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Abstract Big data analytics have become widespread as a means to extract
knowledge from large datasets. Such applications are often characterized by
highly heterogeneous and irregular data access patterns, challenging exist-
ing software and hardware infrastructures to meet their dynamic resource
demands. The cloud computing paradigm, in turn, offers a natural hosting
solution to such applications as it provides flexibility and elasticity, adapting
the allocated resources in response to the application’s current needs. However,
these properties impose extra challenge to the accurate performance prediction
of cloud-based applications, which is a key step to adequate capacity planning
and managing of the hosting infrastructure. In this article, we tackle this chal-
lenge by exploring three modeling approaches for predicting the performance
of big data applications running on the cloud. We evaluate two queuing-based
analytical models and a novel fast ad-hoc simulator in various scenarios based
on different applications and infrastructure setups. The considered approaches
are compared in terms of prediction accuracy and execution time. Qur results
indicate that our two best approaches can predict average application execu-
tion times with only up to a 7% relative error, on average. Moreover, both of
them run very fast (requiring at least two orders of magnitude lower execution
time than widely used tools while providing slightly better accuracy), being
practical for online prediction.

Keywords Performance Prediction - Apache Spark - Parallel Computing -
Big Data - Analytical and Simulation Models

D. Ardagna, E. Barbierato, E. Gianniti, M. Gribaudo

Dipartimento di Elettronica, Informazione e Bioingegneria,Politecnico de Milano, Italy
emaildanilo.ardagna@polimi.it, enrico.barbierato@polimi.it, eugenio.gianniti@polimi.it,
marco.gribaudo@polimi.it

T. B. M. Pinto, A. P. C. da Silva, J. M. Almeida

Departamento de Ciéncia da Computacao, Universidade Federal de Minas Gerais, Brazil
emailtuliobraga@dcc.ufmg.br, ana.coutosilva@dcc.ufmg.br, jussara@dcc.ufmg.br



2 D. Ardagna et al.

1 Introduction

Big data analytics have become widespread as a means to extract knowledge
from large datasets. Such applications have moved from experimental setups
to enterprise-wide deployments bringing innovation and competitive advantage
to many businesses [?]. Indeed, it has been reported that the big data market
increased from $3.2 billion in 2010 to almost $ 17 billion in 2015 [

Besides the high volumes of data, big data applications are often charac-
terized by increasing heterogeneity and irregularity in data access patterns.
Such properties impose challenges to the hardware and software hosting in-
frastructure. In turn, cloud computing infrastructures have become a versa-
tile computing platform as cloud resources fit the application requirements as
they are needed, leveraging the elastic nature of the cloud. Thus, big data
applications find in cloud-based infrastructures a natural hosting platform to
cost-effectively provision the resources necessary for their execution. Indeed,
in 2016 61% of applications that adopted Sparkﬂ a fast and general engine for
large-scale data processing, ran on the cloud EL

Though flexible, the shared infrastructure that powers the cloud, when
coupled with the natural irregularity of big data applications, offers extra
challenges to the performance prediction of such cloud-based big data applica-
tions. Yet, accurate performance prediction is a key step for the planning and
managing of any system, as it drives the automatic system (re-)configuration
S0 as to meet applications’ dynamic needs, avoiding Service Level Agreement
(SLA) violations.

There is a rich body of work on performance modeling techniques, vary-
ing from analytical approaches to simulation tools [?, ?, ?, ?, 7, 7, ?]. How-
ever, their efficiency in modeling massively parallel applications by introducing
thousands of parallel tasks has been shown to be an issue [?]. Thus, here we
take the challenge of predicting the performance of cloud-based big data ap-
plications by exploring three very different techniques, two analytical models
and a simulation tool, which, as will be discussed, have complementary pros
and cons in terms of prediction accuracy and time efficiency.

Our present goal is to efficiently estimate (in a few seconds), the aver-
age execution time of a target application, given the available resources, in a
way we can support run-time reconfiguration decisions. That is, given a target
application, specified by a directed acyclic graph (DAG) representing the indi-
vidual tasks and their parallelism and dependencies, the purpose is to predict
how long it will take for the application to run (on average) on a given re-
source deployment (described in terms, e.g., of numbers of cores or nodes) by
relying on hystorical data. We focus on applications running on Spark, whose
adoption has steadily increased and which probably will be the reference big
data engine for the next 5-10 years El

1 http://idcdocserv.com/1414

2 hhttp://spark.apache.org/

3 https://databricks.com/blog/2016/09/27 /spark-survey-2016-released.html
4 http://fortune.com/2015/09/25/apache-spark-survey
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Firstly, we explore a technique based on a simple upper-bound on the
average execution time for Fork-Join queuing networks, proposed by Nelson
and Tantawi [?], which depends only on the number of parallel tasks and
on the average execution time of a single task. We refer to this model as
Fork-Join model. As an alternative, we also investigate the use of a more
sophisticated analytical queuing network (QN) model, which was originally
proposed in [?] for performance prediction of parallel application. The QN
model extends an Approximated Mean Value Analysis (AMVA) technique
by modeling the precedence relationships and parallelism between individual
tasks of the same job. This model, here referred to as Task Precedence model,
explicitly captures the overlap in execution times of different tasks of the
same job to estimate the average application execution time. We do expect
that the Task Precedence model outperforms the simpler Fork-Join approach.
However, our aim in considering the latter in our evaluation is to assess the
extent to which such simpler approach is able to capture major components
of the performance of the target applications.

We also propose and evaluate dagSim, a novel ad-hoc and fast discrete
event simulator to model the execution of complex DAGs. Compared to other
formalisms (e.g., Stochastic Petri Nets) or specific tools (e.g., JMT [?] and
GreatSPN [?]), we find that the dagSim simulation process achieves similar or
better accuracy within a much shorter timescale (up to two orders of magni-
tude faster).

We evaluate the modeling approaches in seven scenarios consisting of dif-
ferent virtual machine environments and applications, as well as different re-
source configurations. Our experimental results indicate that the simple Fork-
Join model is too simplistic for the target scenarios, providing very inaccurate
results. On the other hand, we find a good overall accuracy for both the Task
Precedence model and dagSim simulator, with average relative errors, across
all considered scenarios and configurations, of only 7.38% and 5.65%, respec-
tively. Specifically dagSim performed better for interactive queries while the
Task Precedence model performed better for iterative machine learning (ML)
algorithms.

We also evaluate the two most promising prediction models regarding their
execution times. Our results indicate that, being an analytical tool, Task Prece-
dence runs faster, although both models have execution times that are suitable
for online prediction. Morever, dagSim has the extra advantage of providing
not only averages, but also percentile estimates of the application execution
times.

This work builds on our prior preliminary effort [?] by (1) considering a
third modeling approach, the simpler Fork-Join model to assess the extent to
which it still can provide cost-effective results; (2) including three new sce-
narios in our evaluation; (3) deepening the analysis of dagSim while providing
quantile results and an extended comparison against JMT.

The rest of this paper is organized as follows. presents related
work, while [Section 3|introduces our prediction models. [Section 4] describes the
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experimental scenarios we explored and discusses our main results. [Section 5
offers conclusions and possible future work.

2 Related Work

The performance analysis and prediction of big data applications running on
the cloud can be tackled from different perspectives. Indeed, a number of so-
phisticated projects focusing on the performance of Spark applications have
recently emerged. For example, PREDIct [?] includes a set of prediction tech-
niques for different areas of data analytics, while RISE2016 [?] is a collection
of scalable performance prediction techniques for big data processing in dis-
tributed multi-core systems. In [?], in turn, the authors provide hierarchical
models that leverage the multi-stage execution structure of Spark jobs. They
are able to obtain good accuracy generalizing the measurements performed on
a fraction of the real application data set. In the following, we focus on more
general solutions that exploit either (i) analytical queuing network models or
(ii) simulation approaches.

