
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

On the Use of Manycore Marvell ThunderX2 Processor for
HPC Workloads

Vı́ctor Soria-Pardos · Adrià Armejach
Darı́o Suárez · Miquel Moretó

Received: date / Accepted: date

Abstract Marvell’s ThunderX2 has been the first Arm-based processor with deploy-
ments in large-scale HPC production systems, challenging the dominance that x86
processors had in the last decades. While x86 processors and its software stack have
been characterized in detail, the behaviour of Arm counterparts is not well known,
limiting its adoption.

This work methodically characterizes performance and power efficiency of the
ThunderX2 running different HPC workloads compiled with two state-of-the-art com-
pilers, GCC and Arm HPC Compiler. We study the maturity of available compilers
and find that the Arm HPC Compiler is able to apply additional optimizations, res-
ulting in better performance than GCC. In addition, we also compare both perform-
ance and power with respect to an Intel Skylake processor. Despite the faster single
thread performance of Skylake, ThunderX2 is able to match performance on multi-
threaded workloads due to its superior memory bandwidth. However, power effi-
ciency of ThunderX2 is far from matching Skylake-based processors when AVX512
extensions are used.

Keywords Arm · ThunderX2 · Skylake · Power · Arm HPC Compiler · GCC

1 Introduction

Delivering an exaflop requires to advance the current capabilities of computers in
many directions, such as energy efficiency, that were not the traditional focus of HPC

Vı́ctor Soria-Pardos
E-mail: victor.soria@bsc.es

Adrià Armejach
E-mail: adria.armejach@bsc.es

Darı́o Suárez Gracia
E-mail: dario@unizar.es

Miquel Moretó
E-mail: miquel.moreto@bsc.es

This is a post-peer-review, pre-copyedit version of an article published in Journal of Supercomputing.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s11227-020-03397-6

2 Vı́ctor Soria-Pardos et al.

computers. These new requirements provided an opportunity for companies that were
centered around mobile computing, such as Arm, to develop its newer Instruction
Set Architecture (ISA), microarchitecture, and tools with the HPC segment in mind.
Clear steps in this direction are: the first Arm HPC system, that demonstrated a func-
tional software stack [22]; the announcement of Arm’s Scalable Vector Extension
(SVE) at HotChips 2016 [25]; or the development of Post-K, a top-tire system de-
veloped by Fujitsu and deployed at RIKEN [29]. The latter will become the first
Arm-based pre-exascale system with enough compute capacity to challenge other
vendors. Taking these developments into account, Arm has become a competitive
option to build HPC systems and is being considered for large-scale deployments.

To become a reference HPC system, Arm needs to provide mature tools such as
compilers, system libraries for parallelization, and math routines. Such a software
ecosystem allows developers to run existing HPC applications on Arm hardware and
achieve the expected performance without extensive modifications.

In this paper, we evaluate the current state of Arm’s compiler ecosystem and
extensively analyze parallelization and vectorization of HPC benchmarks on a real
Arm-based processor, ThunderX2. To achieve this goal, we carry out an evaluation
campaign in which we evaluated the two state-of-the-art compilers: GNU Compiler
Collection (GCC) and the Arm HPC Compiler. In the experiments, we take into ac-
count compiler optimization directives, the use of Arm Performance Libraries, and
shared memory multiprocessing via OpenMP. We characterize ThunderX2 system
performance over a comprehensive set of HPC benchmarks and analyse the differ-
ences in compiler-generated code, providing insight on the performance differences
observed. Additionally, we perform a performance and power comparison with an
Intel Skylake processor.

In particular, Section 4 contains the performance results of ThunderX2 in GFlops
using a roofline model, which enables categorization of the different workloads. The
model helps illustrate what are the main limitations to achieve higher performance for
each benchmark. Section 5 compares the differences between the two major Armv8
ISA compilers. We use speed-up metrics in order to determine which compiler gen-
erates faster code, for both single-threaded and multi-threaded executions. Addition-
ally, in this section we also analyze the execution traces of the benchmarks that be-
have differently. Section 6 analyses the code generated and applied optimizations by
both compilers in order to explain compiler related performance differences. We have
found that simple compiler optimizations can have an important impact on perform-
ance.

