaller tasks to execute them in a parallel

manner using clusters to improve execution time. However, such systems at increasing scale are exposed to stragglers,

whereby abnormally slow running tasks executing within a job substantially affect job performance completion. Such

stragglers are a direct threat towards attaining fast execution of data intensive jobs within cloud computing. Researchers

have proposed an assortment of different mechanisms, frameworks, and management techniques to detect and mitigate

stragglers both proactively and reactively. In this paper, we present a comprehensive review of straggler management

techniques within large-scale cloud datacenters. We provide a detailed taxonomy of straggler causes, as well as proposed

management and mitigation techniques based on straggler characteristics and properties. From this systematic review, we

outline several outstanding challenges and potential directions of possible future work for straggler research.

Keywords: Computing, Stragglers, Cloud Computing, Straggler Management, Distributed Systems, Cloud Datacenters

1. INTRODUCTION AND MOTIVATION

Nowadays, applications spanning various domains including social networks, e-commerce sites,

and healthcare generate vast quantities of data. The growing velocity and volume of such data

generation has subsequently required the substantial computing capacity in order to store and

process such data effectively [1]. Such large-scale computing systems, encompassing datacenter

clusters, comprise hundreds and thousands of individual machines interconnected together that

underpin application operation consumed by both businesses and consumers alike.

A combination of increasing application demand and technological innovations has resulted in

greater system scale in the regions of tens of thousands of servers within an individual cluster [12].

However, such complexity has subsequently resulted in an increase in complexity within such

systems, manifesting in the form of emergent phenomena whereby system operation exhibits

behaviour unforeseen at design time. Such emergent phenomena manifesting within large-scale

cloud datacenters has observed to negatively impact application performance. One such

phenomena, known as the Long Tail Problem, is characterized by a minor subset of task stragglers

that operate unusually slower in comparison to normal task behaviour within a job. Task

stragglers occur within any highly parallelised system and become even more apparent for jobs

containing many tasks executing across a large number of machines.

Frameworks such as MapReduce, Spark, and Dryad [1] [40] [41] process vast quantities of data via

parallelizing jobs into a smaller sub-set of tasks, and thus makes such applications susceptible to

stragglers. For example, within MapReduce, a job can only complete once all tasks have completed

their execution. However, the occurrence of stragglers results in an atypically long task execution

duration, thus degrading the performance of the entire job. The challenge in effectively addressing

stragglers is that their root-cause is not well-understood [80] and can be resultant due to various

reasons spanning daemon processes, data skew, failures, resource contention, and energy

management tools [49] [42], manifesting within the application, Operating Systems (OS), or

physical hardware. This can subsequently lead to subsequent applications that depend on job

outputs to also fail pending on its completion [7] [11].

This has resulted in a growing body of straggler research pertaining to analysing their underlying

causes [11] [28], straggler forecasting [15] [46], and straggler mitigation techniques [4] [5] [16] [21]

including speculative execution [6], replication, load balancing and scheduling [18]. Each of these

Preprint submitted to The Journal of Supercomputing

works predominantly focus on a certain sub-set phenomenon within a particular context of system

operation of application framework. Thus, straggler research has reached sufficient level of

maturity whereby it is worthwhile to appraise the landscape of research within the field, identify

cross-cutting challenges within areas, and evaluate future challenges on the horizon for future

generation computing systems.

1.1 Motivation

The core motivation behind this methodical survey is to conduct a systematic review of straggler

research within large-scale cloud datacenters. This systematic review encompasses clearly defining

and analysing the impact of stragglers, a taxonomy of various straggler management techniques

for forecasting and mitigations, as well as identify future directions within the field.

1.2 Article Organization

The rest of the article is structured as follows: Section 2 presents the background information for

straggler definition as well as straggler management within large-scale systems. Section 3

presents the taxonomy of straggler causes. Section 4 explores the existing literature for straggler

management techniques. Section 5 presents the comparison of straggler management techniques

based on the taxonomy of straggler causes and outlines the observation, trend analysis and future

research directions. Finally, Section 6 summarizes the article.

2. BACKGROUND

2.1 Straggler Definition and Impact

Applications execute within large-scale computing systems such as datacenters and clusters by

submitting jobs via a resource manager (YARN, Mesos, Borg, etc). In this context, a job is composed

of multiple smaller tasks (defined as the smallest unit of computation observable by the resource

manager) [82]. Such jobs and subsequent tasks are scheduled onto different machines in a

parallelized manner to accelerate job completion and are often divided into phases creating a Direct

Acyclic Graph (DAG) [83]. Application frameworks (such as MapReduce) attempt to sub-divide jobs

so that tasks will approximately complete within the same timeframe for each phase [84]. This is

achieved by providing a sub-set of data (known as shards) to each task, and allocating the

appropriate resources to tasks (CPU, memory, etc). This is calculated via the resource requirement

module of the resource manager [85].

However, even with such measures in place, within large-scale cloud datacenters a sub-set of tasks

within a job will manifest as stragglers [86] [87]. In this context, a straggler is defined as task

which execute abnormally slow in comparison to the average task duration within a job [12]. The

phrase ‘abnormally slow’ is typically identified as any task with a task completion time 50% greater

than the (average) task completion time for a job phase [14] [88]. Slowly executing tasks

(stragglers) affect the performance and completion time of the entire job [5], increasing resource

utilisation and performance degradation of applications at increased scale [22] [25], thus reducing

system availability and incurring additional operational costs [89]. It has been identified from

analysis of production systems at scale [25] that approximately 4-6% of task stragglers negatively

affect over 50% of the overall jobs within the greater system.

2.2 Straggler Management

Due to the impact of long-tail problem within distributed computing systems, there has been

concentrated efforts in order to effectively mitigate their effects. This has been tackled by the

research community via the creation of various straggler management techniques. In this context,

straggler management comprises all mechanisms that have been created in order to mitigate the

effects and impact of straggler manifestation. Figure 1 shows the depiction of straggler tasks and

non-straggler tasks.

Preprint submitted to The Journal of Supercomputing

Figure 1: Depiction of straggler tasks and non-straggler tasks

Such straggler management techniques can be predominantly considered into two main classes:

detection and mitigation [93] [94]. Detection focuses on approaches to identify straggler

manifestation a priori or post priori job execution within the cloud datacenter, such as offline

analytics and online monitoring mechanisms [90] [91] and an example of straggler detection is

NearestFit [1]. Mitigation approaches focus on avoiding or tolerating (detected) straggler

manifestation during job execution such as scheduling, load balancing and replication [88] [71]

[92]. The examples of straggler mitigation are Dolly [4], GRASS [5], LATE [21] and Wrangler [16].

2.3 Related Surveys and Our Contributions

To present data, to the best of our knowledge, only two works have conducted a survey pertaining

to straggler research. Umesh and Jitendar [34] discuss an overview of straggler handling

algorithms for MapReduce framework, while Ashwin [35] reviewed several straggler handling

techniques. Whilst these reviews cover specific cases of stragglers related to specific frameworks

and installations, they do not necessarily provide a comprehensive survey of the straggler causes

and straggler management techniques which exist within the research community. Furthermore,

these works do not discuss in detail the precise root-causes and analysis of straggler behaviour,

which underpin the design of straggler management techniques. Therefore, this paper attempts to

provide a systematic review and taxonomy of straggler causes and map them directly to straggler

management techniques along with trend analysis.

3. TAXONOMY OF STRAGGLER CAUSES

As mentioned in Section 1, the challenge within this research area is the myriad of potential causes

of straggler manifestation. According to our comprehensive appraisal of the literature, we have

identified eight key causes for straggler occurrence that manifest within large-scale cloud

datacenters. Figure 2 shows the taxonomy of straggler causes.

1. Data Abstraction: Stragglers can occur due to information obfuscation at different levels of the

system. Literature [43] [14] [45] [95] has identified that information can be hidden at two different

levels: i) OS Level and ii) Application Level. During the execution of resources, the master node

(controller) hides information from workers (cluster nodes) at OS level. ii) at application level, the

information regarding platform services and infrastructure services are kept hidden from the

software services.

2. CPU Utilization: It has been identified that there is a strong correlation between high system

CPU utilization and straggler occurrence [46] [47] [48] [49]. The reason for this occurrence is

resource contention. This is further compounded due to Head-of-Line blocking (HOL blocking),

task interference during execution, busy locks, queue issues, hazard rates of task execution and

launching additional speculative replicas, which requires additional time for execution.

0 2 4 6 8 10

Time (ms)

Ta
sk

 ID

Straggler Task

Non-Straggler Task

Preprint submitted to The Journal of Supercomputing

3. Scheduling: It has been identified that scheduling and resource allocation decisions also

influence straggler manifestation [50] [51] [52] [53]. For job scheduling, stragglers can occur due

to a large number of enqueued jobs within a (machine, master scheduler) that are pending for

available resources to be revoked (i.e. only a portion of tasks within a job are able to successfully

acquire their necessary resources to commence execution). Furthermore, straggler may occur due

to the poor admission control mechanisms, which is using to submit the jobs for execution [54]. The

poor admission control mechanism launches multiple tasks together resulting in resource

exhaustion causing slowdown. Lastly, dynamicity of QoS requirements at runtime, result in an

inability to effectively manage the resources which leads to further the straggler occurrence. In

terms of resource scheduling, stragglers can occur in following situations [54] [55] [56] [96]: 1)

when resources are allocated to the jobs in an inefficient manner without available resource

optimisation, which leading to ineffective scheduling of resources for job execution and 2)

sometimes resources are still in active stage even they are not utilized for execution of jobs, which

wastes more energy consumption and effects the performance of other resources because some

resources need more power to run continuously.

4. Inaccessible Local Disk: Stragglers may occur when a machine hard disk is not accessible to

residing tasks. Such inaccessibility is predominantly caused by [8-11] [62-66]: i) Increasing Backup

Tasks and ii) Failed to Store Output. Stragglers can occur, when it is difficult to find the required

task due the large backlog of the tasks waiting for execution. Sometimes, an error can occur while

storing the output on the disk, causing a problem when some task wants to access that data during

execution.

5. Data Skew: Straggles can occur due to the data skew, caused by the different data sizes and

time variation in accessing required data [62] [63] [73] [97]. With several tasks operating on a split

version of a very large shared dataset, an uneven distribution of the data amongst these tasks

potentially results in some tasks to progress slow in comparison to tasks within the same phase

(and subsequently delays the future sub-phases and the entire job). Data non-uniformity can also

impact data access and processing time data, directly affecting the timing delays between tasks,

further increasing the probability of straggler occurrence. Moreover, data locality for job execution

results in lower latencies whilst distant data will take longer to be accessed, incurring additional

delays in task completion, again, manifesting as a straggler.

6. Resource Contention: Resource Contention occurs when the same resource is shared by

multiple tasks [4-6] [8-11] [31-33] [38] [64] [65] [66] [79] [98] [99] [100]. Resource contention occurs

due to conflict over task access and oversubscription to a resources within multi-tenant machines

which can be exuberated within different scenarios including: 1) hardware heterogeneity, 2) poor

user code, 3) extra cloning, 4) ineffective algorithm logic, 5) temporary slowdowns, 6) additional

task clones requiring more resources and 7) resource usage is being higher than accepted threshold

value. Hardware heterogeneity is the main reason of resource contention, occurs due to a mismatch

between hardware specification and specified application constraints (e.g. budget, deadline etc.)

leading to task performance degradation. The source code of scheduling algorithm also affects the

performance of the scaling system due to its coding style in terms of space and time complexity.