2.1 Analytical Queuing Network Models

Applications running in parallel systems have to share physical resources (pro-
cessors, memory, bus, etc.). Competition for computational resources can occur
among different applications (inter-application concurrency) or among tasks of
the same application (intra-application concurrency). Given system resource
limitations, performance analysis techniques are important for studying fun-
damental performance measures, such as mean response time, system through-
put, and resource utilization. In this context, queuing network (QN) models
have been successfully used for studying the impacts of resource contention
and queuing for service in the applications running on top of parallel sys-
tems [?, 7, 7, 7].

The parallel execution of multiple tasks within higher level jobs is usually
modeled in the QN literature with the concept of fork/join: jobs are spawned
at a fork node in multiple tasks, which are then submitted to queuing stations
modeling the available servers. After all the tasks have been served, they syn-
chronize at a join node. Unfortunately, there is no known closed-form solution
for fork-join networks with more than two queues, unless a special structure
exists [?].

The authors in [?] present a model for predicting the response time of ho-
mogeneous fork/join queuing systems. The observed system is made up of a
cluster of homogeneous index servers, each holding portions of queriable data,
and the query requests to the index servers go in an FCFS (First-Come First-
Served) scheduling queuing discipline. In order to represent system parallelism,
the index server subsystem is modeled as a fork-join network. In this model, an
incoming task is split (forked) into identical subtasks, which are then sent to
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individual servers and executed in parallel, independently from one another.
Once all subtasks have finished executing, they are joined and the task exe-
cution is completed. The average response time is determined by the slowest
server.

Following the fork-join model paradigm, the authors in [?] present an anal-
ysis of closed, balanced fork-join queuing networks, in which a fixed number of
identical jobs circulate. They introduce an inexpensive bounding technique re-
ferred to as balanced job bounds for fork-join systems (BJB-FJ), which is anal-
ogous to balanced job bounds developed for product form networks. Servers
have an FCFS queuing discipline and exponentially distributed service times.
Based on Markov models theory, the authors provide accurate approxima-
tion results for the job response time. Unfortunately these results cannot be
adopted to big data systems where jobs are not balanced and tasks execu-
tion time follows different distributions [?]. In the same direction, the authors
in [?] model a multiprocessing computer system as K homogeneous servers,
each with an infinite capacity queue. Jobs arriving at the system are split
into K independent tasks, each of which is assigned to a server. The authors
provide a computationally efficient algorithm for obtaining upper and lower
bounds on the expected response time of this system. Moreover, the algorithm
guarantees an error bound and, if one desires, tighter error bounds can be
obtained at the cost of more computation.

The work in [?] also considers the issue of estimating performance metrics
in parallel applications. The proposed method is computationally efficient and
accurate for predicting performance of a class of parallel computations, which
can be modeled as task systems with deterministic precedence relationships
represented as series-parallel DAGs. Tasks are represented as nodes and edges
mark precedence relationships between pairs of nodes. A task can be executed
once its parent tasks have finished executing. Furthermore, whenever nodes
are independent, their executions may overlap fully or partially, according to
resource availability. This overlap can be determined from the start and end
times of task executions. The amount of overlap between tasks can then be
used to reduce the initial task DAG and successively estimate task response
times, ultimately leading to an estimate of the full application response time.
While the models proposed in [?, 7, ?] assume a fork-join abstraction to repre-
sent parallel behavior, here the authors focus on the precedence relationships
resulting from tasks that must run sequentially, combined with those that
may run in parallel. An extension of this model, capturing not only intra-job,
but also inter-job execution overlap to evaluate application response times, is
presented in [?].

In our work, we apply the models proposed by the authors of [?] and [?],
given that the parameters of both models (for instance, service demands and
task structure) can be easily obtained, and results are obtained with low com-
plexity cost. More details on [?] and [?] models are presented in Sections
and
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2.2 Simulation Approaches

Several simulation tools, which are tailored to study the behavior of paral-
lel applications through stochastic formalisms such as Stochastic Petri Nets
(SPNs) [?], have been implemented. Some examples include the Stochastic
Petri Net Package (SPNP) [?] and GreatSPN [?]. In particular, GreatSPN
supports the analysis of Generalized Stochastic Petri Nets (GSPNs) including
both immediate and timed (the fire event occurs either immediately or within
a stochastic time) transitions and of Stochastic Well-Formed Nets (SWNs,
i.e., Petri nets where tokens can be distinguished) [?]. Also, SMART (Sym-
bolic Model checking Analyzer for Reliability and Timing) [?] includes both
stochastic models and logical analysis, whereas SHARPE (Symbolic Hierarchi-
cal Automated Reliability and Performance Evaluator) [?] is a tool to analyze
stochastic models, the most notable being fault trees, product form queuing
networks, Markov chains, and GSPNs. JMT [?], in turn, is a suite of applica-
tions offering a framework for performance evaluation, system modeling, and
capacity planning.

The problem of studying the performance prediction of individual jobs
is explored in [?] through a framework consisting of a Hadoop job analyzer,
while the prediction component exploits locally weighted regression methods.
A similar issue is studied in [?] by using instead a hierarchical model including
a precedence graph model and a queuing network model to simulate the intra-
job synchronization constraints. In [?], the authors consider the problem of
minimizing the cost involved in the search of the optimal resource provisioning,
proposing a cost function that takes into account the time cost, the amount
of input data, the available system resources (Map and Reduce slots), and the
complexity of the Reduce function for the target MapReduce job. The usage
of a simulator to better understand the performance of MapReduce setups is
described in [?] with particular attention to the effect of several component
inter-connect topologies, data locality, and software and hardware failures.

Our previous work [?] describes multiple queuing network models (simu-
lated with JMT) and stochastic well formed nets (simulated with GreatSPN)
to model MapReduce applications, highlighting the trade-offs and additional
complexity required to capture system behavior and improve prediction accu-
racy. Simulation times demonstrated to be prohibitive (from several minutes
to hours for the more general cases). As a result, general purpose simulators
such as GreatSPN and JMT are not suitable to efficiently study massively par-
allel applications introducing tens (or even hundreds) of stages and thousands
of parallel tasks for each stage.

Finally, parallel and distributed processing have been investigated also by
means of Process Algebra (PA) [?]. A PA is a mathematical framework describ-
ing how a system evolves by using algebraic components and providing a set
of methods for their manipulation. Among the different implementations, Per-
formance Evaluation Process Algebra (PEPA) [?] is a formal language for dis-
tributed systems, whose models correspond to continuous time Markov chains
(CTMC).
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We here propose a novel and fast discrete event simulation tool, called
dagSim, which was built to analyze DAG-based applications. Compared to
previous simulation approaches, our tool achieves greater prediction accuracy
within shorter timescales. Indeed, results comparing dagSim against JMT are

shown in [Section 4.2

3 Performance Prediction Models

This section presents the three modeling approaches analyzed in this paper to
predict the performance of cloud-based big data applications, namely Fork-
Join, Task Precedence, and dagSim. Since our focus is on applications running
on Spark, we start by first presenting some key components of this frame-
work in highlighting assumptions behind its parallel execution
model that influence performance modeling. The two analytical queuing net-
work models and the proposed dagSim simulator are then described in Sec-
tions [3:2] and [3-3] respectively. Finally, overviews the architecture
of the performance tools we developed to automate the performance analysis
of Spark applications from low level logs.

3.1 Spark Overview and Model Assumptions

Spark is a fault-tolerant cluster computing framework that provides a set of
abstractions for parallel computation across distributed nodes with multiple
cores. It is a fast and general purpose engine for large-scale data processing
and it was first proposed as an alternative to Hadoop MapReduce [?]. Spark
is the state-of-art for fault-tolerant parallel processing and it recently became
popular for big data processing on the cloud [?].