Furthermore, we perform a performance and power comparison between Thun-
derX2 and an Intel Skylake processor. Section 7 shows the performance of both pro-
cessors using different compilers. We find that Skylake beats ThunderX2 in single-
threaded performance, but ThunderX2 nearly matches Skylake in multi-threaded per-
formance. In Section 8 we leverage available power monitoring facilities to perform
a power-efficiency study comparing both processors within a similar environment.
We find that ThunderX2 has a lower power efficiency compared to the optimized
architecture of Skylake.

On the Use of ThunderX2 for HPC 3

2 Related Work

This section describes the state-of-the-art in the two areas that intersect with our
work: the adoption of Arm cores in HPC and the comparison of performance and
power efficiency between Arm and x86 architectures.

Arm in High Performance Computing: There is a growing interest in evaluating Arm-
based platforms for HPC. A number of studies have used architectural simulators to
study the trade-offs that appear with the design freedom associated to tailored designs
enabled by license-based IP technology [3,18,19]. While others employed real plat-
forms. For example, Petrogalli et al. [21] evaluate the -fsimdmath command line op-
tion from Arm HPC Compiler, which enables auto-vectorization of math functions in
C and C++ codes. Garcia-Gasulla et al. [8] apply system software techniques to im-
prove runtime support of HPC applications in ThunderX2. Banchelli et al. [4] present
an evaluation of the Arm software ecosystem, focusing on the Arm HPC Compiler
and the Arm Performance Libraries. Rico et al. [24] discus the state of the Arm
HPC ecosystem and provide details on SVE as a future HPC technology. Limited
performance and usability studies for SVE have been performed using architectural
simulators [1,2].

Yokoyama et al. [28] provide a comprehensive analysis and discussion of the
state-of-the-art of HPC on Arm architectures. The authors did a commending effort
analyzing the contributions of more than 100 papers. While some articles include
ThunderX2 in their experiments, there is no indepth study comparing multiple com-
pilers with Neon support with respect to Intel’s AVX512 extension. In this paper, we
analyze the code generation and vectorization performed by two Armv8 compilers.
We accurately measure the impact on performance of the vectorization and highlight
why performance differences occur. In addition, we perform a performance-power
comparison with an x86-based platform.

Comparison of Arm and x86 Architectures: Blem et al. [5] focus on the specific mi-
croarchitectural implementations of Arm and x86. It shows that the Atom processor
can achieve similar energy consumption than a Cortex-A9. Laurenzano et al. [17]
characterize the performance and energy of HPC computations on Cortex A9 and A15
processors and compares them to a Sandy Bridge Xeon processor. Jundt et al. [12]
investigate the key architectural factors that impact power and performance on an
Armv8 X-Gene 1 and Intel’s Sandy Bridge processors.

Ramirez-Gargallo et al. [23] evaluate modern TensorFlow workloads for im-
age recognition on clusters based on different CPU architectures: x86 Intel Skylake,
Armv8 Marvell ThunderX2, and PowerPC IBM Power9. McIntosh-Smith et al. [20]
present performance results from Isambard, a system based on Marvell ThunderX2
and compare them with Intel Skylake and Broadwell, as well as Xeon Phi processors.
They also compare performance across three major software tool-chains available
for Arm: Cray’s CCE, Arm HPC Compiler, and GCC. Jackson et al. [11] perform
a thorough comparison between ThunderX2 and different Intel-based architectures
using Message Passing Interface (MPI) benchmarks while comparing different inter-
connection networks. In this paper, the focus when comparing between Arm and x86

4 Vı́ctor Soria-Pardos et al.

Table 1: Processor features: Instruction Set Architecture (ISA), # cores, frequency,
power, memory hierarchy, architectural features, and operating system.