Sometimes, poorly written source code schedules resources inefficiently, which can increase

resource consumption and unavailability of required resources to specific jobs [71]. The cloning of

tasks is creating a similar of copy to task to run parallel on another resource for fast execution.

The cloning of tasks needs more resources (increases resource usage), which can also put tasks of

other jobs on hold and when the tasks are waiting for other resources, then stragglers can occur.

An ineffective logic in the resource scheduling algorithm can also lead to an inefficient allocation

of resources and increase resource usage, which leads to resource contention for future tasks.

Temporary slowdown can occur due to inefficient allocation of resources, which needs to be

corrected, otherwise it will cause straggler occurrence during execution of resources.

Preprint submitted to The Journal of Supercomputing

Figure 2: Taxonomy of Straggler Causes

Stragglers Causes

Data Abstraction

Resource Contention

CPU Utilization

Inaccessible Local Disk

Data Skew

Faults

Task Execution

Scheduling

OS

Level

Application

Level

Hardware

Heterogeneity

Poor User

Code

Extra

Cloning

Ineffective

Algorithm Logic

Temporary

Slowdowns

Multiple

Copies

Extra Resource

Usage

Resource

Scheduling

Job

Scheduling

Hardware

Software

Unhandled

Request

Task

Interference

Task

Incompatibilit

y

Increasing Speculative Copies

Additional Time

Inefficient Resource Allocation

Idle Resources are Still Active

Poor Admission Control

Dynamic Requirements

More Resource Requirement

Increasing Backup Tasks

Failed to Store Output

Uneven Data Distribution

Non-uniform Data Processing

Time

Preprint submitted to The Journal of Supercomputing

7. Task Execution: The successful execution of a task is important to avoid straggler occurrence

during execution of jobs [24-28] [67] [68]. During job execution, stragglers can occur due to

unhandled requests or ineffective task interference and task incompatibility management. When

a processing request is unhandled or not fully handled, tasks expecting the results of this request

will have to wait until the full request output is ready, manifesting in straggling tasks. This occurs

due to data dependency and task dependency. If the tasks are not oblivious to the heterogeneity of

the underlying resources of the platform, their incompatibility (non-synchronization) due to

different types of workloads or requirements can manifest in slower execution and ultimately

straggler occurrence.

8. Faults: Faults within software and hardware resulting in to crash-stop and late-timing failure

can cause straggler occurrence in large-scale systems [6] [18] [32] [33] [69] [70]. The main reasons

for software-induced faults can be; development, logic or overflow errors as well as

misconfigurations. In terms of hardware, the main fault occurrence reasons are: physical damage,

device failures, daemon processes or power-related issues such as effective energy management.

Ironically, fault-tolerance and recovery mechanisms can themselves result in straggler

manifestation (for example, checkpointing introduces burst in disk access increasing resource

contention resulting in a higher system hazard rate).

3.1 Relationship between Straggler Causes

Based on different types of causes of stragglers in large scale systems, we have identified the

correlation among them, as described in Table 1.

Table 1: Correlation among Straggler Causes

Stragglers Causes Dependent

Data Abstraction

1. OS Level

2. Application Level

Resource contention (1), Resource

contention (6), Inaccessible Local Disk,

Task Execution.

CPU Utilization

1. Increasing Speculative Copies

2. Additional Time

Resource contention, Faults (1),

Scheduling (2b), Scheduling (1c)

Scheduling

1. Job Scheduling

a. Number of Jobs more than available resources

b. Poor admission control mechanism

c. Dynamic Requirements

2. Resource Scheduling

d. Inefficient resource allocation

e. Idle resources are still active

Resource Contention (1), Resource

Contention (2), Resource Contention (3),

Resource Contention (4), Faults

Inaccessible Local Disk

1. Increasing Backup Tasks

2. Failed to Store Output
Task Execution (1), Task Execution (2),

Task Execution (3), Scheduling (1c)

Data Skew

1. “Uneven data distribution among tasks”

2. “Nonuniform data processing time”

Inaccessible Local Disk (2), Data

Abstraction (2), Scheduling (1b)

Resource Contention

1. Hardware Heterogeneity

2. Poor User Code

3. Extra Cloning

4. Ineffective Algorithm Logic

5. Temporary Slowdowns

6. More number of copies of same task needs more

resources

7. Resource Usage is more than Threshold value

Data Abstraction (1), CPU Utilization,

Inaccessible Local Disk (1), Data Skew

(1), Task Execution, Scheduling (2a)

Task Execution

1. Unhandled request

2. Task interference

3. Task incompatibility

Resource Contention (1), Resource

Contention (2), Scheduling (1a)

Faults

1. Hardware

2. Software

 Resource Contention (6), Resource

Contention (7), Task Execution (1),

Task Execution (2)

Preprint submitted to The Journal of Supercomputing

As identified in [25], stragglers are not resultant of a singular cause, but can potentially be

correlated. For example, data abstraction can occur due to tasks in a queue waiting for execution.

Resource contention is the main reason of stragglers due to the sharing of resources among

different applications, which are running on different nodes, which further affects the CPU

utilization by overloading the resources. Straggler occurrence during scheduling of jobs as well as

resources and the reasons of straggler occurrence during resource scheduling can be heterogenous

resources, poor user code or logic error and too many copies of straggler tasks are running

simultaneously. The reasons of inaccessible local disk can be large copies of backup tasks and failed

to store required output, which happens due to task interference and its incompatibility with other

tasks. The other reason can be requirements are changing dynamically. Data skew happens due

to straggler happens at application level due to data hiding or fail to write data. The other reason

can be inefficient allocation of resources for processing of data, which can increase running time of

resource. The resource contention occurs at OS level, when master node hides the information from

workers. Further, the overutilization of CPU causes the resource contention due to increasing

speculative copies as well as when the performance of node degrades. Moreover, poor admission

control can also affect the resource utilization and creates resource contention when the value of

required resources is increased than the available resources. Further, resource contention affects

the task execution due to unavailability of shared resources. Fault occurrences during job execution

can happen due to resource failure and resource misconfiguration [39].

4. STRAGGLER MANAGEMENT TECHNIQUES: CURRENT STATUS

Straggler management techniques can be categorized into two broad categories: straggler detection

and straggler mitigation. Each category can be further sub-divided into specific areas as shown in

Figure 3.

Figure 3: Taxonomy of Straggler Management Techniques

4.1 Straggler Detection Techniques

Straggler detection techniques are leveraged in order to identify straggler occurrence during job

execution.

4.1.1 Offline Straggler Detection

Offline straggler detection technique attempts to identify straggler manifestation in order to

enhance speculative execution via leveraging offline analytics (i.e. analysing and modelling task

execution and progress patterns derived from empirical data a priori execution).

Coppa and Finocchi [1] identified three different challenges such as straggling tasks, load

unbalancing and data skewness, which affects the performance of computing systems. To overcome

these challenges, authors proposed a profile-guided progress indicator called NearestFit to gather

the required combination of closest neighbour regression using statistical curve fitting approach.

NearestFit is mainly suitable for long running applications and helps to identify the above

discussed challenges to increase the efficiency of computing systems. Authors implemented the

NodeIterator triangle counting algorithm using homogeneous clusters in Hadoop to test the

capability of NearestFit dynamically in terms run time and progress.

Straggler Management Techniques

Straggler Detection

Straggler Mitigation

Offline Online Load Balancing Replication Scheduling

Preprint submitted to The Journal of Supercomputing

Ouyang et al. [24] proposed a technique for Modelling and Ranking Node-Level Stragglers

(MRNLS) in CDCs based on analysing the execution trace log data of parallel jobs. This was

conducted by a graph-based algorithm is used to partition the server nodes into small nodes to

execute more jobs in parallel. The proposed techniques improve the performance of computing

systems by reducing task stragglers occurrence. Cong et al. [27] proposed a Machine Learning

based Straggler Detection (MLSD) technique using unsupervised clustering method. The proposed

technique effectively manages the resources while executing the jobs and diagnosing the stragglers

at runtime. Wei et al. [28] proposed Straggler Detection Approach (SDA) for data-intensive

computing in cloud environment to detect stragglers at early stage to preserve the efficiency of the

CDC. Further, statistical method for outlier detection called Turkey is developed to detect straggler

at run time because it starts the speculative execution earlier than the standard deviation method.

4.1.2 Online Straggler Detection

Online straggler detection technique detects the straggler to improve speculative execution using

online monitoring tools.

Farshid [2] analysed that map phase of MapReduce (MR) framework takes longer with the increase

in number of servers, which further affects negatively the execution time of MapReduce job.

Moreover, authors designed an analytical model to identify the impact of stragglers on efficiency

of computing system using map phase in terms of application, system and hardware parameters.

Experimental results show that model reduces the execution time during execution of MapReduce

applications. Zaharia et al. [3] proposed a Resilient Distributed Datasets (RDD), a distributed

memory abstraction, which enables developers to provide a fault tolerant module while performing

in-memory computations on a huge number of clusters. RDDs uses coarse grained transformations

to offer controlled form of shared memory to perform different memory intensive computations in

an iterative manner. Further, Spark is used to implement RDDs in a controlled environment to

evaluate its performance.

Da et al. [6] proposed Heuristic Algorithm (HA) to search for the best replication to reduce latency

in computing systems. The proposed algorithm is used to implement the proposed algorithm and

experimental results demonstrate that this is capable to reduce latency and its impact on cost of

execution of workloads. Jeffrey and Sanjay [9] explored Data Processing on Large Clusters (DPRC)

to perform different aspects such as 1) provide fault tolerance by distributing computations, 2)

optimize network bandwidth by decreasing the quantity of data transferred throughout the

network and 3) decrease impact of slow machines and improve fault tolerance. In DPRC [9],

speculative copy of task is executed by MapReduce on another node for increasing job completion

time and reduce response time. It is challenging to select the task for which to execute speculation

because it is not trivial to identify the machine or node, which is running slower than average. To

implement DPRC effectively, stragglers are recognized at the earliest possible stage calculated by

progress scores.

Garraghan et al. [25] explored the Root-Cause of Stragglers (RCS) and provided a method to

analyse the root-cause analysis in a massive scale virtualized CDCs to solve the Long Tail

challenge effectively. Authors used online analytic agents and offline execution patterns modelling

for straggler detection while monitoring tasks dynamically. Heecheol et al. [29] proposed Secure

Distributed Computing (SDC) approach using recovery threshold value to efficiently deal with the

impact of straggling [59], which uses polynomial codes on sub-tasks allocated to nodes.

4.2 Straggler Mitigation Techniques

Straggler mitigation technique comprise all mechanisms and approaches to tolerate or avoid the

impact of straggler manifestation [57]. Such techniques can be further sub-divided into three sub-

categories [44] [100] [101] [81]: load balancing based, replication based, and scheduling based.

Preprint submitted to The Journal of Supercomputing

4.2.1 Load Balancing based Straggler Mitigation

Load balancing based straggler mitigation technique manages the load during mitigation of

stragglers.