The general unit of computation in Spark is an application. It may be
composed of a single job, multiple jobs, or continuous processing. Jobs are
sequentially executed by default. A job, in turn, is composed of a set of data
transformations and terminates with an action requesting a value from the
transformed data. Each transformation represents a specific piece of code that
launches data-parallel tasks on read-only data divided into blocks of almost
equal size, called partitions. This set of same class tasks is called stage. Within
a stage, a single task is launched for each data partition, thus the number of
tasks inside the stage is equal to the number of partitions. During the stage
run time, each core (also called CPU slot) can run only a single task at a time.
Since cores are a limited resource, the tasks are assigned to CPU slots until all
resources become busy. Thus, the remaining tasks are enqueued and scheduled
to be executed as soon as the cores become available.

The Spark execution model is represented by a DAG. Considering a logi-
cal plan of transformations that is fired by an action, the Spark DAGSched-
uler constructs a DAG of stages and their precedence relations. The stages
are submitted for execution as a set of tasks that follows FCFS policy. The
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TaskScheduler does not know the dependencies between stages. Each stage is a
fully-independent sequence of tasks that can run right away based on the data
already on the cluster [?]. Thus, only stages have precedence relationships and
these are represented by the DAG.

Our present goal is to apply a set of performance prediction techniques
to estimate the execution time of Spark applications and evaluate their ef-
fectiveness. The issue of performance prediction in parallel systems has been
approached in several ways, with varying degrees of detail, cost, and accuracy.
Focusing on such data-parallel frameworks based on a DAG execution model,
one of the main concerns is to model the synchronization step that happens
when a stage terminates. That is, models to predict application performance
must take into account how the executions of stages overlap among themselves.

In this work, we made the following assumptions for all the three (analyt-
ical and simulation) performance models: i) the concurrent system is modeled
as a closed queuing model, with a single application that splits into one or
more Spark jobs, ii) jobs are sequentially scheduled and consist of one or more
stages, iii) multiple stages may run in parallel or may have some precedence
relationships, iv) a stage is composed of tasks of the same class with no prece-
dence relationship among themselves (i.e., they may run in parallel), v) an
individual application obtains dedicated resources for its execution (i.e., VMs
that are executed on a cloud cluster), vi) resources (such as memory, CPU,
disk) are homogeneous (as frequently happens in cloud deployments, see, e.g.,
7).

Moreover, the two queuing network models are based also on the assump-
tion that the times required to process each block of computation are expo-
nentially distributed [?, ?]. For the Fork-Join model, the application execution
is modeled as a sequence of one or more fork-joins, as will be described below,
and a block of computation is a node in each fork-join. For the Task Precedence
model, each block of computation is a Spark stage. Clearly, in both cases, this
assumption may not hold in practice, possibly depending on characteristics
of the application. In other words, it is a potential source of approximation
error of the models. Assessing the extent to which such approximation errors
become prohibitively large is part of our goal.

3.2 Analytical Queuing Network Models

This section describes the two analytical queuing network models explored in
this paper. We first present the Fork-Join model, which relies on a known ap-
proximation of response time for parallel applications and then briefly describe
the Task Precedence model, which takes as input a DAG representation of the
parallel application.
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3.2.1 Fork-Join Model

This model [?] provides a very simple upper bound on the average execution
time for queuing networks with fork-join synchronization. In general, the main
idea is as follows: the cluster architecture is represented as a two-level graph in
which the leaves represent the execution nodes, modeled as Spark worker cores,
and the root represents the unit that controls the execution flow, modeled as
the Spark master node. Stages are forked into same class tasks and scheduled
to execute in parallel across the available cores. After execution at all worker
cores, the results from each unit are joined.

Specifically, the application execution is broken into sequential phases, each
one represented by a fork-join structure. Each such structure captures the
execution of a single Spark stage or multiple stages that run concurrently
(or partially concurrently and partially sequentially). Thus, this is a coarser
representation of the application DAG where multiple nodes may be merged
into a single one. We use the model to estimate the execution time of each fork-
join structure separately, as described below, and predict the total application
execution time as the sum of the execution times of all fork-joins.

For each fork-join structure, the model expects as input the number of exe-
cution nodes, i.e., the total number of cores available across the worker nodes,
and the average execution time of that block of computation at an individual
core. The execution time at a single core can be estimated based on histori-
cal data (i.e., logs of previous executions of the same Spark application). The
output consists of two values, namely a lower and an upper bound. The lower
bound is the execution time at a single core, here referred to as Reore, and re-
flects the execution time when there are no synchronization delays caused by
discrepancies across individual cores. In the present case, this lower bound is
not of interest, for prediction purposes, as it is one of the model inputs. How-
ever, Reore could be estimated based on some finer-grained modeling strategy
(e.g., Mean Value Analysis). The upper bound, on the other hand, is our main
interest: it provides an approximation that aims to capture the effects of a
slower core, which would cause delays and affect the overall execution times.

According to Nelson and Tantawi [?], an upper bound for the execution
time of a fork-join structure running on K cores is given by the product of the
average execution time at a single core (Rcore) and the Hy harmonic number
(more details in [?]). Thus, the bounds for the execution time (R) are:

Rcore S R S HKRcorea

with Hx =1+1/24+1/3+---+1/K.

We note that the sequence of fork-join structures used by this model may
be a very coarse approximation for the execution of Spark applications. In
particular, it does not explicitly capture all precedence relationships among
Spark stages. Rather it assumes some of those relationships, particularly those
among stages merged into a single fork-join, are indirectly captured in the
input (Reore)- In other words, by looking at historical data, we compute the



10 D. Ardagna et al.

average total execution time at each individual core, considering all stages and
individual tasks of the given block of computation. By doing so, we capture the
precedence of individual tasks/stages in a single core. The model, in turn, aims
at capturing all synchronization delays across different cores via the inflation
factor Hy. Though a coarse approximation, the simplicity of this approach
motivated us to assess to which extent it can provide reasonably accurate
(from a practical perspective) performance predictions for Spark applications.

3.2.2 Task Precedence Model

In this prediction method, the performance of a parallel application is modeled
by explicitly capturing the precedence relationships between different blocks
of computation. We start by presenting the main ideas behind the model, as
proposed in [?]. We refer to the original paper for a detailed derivation of the
model. We then discuss how we applied this model to Spark applications at
the end of the section.

In the original paper [?], each block of computation was called a task,
and the goal was to estimate the average execution time of an application
composed of multiple parallel/sequential tasks. The precedence relationships
between different tasks are expressed as a series-parallel DAG, where each
node is a task. Available resources (e.g., cores) are modeled as service centers
in a queuing network model. By exploiting both the queuing network and the
DAG, the authors modified a traditional iterative MVA approach to account
for delays caused by synchronization and resource constraints originated from
task precedence and parallelism.

The solution uses a traditional MVA model to estimate the average execu-
tion time of each task. In order to explicitly capture the synchronization delays
between parallel tasks, the model estimates an overlap probability between
each pair of tasks based on the input task precedence DAG. This probability
captures the chance that the executions of the two tasks overlap in time, and
is used as an inflation factor to estimate a new set of task average execution
times, according to the MVA equations. The model will continue to iterate
over these values until they converge below a given error threshold. As a final
step of each iteration, the precedence graph is reduced to determine the aver-
age execution time of the whole application. For example, execution times of
sequential tasks will be added; execution times of parallel applications will be
aggregated according to a probabilistic approach that takes into account the
overlap probabilities between them.

Since jobs in Spark are sequentially executed by default, we here apply the
model by considering each node in the input DAG as a stage of the Spark
application, thus explicitly capturing the dependencies among stages (unlike
the Fork-Join model) that exist in Spark applications. Each stage is fully
described by its average execution time which is estimated based on historic

5 As mentioned, the model assumes that the execution times of the nodes in the input
DAG, i.e., the stages of the Spark application, are exponentially distributed.



Predicting the Performance of Big Data Applications on the Cloud 11

1 I

1 1

ye 1 - PR |

I\’f DAG \) : Parsing and Validation :)/;)RLS[_I:Q :
\ /

e : :

: Start :

1 simulation Format |

: results !

