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Abstract
As the distributed computing systems have been widely used in many research and 
industrial areas, the problem of allocating tasks to available processors in the system 
efficiently has been an important concern. Since the problem is proven to be NP-
hard, heuristic-based optimization techniques have been proposed to solve the task 
allocation problem. Particularly, the current cloud-based systems have been grown 
massively requiring multiple features like lower cost, higher reliability, and higher 
throughput; therefore, the problem has become more challenging and approximate 
methods have gained more importance. Migrating birds optimization (MBO) algo-
rithm offers successful solutions, especially for quadratic assignment problems. 
Inspired by the movement of the birds, it exhibits good results by its population-
based approach . Since the algorithm needs to deal with many individuals in the 
population, and the neighbor solution generation phase takes substantial time for 
large problem instances, we need parallelism to have execution time improvements 
and make the algorithm practical for large-scale problems. In this work, we pro-
pose a scalable parallel implementation of the MBO algorithm, PMBO, for the 
multi-objective task allocation problem. We redesigned the implementation of the 
MBO algorithm so that its computationally heavy independent tasks are executed 
concurrently in separate threads. We compare our implementation with three paral-
lel island-based approaches. The experimental results demonstrate that our imple-
mentation exhibits substantial solution quality improvements for difficult problem 
instances as the computing resources, namely parallelism, increase. Our scalability 
analysis also presents that higher parallelism levels offer larger solution improve-
ment for the PMBO over the island-based parallel implementations on very hard 
problem instances.
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1  Introduction

The problem of task allocation in heterogeneous distributed systems tries to 
assign each task partitioned from an application to the processors in the system. 
Utilizing the parallel execution units for computation-intensive parallel and dis-
tributed applications plays an important role in the efficiency of executing an 
application on those systems. The problem has been tackled with many different 
objectives such as maximizing the overall performance of the system, minimiz-
ing the probability of the errors during the execution, or maximizing the load 
balance of the processors in terms of the memory or the workload. Even with a 
single objective, the task allocation problem is an NP-hard problem for which 
achieving the optimal solution requires impractical times for most of the real-
world instances. Therefore, many studies have been focusing on applying subopti-
mal algorithms consisting of both problem-specific greedy heuristics and generic 
metaheuristic solutions for the multi-objective task allocation problem (MOTAP) 
[7, 10, 17, 39, 43].

By the increase in the usage of cloud-based systems for many industrial and sci-
entific applications, the distributed systems have gained importance [45]. Addition-
ally, the size of those systems has risen to solve more difficult scientific problems 
and support large companies. With a high number of task execution requests in 
those large-scale systems, allocating tasks onto available processors has been a more 
complex problem. Particularly, for a highly available service running on multiple 
containers, the allocation of system resources becomes more critical. Therefore, the 
demand for a good solution for the task allocation problem has increased.

Modern hardware systems offer high performance with their parallel execu-
tion units [27, 40]. Moreover, parallel programming models provide practical 
implementation for computationally intensive applications to exploit the paral-
lelism in modern systems. Consequently, the algorithms designed to solve dif-
ficult problems started to utilize parallel computation more and more in order to 
achieve better performance. In this context, metaheuristic algorithms, due to their 
iterative nature, containing independent execution blocks, are good candidates for 
applying parallel computation.

In this paper, we design and analyze two different parallelization models of 
migrating birds optimization algorithm (MBO) for MOTAP. MBO is a population-
based metaheuristic algorithm that is proven to be successful on quadratic assign-
ment problem [9]. In the first model, we apply the island model parallelization to 
the MBO and implement IMBO. In the second model, we present a scalable parallel 
implementation for the migrating birds optimization algorithm with problem-spe-
cific neighboring heuristics. We design and implement a parallel algorithm (PMBO) 
to reduce the execution time by parallelizing the time-consuming neighboring 
function calculations. We compare our algorithm performance with island model 
implementations of migrating birds optimization, genetic algorithm, and simplified 
swarm optimization algorithm [43]. Our results yield that our parallel implemen-
tation exhibits substantial solution quality improvements for very difficult problem 
instances as the computing resources in the parallel system increase.
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The remainder of this paper is organized as follows: Sect. 2 presents the related 
work on both task allocation problem and parallelization methods for metaheuristic 
algorithms. Section 3 provides a general description and a formal definition of the 
multi-objective task allocation problem and the basics of the MBO algorithm. Sec-
tion 4 presents our parallel implementation by introducing general parallelism con-
structs. Then, the experimental results are outlined in Sect. 5. Finally, in Sect. 6, we 
summarize the work with some conclusive remarks.