Ouyang et al. [12] proposed a method to reduce Late-Timing Failure (LTF) and analyse the root-

cause of stragglers in Cloud Data Centres (CDC) such as server failures or task concurrency and

resource contention. Further, this study identified the high temporal resource contention as a main

root-cause of stragglers. Further, the output of experiments demonstrate that this technique

maintains the efficiency of the computing systems while tolerating the system failures effectively.

Yanfei et al. [23] proposed a user transparent task slot management approach called FlexSlot,

which identifies the stragglers automatically and resize their slots to improve the speed of

execution of task. Further, it balances the usage of resources by automatically changing the

number of available slots of nodes to improve its utilization. Moreover, FlexSlot uses adaptive

speculative execution approach to improve mitigation of skew data.

Neda et al. [26] proposed Log-Assisted Straggler-Aware (LASA) I/O scheduler for high-end

computing to mitigate the impact of storage server stragglers. Further, a scheduling algorithm is

proposed to make effective decisions to manage stragglers at runtime. The output of experiments

demonstrate that LASA is performing better in load balancing while mitigating the storage server

stragglers dynamically. Eman et al. [31] proposed a parallel model for straggler mitigation in

distributed spatial simulation called Priority Asynchronous Parallel (PAP) to exploit data

dependencies of parallel processes to be computed and synchronized based on data priority to the

other workers. Moreover, load balancing and partitioning method is proposed to balance the

workloads among different nodes and help to improve the performance speedup by a large extent.

Haozhao et al. [37] proposed Heterogeneity-aware Gradient Coding (HGC) scheme to execute the

jobs in heterogenous environment and efficiently tolerate the stragglers without degrading the

effectiveness of the cloud services [58]. The output of experiments demonstrates that HGC scheme

outperforms in computation time.

4.2.2 Replication based Straggler Mitigation

Replication based straggler mitigation technique replicates the adequate number of tasks during

mitigation of stragglers.

Mehmet et al. [7] analysed the Trade-off between Latency and Cost (TLC) using simple replication

or erasure coding for straggler mitigation in executing jobs with many tasks. Experimental results

show that delaying redundancy is not effective in reducing cost. Further, Mehmet et al. [10]

developed a Straggler Mitigation (SM) technique using delayed relaunch of tasks, which helps to

reduce cost and latency effectively. Da et al. [11] proposed an idea of an efficient Task Replication

Technique (TRT) for straggler management to improve the response time in parallel computations.

Further, this technique is implemented in [13], demonstrate empirically that replicating all

operations can result in significant mean and tail latency reduction in real world systems including

Domain Name System (DNS) queries, database servers, and packet forwarding within networks.

Tien-Dat [15] [33] proposed Energy-Efficient Straggler Mitigation (EESM) technique for effective

management of big-data applications in the cloud computing environment to optimize the energy

consumption during straggler occurrence. Firstly, authors characterize the effect of straggler

mitigation on energy-efficiency. Secondly, a straggler detection framework is developed, and they

identified that only 12% of the detected tasks are real stragglers [33]. The usage of huge number

of speculative copies is the main reason of unnecessary energy consumption. Thirdly, a reservation-

based straggler handling approach is proposed to optimize the energy efficiency by allocating the

required resources at runtime effectively.

Da et al. [17] analysed the trade-off between latency and cost to find out the best replication

technique for straggler management based on following parameters: 1) when to perform replication

Preprint submitted to The Journal of Supercomputing

for straggling tasks, 2) number of replicas to be launched and 3) is it necessary to destroy the

original copy or not. Further, a Straggler Management Approach (SMA) is proposed to calculate

the value of latency-based empirical distribution of execution time of task. The output of

experiments demonstrate that this work gives better for two performance parameters such as cost

and latency. Lei et al. [19] proposed a straggler management technique called CREST

(Combination Re-Execution Scheduling Technology) for fast speculation of straggler tasks in

MapReduce framework, which further reduces the response time of MapReduce jobs. The re-

execution of set of tasks on set of computing nodes in CREST improves the speed of task execution.

Radheshyam et al. [20] proposed a Job-Aware Scheduling (JAS) technique to optimize the running

time of different jobs by maintaining the harmony among them, which are executing on same

cluster. JAS technique is implemented using for MapReduce framework. Further, proposed

algorithm selects the most compatible task with executing task to reduce more execution time.

Moreover, a heuristic based load balancing technique is developed to avoid the underloading and

overloading of resources. Matei et al. [21] explored the MapReduce framework for straggler

management and improved its performance in heterogenous environment. Further, a resource

scheduling algorithm, Longest Approximate Time to End (LATE) is proposed to improve the

robustness in regard to heterogeneity and improves response time of tasks. LATE scheduling

algorithm [3] estimates the longest approximate time and select the task with longest approximate

time as straggler tasks and execute its speculative copy on another fast node to speed-up the job

completion time. SAMR scheduling technique [18] computes the completion of tasks at runtime

and discover the straggler task based on execution time. Further, historic information of node is

used to detect more reliable node in SAMR and weights of reduce and map stages are updated after

completion of every task.

Farhat et al. [32] proposed a Straggler Management technique for Modelling and Optimization

(SMMO) of straggling mappers to show the stochastic behaviour of mapper nodes and its negative

effect on completion time of MapReduce jobs. Authors identified task inter-arrival time of jobs to

map the required nodes of heterogenous CDC in an optimized way. The experimental results

demonstrate that the proposed technique reduced the execution time of jobs at runtime. Behrouzi-

Far et al. [74] proposed an efficient straggler replication framework in large-scale parallel

computing to analyze the performance of the system in terms of latency-cost trade-off. Further, it

identifies the best replication technique based on different criteria such as: (i) number of replicas

required, (ii) time to replicate straggling tasks and (iii) determine whether to kill the original task.

Finally, performance evaluation is described that latency and cost is reduced in Google Cluster

Trace as compared to MapReduce.

4.2.3 Scheduling based Straggler Mitigation

Scheduling based straggler mitigation technique schedule the resource for jobs during mitigation

of stragglers.

Ganesh et al. [4] explored the straggler mitigation techniques and identified the impact of reasons

of stragglers in latency sensitive jobs. Further, authors designed workloads with small number of

jobs and performed cloning of small jobs. It has been identified that the cloning of small jobs uses

less resources but improves the reliability of computing services. Moreover, a system named Dolly

is developed to generate multiple clones of jobs and execute jobs within their specified budget.

Experimental results demonstrate that Dolly sped up jobs by 46% by using only 5% extra resources.

Ganesh et al. [5] proposed Greedy Speculative scheduling and Resource Aware Speculative

scheduling (GRASS) technique, which uses speculation to mitigate the impact of stragglers in

approximation jobs. GRASS uses extra resources for speculation and improves accuracy for

deadline-bound jobs by 47% and speeds up error-bound jobs by 38%. Aaron et al. [8] addressed the

straggler problem for Iterative Convergent Parallel (ICP) machine learning technique to identify

the behaviour (in terms of delay) of the system during execution of jobs by injecting the stragglers.

Preprint submitted to The Journal of Supercomputing

Amazon EC2 and Microsoft Azure [60] is used to evaluate the performance of system in terms of

execution time.

Ouyang et al. [14] proposed a Straggler Management Technique (SMT) to find the task stragglers

by calculating threshold value at runtime. Further, this technique considers important key

parameters such as resource utilization, task execution and job QoS timing constraints to manage

straggler tasks effectively. Neeraja et al. [16] proposed straggler management technique called

Wrangler to proactively avoid the conditions, which cause stragglers. Wrangler [4] uses

interpretable linear modelling approach to reduce the resource wastage by eradicating the

requirement for replicating tasks. It uses fewer resources to complete the job in a faster way and

avoids the straggler proactively by predicting in advance. A cluster resource utilization based

statistical learning technique is used for confidence measure to offer reliable task scheduling by

predicting errors in advance. The output of experiments show that Wrangler produces

improvements in terms of Job Completion Time and resource utilization as compared to speculative

execution.

Quan et al. [18] proposed a Self-Adaptive MapReduce (SAMR) scheduling technique for straggler

management, which estimates task progress automatically and adapts to the changing conditions

of environment dynamically. SAMR uses MapReduce mechanism to divide jobs into tasks and

execute on different available nodes. SAMR does not create backup tasks for regular tasks. SAMR

reduces the execution time of MapReduce jobs while executing tasks in heterogenous environment.

Enhanced SAMR (ESAMR) [22] uses the k-means clustering algorithm to categorize the historic

data of each node into k-clusters and identifies the straggler task more accurately. Furthermore,

ESAMR uses weights of reduce and map stages to find the Time to End on different nodes, which

can easily identify the more reliable node.

Ganesh et al. [22] studied and explored the straggler management in resource aware techniques

and identified the main causes of stragglers such as varying bandwidth, network congestion,

workload imbalance and contention of resources (network, memory and processor). Furthermore,

Mantri [22] is used monitor task execution and take a proactive action to sustain the efficiency of

the CDC in the case of resource contention or hardware/software failure [75] [77] [78]. It uses Bing

traces to evaluate the performance and it improves job completion time to a large extent.

Ouyang et al. [30] proposed a Straggler Management Mechanism (SMM) to improve the execution

efficiency of Internet-ware applications by dynamically calculating the straggler threshold,

considering important parameters such as optimal system resource utilization, task execution

progress and job QoS timing constraints. Further, YARN architecture is used to implement

dynamic straggler threshold to test the performance of the proposed mechanism and experimental

results gives the better outcomes in terms of response time. Rong et al. [36] developed Large-scale

Multimedia Semantic Concept (LMSC) model to improve the scalability of the computing systems

with heterogenous environment. Robust Subspace Bagging algorithm is used to improve learning

process and further, a task scheduling algorithm is proposed to improve the scalability by executing

heterogenous tasks. Proposed model is tested on MapReduce framework and experimental results

demonstrate its superiority.

Figure 4 presents the evolution (2008-2019) of different types of straggler management techniques

along with their focus of study and QoS.

Table 2 shows the comparison of different types of straggler management techniques based on

different parameters.