1 Schedule events :

: SCHEDULER SIMULATOR :

: LIBRARY ENGINE 1

1

1 1

1 I

Compute indices
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data (Spark logs of previous executions of the same application). Thus, the
model takes as input the application’s DAG and the average execution time of
each individual stage and outputs the average execution time of each job. To
estimate the average execution time of the application, the execution times of
all jobs are simply added together.

3.3 The discrete event simulator

dagSim (see|Figure 1f) is a high speed discrete event simulator built to analyze

DAG-based jobs)’| and it consists of three main components: i) a parser, ii) a
sitmulation component, and iii) an output module.

Models are described with a data driven approach defining the DAG stages
and the workload they have to handle. Specifically, a DAG model is defined
as a tuple:

DAG = (Sa NCoresaNUserS7Z) (1)

Where Ncores € N, Noores > 1 represents the number of computational cores
and Nusers € N, Nygers > 1 the number of users concurrently submitting Spark
applications to the system, and Z is the think time distribution: the time a
user will wait before submitting a new application. S = {s1,..., SNgpe | 18
the set of stages that define the DAG. Furthermore, each stage s; € S is a
tuple:

s; = (id, Nrask, Pre, Post,T) (2)

where id is a symbolic constant assigning a name to the stage, Nrasx €
N, N1ask > 1 accounts for the tasks composing the stage, Pre € S and
Post € S define respectively the stages that must have been completed for
s; to be executable, and the set of stages that will be able to run after the
completion of s;. The probability distribution 7 defines the duration of each
task of the stage.

6 The tool is available at https://github.com/eubr-bigsea/dagSim
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Figure 2 An example of a Spark DAG

For example, the DAG presented in describes a Spark application
composed of five stages, sp—s4. All tasks are characterized by an exponentially
distributed random duration, whose rate depends on the stage. so and s; can
start immediately, while so requires the completion of s; to start. Stage s3 can
be executed only after sy and sy completed, and s, must be performed after
s3. In this case we have the stages defined by S = {sg, s1, 2, 83, 84} with:

50, 100,0, {s3}, EX P<o.005>)
51,100,0, {s2}, EX P<g.01>)
52,200, {s1},{s3}, EX P<o.02>)
s3, 100, {s0, 82}, {84}, EX P<o.05>)
sS4 = (s4,10,{s3},0, EX P 002>)

S0
S1
52
S3

(
(
(
(
(

If we consider that the application is executed by Nygers = 10, each one char-
acterized by an exponentially distributed think time with an average of 1000 s,
on a cluster composed by Ncores = 64 cores, we then have:

DAG = ({80181782783784}3647 107EXP<0.001>) (3)

As a file interchange format to encode the previously formalized models
(for example [Equation 3], Lua, a multi-purpose procedural programming lan-
guage ﬂ was selected. There are several advantages in using Lua with respect
to other alternatives. First, it has a very compact syntax for defining com-
plexly structured constants, which allows initializing complex objects with a
short textual overhead. Other languages, such as XML, require a complex
markup structure, which in the end makes input files very long and difficult to

7 https://www.lua.org/home.html
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generate. In our approach, an input model is an instantiation of a set of pre-
defined global variables: thanks to the names used to identify such variables,
files are easily readable by a human, and simple to automatically generate by
a software component. Next, even if only the instances of the global variables
are used, model files are effectively Lua programs. This means that they can
exploit a full set of instructions and commands to algorithmically compose a
model by loading pieces from external datasets, computing rates with alge-
braic expressions (e.g., 1/10000 instead of 0.0001), and use loop constructs to
repeat the same assignment several times.

For example, the DAG shown in and described in is

encoded with the following Lua code:

Stages = {
{ name = "S0", tasks = 100, pre = {}, post = {"S3"},
distr = {type = "exp", params = {rate = 1/200.0}} },
{ name = "S1", tasks = 100, pre = {}, post = {"S2"},
distr = {type = "exp", params = {rate = 1/100.0}} },
{ name = "S2", tasks = 200, pre = {"S1"},
post = {"S3"},
distr = {type = "exp", params = {rate = 1/50.0}} },
{ name = "83", tasks = 100, pre = {"S0","S2"},
post = {"S4"},
distr = {type = "exp", params = {rate = 1/20.0}} },
{ name = "S4", tasks = 10, pre = {"S3"}, post = {},
distr = {type = "exp", params = {rate = 1/500.0}} }

}
Cores = 64;
Users = 10;

UThinkTimeDistr = {type = "exp",
params = {rate = 1/1000.0}};

The performance indices computed during the simulation are fed back into
Lua variables. The simulator then executes some predefined Lua code that
outputs the results stored in such variables. Currently, performance indices
are displayed as plain text. However, the ability of the user to replace the
legacy Lua output code with custom procedures allows to easily integrate
the tool within larger frameworks. Further enhancements may include library
procedures to support different formats, such as CSV, XML, or HTML.

The simulation engine has been written in the C language. It is based on a
classic discrete event simulation algorithm and has been designed for high per-
formance. Though dagSim is a lightweight tool compared to other commercial
programs, it targets specifically DAG models. Simulation can run efficiently
thanks to a proprietary scheduler library we developed offering data structures
that perform well when a high volume of events is generated. The tool is highly
portable, since it can be easily recompiled without the requirement of external
tools or libraries not supplied with the source code.

In the following, we will use the following notations and definition to de-
scribe the simulation procedure:

— Each stage s; consists of one or more tasks {t1,t2,...,tm};
— Each task corresponds to an event and is characterized by a timestamp,
denoting a start time;
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Figure 3 Stage finite state machine

— Given a stage s;, Pre; denotes the set of stages that need to be finished
for s; to start.

— According to the finite state machine depicted in a stage s; of a
Spark application can be in one of the following four states ST'(s;):

— CAN_START: Pre; = 0 or Pre; # () and all stages belonging to Pre;
are in state ENDED (Vs; € Pre; : ST(s;) = ENDED).

— WAITING: Pre; # (), but some of the stages belonging to Pre; are in
state WAITING or RUNNING (3s; € Pre; : ST(s;) = WAITING Vv
ST(s;) = RUNNING)

— RUNNING: tasks belonging to stage s; are in execution;

— ENDED: all the tasks in stage s; have been completed.

Initially, only the stages s; that have no dependencies (i.e., such that
Pre; = () are in the CAN__START state, and all the other are in the WAIT-
ING state. Each stage in the RUNNING state exploits a variable to count the
number of tasks that still need to be completed. The core idea of the simu-
lation engine is that each time a stage t; € s; has been executed, a counter
is decremented of one unit. When the counter reaches zero, the engine deter-
mines that a stage is completed and selects which ones are now eligible to
start, changing their state from WAITING to CAN__ START.

By using a doubly-linked list that stores the relevant information about the
jobs whose stages are in the CAN__START state, it is possible to determine
which one can be executed without performing a full search on the set. In
this sense, the approach provided by dagSim’s engine is original and more
efficient with respect to other scheduling mechanisms implemented in JMT [?]
or GreatSPN [?].

Algorithm summarizes the procedure to simulate the execution of one
application according to the given DAG and presents the relevant
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Table 1 Notable data structures

Data structure Relevant parameters
Model Definition of the DAG.
CalendarEvent Data structure to contain

the events of the simulation.

Users Structure to contain performance
indices for the users.