2 � Related work

Task allocation problem (TAP) has been studied in the literature by considering 
especially the system performance and reliability [5, 9, 12, 21, 31, 32, 35, 36, 44]. 
Besides the system performance, which is critical for the execution of real-time 
applications on distributed systems, the system reliability becomes a crucial con-
cern due to high machine and network failure rates in large-scale systems [36]. In 
safety-critical systems such as power plants, being free from errors and malfunctions 
becomes the primary objective.

Many research studies have explored the task allocation problem by starting with 
the work of Stone [37]. While some methods consider performance criteria by mini-
mizing the total sum of execution and communication time [7, 10, 17, 39, 43], or 
target higher system reliability by minimizing the probability of failure [5, 15, 16, 
36], some of them try to optimize both objectives solving the multi-objective task 
allocation problem [12, 21, 32, 44]. Since the problems with both objectives are 
NP-hard, many suboptimal heuristic algorithms have been proposed. Mathemati-
cal approach-based exact solutions have achieved reasonable times for only smaller 
instances of the problem [10].

Use of evolutionary metaheuristic optimization algorithms and stochastic search 
algorithms has been popular for the task allocation problem [5, 9, 11, 13–15, 26, 32, 
41, 42]. As the evolutionary algorithms target harder and larger problems, the execu-
tion time required to find an acceptable solution increases. Therefore, the parallel 
implementations have been proposed in order to decrease the execution times [1, 2]. 
While the island model achieves performance improvement by executing multiple 
populations in parallel [18, 19, 28], the parallelization of neighborhood search pro-
cedures (e.g., mutation or crossover operations) decreases the execution time of the 
algorithms by a larger amount.

Island model partitions the population into subpopulations in which serial 
computations are performed in isolation [38]. To introduce diversity into sub-
populations, the model exchanges a set of individuals by migrating them into 
other subpopulations. While each island performs independently in parallel, the 
migration among the islands provides possible enhancement on solution qual-
ity [18]. Alba and Troya [3] propose an island model for a set of optimization 
problems and conduct an experimental study on a distributed system to ana-
lyze the effect of the migration frequency on runtime and diversity. Beside dis-
tributed systems, the island model has also been implemented for GPU archi-
tectures. Luong et  al. [24] propose three different island model schemes for 
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Weierstrass–Mandelbrot function optimizations. While the first scheme evalu-
ates only the populations in different GPU thread blocks, the others are based 
on a fully distributed model by offloading the overall computation from CPU 
to the GPU cores. Pospichal et al. [33] also present a GPU-based island model 
for parallel execution of a set of benchmark functions. While the island model 
is successfully implemented in parallel systems to decrease the execution time, 
it also improves the solution quality without parallel execution support. Limmer 
and Fey [20] present a comparison study for island model and the global paral-
lelization-based evolutionary algorithms for multi-core CPUs, clusters, GPUs, 
and grid platforms. Al-Betar et  al. [4] propose an island model for the flower 
pollination algorithm (FPA) which is a swarm-based evolutionary algorithm. 
Even the proposed model is not implemented in parallel, it can produce better 
results than the regular FPA by maintaining diversity. Liu and Wang [22] present 
a scalable parallel genetic algorithm (PGAP) to exploit massively parallel high-
end computing resources for solving large problem instances of the generalized 
assignment problem (GAP). To be able to improve performance by overlapping 
communication and computation, the authors propose an asynchronous migra-
tion strategy for efficient migrations among populations. While the asynchro-
nous communication leads to a reduction in the solution quality due to the loss 
of good solutions obtained from migration, the technique provides higher speed-
ups in a large-scale parallel computing environment with acceptable solutions.

Luo et al. [23] present a parallel bees algorithm by considering several paral-
lelization concerns. The proposed method not only partitions the colonies (pop-
ulations) into subcolonies (subpopulations) but also performs multiple instances 
of local searches in different processing units simultaneously for parallelism.

Randall and Lewis [34] propose parallel implementations of ant colony 
optimization (ACO) based on parallel ants and multiple colonies and conduct 
experiments for TSP problem instances in a distributed memory architecture. 
While Chu et al. [8] present a parallel ACO scheme for protein structure predic-
tion, Middendorf et al. [25] introduce multi-colony approach to solve traveling 
salesperson problem and the quadratic assignment problem. Delevacq et al. [34] 
adapt parallel ACO for GPU architectures.