Characteristic ThunderX2 (TX2) Skylake (SKX)

Architecture Armv8.1 x86 64
Num. of cores 32 28
Frequency (GHz) 2.0 2.1
TDP (Watts) 180 165

I-L1 (KiB) 32 32
D-L1 (KiB) 32 32
L2 (KiB per core) 256 1024
L3 (MiB total chip) 32 38.5

Instruction Queue 60 97
Load/Store Queue 64/36 72/56
Re-order Buffer 180 224
SIMD 2 units of 128 bits 2 units of 512 bits
Bandwidth (GiB/s) 170 119.21

Operating System Red Hat 4.8.5-28 Red Hat 4.8.5-16
Kernel version 4.14.0-49.2.2.el7a.aarch64 3.10.0-693.2.2.el7.x86 64

is on energy efficiency and performance improvements achieved by the utilization of
Single Instruction Multiple Data (SIMD) technology.

3 Experimental Methodology

Description of systems under test: The majority of the experiments have been con-
ducted on a node with a ThunderX2 CN9980 processor. While the rest of experiments
have been executed on an Intel Xeon Platinum 8176 processor (Skylake microarchi-
tecture). Both nodes are mounted on the same rack, and, thereby, they share the same
file system, the power measuring infrastructure, and part of the software stack. Table 1
lists the principal characteristics for each system.

Benchmarks: We have considered fourteen benchmarks. Two of them are well known
mini-applications representative of the HPC domain: HPCG [14] and HACCKer-
nels [15]. The rest are 12 benchmarks from the RAJAPerf suite from Lawrence Liver-
more National Laboratory [16]. These benchmarks range from simple HPC-oriented
loops to real kernels extracted from relevant HPC applications. Table 2 lists the in-
puts used with each benchmark. Sizespec, sizefact, and repfact specify the size of
data structures, the size of inner loop iterations, and the amount of repetitions of the
outer loop, respectively. Moreover, the table includes the operational intensity of each
benchmark-input pair, which is calculated as follows:

Operational Intensity (OI) =
Number of floating point operations
Number of bytes read from memory

The inputs have been chosen in order to represent typical large data structures of
HPC workloads and exhibit representative last-level cache behaviour in terms of

On the Use of ThunderX2 for HPC 5

Table 2: Benchmark inputs and operational intensity (OI).

RAJAPerf Benchmark Sizespec Sizefact Repfact OI

COPY – 60 1 0
MULADDSUB – 192 1 0.08
FLOYD WARSHALL large 1 1 0.13
INT PREDICT – 96 1 0.19
HYDRO 1D – 48 1 0.21
GEMM extralarge 1 1 0.25
JACOBI 1D extralarge 1 25 0.38
EOS – 72 1 0.50
JACOBI 2D extralarge 1 600 1.13
VOL3D – 6 1 1.39
FIR – 192 1 2.00
LTIMES – 92 1 4.49

Benchmark Input OI

HPCG 192 0.13
HACCK 100000 1.50

misses and reuse. Therefore, in most cases, data structures do not fit in the last level
cache. All benchmarks allow parallel execution. Vectorization and parallelization is
achieved by the compiler with the help of pragma hints (#pragma omp parallel for
simd).

Compiler Infrastructure: We have compiled the selected benchmarks for ThunderX2
using the only two representative available compilers: GCC 8.2.0 [7] and the Arm
HPC Compiler 19.0 [10]. The latter is based on the LLVM 7.0.2 tool chain. Both
compilers support auto-vectorization, and both implement the OpenMP standard and
runtime. In particular, OpenMP 4.5 is fully supported for C/C++ in GCC through the
libgomp library (GOMP). On the other hand, the Arm HPC Compiler offers C/C++
support for OpenMP 3.1 and some features of OpenMP 4.0/4.5 through the libiomp
library. Both compilers have entirely different processes to generate optimized code.