UserAppData (UAD) - User identifier
- Application identifier
- Start and End time
- Stages that still needs to be started
- Applications that still needs to be completed
- State of the stages
- Start / End time for the stage
- Lists of applications that can be started

CoreData - Number of free cores
- User locker
- Applications that still needs to be executed

App Linked list of AppData

AppData - User identifier
- Application identifier
- Stage identifier
- Task identifier

sList - The description of an Event

sAuxlists Auxiliary List to store Events that
are in the waiting state

data structures. The procedure receives as parameters the model definition
Model M, the data structures to collect the performance indices relevant to
the considered users Users U, and a data structure to contain the event list
Calendar Event ce. Initially (lines 2-5), for each of the Nygers users accessing
the system, a doubly-linked list called UAD is populated with a set of infor-
mation, notably i) the number of stages ready to be started, ii) the remaining
tasks that need to be completed for each stage, iii) the state of each stage, iv)
the start and end time of each stage, and v) a pointer to a list of applications
ready to start. The data structure modeling the execution cores is initialized
at line 6: it is mainly used to determine whether a cores is free or working
on a task. To simplify the presentation, the details on the implementation of
these steps are not discussed: summarizes the functions that perform
secondary duties to support the simulation, together with a brief description
of their goals.

The algorithm continues by scheduling the time at which each user sub-
mits her first application (lines 7-9) by adding a new event whose timestamp
corresponds to the think time Z. Events are collected in a CalendarEvent data
structure using the AddFvent function, while ThinkTime returns an instance
of distribution Z. The data structure characterizing an application contains a
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doubly-linked list AppData, populated by i) a user identifier, ii) an application
and a stage status, and a iii) task identifier.

The most important part of the algorithm consists of the cycle repeating
the simulation for all the considered applications (lines 11-37). At line 12, the
next simulation event is extracted (pop operation) from the CalendarEvent
structure. Depending on the type of the event, the simulator performs different
steps. If the event represents a user requesting the launch of a new application
(line 14), the function initUserAppData is invoked (line 15) to initialize all
the application’s stages to CAN_START or WAITING state depending on
whether the stage has dependencies or not.

The simulator assumes that each application locks the cores until they
are no longer needed since the number of remaining tasks is less than the
acquired resources. This is implemented by exploiting a lock that is set when
a new application starts and reset when all its stages have been started. If
there are available computational cores and no lock has been set (line 16),
the scheduleReadyTasksOnAvailNodes function is invoked (line 17) to i) set a
lock if a new application is started and ii) schedule the waiting applications
on available cores. If instead the application cannot be started, it is inserted
into the auxiliary list (line 19) WAITLIST.

If the event identifies the end of a task (line 21), the corresponding counter
of the remaining tasks in the stage is decremented by one unit (line 22).

The stage is considered to be over if there are no tasks left (line 23): in this
case function releaseCore is invoked (line 24) in order to free the computational
resources; this also removes the lock on the cores if the following conditions
are met: i) no more tasks need to be executed, ii) no other user has locked
the core, and iii) there are no other stages to start. The stage state is updated
to ENDED (line 25) and the updateStageStatus function is invoked to see if
the completion of this stage allows other stages to change their status from
WAITING to CAN__START (line 26). If another stage can start (line 27), the
new tasks are scheduled (line 28); otherwise the application is considered to be
completed. The application ending time (line 30) is set at the current time and
the next application from the same user is submitted after another think time
(lines 31-32). To allow the simulation to stop when the total number of con-
sidered applications has been executed, the number of completed applications
is increased (line 33).

3.4 Tools Architecture

To better support the performance evaluation of Spark applications, the input
file for both dagSim and the modules that perform analytical approximations
can be automatically generated starting from the logs of earlier runs. In par-
ticular, a Spark log analyzer has been created to allow the workflow shown
in Starting from the experimental data collected after the execu-
tion of the considered Spark applications, the tool extracts their stage and
task structure. It also determines the running time distribution of the tasks
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Table 2 Notable functions

Function Description

createUserAppData  create and populate a UsrAppData structure

initCoreData Populates a CoreData structure
AddEvent Adds a new event to Calendar Event data structure
ThinkTime Returns an instance of the Think Time Distribution Z
populateAppData Initializes an AppData structure
maxApps Returns the maximum applications number as per the
Lua input file
pop Performs a pop operation on a CalendarEvent data structure.
The output is an Event (sList data structure)
initUserAppData Populates AppData structure for a specific user
createReadyList Populates ReadyList structure including the applications
to be executed and update the application status
scheduleReadyTasks-
OnAvailableCores Schedules waiting applications on available cores
releaseCore Free core’s resources
updateStageStatus If new stages can start, changes their state
newStageCanStart Checks if new stages can start
setAppEndTime Defines the application completion time
addToAux Adds an Event to an Auxiliary data structure
isEmpty Returns true of false depending on the list
passed as argument is empty or not
getLock Returns true or false depending on the application
passed as argument has been locked by a user or not
setLock Locks an application

for each stage, and the other important parameters to automatically analyze
them in dagSim and in the analytical approximation tools. It then generates
the Lua file for dagSim and a model parameter file for the analytical models.
These files can later be exploited as a starting point to perform performance
studies of the considered applications: this workflow results particularly useful
since, in some cases, Spark applications can be composed of hundreds of stages,
which would be otherwise impossible to be manually described. A noteworthy
aspect is that the log parser can define models that either replay each task’s
duration exactly in the order observed on the real system, or that empirically
fit the service time distribution by merging a number of distinct execution
logs.

4 Experimental Results

In this section, we present the results of a set of experiments we performed to
explore and validate both Fork-Join and Task Precedence analytical models
as well as the dagSim simulator. Our experimental setup covers seven different
scenarios defined based on different classes of applications and different vir-
tual machine environments, though all of them were executed on the Microsoft
Azure cloud platform. In the following, we first introduce the considered sce-
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Algorithm 3.1 Simulation engine algorithm

1: function pacSiM(Model M, Users U, CalendarEvent ce)
2: UserAppData **UAD;

3 for i € Users do

4: UADJi] = createUserAppData(M);

5: end for
6.
7
8

CoreData *CD = initCoreData(M);
for i € Users do
: nEv = AddEvent(ce, ThinkTime(M));
9: end for
10: int TotalAppEnded = 0;
11: while TotalAppEnded < maxApps(M) do

12: event = pop(CE);

13: App *ad = event->data;

14: if isNewAppStarting(event) then

15: initUserAppData(ad->userld, M);

16: if (CD->freeCores > 0) AND (!lock(CD)) then
17: scheduleReadyTasksOnAvailCores(ce, CD);
18: else

19: addToAux(event, WAITLIST);

20: end if

21: else

22: remaining TasksX Stage[ad->stageld]—;

23: if remainingTasksXStage[ad->stageld] < 0 then
24: releaseCore(currTime, ce, CD, UAD);

25: setstatus(sy, ENDED);

26: updateStageStatus(UAD, M)

27: if newStageCanStart(UAD, M) then;

28: scheduleReadyTasksOnAvailCores(ce, CD);
29: else

30: setJobEndTime(currTime);

31: nEv = addEvent(ce, T);

32: nEv->data = populateAppData();

33: TotalAppEnded++;

34: end if

35: end if

36: end if

37: end while
38: end function

¢ Sparklog files

‘ Log analyzer

model file

Analytical

models

Figure 4 Integration workflow
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Table 3 Experimental Deployment Configurations

VM # cor Executor Executor Driver VM VM

€O Cores  RAM  RAM RAM  Persistent disk
D12v2 4 2 2GB 4GB 28GB 200GB local SSD
A3 4 2 2GB 4GB 7GB 250GB local HDD
D4v2 8 4 10GB 8GB 28GB 400GB local SDD

narios and evaluation metrics, then discuss the results obtained on each of
them.

4.1 Scenarios and Metrics

The experimental scenarios cover applications very widely used on Spark [?].
Specifically, we consider two SQL query workloads obtained from the TPC-
DS industry benchmarkﬂ query execution plan, namely SQL queries 26 and
52 (Q26 and Q52, for short), as well as three reference machine learning (ML)
benchmarks, namely K-means, Logistic Regression, and Support Vector Ma-
chine (SVM) [?]. The latter are iterative workloads that represent key steps
in many ML applications and are becoming very popular in the Spark com-
munity [?]. The Q26 and Q52 workloads are examples of interactive queries
that are often used as benchmarks for Spark platforms. Indeed nowadays big
data applications are moving from the early days’ batch processing to more
interactive workloads.