ParadisEO [6] presents a framework for the development of parallel and dis-
tributed metaheuristic algorithms. It supports different parallel models includ-
ing parallel distributed evolutionary algorithms and parallel local searches. The 
developers can implement their own parallel algorithms by using object-oriented 
components based on standard distributed memory or shared memory libraries.

Duman et  al. [9] propose a novel metaheuristic optimization algorithm, 
namely migrating bird optimization (MBO) for quadratic assumption problem, 
and achieve promising results. The MBO is further improved by Pan and Dong 
[31], and Oz [30] by introducing problem-specific neighboring heuristics. While 
the proposed neighboring functions improve the solution quality, the execution 
time of the algorithms increases due to the higher computational effort of the 
functions.
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3 � Background

3.1 � Task allocation problem

In this work, we consider multi-objective task allocation problem that tries to find 
the efficient allocation of parallel application tasks onto processors of a distrib-
uted system. The objectives to be achieved are minimizing the assignment cost 
and maximizing the system reliability. We use the problem statement given in [5, 
13, 44] to formulate the task allocation problem.

3.1.1 � System model

The heterogeneous distributed computing system consists of N processors 
( P1,P2,… ,PN ), and each processor ( Pn ) has the following computation and reli-
ability attributes:

–	 Cn : amount of computation resource
–	 Mn : amount of memory resource
–	 �n : failure rate

We assume that the processors are connected by an interconnection network, 
and the communication link between two processors ( Pn,Pm ) has the following 
attributes:

–	 DTRnm : data transfer rate between processors
–	 �nm : failure rate of the communication path between processors

We further assume that we have a parallel application including K tasks 
( T1, T2,… , TK ), as shown in Fig.  1. While the tasks may interact each other, 
which incurs communication overhead for the tasks executing in different proces-
sors, our model does not contain information about precedence relations among 
the tasks [13]. Each application task ( Tk ) has the following attributes:

–	 ck : computation resource requirement
–	 mk : memory resource requirement

Fig. 1   An example parallel application with several tasks and a target distributed system
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Each task pair ( Tk, Tl ) may communicate each other with an amount of data, and 
this inter-task communication can be characterized as follows:

–	 Dkl : incurred communication time between tasks Tk and Tl

We assume that the execution time for one task may be different on different pro-
cessors in a heterogeneous system, and those execution times are known/predicted 
before execution. ETkn represents the expected execution time of a task Tk on the 
processor Pn , for each task and processor pair.

The task allocation scheme targets to find a task allocation represented by X, the 
assignment of K tasks onto N processors, that minimizes the assignment cost and 
maximizes the system reliability at the same time while satisfying memory and 
computation resource constraints, where Xkn = 1 if task Tk is assigned to processor 
Pn , and Xkn = 0 otherwise.

3.1.2 � Assignment cost

For evaluating the cost for task assignment, we consider the execution and commu-
nication times. Given a task allocation X, since the execution time of all tasks in pro-
cessor Pn is 

∑K

k=1
XknETkn , the execution cost of all processors is the total execution 

time of the application, which can be computed as follows:

Similarly, since the required time for communications between processors Pn and 
Pm is 

∑K−1

k=1

∑K

l=k+1
XknXlm(Dkl∕DTRnm) , the total system communication cost can be 

computed as follows:

Then, the assignment cost defined as the sum of the execution and communication 
costs can be computed as follows:

3.1.3 � System reliability cost

In order to quantify the reliability of a distributed system, we need to consider the 
successful execution of all tasks in the system. For successful task execution, we can 
assume that all processors and communication links are working correctly during 
execution [36]. Since the reliability of a processor Pn during time t is e−�nt , and the 

Cexec(X) =

N∑

n=1

K∑

k=1

XknETkn.

Ccomm(X) =

N−1∑

n=1

∑

m>n

K−1∑

k=1

K∑

l=k+1

XknXlm(Dkl∕DTRnm).