Preprint submitted to The Journal of Supercomputing

Figure 4: Evolution of Straggler Management Techniques

2008
DPLC [9]

FoS: Fault Tolerance LATE [21]

QoS: Response Time and Network Bandwidth

2009 LMSC [36]

FoS: Scalability

QoS: Execution Time

2010 SAMR [18], MANTRI [22]

FoS: Resource Contention

QoS: Execution Time, Job Completion Time

2011 CREST [19], JAS [20]

FoS: Execution Speed-Up

QoS: Execution Time

2012 RDD [3]

FoS: Fault Tolerance

QoS: Fault Rate

2013 Dolly [4], TRT [11]

FoS: Reliability

QoS: Response Time

2019 SDC [19], HGC [37]

FoS: Security

QoS: Computation Time

2018 SAMR [18]

FoS: CPU Utilization

QoS: Cost, Latency, Response Time

2017
FlexSlot [23]

FoS: Data-intensive Jobs

SDA [28], PAP [31]

QoS: Cost, Latency, Energy Consumption, Resource Utilization

2016 MRNLS [24], RCS [25]

FoS: Resource Contention, Server Failures, Task Straggler Occurrence

LASA [26], MLSD [27]

QoS: Resource Utilization, Execution Time

2015

NearestFit [1], MR [2]

FoS: Homogenous Clusters
HA [6], SMA [17]

QoS: Running Time, Latency, Cost, Execution Time

2014
GRASS [5], Wrangler [16]

FoS: Accuracy, Completion time SMMO [32]

QoS: Resource Utilization, Execution Time

TLC [7], EESM [15]

ICP [8], LTF [12], SMT [14]

Preprint submitted to The Journal of Supercomputing

Table 2: Comparison of Straggler Management Techniques

Work Straggler type Cause Environment Type Dataset Delay Merits Open Challenges

[1]

Slow tasks,

non-local task,
data skew

Wall-clock times of

slow running tasks far

from prediction from
linear progress

assumption

Hadoop Pro

50GB archive

Wikipedia
articles

Low

Higher
accuracy in

profile

optimization

If a job is too short,

unable to collect

enough profiling data
to obtain accurate

prediction

[2]
Delay time is

larger

Shuffle phase

overlaps with the Map
phase of MapReduce

Hadoop Rea
Word Count

Data Set (3GB)
High

Optimized

execution
time

Inaccurate estimation

of time to execution

[3]
Memory

utilization

Lack of data sharing

abstractions
Spark Pro

1TB Wikipedia

logs (2 years).
Low

Efficient

data
recovery

Memory requirements

grow as the dataset
size increases

[4]
Resource
contention

Extra clones cause

contention for
intermediate data and

shared resources

Hadoop Pro
Facebook and

Bing traces
High

46% job

speedup,
5% extra

CPU

1. Homogenous job

sizes required for

optimization
2. Extensive analysis

needed to determine
straggler chance

[5]
CPU

Utilization

Spawning speculative

copy

leads to task using
two (or more)

resources

simultaneously

Spark and
Hadoop

Pro

&

Rea

Facebook and
Bing traces

Med

Improves

deadline job

accuracy

47%; error
jobs 38%,

Weigh the impact of

speculating a running
task with scheduling a

new task of any job.

[6]
Larger

response time

Resource contention
due to resource

sharing (deadlock)

Hadoop Rea
Google Trace

Data
High

“Reduced

latency and
cost of

computing

resources”

Develop online

strategy to learn

execution time
distribution to launch

replica, instead of

using historical
traces.”

[7]
Delaying

redundancy

Delaying redundancy

increases latency
NA Rea

Google Trace

Data
High

Analysed

trade-off

between
cost and

latency

Degree of redundancy
can be reduced

without affecting

latency.

[8]

Transient
slowdown

of worker

thread

Temporary
slowdowns (due to

resource contention

with a background

activity) often occurs

on non-blacklisted

machines

Amazon EC2

and Microsoft

Azure

Pro

Netflix dataset

(480k-by-18k

sparse matrix

with 100m

elements)

High

Reduced

execution

time

Resource overloading

[9]
Inaccessible

local disk

Completed map tasks

are re-executed on

failure because output
is stored on local disk

of failed machine,

thus inaccessible.

Hadoop Rea
Google

Zeitgeist data
Low

Fault-

tolerance,

locality,
optimization

load

balancing

Redundant execution

can be used to reduce

the impact of slow
machines, but

consumes more

energy

[10]

Ineffective

CPU

Utilization

Relaunching tasks
before minimum task

completion time

causes work loss and
latency

Hadoop Pro
Google Trace

Data
High

Reduced

redundancy,

cost, latency

Need of empirical

evidence to accurately
model execution

time for resource load

[11]

[13]

Larger

response time

Latency in locating

small disk file, time

needed to load file
from disk

Apache

Cassandra
Pro

Facebook and

Google traces
High

Reduced

latency

using
redundancy

Ignoring data locality

for launching
speculative map tasks

leads to performance

degradation

[12]
Resource

Contention

Unbalanced workload

aggregation and poor

user code

Hadoop Pro NA Low

Reduced

late-timing

failures

Request handling

inefficiency is due to

overloaded file request

[14]

CPU and

Memory

Utilization

Contention of shared
resources, node disk

failures, and

imbalanced task
workloads

SEED Rea
Microsoft Bing

traces
High

Improved

job
completion

time

To design a cost

function for further
optimization of

proposed method

[15]

[33]

Energy

consumption,

resource
contention

Large resource cost

with many speculated

tasks, increased
energy usage

Hadoop Pro

MapReduce

Application

(Wordcount,
Cloud Burst)

Med
Improved
energy-

efficiency

Speculative copies can

be launched
adaptively to improve

further the output

accuracy

Preprint submitted to The Journal of Supercomputing

[16]
Resource

contention

Local conditions

exceed fixed

thresholds defined

over set of resource
usage statistics

Hadoop Pro
Facebook 2009,

Cloudera

Hadoop trace

High

Improved

resource

utilization,

job
completion

time

Reduce time spent for
capturing training data

per node in a cluster

[17] Long task delay

Additional time

needed for original

copy to finish more
likely to be shorter

than new copy

execution time

Hadoop Pro
Google Cluster

Trace
High

Latency and

cost are

improved

Technique can be

tested on
heterogeneous servers,

identify task

dependencies (some
tasks need to complete

prior to others)

[18]
Task

Replication

Larger number of task
replication resulting

in high overhead

Hadoop Pro

MapReduce

Application

(Wordcount and
Sort)

Low
Reduced
execution

time

Ignoring of data
locality for launching

speculative map tasks

may lead to severe
performance

degradation

[19]

High
speculative

map task

execution

Ignoring data locality

for launching
speculative map task

may lead to

performance
degradation

Hadoop Rea

Specific gene

segment from
50GB DNA

Low

Reduced

running

time of a
speculative

map task

Nonuniform data

processing time;

performance
interference from co-

running jobs.

[20]

No

synchronization
between tasks

Task incompatibility

due to their different
requirements

Hadoop Rea

Terasort, grep,

webcrawling,

WordCount,
video

conversion

Low

Reduced

execution
time

Scale up/down cluster

by switching on/off
virtual machines or

nodes based on

resource usage to
reduce energy

[21]

Performance

degradation in
heterogeneous

environment

Many speculative

tasks may
launched leading to

resource exhaustion

Hadoop and
EC2

Pro
Facebook and
Yahoo traces

Low

Improved

task
response

time

Workload imbalance
between workers

[22]

Varying

bandwidth,
network

congestion,

workload
imbalance and

resource

contention
(network,

memory, CPU)

Disk-intensive tasks

scheduled to a node

with slow disk

Hadoop Pro Bing traces Med

Improved

job
completion

time

Longer
communication delays

[23]

High resource
contention

(CPU

utilization)

Uneven data
distribution among

tasks, nonuniform

data processing time;
performance

interference from co-

running jobs

Hadoop Pro
Wikipedia

traces
Med

Data skew

mitigation,

reduced job
completion

time

Adaptive speculation

execution approach

can be developed for
resource management

in YARN.

[24]

Task-level
stragglers

during job

execution

Lack of correlation

between straggler

tasks and available
slots at system run-

time

Hadoop Rea Google trace Low

Reduced
task

straggler

occurrence

Performance-aware

algorithm can improve

straggler mitigation,
node-level

identification.

[25]
Resource
contention

Hardware

heterogeneity

SEED Pro Google trace Low

Monitored
and detected

straggler

tasks at

runtime

Root-cause analysis

via
machine learning to

cross-correlate

heterogeneous system

traces for intelligent

failure detection.

[26]
Storage server

stragglers
Workload imbalance

between workers
Simulator Rea

Synthetic
workloads

generated based

on real-world
traces

Low

Mitigate
storage

server

stragglers
dynamically

Develop prototype of
integrating proposed

I/O scheduling into

existing parallel file
systems

[27]
Workload

imbalance

Datasets on stragglers

are expected to

demonstrate
imbalanced label

distribution

Spark Rea Google traces Low

Run-time

straggler
detection

Fine-grain straggler
identification by per

slowest node and

cluster

Preprint submitted to The Journal of Supercomputing

[28]

High job

completion
time

Late speculative

execution on straggler

tasks does not reduce

job completion time.

Simulator Rea NA Low

Run-time

straggler
diagnosis

Slow task execution

(e.g., non-local task
and data skew)

[29]

Data

abstraction
obfuscation

Master node wants to

hide input data from
workers

NA Rea NA Med

Reduced
straggling

effects on

sub-tasks

Communication

delays and
computation delays

[30]
High CPU

utilization

Imbalanced workload

or uneven input data
Sizes

SEED Pro

Sort,

Wordcount,
Hive query

Med

Improved

response
time

Design a cost function

beyond CPU and

memory utilization,
including disk volume

and network speed

[31]

Data

dependencies
of parallel

process

Workload imbalance

between workers in

cloud datacenters

SMARTS Pro
OpenStreetMap

dataset
High

Improved

performance

speedup

High resource

overhead associated
with increased

backups

[32]
Resource

contention

Hardware

heterogeneity
Hadoop Rea

Bing, Facebook

traces
High

Reduced job

execution
time

Hardware/software
faults identified and

removed from task

scheduling

[36]

Task-level

stragglers

during

execution of
jobs

Hardware
heterogeneity

Hadoop Pro Google traces Med
Improved
Scalability

Computation delay is
larger

[37]
Resource

contention

Hardware

heterogeneity
Simulator Rea NA High

Reduced job

completion
time

Overloading of

resources

Pro = Proactive, Rea = Reactive, High means the value is more than 80%, Medium (Med) means the value between 50% to

80% and Low means the value less than 50%

5. COMPARISON OF STRAGGLER MANAGEMENT TECHNIQUES BASED ON

TAXONOMY

Table 3 shows the comparison of straggler management techniques based on taxonomy of straggler

causes from Figure 1 and Table 2.

Table 3: Comparison of Straggler Management Techniques based on Taxonomy of Straggler

Causes

Work Data

Abstraction

CPU util. Scheduling Inaccessible

Local Disk

Data Skew Resource

Contention

Task Execution Faults

Resource

Schedule

Job Schedule

[1] OS Level NA Inefficient

Resource
Allocation

NA Increased

Backup Tasks

Uneven Data

Distribution

Extra Cloning Task Interference NA

[2] NA Additional

Time

NA More Resource

Requirement

NA NA Hardware

Heterogeneity

Task Interference Software

[3] Application
Level

NA Idle
Resources

High resource
requirement

Failed to store
output

Uneven data
distribution

Extra cloning Task
incompatibility

NA

[4] OS Level NA NA NA Extra Cloning NA Hardware

[5] NA Increased

speculative
copies

Idle

Resources
still Active

Poor admission

control

NA Uneven Data

Distribution

Hardware

Heterogeneity

Unhandled Request

Software

[6] Application

Level

NA Idle

Resources
Still Active

Poor admission

control

Failed to store

output

Non-uniform

data
processing

time

Ineffective

Algorithm Logic

Unhandled Request

NA

[7] NA NA NA NA NA Non-uniform

Data
Processing

Time

Temporary

Slowdowns

Task

Incompatibility

Hardware

[8] OS Level NA NA NA NA NA Temporary
Slowdowns

NA Hardware

[9] NA NA Inefficient

Resource

Allocation

Dynamic

Requirements

Failed to Store

Output

Uneven Data

Distribution

Ineffective

Algorithm Logic

Task Interference NA

[10] NA Additional

Time

NA NA NA NA Extra Cloning NA Hardware

Preprint submitted to The Journal of Supercomputing

[11]

[13]