We conduct our experiments on three types of virtual machine environ-
ments on the Microsoft Azure HDInsight PaaS [?], namely D12v2, A3 and
D4v2, all of them running Spark. The goal is to explore different deployments
of what the provider has to offer, including general purpose, CPU, and mem-
ory optimized instances. Considering that fault-tolerant parallel systems such
as Spark are built to run on commodity clusters, it is important to guarantee
the stability of the methods across different resource configurations.

Two different Spark versions have also been considered. The Spark 1.6.2
release and Ubuntu 14.04 were considered for the A3 and D12v2 VMSs, while the
D4v2 VMs feature Ubuntu 16.04 and Spark 2.1.0. All the scenarios have two
dedicated master nodes over D12v2 VMs. details the configurations,
presenting for each type of VM the number of cores available per VM, number
of cores and amount of RAM available for each workers’ executor, amount of
RAM for the master nodes’ driver, as well as total RAM and persistent disk
storage per VM.

For the A3 VMs, the workers’ configuration varied from 6 up to 48 cores,
while in the case of D12v2 VMs the number of cores varied between 12 and 52.
The D4v2 deployments consisted of 24 and 48 cores, on three and six nodes
respectively.

8 http://www.tpc.org/tpcds/
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Table 4 Scenarios Description

# Application VM Configuration (nodes; cores; data)

1 TPC-DS Q26 D12v2 3-13; 4 cores per node; 500 GB

2 TPC-DS Q52 D12v2 3-13; 4 cores per node; 500 GB

3 TPC-DS Q26 A3 3-13; up to 4 cores per node; 500 GB

4 TPC-DS Q52 A3 3—-13; up to 4 cores per node; 500 GB

5 K-Means D4v2 3 and 6; 8 per node; 8 GB, 48 GB, 96 GB
6 Log. Regression D4v2 3 and 6; 8 per node; 8 GB, 48 GB, 96 GB
7 SVM D4v2 3 and 6; 8 per node; 8 GB, 48 GB, 96 GB

describes the set of scenarios we analyze. Each TPC-DS query and
machine learning benchmark was run 10 times for each considered configura-
tion.

We evaluate all three prediction methods in terms of prediction accuracy
and average execution time. The accuracy of each performance prediction
model is estimated in each scenario by the relative error ¢,, computed us-
ing the average real execution time measured on the system T}c, and the time
predicted by the model T}, edict for the considered application. That is:

Treal - Tpredict
& = ——————. 4
Treal ( )

Note that a negative e, indicates that the model overestimates the appli-
cation execution time, whereas a positive value implies the execution time was
underestimated.

The execution times of all three models were measured on an Ubuntu 16.04
VirtualBox VM with 8 cores running on an Intel Nehalem dual socket quad-
core system with 32 GB of RAM. The virtual machine has 8 dedicated physical
cores with guaranteed performance and 4 GB of reserved memory. Unless oth-
erwise noted, we report average execution times of 10 runs.

Before presenting the results for each scenario, we first compare the execu-
tion time of our novel dagSim simulator against that of the JMT [?], a widely
used simulation tool.

4.2 dagSim versus JMT

In this section, we compare the average execution time of dagSim with that
of the event based QN simulator available within the JMT 1.0.2 tool suite.
JMT is very popular among researchers and practitioners and since 2006 has
been downloaded more than 58,000 times. The comparison focuses on the
average execution time at a 95% confidence level. The accuracy of JMT was
analyzed and reported in our previous work [?], where we obtained an average
percentage error of up to 33% while the mean of its absolute value was around
14.13%. The ratios between the average simulation times of JMT and dagSim
for Scenarios 1 to 4 are reported in dagSim is clearly much faster
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Figure 5 Ratio of JMT and dagSim execution times

than JMT (about 60 times on average across all runs and up to 115 times in
the very worst case for the Q52 DAG in Scenario 2). We limit the comparison
to TPC-DS queries, since ML workloads include a very large number of stages
(more than 200 for SVM) and such large models cannot be built easily through
JMT GUI. Moreover, as will be discussed extensively in the following sections,
dagSim provides results that are slightly more accurate than JMT (as reported
in [?]).

We present the results for each scenario, grouped by VM environment, in
the following three sections.

4.3 Results on the D12v2 VMs (Scenarios 1 & 2)

This section presents results on the prediction accuracy of the Fork-Join [?]
and Task Precedence [?] analytical models as well as the dagSim simulator over
Spark 1.6.1 experiments executed on Azure HDInsight D12v12 VMs. Real and
predicted application execution times for each scenario and various configura-
tions (i.e., numbers of nodes and cores) are shown in In this table, as
in the following ones, relative errors of each model in each scenario/configura-
tion are shown in parentheses, and maximum and minimum errors are shown
in bold and shaded, respectively.

Considering scenario 1, the upper bound provided by the Fork-Join model
has a relative error ¢, ranging from —256.18% to —162.27%. The maximum
error was obtained for the largest configuration. We attribute these very large
errors to the model’s overestimation of delays caused by synchronization in our
setup: as a single fork-join block of computation may be broken into successive
steps, due to its resource demands and server capacity, extra synchronization
overheads are introduced to the system and add to the overall response time of
a single block. These response times are then overinflated by the model’s use



22 D. Ardagna et al.

Table 5 Scenarios 1 & 2: Real and predicted execution times (seconds) for Q26 and Q52
on D12v2 VMs. Results in bold for the maximum error and shaded cells for the minimum
error.

Nodes Real Fork-Join Task Prec. DagSim
(cores) (error %) (error %) (error %)

Scenario 1: TPC-DS Q26

3(12) 722.2 1945.3 (-169.4) 690.2 (4.4) 682.3 (5.5)
4(16) 582.9 1573.8 (-170.0) 543.9 (6.7) 526.5 (9.7)
5(20) 515.9 1408.9 (-173.1) 469.0 (9.1)  455.3 (11.8)
6(24) 447.6 1266.4 (-182.9) 398.3 (11.0) 394.3 (11.9)
7(28) 415.7 1138.7 (-173.9) 367.2 (11.7) 348.4 (16.2)
8(32) 366.1 1037.4 (-183.4) 316.5 (13.5) 312.4 (14.7)
9(36) 306.1 953.8 (-211.6) 256.1 (16.3)  290.3 (5.2)
10(40) 287.5 903.9 (-214.4) 236.8 (17.6)  270.3 (6.0)
11(44) 259.7 855.1 (-229.3) 209.6 (19.3)  250.6 (3.5)
12(48) 248.6 865.7 (-248.2) 197.2 (20.7) 249.0 (-0.1)
13(52) 220.2 784.5 (-256.3) 181.4 (17.6) 221.0 (-0.4)
Scenario 2: TPC-DS Q52
3(12) 719.9 2041.5 (-183.6) 660.8 (8.2) 716.0 (0.6)
4(16) 562.7 1763.2 (-213.3) 517.3 (8.1)  559.6 (0.6)
5(20) 471.8 1454.2 (-208.2) 412.7 (12.5)  468.3 (0.8)
6(24) 417.7 1335.4 (-219.7) 358.3 (14.2)  415.3 (0.6)
7(28) 364.1 1172.8 (-222.1) 304.7 (16.3) 360.7 (0.9)
8(32) 324.7 1068.4 (-229) 265.0 (18.4)  322.3 (0.7)
9(36) 306.8 1004.2 (-227.3) 247.0 (19.5) 304.2 (0.9)
10(40) 275.2 920.0 (-234.3) 215.2 (21.8)  273.1 (0.8)
11(44) 258.8 884.2 (-241.7) 200.2 (22.7)  257.0 (0.7)
12(48) 250.0 857.7 (-243.1) 190.7 (23.7) 248.3 (0.7)
13(52) 226.1 805.6 (-256.3) 179.3 (20.7)  224.2 (0.8)

of a constant to approximate server synchronization delays, which is applied
to response times that already include delays caused by stage synchronization.