(1)

�(X) = Cexec(X) + Ccomm(X)

=

N∑

n=1

K∑

k=1

XknETkn +

N−1∑

n=1

∑

m>n

K−1∑

k=1

K∑

l=k+1

XknXlm(Dkl∕DTRnm).
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reliability of a processor Pn for a given task allocation X is e−�n
∑K

k=1
XknETkn , the reliability 

of all processors can be computed as follows:

The reliability of a communication path between processors Pn and Pm is 
e−�nm

∑K−1

k=1

∑K

l=k+1
XkmXln(Dkl∕DTRmn) ; the reliability of all communication paths can be com-

puted as follows:

Then, the system reliability that all involved processors and communication links 
can be computed as follows:

Since the system reliability (R(X)) can be described by the system reliability cost 
(RC(X)) as R(X) = e−RC(X) , the system reliability cost can be computed as follows:

3.1.4 � Multi‑objective formulation

Using the formulations for the assignment cost (Eq. 1) and the system reliability cost 
(Eq. 2), the mathematical formulation of task allocation problem is as follows:

Rexec(X) =

N�

n=1

e−�n
∑K

k=1
XknETkn .

Rcomm(X) =

N−1�

n=1

�

m>n

e−𝜇nm

∑K−1

k=1

∑K

l=k+1
XknXlm(Dkl∕DTRnm).

R(X) = Rexec(X) × Rcomm(X)

=

N�

n=1

e−𝜆n
∑K

k=1
XknETkn ×

N−1�

n=1

�

m>n

e−𝜇nm

∑K−1

k=1

∑K

l=k+1
XknXlm(Dkl∕DTRnm).

(2)��(X) =

N∑

n=1

K∑

k=1

𝜆nXknETkn +

N−1∑

n=1

∑

m>n

K−1∑

k=1

K∑

l=k+1

𝜇nmXknXlm(Dkl∕DTRnm).

(3)Minimize Z(X) = C(X) + RC(X)

(4)

Subject to

N∑

n=1

Xkn = 1 ∀k = 1, 2,… ,K

(5)
K∑

k=1

mkXkn ≤ Mk ∀n = 1, 2,… ,N
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Equation  3 represents the combined objective function including assignment cost 
and reliability cost minimization. Equation 4 states that each task should be assigned 
to exactly one processor. Equation 5, memory constraint, states that the total mem-
ory required by all tasks assigned to processor Pn does not exceed the available 
memory size of the processor. Equation  6, computation resource constraint, pro-
vides that the processing load required by all tasks assigned to processor Pn does not 
exceed the available processing load. The constraint in Eq. 7 guarantees that Xkn is 
binary variable.

The model defines a 0–1 quadratic programming problem which is known as NP-
hard [13, 44], which implies that the optimum solution is not practical, especially for 
big problem sizes.

3.2 � Migrating birds optimization algorithm

Getting inspired by the behavioral pattern exhibited by migrating bird flocks, Duman 
et al. [9] design a population-based metaheuristic algorithm, migrating birds optimi-
zation (MBO). Their work and the following studies show that it is particularly suc-
cessful in quadratic assignment problems [9, 29–31]. The algorithm basically main-
tains a number of solutions carried by a flock of n birds that are logically organized 
in V formation as migrating flocks of birds. In this context, each bird (solution) fol-
lows the bird placed at its immediate front in the flock. This is achieved by shar-
ing a number of neighbor solutions between the birds at each iteration. The bird in 
front of all other birds is called the leader bird. Imitating the natural migrating flock 
behavior, the leader bird is changed after a number of iterations and the old leader 
goes at the back of the flock, allowing the exploration of different parts of the search 
space. The iterations are repeated until a predefined condition is satisfied. The algo-
rithm, listed in Algorithm 1, starts with the initialization phase that includes gen-
erating the initial solutions of the flock. This is followed by MBO iterations which 
consist of three stages:

–	 Leader improvement A local search is applied to improve the leader solution by 
generating its k neighbor according to a move operator. If any of the neighbors 
improves the leader, then the leader is replaced. This is followed by sharing the 
remaining x neighbor solutions with the bird next to the leader.

–	 Follower improvement Other birds in the flock are tried to be improved in a simi-
lar way as the leader. Each bird, combined with the x solutions shared from the 
bird it is following, generates k − x new solutions using the move operator. If the 
best solution improves the bird, the bird updates its current solution. Like the 
leader bird, each bird in the flock gives their best x neighbor solutions to their 
followers.

(6)
K∑

k=1

ckXkn ≤ Ck ∀n = 1, 2,… ,N

(7)Xkn ∈ {0, 1}∀n, k.
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–	 Leader change Mimicking the flock behavior in nature, after a certain number 
of iterations (m) the leader bird switches to one end of the flock and a new bird 
becomes leader.