Application

Level

Additional

Time

NA NA Increasing

Backup Tasks

NA Hardware

Heterogeneity

NA Hardware

[12] Application

Level

NA NA NA NA NA Poor User Code NA NA

[14] NA Increasing
Speculative

Copies

Idle
Resources

still Active

Dynamic
Requirements

Increasing
Backup Tasks

NA Ineffective
Algorithm Logic

Unhandled Request

Hardware

[15]

[33]

OS Level NA NA Dynamic

Requirements

NA Uneven Data

Distribution

Multiple Copies NA NA

[16] NA NA NA NA NA NA Extra Resource

Usage

NA Software

[17] NA Additional

Time

NA NA NA NA NA Software

[18] Application

Level

NA Idle

Resources are

Still Active

More Resource

Requirement

Increasing

Backup Tasks

NA Extra Cloning Unhandled Request

[19] OS Level Increasing
Speculative

Copies

NA NA NA Non-uniform
Data

Processing

Time

Extra Cloning NA Hardware
and

Software

[20] OS Level NA NA NA NA NA Multiple Copies Task

Incompatibility

NA

[21] OS Level Increasing

Speculative
Copies

NA Poor Admission

Control

Failed to Store

Output

NA Multiple Copies NA NA

[22] Application

Level

NA NA NA NA NA Temporary

Slowdowns

Task

Incompatibility

Hardware

[23] NA NA Inefficient

Resource

Allocation

Dynamic

Requirements

Increasing

Backup Tasks

Uneven Data

Distribution

NA Software

[24] NA Additional
Time

NA NA NA NA NA Task Interference Hardware

[25] NA NA NA NA NA NA Hardware

Heterogeneity

NA Hardware

[26] NA NA Idle
Resources are

Still Active

More Resource
Requirement

Increasing
Backup Tasks

NA NA Task Interference Software

[27] Application and
OS Level

Increasing
Speculative

Copies

Idle
Resources are

Still Active

Poor Admission
Control

Failed to Store
Output

Non-uniform
Data

Processing

Time

Extra Cloning Unhandled Request

NA

[28] OS Level Increasing

Speculative

Copies

NA Dynamic

Requirements

NA NA Hardware

Heterogeneity

NA Hardware

[29] OS level NA NA NA NA NA Poor User Code Task
Incompatibility

NA

[30] Application

Level

Increasing

Speculative

Copies

Inefficient

Resource

Allocation

More Resource

Requirement

NA Uneven Data

Distribution

Ineffective

Algorithm Logic

NA Software

[31] NA NA Inefficient

Resource

Allocation

Poor Admission

Control

Failed to Store

Output

Non-uniform

Data

Processing
Time

Temporary

Slowdowns

Task Interference NA

[32] Application

Level

Additional

Time

NA More Resource

Requirement

Increasing

Backup Tasks

Non-uniform

Data
Processing

Time

Hardware

Heterogeneity

Task

Incompatibility

Hardware

[36] OS Level Additional

Time

NA Poor Admission

Control

Failed to Store

Output

NA Hardware

Heterogeneity

NA Hardware

[37] Application

Level

NA Inefficient

Resource

Allocation

Dynamic

Requirements

NA NA Hardware

Heterogeneity

NA NA

NA: Not Applicable

5.1 Analysis of Experimental Results: Practical Use-Case

The existing straggler management techniques have been categorized into two categories i.e. straggler detection

and mitigation techniques. Table 4 shows the analysis of experimental results of straggler detection and mitigation

techniques in the context of different performance parameters. Future researchers can use Table 4 to validate their

research work based on the values of various performance parameters identified from existing literature.

Literature reported that there are four types of data abstraction levels (OS, application, server and VM), where

straggler can occur.

Preprint submitted to The Journal of Supercomputing

Table 4: Analysis of experimental results of straggler detection and mitigation techniques

Study Type Data

Abstraction

Level

Context

Number

of

Nodes/

Workers

Energy

Consumption

CPU

Utilization

Disk

Utilization

Data

Transfer

Memory

Utilisation

Deadline Execution

Time

Number

of Tasks

Number

of Jobs

Data

Size

Latency Failure

Prediction

Accuracy

Number

of

Failures

Average

Error

Slowdown/

Delay

Interval

Arrival

Rate

Running

Time

Response

Time

[1]

Straggler

Detection

Techniques

Application 8-32 NA >61% NA NA NA NA NA NA 50-150 NA NA NA NA 2.5-5% 5-15 % NA 0-30 m NA

[2] Server 40-200 NA NA NA NA >71% NA 0.5s –

1000s

NA NA 1-3 GB 6.5-9 s NA NA NA 0.5 s – 2 s 10-30

J/s

NA NA

[3] Application 25-100 NA NA NA NA NA NA 0-184s NA NA 100 GB

– 1 TB

NA NA 1-119 NA NA NA NA 1.7 – 6.6 s

[6] OS NA 90 kWh >82% NA NA NA NA NA 400-488 1017 NA 4-8 s NA NA NA NA NA 0-3k s NA

[9] Server NA NA NA NA 0 – 20k

MB/s

NA NA 0-634s 3351 29423 3228

TB

NA NA NA NA NA NA 0-1000s NA

[24] Server 132 NA NA >40% NA NA NA 50-300 s NA NA NA NA NA NA NA NA NA NA NA

[28] Application NA NA >80% NA NA NA NA 10-14 m 252950 3043 NA NA NA NA NA NA NA 29 days NA

[25] Application NA NA >80% NA NA 90% NA 10-14 m 1233879 875 NA 1200-

1500

ms

NA NA NA 6% NA 14 days 30 m

[27] Server 12000 NA NA NA NA NA NA NA 417 NA NA 62.92% NA NA NA NA NA NA

[4]

Straggler

Mitigation

Techniques

VM 48 NA NA >60% NA NA NA 0-35 s 1-5 1-500 NA NA NA NA NA NA NA 1-6 h NA

[5] VM NA NA NA NA NA NA 2-20% 30-50% 50-500 NA 20-52% NA 5-30% NA NA NA NA

[7] Application NA NA NA NA NA NA NA 50-110s NA NA NA 0-120s NA NA 1.5-3.5% NA NA NA NA

[8] Server 90 NA NA NA NA NA NA 0-100s NA NA NA NA NA NA NA NA 5-32s NA

[10] Application NA NA NA NA NA NA NA 50-110s NA NA NA 60-

1600s

70% NA 1.5-3.5% NA NA NA NA

[12] Application 60 NA >80% >80% NA NA NA NA NA NA NA 6-22 NA 8s NA NA NA

[11]

[13]

Servers 1-10 NA NA NA NA NA NA 0-12s NA 700 NA 0-1sec NA NA NA NA 0-12

req/s

NA 1-1000s

[14] Application 20-80 NA 27-135% NA NA 27-135% NA 100-1100 NA NA 24.6

GB

NA NA NA 2-3% 4-6s NA NA 680-

1080ms

[15]

[33]

Application NA 14-18 106J NA NA NA NA NA 12-52 s 1759434 1735 20 GB NA 40-60% NA NA NA NA 7-14 103s NA

[16] Application 50-100 NA NA NA NA NA NA 0-70 s NA 22974 NA NA 20-85% NA NA 0.22-

21.84%

NA 9 days NA

[17] Application NA NA NA NA 2.87

MB/s

NA NA NA NA NA NA 1750-

5200

ms

NA NA NA NA NA 0-1600 s 18s

[18] Application 1-8 NA NA NA NA NA NA 210-330s NA NA NA NA NA NA NA NA NA NA NA

[19] VM 100 NA NA NA NA NA NA NA 1-8 NA NA NA NA NA NA NA NA NA NA

[20] Application 12 NA NA NA NA NA NA NA NA 0-35 64 MB NA NA 50-91 NA 11% NA 0-125s NA

[21] VM 871 NA NA NA 52.1

MB/s

NA NA 10-70s NA NA 30 GB NA NA NA NA NA NA 0-2.5 s NA

[22] Server NA NA 20-80% NA NA NA NA 0-300 s NA NA NA NA NA NA NA 20-80

req/s

NA NA

[23] VM 32 60 kWh NA NA NA NA NA 0-300 s NA NA 150 GB NA NA NA 7-9% NA NA NA NA

[26] Application 300 NA NA NA NA NA NA 20-200s NA NA NA NA NA NA NA NA NA NA

[30] VM 40 NA NA NA 11

MB/s

NA NA 5-85s 500-

10000

NA NA NA NA NA NA NA NA NA 130-213s

[31] Application 80 NA NA NA NA NA NA 15-80s NA NA NA NA NA 82-98 NA NA NA NA NA

[32] Server NA NA NA >55% NA NA NA NA NA NA NA NA NA NA 3-6% 4-9 s 0-25

req/s

NA NA

[36] OS 16 NA NA NA NA NA NA NA NA NA NA NA 60-70% NA NA NA NA NA NA

[37] Application 8-48 NA >40% NA NA NA NA 0-15 s NA NA NA NA NA NA <2% 4s NA NA 50s

NA: Not Available, s: Seconds, ms: Milliseconds, GB: Giga Bytes, kWh: Kilo Watt Hour, MB/s: Mega Bytes per second, req/s: Number of Requests per Second, m: minutes

Preprint submitted to The Journal of Supercomputing

5.2 Trend Analysis

Our systematic review has identified different types of result outcomes for different categories of

straggler management techniques developed from year 2008 to year 2019. The scheduling-based

straggler mitigation technique appears prominent across the years except year 2012. After the

scheduling-based techniques, researchers focused on replication-based straggler mitigation, during

the year 2013 to 2019. The offline, online and load-balancing straggler management techniques

are less focused on from year 2008 to year 2019 requiring research to improve the straggler

management in large scale systems. Researchers focused on scheduling and replication-based

straggler management in years 2018 and 2019. Figure 5 shows the year-wise publications of

straggler management techniques and it has been clearly depicted that research from year 2008

to 2016 was highly progressive in this area, declining after 2017 and 2018 while progressing in

2019.

Literature reports the research related to straggler management is mostly published in journals

(31%), followed by conferences (28%), transactions (21%) and book chapters (10%). The rest of the

research is published in symposiums, workshops, white papers and PhD thesis. Figure 6 shows the

research conducted related to straggler management at different levels such as Application,

Server, OS, VM and cooling. Figure 6 clearly shows that most of the research work has been done

at the application level (46%) and followed by VM level (21%). Only 3% of research work has been

done at cooling level.

Literature reports 44% of research work considered between 0 and 100 nodes for performance

evaluation and only 7% research work considered 1000+ nodes. There are four different types of

studies identified form literature: real testbed based (63%), systematic reviews (7%), conceptual

models (10%) and simulation based (20%). Most of the technical research papers (63%) consider

real testbeds for performance evaluation. There are only two reviews [34] [35], which have been

done in this area. Table 5 shows the different research work related to different performance

parameters identified from Table 4.

5.3 Observations

From the trend analysis, it is observable that current related works focus on studying and

mitigating specific straggler types, ranging from resource contention to data skew as shown in

Table 2. This appears to be a necessity given the complexities and management strategies

appropriate for each straggler type. The challenge is that it is possible for straggler manifestation

to be correlated in terms of system phenomena, but also management techniques themselves (e.g.

use of speculative copies to address data skew causes increased resource contention).