Both the Task Precedence model and dagSim simulator showed much bet-
ter estimates, with errors ranging from 4.4% to 20.7% and from —0.1% to
16.2%, respectively. These models consider the parallel execution DAG to bet-
ter capture the dependencies and interactions among stages, resulting in more
accurate estimates of synchronization delays. For scenario 2, we found similar
results when comparing the three models, as shown in

Overall, taking absolute values, on average the errors were 201.14% for
the Fork-Join model, 13.45% for the Task Precedence model, and 7.73% for
dagSim in scenario 1. For scenario 2, the Fork-Join model obtained 225.33%,
the Task Precedence model obtained 16.92%, and dagSim obtained 0.74%.

As described in the Fork-Join model is a very simple approach,
which depends only on the number of cores and on the average execution
time of a single core for performance prediction. Unfortunately, as our results
attest, its simplicity is not suitable for predicting performance, with reasonable
accuracy, in the scenarios we are interested in. Similarly large errors were
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Table 6 Real and predicted execution time quartiles, Q52, 500 GB

Cores Quartile dagSim [s] Real [s] Error [%)]

12 Q1 634.067  632.305 -0.28
12 Q2 635.270  638.675 0.53
12 Q3 636.564  644.211 1.19
24 Q1 311.366  313.597 0.71
24 Q2 312.357  315.881 1.12
24 Q3 313.600 317.913 1.36
36 Q1 224.383  225.795 0.63
36 Q3 226.557  230.555 1.73
48 Q1 165.070  165.319 0.15
48 Q2 166.061  166.590 0.32
48 Q3 167.221  168.646 0.84
52 Q1 149.080 150.416 0.89
52 Q2 149.980 151.188 0.80
52 Q3 150.941  152.074 0.75

observed for all the other analyzed scenarios as well. The Task Precedence
and dagSim models, on the contrary, provide very good estimates, given the
complexity of the environment and workloads, especially for practical purposes
of planning and managing the resource requirements. The somewhat larger
errors of the analytical Task Precedence model are probably due to several
sources of approximations embedded in the model (see and [?]).

Therefore, for the following scenarios we report results only for the Task
Precedence model and the dagSim simulator approaches. As these models
explicitly capture the precedence relationships between stages, they may be
able to better estimate the synchronization delays and provide more accurate
predictions.

One advantage of dagSim over the analytical models (Task Precedence, in
particular) is that it can provide estimates of not only average execution time,
but also execution time percentiles, which can be quite useful for planning and
managing resources based on probabilistic SLAs (e.g., the probability that the
execution time exceeds a threshold 7 is at most «). reports, as an ex-
ample, the quartiles of the execution times of Q52 on the 500 GB dataset, with
D14v2 deployments. The table displays both the simulated quartiles and the
ones derived from 50 sample runs on the real system. The estimated quartiles
are quite accurate, with a worst case relative error of 1.73% and an average of
0.82%.

4.4 Results on the A3 VMs (Scenarios 3 & 4)

Scenarios 3 and 4 consider the same cluster sizes, dataset sizes and query
workloads as scenarios 1 and 2. Yet, they differ from the latter on the VM type
and on how the experiments were planned. The number of executors cores per
nodes varied, A3 VMs have also less available RAM memory than the D12v2
ones. Thus the experiments in scenarios 3 and 4 simulate an environment with
memory pressure. Across different runs with the same configuration a varying
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number of executors were allocated. This was due to memory contention among
the executors and the underlying operating system processes and the behavior
was not deterministic.

[Table 1 shows the results for both scenarios 3 and 4. Errors were com-
puted a posteriori by considering the actual number of cores used during the
execution. Regarding scenario 3, the prediction error of Task Precedence and
dagSim varies from 0.8% to 10.0% and from 0.01% to —11.7%, respectively.
Similar results were found also for scenario 4, as errors varied from 2.4% to
15.9% for Task Precedence, and from 0.3% to 11.6% for dagSim.

The results found in scenarios 3 and 4 support those observed scenarios 1
and 2, suggesting that the models are stable for both VMs and queries tested.
Overall, taking absolute values, the errors were, on average, 5.03% for the Task
Precedence model and 3.50% for dagSim in scenario 3. Corresponding values
for scenario 4 are 9.8% and 1.17%, respectively. Thus, both models performed
well under a deployment subject to memory pressure. The dagSim simulator
proved stable, especially on scenario 4, with very small errors except for the 9
nodes and 30 cores experiment. The Task Precedence errors increased as the
number of cores increased, indicating that the prediction can be affected by the
cluster size. We assume that this is due to the accumulation of synchronization
delay estimation errors present in the model.

4.5 Results on the D4v2 VMs (Scenarios 5, 6 & 7)

For scenarios 5, 6, and 7 we executed the Task Precedence model and dagSim
simulator considering Spark 2.1.0 logs for a set of machine learning algorithms,
namely K-Means, Logistic Regression, and SVM. The ML workloads are iter-
ative algorithms and usually characterized by a larger number of stages than
the queries in scenarios 1-4. For these applications, data partitions are cached
and accessed multiple times during the iterations. As noticed, these workloads
present a higher variability since each iteration consists of data processing and
partitions recomputation in case of cache eviction.

As detailed in for all three ML workloads, the prediction error of
the Task Precedence model is inversely proportional to the size of the dataset,
i.e., the larger the dataset, the smaller the prediction error. Since processing
larger datasets requires more tasks to be executed, the experiments yield a
lower variance on the application response times. Analogously, a smaller num-
ber of tasks would result in higher variance across multiple runs. Regarding
the different cluster sizes, the results of Task Precedence are similar to those
in the previous scenarios: the errors tend to increase with cluster size. As pre-
viously discussed, this is attributed to the accumulation of synchronization
delays over a large number of distributed tasks running in multiple cores.

We further looked into the execution times measured for individual runs of
each workload on each configuration and observed that the setup in which Task
Precedence produced the largest errors for all three benchmarks (8 GB on 48
cores) coincides with the scenario with the highest variance across multiple
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Table 7 Scenarios 3 & 4: Real and predicted execution times (seconds) for Q26 and Q52
on A3 VMs. Results in bold for the maximum error and shaded cells for the minimum error.

Nodes Real Task Precedence DagSim
(cores) (error %) (error %)

Scenario 3: TPC-DS Q26

3(6) 2532.3 2512.8(0.8) 2538.5(-0.3)

3(8) 2071.2 2052(0.9) 2086.1(-0.7)
4(10) 1778.8 1763.6(0.9) 1778.6(0.01)
4(12) 1690.6 1674.5(1.0) 1704.5(-0.8)
5(14) 1439.3  1414(1.8) 1452.9(-0.9)
5(16) 1271.6  1243.3(22)  1281.0(-0.7)
6(18) 1127.2  1099.8(2.4)  1152.9(-5.4)
6(20) 1093.6  1064.2(2.7)  1095.2(-0.1)
7(22) 996.7 963.2(3.4) 1050.4(5.4)
7(24) 9112 874.8(4.0) 933.9(-2.5)
8(26) 720.8 682.2(5.4) 735.6(-2.1)
9(30) 658.8  617.6(6.3) 691.6(-5.0)
9(32) 629.8 589(6.5) 643.7(-2.2)
10(34) 625.8  584.3(6.6) 647.6(-3.5)
10(36) 5774 532.4(7.8) 602.9(-4.4)
11(38) 546.6  503.1(8.0) 572.1(-4.7)
11(40) 530.6 487.3(8.2) 555.2(-4.6)
12(42) 488.4  447.3(8.4) 510.6(-4.6)
12(44) 4707 427.6(9.2) 493.8(-4.9)
13(46) 4464  405.6(9.1) 455.2(-2.0)
13(48) 430.5  387.5(10.0)  460.9(-7.1)