Algorithm 1 MBO algorithm [9].
1: Generate n initial solutions
2: while not termination do
3: for each replication (1 to m) do
4: Generate and evaluate k neighbors for the leader
5: if there is an improvement then
6: Update the leader
7: end if
8: Move the x leader neighbors to the other solutions
9: for each follower in the flock do
10: Generate and evaluate k neighbors
11: if there is an improvement then
12: Update the follower
13: end if
14: end for
15: end for
16: Move the leader to the end and assign a solution as the leader
17: end while

3.2.1 � Solution representation

Following the previous studies [5, 13, 21, 44], integer vector representation is used 
where the vector P = (p1, p2,… pK)

T stores the processors assigned to each task. In 
this context, p[i] = j denotes Xij = 1 where Xij s are the Boolean variables used in the 
formal definition of the problem.

3.2.2 � Objective function calculation

To avoid infeasible solutions violating the constraints stated in the inequalities (5) 
and (6), a penalty value is added to the original objective function of the problem 
(i.e., Eq. 3). The penalty value for a solution P is calculated as follows:

Therefore, the fitness value of a solution P is:

where � denotes the penalty coefficient used for scaling purposes, as applied in 
other studies [13, 30].

(8)Penalty (P) =

N∑

n=1

(
max

(
0,

∑

i|p[i]=n
mi −Mn

)
+ max

(
0,

∑

i|p[i]=n
ci − Cn

))
.

(9)Fitness (P) = Z(P) + � ∗ Penalty (P)
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3.2.3 � Problem‑specific neighboring for MBO: GR‑MR

A problem-specific neighboring function proposed in [30] is used as the neighbor-
ing function of the MBO algorithm. This function, Greedy Reassignment Maximum 
Release (GR-MR), basically tries to reassign a randomly selected task to the proces-
sor which causes the maximum amount of fitness improvement. If no improvement 
possible for a number of attempts, then GR-MR switches to the maximum release 
phase, and in this phase, it tries to release the mostly loaded processor by removing 
a task from that processor in order to enable further profitable reassignments. The 
details of the neighboring function can be found in [30].

4 � Parallel MBO

In this study, we redesigned the implementation of the MBO algorithm so that 
its computationally heavy independent tasks are executed concurrently in sepa-
rate threads. The largest portion of the execution time in MBO is the generation 
of the neighbor solutions while trying to improve each bird in the flock. Mainly, 
the GR-MR function is executed k times for the leader and n ∗ (k − x) times for the 
other birds. In the original MBO design, the bird improvement is performed sequen-
tially making the birds waiting for each other. This can be justified to an extent, as 
each bird in the flock requires a number of shared solutions from the bird it is fol-
lowing, making the improvement process nonindependent. However, if the neighbor 
generation and neighbor sharing are separated from each other, the former opera-
tion, which is an independent task, can be performed in parallel. In our parallel 
MBO implementation (PMBO), at each iteration of the algorithm, each bird gener-
ates a number of neighbor solutions simultaneously. After the neighbors are calcu-
lated, each bird performs neighbor sharing and any improvement that may possibly 
be achieved. Figures 2 and 3 depict the design difference between MBO and PMBO 
algorithms. As shown in Fig. 3, the generation of the neighbors is performed in par-
allel for all of the birds in the flock, and then they wait for each other before trying to 
improve via generated and shared neighbors.

To compare the performance of the PMBO, we implement the genetic algorithm 
(GA), migrating birds optimization (MBO) algorithm [9], and simplified swarm 
optimization (SSO) algorithm [43]. We also implement the parallel versions of GA, 
MBO, and SSO algorithms based on the island model (IGA, IMBO, and ISSO, 
respectively). As mentioned in Sect.  1, the island model partitions the population 
into subpopulations in which serial computations are performed in isolation [38]. 
Both serial and parallel executions of the island model-based implementations pro-
vide an increase in the population diversity, while the parallel execution reduces the 
execution time substantially. Figure  4 presents the structure of the IMBO, where 
multiple MBO populations run concurrently, and they change the leaders for some 
time migration periods. We implement IGA, IMBO, and ISSO and execute them in 
parallel with the same number of threads as PMBO executions. All implementations 
including serial and parallel versions employ GR-MR function as their mutation 
operator/neighboring function if they are using any.
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5 � Experimental study

5.1 � Experimental setup

We execute our parallel implementations in a multicore platform, which is based 
on Intel Xeon Gold 6148 processors (40 cores), located in the National Center for 
High-Performance Computing (UHeM).