The important research challenges within the large-scale cloud data centres such as latency,

scalability, energy consumption and data processing are contributing to the rise in research in the

field of straggler management, which can be solved by using Artificial Intelligence techniques. On

the other hand, there is a need of real cloud infrastructure (at least 50 physical nodes) to test the

Figure 5: Publications of Straggler Management Techniques Figure 6: Straggler Type Breakdown in Literature

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

P
ap

e
rs

Year

46%

18%

12%

21%

3%

Application

Server

OS

VM

Cooling

Preprint submitted to The Journal of Supercomputing

performance of future straggler management techniques but it would be very expensive to afford

for academic institutes. To solve this problem, industries such as Facebook, Google, Amazon should

collaborate with academic institutes to provide required infrastructure to do real experiments.

Table 5: Research Work Related to Performance Parameters

Performance Parameters Study

Number of Physical Nodes/ Workers [1] [2] [3] [11] [13] [14] [16] [18] [19] [20] [21] [23] [24] [26] [27] [28] [30] [31]

Number of Virtual Nodes/ Workers

Energy Consumption [15] [33]

CPU Utilization [12] [14] [22] [25]

Disk Utilization [12]

Data Transfer [9] [17] [21]

Memory Utilisation [14]

Deadline [5]

Execution Time [2-18] [33] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [36] [37]

Number of Tasks [4] [6] [9] [15] [33] [25] [30]

Number of Jobs [4] [5] [6][8] [15] [16] [33] [21] [23]

Data Size [33]

Latency [2] [6] [7] [10] [11] [13] [16] [27]

Failure Prediction Accuracy [5] [16]

Number of Failures [3]

Average Error [1] [5] [7] [10]

Response Time [3] [11] [33] [14] [30]

Slowdown/ Delay [1] [2] [16] [32]

Interval Arrival Rate [2] [11] [13] [22] [32]

Running Time [1] [4] [6] [8] [9] [11] [15] [16] [17] [20] [21] [25] [33]

This systematic review also identifies various research directions for perspective researcher

scholars, who are working in the field of straggler management for distributed systems and

searching for new research challenges to improve the performance of cloud services. The straggler

management is an evolving field of research for large scale systems and it is quite challenge ring

to execute user workloads without occurrence of stragglers. To solve this problem, there is a need

to recognize the reasons of long-tail problem or stragglers and their correlations, which can help to

find out the dependency among stragglers. This study [1] developed straggler management

technique for profile guide more accurately, but accurate predication is difficult to get if job is very

small to gather required profiling data. An efficient data recovery is achieved in [3], but it has been

identified that the memory requirements do not grow to intolerable levels as the size of dataset is

increasing, which further causes the stragglers. The jobs are increasing with time, but there is

need to analyse the impact of multiple jobs on probability of stragglers [4]. Existing techniques

uses historic data to estimate resource requirement [6]. However, there is a need to develop an

online strategy to simultaneously learn the execution time distribution and launch replicas,

instead of estimating time using historical traces. Further, the replication increases the reliability

of execution of jobs, but it consumes more energy consumption, which is a global challenge to

address [7]. The scale up/down infrastructure by switching on/off the virtual machines/nodes based

on the resource usage of the cluster to save energy is required [20]. The dependency among tasks

during task execution further effects causes the stragglers because some tasks need to complete in

order to begin others [17]. Existing straggler management techniques are required to improve to

attain to reduce straggler occurrence. By using this systematic review, causes of straggler can be

identified easily. Therefore, an effective straggler management technique can be developed to

execute the jobs without straggler occurrence while fulfilling the dynamic requirements of job,

which helps to increase the efficiency of large-scale cloud data centres.

5.4 Future Research Directions

Although a substantial progress has been made in straggler management techniques for large scale

systems, there are still many pressing issues and challenges in this field that need to be addressed.

Based on existing research, we have identified various open issues pending in this area.

5.4.1 Data Processing

Preprint submitted to The Journal of Supercomputing

Data processing in straggler management is an important challenge [9]. It happens due to the skew

in data that the computing system is able to process effectively. There are two types of problems

which reduce the data processing capability of systems: 1) large variation of data size and 2) non-

uniformity of data. These two reasons degrade the performance of large-scale computing systems.

To improve the straggler management mechanism, there should be less variation as well as less

non-uniformity of data. Tackling this challenge can further improve the processing speed of

computing systems in terms of execution time and latency.

5.4.2 Heterogeneity

Hardware heterogeneity is the main reason for resource contention, which occurs due different

types of resources (with different configurations, different providers etc.) being used and sometimes

some resources are not compatible to execute jobs in a coordinative manner. There is a need for a

single interface, which can provide a stable platform for interaction of different types of hardware

in a collaborative manner.

5.4.3 Latency

The latency is another important challenge in straggler management of large-scale systems, which

can affect the performance of computing systems. There are different types of reasons for latency:

1) non-uniformity of data, 2) resource contention, 3) poor user code and 4) extra cloning. To improve

the processing of computing systems, there is the need to make data uniform initially. Further,

efficient resource scheduling algorithms are required, which can reduce resource contention at

runtime as well as reduce the latency [61]. The extra cloning of tasks to speed up the execution can

increase the latency because there is a requirement for more number of resources to process more

number of copies. There is a need to develop an effective straggler management technique, which

schedules resources and reduces latency at runtime.

5.4.4 Scalability

To improve the performance of computing systems, the systems must be more scalable to serve the

jobs within their specific deadline without further delay at runtime [72]. The scalability of the

computing system can increase the capacity of the system when the load increases, which can

further reduce the problem of occurrence of stragglers.

5.4.5 Resource Sharing

The sharing of resources among different jobs can improve resource utilization but it leads to

resource contention, which can degrade the performance of large-scale computing systems [76].

There is a need of an effective resource contention technique, which can identify the reasons of

resource contention and provide the possible solutions to avoid additional resource over-allocation,

ultimately contributing to straggler occurrence.

5.4.6 Energy Management

The literature reports [45] [61] [72] [102] that the straggler management techniques create several

copies of the same task to mitigate the effects of stragglers. Copying a task reserves additional

resources such as the disk, memory of CPU time, increasing use of particular resource. As the

resource is more continuously used, its energy consumption rises. Depending on the type of the

resource, its performance can degrade as its energy consumption increases above a certain

threshold level.

6. SUMMARY AND CONCLUSIONS

In this paper, we have provided a comprehensive literature review of current straggler research

within Computer Science, an important problem which directly debilitates the performance of

large-scale computing systems. We proposed a taxonomy of straggler causes as identified from

different types of straggler management techniques. Moreover, various straggler management

Preprint submitted to The Journal of Supercomputing

techniques have been reviewed and classified into two categories: straggler detection and straggler

mitigation. The comparison of straggler detection and straggler mitigation have been presented in

detail, and the taxonomy mapping based comparison has been described and various result

outcomes related to straggler management have been presented. Observations of interest include

that the focused nature of straggler causes, and mitigation solutions may potential interfere with

each other due to correlated root-causes. Hence, there is a possibility of designing a multi-purpose

straggler management technique which profiles and acts based on the type of identified straggler.

ACKNOWLEDGEMENTS

This work is supported by the Engineering and Physical Sciences Research Council (EPSRC)

(EP/P031617/1). We would like to thank Damian Borowiec and Shreshth Tuli for their valuable

comments, useful suggestions and discussion to improve the quality of the paper. We would like to

thank the Editor-in-Chief and anonymous reviewers for their valuable suggestions to help and

improve paper.

REFERENCES

[1] Coppa, Emilio, and Irene Finocchi. "On data skewness, stragglers, and MapReduce progress indicators."

In Proceedings of the Sixth ACM Symposium on Cloud Computing, pp. 139-152. ACM, 2015.

[2] Farhat, Farshid. "Stochastic modeling and optimization of stragglers in mapreduce framework." (2015).

Thesis, The Pennsylvania State University.

[3] Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,

Michael J. Franklin, Scott Shenker, and Ion Stoica. "Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing." In Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation, pp. 2-2. USENIX Association, 2012.

[4] Ananthanarayanan, Ganesh, Ali Ghodsi, Scott Shenker, and Ion Stoica. "Effective Straggler Mitigation:

Attack of the Clones." In NSDI, vol. 13, pp. 185-198. 2013.

[5] Ananthanarayanan, Ganesh, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica, Adam Wierman, and

Minlan Yu. "GRASS: trimming stragglers in approximation analytics." (2014): 289-302.

[6] Wang, Da, Gauri Joshi, and Gregory Wornell. "Using straggler replication to reduce latency in large-scale

parallel computing." ACM SIGMETRICS Performance Evaluation Review 43, no. 3 (2015): 7-11.

[7] Aktas, Mehmet Fatih, Pei Peng, and Emina Soljanin. "Effective Straggler Mitigation: Which Clones

Should Attack and When?." ACM SIGMETRICS Performance Evaluation Review 45, no. 2 (2017): 12-14.

[8] Harlap, Aaron, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R. Ganger, Phillip B. Gibbons, Garth A.

Gibson, and Eric P. Xing. "Addressing the straggler problem for iterative convergent parallel ML." In

Proceedings of the Seventh ACM Symposium on Cloud Computing, pp. 98-111. ACM, 2016.

[9] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters."

Communications of the ACM 51, no. 1 (2008): 107-113.

[10] Aktas, M. F., Peng, P., & Soljanin, E. (2018). Straggler mitigation by delayed relaunch of tasks. ACM

SIGMETRICS Performance Evaluation Review, 45(3), 224-231.

[11] Wang, Da, Gauri Joshi, and Gregory Wornell. "Efficient task replication for fast response times in parallel

computation." In ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 1, pp. 599-600. ACM,

2014.

[12] Ouyang, Xue, Peter Garraghan, Renyu Yang, Paul Townend, and Jie Xu. "Reducing late-timing failure

at scale: Straggler root-cause analysis in cloud datacenters." In Fast Abstracts in the 46th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks. DSN, 2016.

[13] Vulimiri, Ashish, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott

Shenker. "Low latency via redundancy." In Proceedings of the ninth ACM conference on Emerging

networking experiments and technologies, pp. 283-294. ACM, 2013.

[14] Ouyang, Xue, Peter Garraghan, David McKee, Paul Townend, and Jie Xu. "Straggler detection in parallel

computing systems through dynamic threshold calculation." In Advanced Information Networking and

Applications (AINA), 2016 IEEE 30th International Conference on, pp. 414-421. IEEE, 2016.

[15] Phan, Tien-Dat. "Energy-efficient Straggler Mitigation for Big Data Applications on the Clouds." PhD

diss., ENS Rennes, 2017.

[16] Yadwadkar, Neeraja J., Ganesh Ananthanarayanan, and Randy Katz. "Wrangler: Predictable and faster

jobs using fewer resources." In Proceedings of the ACM Symposium on Cloud Computing, pp. 1-14. ACM,

2014.

[17] Wang, Da, Gauri Joshi, and Gregory Wornell. "Efficient Straggler Replication in Large-scale Parallel

Computing." arXiv preprint arXiv:1503.03128 (2015).