With these two compilers, we have generated four binaries for each benchmark-
input pair. For the sake of clarity, a binary is a compiled benchmark-input pair with
a particular combination of vectorization and compiler that we summarize with two
labels. The first label, vectorization, has two values: NEON if the binary has support
for Neon 128 bit Single Instruction Multiple Data (SIMD) technology, or SCALAR,
if the binary does not execute any SIMD instruction. The second label corresponds
to the compiler: GCC or ArmHPC for Arm HPC Compiler. Therefore, SCALAR-
GCC is a binary compiled without SIMD support using GCC, and NEON-ArmHPC
is a binary compiled with Neon SIMD support using the Arm HPC Compiler. Table 3
lists the flags used to compile each benchmark. Note that we have used the same flags
for GCC and for Arm HPC Compiler. In order to obtain the four binaries mentioned
before, we have used four different sets of flags (see Table 4), one for each binary.

For the experiments in Skylake, the benchmark-input pairs do not change while
one compiler does. Arm HPC compiler is replaced by Intel ICC version 18.0.0, while
GCC remains with version 8.2.0 and enables to have a common reference point.

6 Vı́ctor Soria-Pardos et al.

Table 3: Compilation flags for GCC, Arm HPC Compiler, and ICC.

Benchmark GCC and Arm HPC Compiler Flags

HACCK -O3 -ffast-math -fopenmp -funroll-loops -ffp-contract=fast
HPCG -O3 -ffast-math -fopenmp -funroll-loops -std=c++11

-ffp-contract=fast -larmpl lp64 mp
RAJAPerf -O3 -fopenmp -ffast-math

Benchmark ICC Flags

HACCK -O3 -qopenmp -ffast-math -funroll-loops -ffp-contract=fast
HPCG -O3 -qopenmp -ffast-math -funroll-loops -ffp-contract=fast
RAJAPerf -O3 -qopenmp -ffast-math -ansi

Table 4: Compilation flags used for ThunderX2 binaries.

Binary Version Flags for ThunderX2

SCALAR-GCC -march=armv8-a+fp+nosimd -fno-tree-vectorize
SCALAR-ArmHPC -march=armv8-a+fp+nosimd -fno-vectorize
NEON-GCC -march=armv8-a+fp+simd -ftree-vectorize
NEON-ArmHPC -march=armv8-a+fp+simd -fvectorize

Table 5: Specific flags used for Skylake binaries.

Binary label Flags for Skylake

SCALAR-GCC -O3 -march=skylake -mno-sse4 -mno-ssse3 -mno-sse2
-mno-avx -mno-avx2 -mno-avx512f -mno-avx512pf
-mno-avx512er -mno-avx512cd -mno-avx512vl -mno-avx512bw
-mno-avx512dq -mno-avx512ifma -fno-tree-vectorize

AVX512-GCC -march=skylake -msse4 -mssse3 -msse2 -msse -mavx
-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd
-mavx512vl -mavx512bw -mavx512dq -mavx512ifma
-ftree-vectorize -mprefer-vector-width=512

AVX512-ICC -O3 -march=corei7 -qopt-zmm-usage=high -xSKYLAKE-AVX512
-qopenmp -vec

Since ICC does not support disabling SIMD instructions, we have 3 binaries for
each benchmark-input pair in Skylake: SCALAR-GCC, AVX512-GCC for scalar and
SIMD (with AVX-512 instructions) binaries compiled with GCC, and AVX512-ICC
for SIMD ICC compiler.

When compiling with GCC for Skylake, we have used the same flags used for
ThunderX2, and we have found the equivalents flags in ICC (See Table 3). Again we
have use specific flags for each binary, see Table 5.