We conduct experiments for a set of randomly generated problem instances due 
to the lack of a standard benchmark for the multi-objective task allocation problem. 
We generate a set of test cases by using the same methodology as proposed by the 
work in the literature [13, 30]. The main configuration parameters for the problem 
instances and their values are given in Table 1, where task interaction density (D) 

Fig. 2   MBO algorithm flow
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Fig. 3   Parallel MBO algorithm flow

Fig. 4   Island-based MBO structure

Table 1   Configuration 
parameters for problem 
instances

Parameter name Parameter value

Number of tasks (K) 20, 30, 40
Number of processors (N) 8
Task interaction density (D) 0.3, 0.5, 0.8
Communication-to-computation time ratio (CCR) 0.5, 1.0, 2.0
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quantifies the ratio of the inter-task communication demands for a task interaction 
graph, and communication-to-computation time ratio (CCR) represents the amount 
of resulting communication between tasks in a task graph comprising a parallel 
application.

In our experiments, 10 problem instances are generated for each parameter con-
figuration, resulting in a total of 270 different problem instances for evaluating 
the performance of the parallel algorithm. We execute each problem instance for 
10 times and take the average of the cost and the running time values. The values 
of the other system parameters are generated at random from the uniform distribu-
tions between the following ranges: the expected execution times of tasks on differ-
ent processors: 15–25, the data transfer rate between processors: 1–10, the amount 
of data to be transferred between tasks: such that the CCR is 0.5, 1.0, or 2.0, the 
failure rate of the processors and the communication path: 0.00005–0.00010 and 
0.00015–0.00030, memory resource requirement of each task: 5–10, amount of 
memory resource of each processor: x∕N − 2x∕N where x =

∑K

i=1
mi , computation 

resource requirement of each task: 5–10, amount of computation resource of each 
processor: x∕N − 2x∕N, where x =

∑K

i=1
ci.

5.2 � Experimental results

To evaluate the performance of the PMBO and compare it to the other algorithms, 
we conduct three main experiments:

–	 Comparison on normal instances
–	 Comparison on hard instances
–	 Scalability analysis on very hard instances

Before conducting the performance evaluation experiments, we execute our target 
implementations by different parameters and fix the parameters that yield the best 
performance results for the performance comparison experiments.

5.2.1 � Parameter tuning

Since the previous work [9, 30] conducts detailed experiments to find the optimal 
parameters of the MBO algorithm for quadratic assignment problem, we take those 
values as the following: GreedyAttemptCount = 3 , k = 3 , x = 1 , n = 51 , m = 10.

We also take the values determined as the best for MOTAP by the previous work 
[13] for GA algorithm:

–	 Population size = number of tasks × 2
–	 Crossover rate = 0.8
–	 Mutation rate = 0.2

As for the parameters of SSO algorithm, we use the values that are picked in [43]:
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–	 Cg = 0.50
–	 Cp = 0.85
–	 Cw = 0.95
–	 Population size = 50

In order to decide the optimal parameters for island model-based implementations, 
we conduct experiments by considering multiple values for each parameter includ-
ing population count, which is the number of islands; immigration period, which 
represents the number of iterations between two migrations; and immigration 
count (for IMBO, it is always 1), which represents the number of individuals to be 
migrated to the other island. The values for each parameter that we execute our IGA, 
IMBO, and ISSO are as follows:

–	 Population count = 2, 4, 8, 16
–	 Immigration period = 5, 10, 20, 50
–	 Immigration count = 2, 3, 4, 5

We fix the number of threads to eight in this pre-experimentation phase.
The values that achieved the best results for the IGA, IMBO, and ISSO are given 

in Table 2.

5.2.2 � Comparison on normal instances

In the first set of the comparison experiments, we run each algorithm on the normal 
instances which have a relatively easy configuration of the problem (the allocation 
of 20/30/40 tasks onto 8 processors). Our aim is to see how much improvement we 
gain by the parallelization of the algorithm in terms of the time required to explore 
a certain amount of the search space. To achieve this, we run each algorithm for the 
same number of neighboring function calls.