Preprint submitted to The Journal of Supercomputing

[18] Chen, Quan, Daqiang Zhang, Minyi Guo, Qianni Deng, and Song Guo. "Samr: A self-adaptive mapreduce

scheduling algorithm in heterogeneous environment." In Computer and Information Technology (CIT),

2010 IEEE 10th International Conference on, pp. 2736-2743. IEEE, 2010.

[19] Lei, Lei, Tianyu Wo, and Chunming Hu. "CREST: Towards fast speculation of straggler tasks in

MapReduce." In e-Business Engineering (ICEBE), 2011 IEEE 8th International Conference on, pp. 311-

316. IEEE, 2011.

[20] Nanduri, Radheshyam, Nitesh Maheshwari, A. Reddyraja, and Vasudeva Varma. "Job aware scheduling

algorithm for mapreduce framework." In 2011 Third IEEE International Conference on Coud Computing

Technology and Science, pp. 724-729. IEEE, 2011.

[21] Zaharia, Matei, Andy Konwinski, Anthony D. Joseph, Randy H. Katz, and Ion Stoica. "Improving

MapReduce performance in heterogeneous environments." In Osdi, vol. 8, no. 4, p. 7. 2008.

[22] Ananthanarayanan, Ganesh, Srikanth Kandula, Albert G. Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and

Edward Harris. "Reining in the Outliers in Map-Reduce Clusters using Mantri." In Osdi, vol. 10, no. 1, p.

24. 2010.

[23] Guo, Yanfei, Jia Rao, Changjun Jiang, and Xiaobo Zhou. "Moving Hadoop into the cloud with flexible slot

management and speculative execution." IEEE Transactions on Parallel & Distributed Systems 3 (2017):

798-812.

[24] Ouyang, Xue, Peter Garraghan, Changjian Wang, Paul Townend, and Jie Xu. "An approach for modeling

and ranking node-level stragglers in cloud datacenters." In Services Computing (SCC), 2016 IEEE

International Conference on, pp. 673-680. IEEE, 2016.

[25] Garraghan, Peter, Xue Ouyang, Renyu Yang, David McKee, and Jie Xu. "Straggler root-cause and impact

analysis for massive-scale virtualized cloud datacenters." IEEE Transactions on Services Computing

(2016).

[26] Tavakoli, Neda, Dong Dai, and Yong Chen. "Log-assisted straggler-aware I/O scheduler for high-end

computing." In Parallel Processing Workshops (ICPPW), 2016 45th International Conference on, pp. 181-

189. IEEE, 2016.

[27] Li, Cong, Huanxing Shen, and Tai Huang. "Learning to diagnose stragglers in distributed computing." In

Many-Task Computing on Clouds, Grids, and Supercomputers (MTAGS), 2016 9th Workshop on, pp. 1-

6. IEEE, 2016.

[28] Dai, Wei, Ibrahim Ibrahim, and Mostafa Bassiouni. "An Improved Straggler Identification Scheme for

Data-Intensive Computing on Cloud Platforms." In Cyber Security and Cloud Computing (CSCloud),

2017 IEEE 4th International Conference on, pp. 211-216. IEEE, 2017.

[29] Yang, Heecheol, and Jungwoo Lee. "Secure Distributed Computing With Straggling Servers Using

Polynomial Codes." IEEE Transactions on Information Forensics and Security 14, no. 1 (2019): 141-150.

[30] Ouyang, Xue, Peter Garraghan, Bernhard Primas, David McKee, Paul Townend, and Jie Xu. "Adaptive

speculation for efficient internetware application execution in clouds." ACM Transactions on Internet

Technology (TOIT) 18, no. 2 (2018): 15.

[31] Bin Khunayn, Eman, Shanika Karunasekera, Hairuo Xie, and Kotagiri Ramamohanarao. "Exploiting

Data Dependency to Mitigate Stragglers in Distributed Spatial Simulation." In Proceedings of the 25th

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 43.

ACM, 2017.

[32] Farhat, F., D. Zad Tootaghaj, A. Sivasubramaniam, M. T. Kandemir, and C. R. Das. Modeling and

optimization of straggling mappers. Technical report, Technical Report CSE-14-006, Pennsylvania State

University, 2014.

[33] Phan, Tien-Dat, Shadi Ibrahim, Amelie Chi Zhou, Guillaume Aupy, and Gabriel Antoniu. "Energy-Driven

Straggler Mitigation in MapReduce." In European Conference on Parallel Processing, pp. 385-398.

Springer, Cham, 2017.

[34] Kumar, Umesh, and Jitendar Kumar. A comprehensive review of straggler handling algorithms for

mapreduce framework. International Journal of Grid and Distributed Computing 7, no. 4 (2014): 139-

148.

[35] Ashwin Bhandare et al. Review and Analysis of Straggler Handling Techniques, International Journal of

Computer Science and Information Technologies, Vol. 7, no. 5, 2016.

[36] Yan, Rong, Marc-Olivier Fleury, Michele Merler, Apostol Natsev, and John R. Smith. "Large-scale

multimedia semantic concept modeling using robust subspace bagging and MapReduce." In Proceedings

of the First ACM workshop on Large-scale multimedia retrieval and mining, pp. 35-42. ACM, 2009.

[37] Wang, Haozhao, Song Guo, Bin Tang, Ruixuan Li, and Chengjie Li. "Heterogeneity-aware Gradient

Coding for Straggler Tolerance." arXiv preprint arXiv:1901.09339 (2019).

[38] Yu, Qian, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. "Straggler mitigation in distributed

matrix multiplication: Fundamental limits and optimal coding." IEEE Transactions on Information

Theory 66, no. 3 (2020): 1920-1933.

[39] Garraghan, Peter, Renyu Yang, Zhenyu Wen, Alexander Romanovsky, Jie Xu, Rajkumar Buyya, and

Rajiv Ranjan. "Emergent Failures: Rethinking Cloud Reliability at Scale." IEEE Cloud Computing 5, no.

5 (2018): 12-21.

Preprint submitted to The Journal of Supercomputing

[40] Zaharia, Matei, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave,

Xiangrui Meng et al. "Apache spark: a unified engine for big data processing." Communications of the

ACM 59, no. 11 (2016): 56-65.

[41] Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. "Dryad: distributed data-

parallel programs from sequential building blocks." In ACM SIGOPS operating systems review, vol. 41,

no. 3, pp. 59-72. ACM, 2007.

[42] Dean, Jeffrey, and Luiz André Barroso. "The tail at scale." Communications of the ACM 56, no. 2 (2013):

74-80.

[43] Eppstein, David, and Michael T. Goodrich. "Space-efficient straggler identification in round-trip data

streams via newton’s identities and invertible bloom filters." In Workshop on Algorithms and Data

Structures, pp. 637-648. Springer, Berlin, Heidelberg, 2007.

[44] Lindsay, Dominic, Sukhpal Singh Gill, and Peter Garraghan. "PRISM: An Experiment Framework for

Straggler Analytics in Containerized Clusters." In Proceedings of the 5th International Workshop on

Container Technologies and Container Clouds, pp. 13-18. 2019.

[45] Tavakoli, Neda, Dong Dai, and Yong Chen. "Client-side straggler-aware I/O scheduler for object-based

parallel file systems." Parallel Computing 82 (2019): 3-18.

[46] Ozfaturay, Emre, Deniz Gunduz, and Sennur Ulukus. "Speeding up distributed gradient descent by

utilizing non-persistent stragglers." arXiv preprint arXiv:1808.02240 (2018).

[47] Eppstein, David, and Michael T. Goodrich. "Straggler identification in round-trip data streams via

Newton's identities and invertible Bloom filters." IEEE Transactions on Knowledge and Data

Engineering 23, no. 2 (2011): 297-306.

[48] Yu, Ze, Min Li, Xin Yang, Han Zhao, and Xiaolin Li. "Taming non-local stragglers using efficient

prefetching in MapReduce." In 2015 IEEE International Conference on Cluster Computing, pp. 52-61.

IEEE, 2015.

[49] Shen, Huanxing, and Cong Li. "Zeno: A Straggler Diagnosis System for Distributed Computing Using

Machine Learning." In International Conference on High Performance Computing, pp. 144-162. Springer,

Cham, 2018.

[50] Sukhpal Singh and Inderveer Chana, “QoS-aware Autonomic Resource Management in Cloud

Computing: A Systematic Review”, ACM Computing Surveys, vol. 48, no. 3, 46 pages, 2016

[51] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R. Ganger, Phillip B. Gibbons, Garth A.

Gibson, and Eric P. Xing. 2016. Addressing the straggler problem for iterative convergent parallel ML.

In Proceedings of the Seventh ACM Symposium on Cloud Computing (SoCC ’16). Association for

Computing Machinery, New York, NY, USA, 98–111. DOI:https://doi.org/10.1145/2987550.2987554.

[52] Ouyang, Xue, Huan Zhou, Stephen Clement, Paul Townend, and Jie Xu. "Mitigate data skew caused

stragglers through ImKP partition in MapReduce." In 2017 IEEE 36th International Performance

Computing and Communications Conference (IPCCC), pp. 1-8. IEEE, 2017.

[53] Martha, Venkata Swamy, Weizhong Zhao, and Xiaowei Xu. "h-MapReduce: a framework for workload

balancing in MapReduce." In 2013 IEEE 27th International Conference on Advanced Information

Networking and Applications (AINA), pp. 637-644. IEEE, 2013.

[54] Huang, Sheng-Wei, Tzu-Chi Huang, Syue-Ru Lyu, Ce-Kuen Shieh, and Yi-Sheng Chou. "Improving

speculative execution performance with coworker for cloud computing." In 2011 IEEE 17th International

Conference on Parallel and Distributed Systems, pp. 1004-1009. IEEE, 2011.

[55] Lin, Jimmy. "The curse of zipf and limits to parallelization: A look at the stragglers problem in

mapreduce." In 7th Workshop on Large-Scale Distributed Systems for Information Retrieval, vol. 1, pp.

57-62. Boston, MA, USA: ACM, 2009.

[56] Zhou, Amelie Chi, Tien-Dat Phan, Shadi Ibrahim, and Bingsheng He. "Energy-Efficient Speculative

Execution using Advanced Reservation for Heterogeneous Clusters." In Proceedings of the 47th

International Conference on Parallel Processing, p. 8. ACM, 2018.

[57] Li, Songze, Seyed Mohammadreza Mousavi Kalan, A. Salman Avestimehr, and Mahdi Soltanolkotabi.

"Near-optimal straggler mitigation for distributed gradient methods." In 2018 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 857-866. IEEE, 2018.

[58] Tandon, Rashish, Qi Lei, Alexandros G. Dimakis, and Nikos Karampatziakis. "Gradient coding: Avoiding

stragglers in distributed learning." In International Conference on Machine Learning, pp. 3368-3376.

2017.

[59] Mallick, Ankur, Malhar Chaudhari, and Gauri Joshi. "Rateless Codes for Straggler Mitigation in

Distributed Computing." Online Available: https://www.andrew.cmu.edu/user/gaurij/18-847F-

Lectures/rateless_codes_2018.pdf

[60] Cipar, James, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R. Ganger, Garth Gibson, Kimberly

Keeton, and Eric Xing. "Solving the straggler problem with bounded staleness." In Presented as part of

the 14th Workshop on Hot Topics in Operating Systems. 2013.

[61] Sukhpal Singh and Inderveer Chana, “A Survey on Resource Scheduling in Cloud Computing: Issues and

Challenges”, “Journal of Grid Computing”, vol. 14, no. 2, pp. 217-264, 2016

Preprint submitted to The Journal of Supercomputing

[62] Yu, Qian, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. "Straggler mitigation in distributed

matrix multiplication: Fundamental limits and optimal coding." In 2018 IEEE International Symposium

on Information Theory (ISIT), pp. 2022-2026. IEEE, 2018.