Power Measurements: Average power consumption measurements use the facilities
available at the rack, where both nodes are mounted. The cluster uses the High Defin-
ition Energy Efficiency Monitoring (HDEEM) library [9], which is a software inter-
face used to measure power consumption of HPC clusters. Measurements are made
via the BMC (Baseboard Management Controller) and a FPGA (Field-Programmable
Gate Array) located at each compute node motherboard. This configuration allows us

On the Use of ThunderX2 for HPC 7

to capture the average power consumed without interfering with processor perform-
ance. The system is able to measure different devices, but since our focus in on the
processor, we capture the processor power rails. Before the execution of our exper-
iments the processor activates GPIO signals to start and stop FPGA data collection.
The FPGA is constantly monitoring the energy drain with a sampling rate of 1ms for
the global board and processor.

Performance Analysis Tools: During our analysis, we have used Extrae [6] and Para-
ver [13]. The former is a dynamic instrumentation package to trace programs that
employ shared memory programming models like OpenMP. Extrae generates trace
files that can be later visualized with Paraver. Paraver is a flexible parallel program
visualization and analysis tool. Paraver provides a qualitative global perception of the
application behavior by visual inspection.

4 Roofline Model of the ThunderX2 Processor

The Roofline model is a simple and visual way to understand program performance
on a given system [27]. A roofline model ties together floating point performance, op-
erational intensity (OI), and memory performance in a two-dimensional graph. The
Y-axis represents the GFlops per second (performance). Theoretical ceilings can be
derived using the hardware specifications. The X-axis is OI, floating point opera-
tions per byte of DRAM traffic. Therefore, we measure traffic between the caches
and memory rather than between the processor and the caches. We can then plot
memory performance by calculating the maximum floating point performance that
the memory system of that computer can support for a given OI. The following for-
mula drives the two performance limits in the roofline model:

GFlops/s = min

{
peak floating point performance
peak memory bandwidth×operational intensity

We have calculated peak performance with the following formula:

Peak GFlops = (CPU speed in GHz)× (number of CPU cores)×
(SIMD element wide)× (flops per operation)×

(number of SIMD units)
(1)

We have used the fused multiply-add (FMA) instruction as reference to com-
pute peak performance. The instruction performs two floating point operations, thus
an FMA using Neon technology performs 4 double precision floating point opera-
tions. ThunderX2 can deliver up to two Neon SIMD FMA instructions of 128 bits
every cycle, which is equivalent to 8 double precision floating point operations. We
calculate two performance ceilings, one for binaries that only use non-vectorized in-
structions, named SCALAR, and one for binaries that use Neon SIMD technology,

8 Vı́ctor Soria-Pardos et al.

0.062 0.125 0.250 0.500 1.000 2.000 4.000 8.000
Operational Intensity (Flop/Byte)

4

8

16

32

64

128

256

512

1024

G
Fl

op
s

NEON

SCALAR

MULADDSUB
FLOYD-WARSHALL
HPCG

INT-PREDICT
HYDRO
GEMM

JACOBI-1D
EOS
JACOBI-2D

VOL3D
HACCK
FIR

LTIMES
Theoretical BW
Empirical BW

Figure 1: Roofline model for 32 ThunderX2 cores. For each benchmark we plot a
vertical line indicating its OI (x-axis). For each vertical line we plot two markers that
indicate performance (y-axis): the triangle indicates the performance obtained with
Neon, and the circle the performance without SIMD support.

named as NEON.

For 32 ThunderX2 cores using scalar instructions in a double precision program:

2.0 GHz×32 cores×1 element wide×2 flops×2 exec. unit = 256 GFlops

For 32 ThunderX2 cores using SIMD in a double precision program: 512 GFlops.
To complete the model the peak memory bandwidth is used. We also plot two

memory ceilings: the theoretical memory bandwidth, which is 170 GB/s; and the em-
pirically measured memory bandwidth reached using the Stream-COPY benchmark,
100 GB/s. Empirical peak memory bandwidth is necessary to understand what is the
real bandwidth achievable in the system.

Figure 1 presents the roofline model of ThunderX2 using 32 cores. This roofline
has the two compute ceilings labeled as SCALAR and NEON and also two memory
bandwidth ceilings. The black line in the figure represents the theoretical bandwidth
and the red line the empirical bandwidth.