Scenario 4: TPC-DS Q52

3(6) 2158.9 2107.6(2.4) 2153.0(0.3)
3(8) 1709.2 1656.8(3.1) 1702.5(0.4)
4(10) 13274 1276.4(3.8) 1316.3(0.8)
4(12) 11245 1072.5(4.6) 1117.4(0.6)
5(14) 976.4 924.0(5.4) 970.5(0.6)
5(16) 884.9 832.6(5.9) 880.4(0.5)
6(18) 816.5 764.8(6.3) 809.8(0.8)
6(20) 738.8 687.3(7.0) 733.3(0.7)
7(22) 667.9 613.6(8.1) 663.3(0.7)
7(24) 620.1 566.2(8.7) 615.8(0.7)
8(26) 572.1  512.7(10.4) 568.4(0.6)
9(30) 5259 466.6(11.3) 465.0(11.6)
9(32) 492.3  432.7(12.1) 487.9(0.9)
10(34) 462.2  402.5(12.9) 457.4(1.0)
10(36) 442.1 382. 6(13 5) 439.3(0.6)
11(38) 438.7 380.2(13.3) 436.8(0.4)
11(40) 4184  359.1(14.2) 415.6(0.7)
12(42) 3921  334.2(14.8) 390.2(0.5)
12(44) 383.7  325.9(15.1) 379.5(1.1)
13(46) 3784  318.8(15.8) 380.1(-0.4)
13(48) 362.8  305.0(15.9)  359.3(1.0)
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Table 8 Scenarios 5, 6 & 7: Real and predicted execution times (seconds) for ML workloads
on D4v2 VMs. Results in bold for the maximum error and shaded cells for the minimum
error.

Nodes Data set Task Precedence dagSim

(cores) size (GB) Real (error %) (error %)
Scenario 5: K-Means

3 (24) 8 99.0 81.9 (17.3) 75.6 (23.6)
3(24) 48 342.2 325.1 (5.0)  364.6 (-6.5)
3 (24) 96 862.1 845.9 (1.9) 788.4 (8.5)
6 (48) 8 90.3 74 (18.1)  70.3 (22.1)
6(48) 48 195.0 178.8 (8.3)  219.2 (-12.4)
6(48) 96 594.3 572.9 (3.6) 746.2 (-25.6)

Scenario 6: Logistic Regression

3 (24) 8 164.6 159.5 (3.1)  156.1 (5.1)
3 (24) 48 669.4 664.4 (0.7) 671.7 (-0.3)
3 (24) 96 1418.8 1414.1 (0.3)  1404.9 (0.9)
6 (48) 8 166.5 161.0 (3.3) 156.5 (6.0)
6(48) 48 368.2 362.5 (1.5)  362.9 (1.4)
6 (48) 96 1200.7 1192.6 (0.6) 1193.9 (0.5)
Scenario 7: SVM
3 (24) 8 190.9 1717 (10.1)  167.7 (12.2)
3 (24) 48 356.7 339.2 (4.9) 358.1 (0.4)
3 (24) 96 1,367.0 1349.6 (1.3) 1323.9 (3.2)
6 (48) 8 189.7 170.2 (10.3) 164 (13.5)
6(48) 48 372.5 353.2 (5.2)  352.2 (5.4)
6 (48) 96 650.5 631.1 (3.0) 635.4 (2.3)

runs. The large number of cores used on a relatively small dataset, which
might occasionally cause resource underutilization, may explain the slightly
worse performance of the model in this setup. In contrast, we see no clear
error pattern for dagSim.

With respect to absolute errors, both Task Precedence and dagSim provide
very good prediction accuracy across the considered set of experiments, cover-
ing different platforms and configurations. Specifically, taking absolute values,
the Task Precedence model achieved an average error of 9.03%, 1.62%, and
5.80% for scenarios 5, 6 and 7, respectively, with an overall average of only
5.48%. DagSim, in turn, produced errors equal to 16.45%, 2.42%, and 7.42%
for scenarios 5, 6, and 7, respectively, with an overall average of 8.76%.

4.6 Summary of Results

To summarize the accuracy results of the two most promising approaches —
Task Precedence and dagSim — we observe that the Task Precedence model
achieved errors that vary from 0.8% to 20.7%, being on average only 7.38% (av-
erage computed across all errors taken in absolute values). The errors achieved
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Figure 6 Average prediction errors across all analyzed scenarios (averages computed across
errors taken in absolute values)

by dagSim, on the other hand, vary from 0.7% up to —25.6%, but with an
average of only 5.65% (see . It is important to observe that in the
performance evaluation literature, 30% errors (consistent across cluster size) in
execution time predictions can be usually expected, especially from analytical
models (see [?]).

Thus, both approaches can be considered suitable for predicting the perfor-
mance of big data applications. Moreover, we noticed that dagSim outperforms
the Task Precedence model in all scenarios with interactive queries, whereas
the latter was the best approach for the iterative ML algorithms.

Our results of the Fork-Join model, on the other hand, indicate that the
simpler model provides only a very coarse approximation, which is too con-
servative, especially compared to the other approaches.

Regarding execution times, we note that both models ran very quickly
and are suitable for online predictions. The average execution time of dagSim
ranges between 0.76s and 3.26's for scenario 1 to 4, with very low variability
across multiple runs, with a coefficient of variation’] (CV) of lower than 6%.
Vice versa, JMT took on average from 25 to 115 seconds.

For scenarios 5, 6 and 7, despite the higher variability (CV ranges between
0.85 and 0.9), the average execution times for dagSim were still short, in 1.2-
4.9 seconds range. Note that in this latter scenarios the higher variability was
due to the different size of the underlying dataset (which has an impact on
the number of tasks within stages and the number of simulated events).

The execution times of the analytical Task Precedence model was very
short, varying from only 4.18 ms (for scenario 4) to up to 85.71ms (for sce-
nario 7). They were also mostly stable (i.e., low CVs) across all scenarios.

9 Ratio of standard deviation to mean value.
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Table 9 Average execution time and CVs for each scenario

Task Precedence DagSim
Avg. [ms] CV [%] Avg. [ms] CV [%]

1 5.35 11.96 3,085.29 5.54
2 4.59 4.81 763.45 5.97
3 6.26 3.95  3,264.96 1.43
4 5.08 2.72 815.47 2.70
5
6
7

Scenario

9.42 3197 1,238.11 91.56
28.38 29.20 2,417.94  84.10
59.82  36.64 4,923.00 87.35

Thus, comparing both tools, dagSim’s execution times exceed those of
the analytical model by some orders of magnitude: their ratio varies from
around 80 to over 580, about 250 on average. However, the Task Precedence
model is limited to assess average execution time, whereas dagSim can provide
also percentiles of application performance, thus enabling much finer-grained
analyses.

5 Conclusions and Future Work

In this paper, we compared two analytical models and proposed an ad hoc
simulator for the performance prediction of Spark applications running on
cloud clusters.

We evaluated all three models in multiple cloud configurations and work-
loads, including SQL and iterative ML benchmarks. Our results indicate that
the Fork-Join model is too inaccurate to be considered in practice. On the
other hand, both the Task Precedence model and the dagSim simulator per-
form very well for predicting the average application execution time, both in
terms of prediction accuracy and model execution time. Thus, both are quite
effective in capturing the dynamic resource assignment implemented in Spark,
although dagSim seems somewhat better for interactive queries, whereas Task
Precedence outperforms it for the machine learning workloads.

In our future work, we plan to extend our models to cope with scenar-
ios where multiple applications run concurrently competing to access the re-
sources in the same clusters. We also intend to embed the models into a run
time optimization tool for managing dynamically cloud resources with the
aim of providing application execution within an a priori fixed deadline while
minimizing cloud operational costs.
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