Tables  3 and 4 present time and cost values of the algorithms for the normal 
instances, respectively. The tables include the results for serial genetic algorithm 
(GA), serial migrating birds optimization (MBO), serial simplified swarm optimiza-
tion (SSO) algorithm, parallel migrating birds optimization (PMBO), island-based 
parallel genetic algorithm (IGA), island-based parallel migrating birds optimization 
(IMBO), and island-based simplified swarm optimization (ISSO) algorithm. Each 
row presents the time/cost values for each problem instance, while the columns 

Table 2   The optimal values for 
island-based implementations 
observed in parameter tuning 
experiments

Population count Immigration period Immi-
gration 
count

IGA 16 20 5
IMBO 16 50 1
ISSO 16 100 5
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represent the different algorithm executions. For parallel versions, we include the 
executions with 1, 2, 4, 8, and 16 threads.

If we look at the results, we can see that IGA and IMBO complete their execution 
in shorter time; however, PMBO achieves the best cost values especially for larger 
problem instances (allocating 40 tasks) with reasonable times. By this observation, 
PMBO seems promising for better solutions for much larger problems.

Since our aim is to find out the performance effect of the parallel implementa-
tions, we present the average execution time values for each parallel algorithm 
(namely PMBO, IMBO, IGA, ISSO) in Fig.  5. While we expect lower execution 
times as the thread count increases, the results do not have this trend for the first 
two cases (8_20 and 8_30, allocating 20 tasks and 30 tasks onto 8 processors, 
respectively). Since threading incurs some cost in terms of time, and the total execu-
tion time is low for smaller problem sizes, threading cost increases the total exe-
cution time for the larger thread counts for those cases. However, as the problem 
size increases, total execution time increases for each algorithm, and the ratio of 
the threading cost decreases. Thus, we have smaller total execution times for larger 
thread counts in the last case (8_40).

5.2.3 � Comparison on hard instances

To observe the performance of the algorithms on the cost values in a given time, 
we perform a set of experiments for hard(er) problem instances by limiting the 

Fig. 5   Average execution time values on the normal instances
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execution time to 60 seconds. We aim to see how much improvement the paral-
lelism provides on solution qualities if we have a limited time budget. Figure 6 
demonstrates the average cost values for two problem instances, assigning 80 
tasks onto 16 processors (16_80) and assigning 120 tasks onto 16 processors 
(16_120).

While the number of threads increases, the cost values for PMBO, IMBO, 
and IGA tend to decrease while PMBO maintains the smallest values. However, 
ISSO yields almost the same values for the 2-thread, 4-thread, 8-thread execu-
tion scenarios; it even produces larger cost values for the 16-thread execution, 
which is not promising for larger parallelism.

5.2.4 � Scalability analysis

To be able to understand the behavior of our parallel implementations for the 
larger level of parallelism (larger thread counts), we perform a set of experi-
ments for very hard problem instances on a 40-core parallel system, as one 
node of our cluster. We execute our parallel implementations for three prob-
lem instances ( 32_240 , 40_320 , 64_480 ) by 8-thread, 16-thread, 32-thread, and 
40-thread configurations. Figure  7 presents the average cost values for three 
problem instances. The results demonstrate that PMBO maintains a reduction in 
the cost values as the thread counts increase for very hard problem instances. (It 
is much clear in the 40_320 , 64_480 instances.)

To see the relative performance of PMBO over other parallel implementa-
tions, we also present cost improvement rate of PMBO in Fig.  8. We specifi-
cally include the values calculated by the division of the cost values of the IGA, 

Fig. 6   Average cost values on the hard instances
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IMBO, and ISSO by the cost values of the PMBO. The results demonstrate that 
as the parallelism level increases, the efficiency of PMBO also increases rel-
atively if we consider the cost values produced by the island-based methods. 
These results indicate the scalability of the PMBO, in which the higher parallel-
ism level, namely higher computational resources, provides an improvement on 
the solution quality.

6 � Conclusion

In this work, we propose a parallel implementation for migrating birds optimization 
algorithm to solve the task allocation problem with performance and reliability con-
straints. Our scalable algorithm provides an efficient execution in a parallel environ-
ment providing concurrent execution of multiple threads. The scalability analysis, 
we perform as part of our experimental study, demonstrates that high parallelism 
provides substantial solution improvement for hard problem instances with a large 
number of tasks and processors.

Fig. 7   Average cost values on the very hard instances
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