Once the ceiling have been plotted we can add to the model different experiments
that have been run on the machine. For each benchmark, we have run two experi-
ments using two different binaries compiled with the Arm HPC Compiler. One of the
binaries has support for SIMD (labeled as NEON), and the other one does not support
any SIMD instructions (labeled as SCALAR). For each of the experiments, we plot
a marker, a circle for SCALAR and a triangle for NEON. These same markers are

On the Use of ThunderX2 for HPC 9

plotted over the corresponding performance ceiling. The Y-axis is the performance
achieved by the experiment (in GFlops) and the X-axis corresponds with the oper-
ational intensity of the benchmark. We have discarded the experiments with GCC
binaries from Figure 1 for clarity. In fact, GCC performance is lower in most of the
experiments as we detail in Section 5.

We can categorize the benchmarks into two groups, those that are below 0.5
Flops/byte and those that are above. The low OI group is formed by benchmarks
that are memory bandwidth bound, since they perform right at the empirical memory
bandwidth threshold. The higher OI group of benchmarks, those above 0.5 Flops/-
byte, are in most cases under the memory bandwidth ceiling, which means that
memory bandwidth is not the main performance-limiting factor.

The only way to speed-up the benchmarks from the low OI group is to increase
the memory bandwidth available. From this group, the only benchmark that is not
restricted by memory bandwidth is JACOBI-1D, due to suboptimal code generation.
For most of these benchmarks, both SCALAR and NEON versions yield the same
performance. In the case of GEMM, SCALAR binaries achieve better performance
than NEON binaries, we explain this performance difference in Section 5.

On the other hand, the group of benchmarks with higher OI is not memory band-
width bound. Increasing available bandwidth would not have an immediate impact on
the performance of these benchmarks. We can see how FIR and LTIMES are further
away from the performance ceiling. In order to speed-up these applications, many
different optimizations can be carried out in hardware (pipeline redesign, wider vec-
tor lengths, higher core count, etc.) and software (compiler optimizations). We have
found that by rewriting the code of FIR and LTIMES and simplifying self-defined
types, the compiler is able to apply additional optimizations, which leads to 1.51×
and 1.98× speed-up, respectively. Further details can be found in Section 6. In addi-
tion, for high OI benchmarks, SIMD provides significant performance improvements
with almost linear scaling in HACCK. The LTIMES benchmark is the exception, be-
cause the compiler is not able to vectorize the code. Manual vectorization is the only
solution in these cases.

We have seen how the roofline model helps to characterize the workloads and can
explain where performance limitations lay. Even though ThunderX2 has abundant
memory bandwidth with 8 memory channels, bandwidth is still a main performance
constraint.

5 Compiler Performance Comparison

This section looks at the performance differences when employing two different com-
pilers, GCC and Arm HPC Compiler, for scalar and vectorized (NEON) code. We
quantify these performance differences in terms of speed-up between four compiled
binaries: GCC with scalar instructions (SCALAR-GCC), GCC enabling NEON sup-
port (NEON-GCC), Arm HPC Compiler with scalar instructions (SCALAR-ArmHPC),
and Arm HPC Compiler enabling NEON support (NEON-ArmHPC).

Figure 2 shows speed-ups for single-threaded executions normalized to SCALAR-
ArmHPC. In single-threaded executions we can observe that vectorization signific-

10 Vı́ctor Soria-Pardos et al.

antly improves performance in most benchmarks, with average speeds-up of 1.47×
for NEON-ArmHPC and 1.50× for NEON-GCC with respect to SCALAR-ArmHPC.
We recall that the theoretic maximum speed-up of NEON vectorization for double
precision floating point programs is 2×. On average, there are no significant differ-
ences between compilers; however, specific benchmarks do have large differences.