[63] Baharav, Tavor, Kangwook Lee, Orhan Ocal, and Kannan Ramchandran. "Straggler-proofing massive-

scale distributed matrix multiplication with d-dimensional product codes." In 2018 IEEE International

Symposium on Information Theory (ISIT), pp. 1993-1997. IEEE, 2018.

[64] Xu, Maotong, Sultan Alamro, Tian Lan, and Suresh Subramaniam. "Optimizing speculative execution of

deadline-sensitive jobs in cloud." In ACM SIGMETRICS Performance Evaluation Review, vol. 45, no. 1,

pp. 17-18. ACM, 2017.

[65] Xu, Maotong, Sultan Alamro, Tian Lan, and Suresh Subramaniam. "Optimizing speculative execution of

deadline-sensitive jobs in cloud." In ACM SIGMETRICS Performance Evaluation Review, vol. 45, no. 1,

pp. 17-18. ACM, 2017.

[66] Haddadpour, Farzin, Yaoqing Yang, Malhar Chaudhari, Viveck R. Cadambe, and Pulkit Grover.

"Straggler-resilient and communication-efficient distributed iterative linear solver." arXiv preprint

arXiv:1806.06140 (2018).

[67] Khunayn, Eman Bin, Shanika Karunasekera, Hairuo Xie, and Kotagiri Ramamohanarao. "Straggler

mitigation for distributed behavioral simulation." In 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), pp. 2638-2641. IEEE, 2017.

[68] Paik, Michael. "Stragglers of the herd get eaten: security concerns for GSM mobile banking applications."

In Proceedings of the Eleventh Workshop on Mobile Computing Systems & Applications, pp. 54-59. ACM,

2010.

[69] Malewicz, Grzegorz, Marian Dvorsky, Christopher B. Colohan, Derek P. Thomson, and Joshua Louis

Levenberg. "System and method for limiting the impact of stragglers in large-scale parallel data

processing." U.S. Patent 8,510,538, issued August 13, 2013.

[70] Karakus, Can, Yifan Sun, Suhas Diggavi, and Wotao Yin. "Redundancy techniques for straggler

mitigation in distributed optimization and learning." arXiv preprint arXiv:1803.05397 (2018).

[71] Ouyang, Xue, Changjian Wang, Renyu Yang, Guogui Yang, Paul Townend, and Jie Xu. "ML-NA: A

machine learning based node performance analyzer utilizing straggler statistics." In 2017 IEEE 23rd

International Conference on Parallel and Distributed Systems (ICPADS), pp. 73-80. IEEE, 2017.

[72] Zheng, Pengfei, and Benjamin C. Lee. "Hound: Causal learning for datacenter-scale straggler diagnosis."

Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, no. 1 (2018): 17.

[73] Zhao, Xia, Kai Kang, YuZhong Sun, Yin Song, Minhao Xu, and Tao Pan. "Insight and reduction of

MapReduce stragglers in heterogeneous environment." In 2013 IEEE International Conference on

Cluster Computing (CLUSTER), pp. 1-8. IEEE, 2013.

[74] Behrouzi-Far, Amir, and Emina Soljanin. "On the Effect of Task-to-Worker Assignment in Distributed

Computing Systems with Stragglers." In 2018 56th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pp. 560-566. IEEE, 2018.

[75] Chen, Fei, Song Wu, Hai Jin, Yin Yao, Zhiyi Liu, Lin Gu, and Yongluan Zhou. "Lever: Towards low-

latency batched stream processing by pre-scheduling." In Proceedings of the 2017 Symposium on Cloud

Computing, pp. 643-643. ACM, 2017.

[76] Singh, Sukhpal, and Inderveer Chana. "Cloud resource provisioning: survey, status and future research

directions." Knowledge and Information Systems 49, no. 3 (2016): 1005-1069.

[77] Misra, Pulkit A., María F. Borge, Íñigo Goiri, Alvin R. Lebeck, Willy Zwaenepoel, and Ricardo Bianchini.

"Managing Tail Latency in Datacenter-Scale File Systems Under Production Constraints." In

Proceedings of the Fourteenth EuroSys Conference 2019, p. 17. ACM, 2019.

[78] Qureshi, Nawab Muhammad Faseeh, Isma Farah Siddiqui, Asad Abbas, Ali Kashif Bashir, Keehyun

Choi, Jaehyoun Kim, and Dong Ryeol Shin. "Dynamic Container-based Resource Management

Framework of Spark Ecosystem." In 2019 21st International Conference on Advanced Communication

Technology (ICACT), pp. 522-526. IEEE, 2019.

[79] Yang, Eunju, Dong-Ki Kang, and Chan-Hyun Youn. "BOA: batch orchestration algorithm for straggler

mitigation of distributed DL training in heterogeneous GPU cluster." The Journal of Supercomputing

(2019): 1-21.

[80] Gill, Sukhpal Singh, Inderveer Chana, Maninder Singh, and Rajkumar Buyya. "RADAR: Self‐configuring

and self‐healing in resource management for enhancing quality of cloud services." Concurrency and

Computation: Practice and Experience 31, no. 1 (2019).

[81] Kapoor, Rishi, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vahdat. "Chronos:

Predictable low latency for data center applications." In Proceedings of the Third ACM Symposium on

Cloud Computing, p. 9. ACM, 2012.

[82] Sukhpal Singh Gill, Peter Garraghan, Vlado Stankovski, Giuliano Casale, Soumya K. Ghosh, Ruppa K.

Thulasiram, Kotagiri Ramamohanarao and Rajkumar Buyya, “Holistic Resource Management for

Sustainable and Reliable Cloud Computing: An Innovative Solution to Global Challenge”, Journal of

Systems and Software, Elsevier, Volume 155, Pages: 104-129, 2019.

Preprint submitted to The Journal of Supercomputing

[83] Lama, Palden, Shaoqi Wang, Xiaobo Zhou, and Dazhao Cheng. "Performance isolation of data-intensive

scale-out applications in a multi-tenant cloud." In 2018 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pp. 85-94. IEEE, 2018.

[84] Zhou, Honggang, Yunchun Li, Hailong Yang, Jie Jia, and Wei Li. "BigRoots: An effective approach for

root-cause analysis of stragglers in big data system." IEEE Access 6 (2018): 41966-41977.

[85] Gill, Sukhpal Singh, and Rajkumar Buyya. "A taxonomy and future directions for sustainable cloud

computing: 360 degree view." ACM Computing Surveys (CSUR) 51, no. 5 (2018): 104.

[86] Mitsuzuka, Koya, Michihiro Koibuchi, Hideharu Amano, and Hiroki Matsutani. "Proxy responses by

FPGA-based switch for MapReduce stragglers." IEICE TRANSACTIONS on Information and Systems

101, no. 9 (2018): 2258-2268.

[87] Ouyang, Xue, Changjian Wang, and Jie Xu. "Mitigating stragglers to avoid QoS violation for time-critical

applications through dynamic server blacklisting." Future Generation Computer Systems 101 (2019):

831-842.

[88] Phan, Tien-Dat, Guillaume Pallez, Shadi Ibrahim, and Padma Raghavan. "A new framework for

evaluating straggler detection mechanisms in mapreduce." ACM Transactions on Modeling and

Performance Evaluation of Computing Systems (TOMPECS) 4, no. 3 (2019): 14.

[89] Gill, Sukhpal Singh, Shreshth Tuli, Minxian Xu, Inderpreet Singh, Karan Vijay Singh, Dominic Lindsay,

Shikhar Tuli et al. Transformative effects of IoT, Blockchain and artificial intelligence on cloud

computing: evolution, vision, trends and open challenges. Internet of Things. 2019; 8:100118.

[90] Krishna, Lolla Sai, and Lakshmi Prasad Natarajan. "Distributed Inference With Straggler Mitigation."

PhD diss., Indian institute of technology Hyderabad, 2019.

[91] Huang, Xiaohan, Chunlin Li, and Youlong Luo. "Optimized Speculative Execution Strategy for Different

Workload Levels in Heterogeneous Spark Cluster." In Proceedings of the 2019 4th International

Conference on Big Data and Computing, pp. 6-10. ACM, 2019.

[92] Panda, Biswaranjan, Deepthi Srinivasan, Huan Ke, Karan Gupta, Vinayak Khot, and Haryadi S.

Gunawi. "{IASO}: A Fail-Slow Detection and Mitigation Framework for Distributed Storage Services." In

2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19), pp. 47-62. 2019.

[93] Hamandawana, Prince, Ronnie Mativenga, Se Jin Kwon, and Tae-Sun Chung. "EPPADS: An Enhanced

Phase-Based Performance-Aware Dynamic Scheduler for High Job Execution Performance in Large Scale

Clusters." In International Conference on Database Systems for Advanced Applications, pp. 140-156.

Springer, Cham, 2019.

[94] Ren, Xiaoqi, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu. "Hopper: Decentralized

speculation-aware cluster scheduling at scale." In ACM SIGCOMM Computer Communication Review,

vol. 45, no. 4, pp. 379-392. ACM, 2015.

[95] Benavides, Zachary, Rajiv Gupta, and Xiangyu Zhang. "Parallel execution profiles." In Proceedings of the

25th ACM International Symposium on High-Performance Parallel and Distributed Computing, pp. 215-

218. ACM, 2016.

[96] Wang, Zhigang, Lixin Gao, Yu Gu, Yubin Bao, and Ge Yu. "FSP: towards flexible synchronous parallel

framework for expectation-maximization based algorithms on cloud." In Proceedings of the 2017

Symposium on Cloud Computing, pp. 1-14. ACM, 2017.

[97] Isaacs, Katherine E., Todd Gamblin, Abhinav Bhatele, Peer-Timo Bremer, Martin Schulz, and Bernd

Hamann. "Extracting logical structure and identifying stragglers in parallel execution traces." In ACM

SIGPLAN Notices, vol. 49, no. 8, pp. 397-398. ACM, 2014.

[98] Jiang, Jiawei, Bin Cui, Ce Zhang, and Lele Yu. "Heterogeneity-aware distributed parameter servers." In

Proceedings of the 2017 ACM International Conference on Management of Data, pp. 463-478. ACM, 2017.

[99] Patgiri, Ripon, and Rajdeep Das. "rTuner: A Performance Enhancement of MapReduce Job." In

Proceedings of the 10th International Conference on Computer Modeling and Simulation, pp. 176-183.

ACM, 2018.

[100] Zaharia, Matei, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.

"Discretized streams: Fault-tolerant streaming computation at scale." In Proceedings of the twenty-fourth

ACM symposium on operating systems principles, pp. 423-438. ACM, 2013.

[101] Chen, Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li. "Fast Distributed Deep Learning via

Worker-adaptive Batch Sizing." In Proceedings of the ACM Symposium on Cloud Computing, pp. 521-

521. ACM, 2018.

[102] Fuerst, Carlo, Stefan Schmid, Lalith Suresh, and Paolo Costa. "Kraken: Towards elastic performance

guarantees in multi-tenant data centers." In ACM SIGMETRICS Performance Evaluation Review, vol.

43, no. 1, pp. 433-434. ACM, 2015.