CO
PY

MU
LA
DD

SU
B

FL
OY
D_
W
AR
SH
AL
L

HP
CG

IN
T_
PR
ED
IC
T

HY
DR

O

GE
MM

JA
CO

BI
_1
D

EO
S

JA
CO

BI
_2
D

VO
L3
D

HA
CC
K FIR

LT
IM
ES

Ge
om

et
ric
 M
ea
n

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

d-
up

SCALAR-ArmHPC SCALAR-GCC NEON-ArmHPC NEON-GCC

Figure 2: Speed-up of single-threaded executions, normalized to SCALAR-ArmHPC,
on a ThunderX2 processor. Benchmarks are sorted by increasing OI.

These differences are caused by different optimization techniques being applied.
For example: (i) the SCALAR-GCC versions of COPY and FIR are significantly
slower than SCALAR-ArmHPC versions; and (ii) NEON versions of JACOBI 2D
have additional optimizations when compared to their scalar counterparts, leading
to superlinear speed-ups well above the 2× mark. We explain in detail the reasons
behind these differences in Section 6.

There are two benchmarks where compilers are unable to auto-vectorize the code,
i.e., HPCG and LTIMES. In the former, irregular access patterns due to sparse data
structures prevent vectorization of many loops. In the latter, both compilers are not
able to vectorize the loops because NEON does not have gather and scatter instruc-
tions.

The same experiments using 32 threads are shown in Figure 3. The speed-up is
again computed with respect to the single-threaded execution of SCALAR-ArmHPC.
In this second graph, we can see how the memory bandwidth ceiling affects perform-
ance. Only five applications out of 14 have a parallel efficiency of 95%. All these
applications have an OI higher than 1 Flop/byte. On the other hand, 6 benchmarks are
below 50% of parallel efficiency. Since benchmarks are sorted by their operational
intensity, we can see the correlation between scalability and OI, and between vector-
ization and OI. Benchmarks with a low OI, from COPY to EOS, do not benefit from
vectorization, because the available memory bandwidth limits scalability. While the
high OI benchmarks are able to benefit from it; JACOBI 2D, VOL3D, HACCK and

On the Use of ThunderX2 for HPC 11

CO
PY

MU
LA

DD
SU

B
FL
OY

D_
W
AR

SH
AL

L
HP

CG

IN
T_
PR

ED
IC
T

HY
DR

O

GE
MM

JA
CO

BI
_1
D

EO
S

JA
CO

BI
_2
D

VO
L3

D

HA
CC

K FIR

LT
IM

ES
Ge

om
et
ric
 M
ea
n

0

10

20

30

40

50

60

sp
ee
d-
up

SCALAR-ArmHPC SCALAR-GCC NEON-ArmHPC NEON-GCC

Figure 3: Speed-up of 32-threaded executions, normalized to SCALAR-ArmHPC, on
a ThunderX2 processor. Benchmarks are sorted by increasing OI.

FIR. Despite having high OI, LTIMES is not vectorized as mentioned in the previous
section.

The HPCG benchmark is a special case, because the performance of GCC binaries
is specially low (see Figure 3). To have a better insight, we have plotted the scalability
of the benchmark in Figure 4. The X-axis is the number of threads used, and the Y-
axis represents the speed-up achieved with respect to 1-threaded SCALAR-ArmHPC
execution. We can see that the scalability of GCC drops below 12% parallel efficiency
for 32 threads, while Arm HPC Compiler achieves a 50% parallel efficiency. GCC is
performing almost four times slower than Arm HPC Compiler. Regarding vectoriza-
tion, GCC cannot vectorize the sparse matrix operations. On the other hand, the Arm
HPC compiler slightly benefits from vectorization, because SCALAR-ArmHPC ver-
sion is already memory bound. We have analyzed the traces obtained with Extrae [6]
and visualizing them with Paraver [13]. Paraver allows us to plot only the parallel
regions executed during the experiment. Each function is represented with a rect-
angle, while idle execution is represented as white spaces. With this analysis we have
concluded that performance is limited by the fraction of code that is sequential. This
sequential code is part of the OpenMP runtime, and represents a significant part of
the total execution. In the case of Arm HPC Compiler this sequential code is executed
2× faster than in GCC, which explains its higher scalability.

Another interesting case is the JACOBI 1D benchmark: with 32 threads NEON
versions are slower than SCALAR ones. However, for single-threaded executions,
NEON versions are over 1.50× faster than SCALAR. Figure 5 depicts two traces
of JACOBI 1D obtained with Extrae and visualized with Paraver. Figures 5a and
5b depict the same representative time window for SCALAR-ArmHPC and NEON-
ArmHPC executions with 32 threads, respectively. By inspecting both traces, we can
see that in the NEON version there is a thread that in each parallel function takes
more time to finish its work (thread number 29), leading to a significant amount of

12 Vı́ctor Soria-Pardos et al.

0 5 10 15 20 25 30
of threads

2

4

6

8

10

12

14

16

sp
ee

d-
up

SCALAR-GCC NEON-GCC SCALAR-ArmHPC NEON-ArmHPC

Figure 4: Speed-up of HPCG, normalized to 1-thread SCALAR-ArmHPC, using dif-
ferent number of threads on ThunderX2

idle time due to this load imbalance. Load imbalance happens when some threads
have more work than others or one processor takes more time to finish its work. This
problem can typically be solved by changing the scheduling function in the parallel
loops.

6 Compiler Code Generation

In this section, we provide insights on the different optimizations applied by the Arm
HPC Compiler and GCC. As we have seen in Figure 2, there are significant differ-
ences between the two compilers in single threaded performance. Hence, we have
analyzed the assembly code generated by both compilers. We have found two im-
portant optimizations that explain the observed performance differences:

6.1 Loop Unrolling and Multiple Memory Access Instructions.

After analyzing the assembly code of all the binaries, we have found that Load Pair
(ldp) and Store Pair (stp) instructions can have a significant impact. The former in-
struction loads two registers with two consecutive data elements from memory, in-
stead of using two common load instructions. The latter stores two registers into
two consecutive data elements in memory. Arm HPC compiler exploits this func-
tionality as it usually applies a two-iteration loop unrolling optimization, and then it
reduces the number of memory access instructions using ldp and stp. Therefore, the
total number of instructions is reduced. We can find this two-iteration loop unrolling
in COPY, GEMM, JACOBI 1D and FIR in both SCALAR-ArmHPC and NEON-
ArmHPC binaries. In FLOYD WARSHALL and HACCK this optimization is only
applied for vectorized versions. But the Arm HPC Compiler does not only apply

On the Use of ThunderX2 for HPC 13

(a) SCALAR-ArmHPC execution trace

(b) NEON-ArmHPC execution trace

Figure 5: Traces of JACOBI 1D binaries compiled with and without SIMD on the
Arm HPC compiler. The binaries run on the ThunderX2 with 32 threads (only 18 are
plotted for clarity). Y-axis represents the number of threads. X-axis represents time,
both share the same time window. Each rectangle represents one parallel function.
White represents idle.

ldp-optimization to loop unrolling, it also uses it whenever there are two consecutive
accesses in the loop body, such as EOS and JACOBI 2D. The latter only applies this
in vectorized versions, which explains the superlinear speed-up shown in Figure 2.

GCC is not able to apply these optimizations because the RAJAPerf suite is writ-
ten using self-defined (non-standard) types. Therefore, we have designed a simple
experiment in which we modify FIR benchmark by removing all self-defined types.
We have achieved 1.51× speed-up for SCALAR-GCC and 1.32× for NEON-GCC,
matching the performance of the Arm HPC Compiler. Therefore, we can say that this
instruction reduction is the responsible of an important part of the performance dif-
ferences between Arm HPC Compiler and GCC. The few cases where GCC uses ldp
and stp by itself are EOS and JACOBI 1D, in which for one loop iteration there are
two consecutive accesses to a data array that are replaced by a ldp.

14 Vı́ctor Soria-Pardos et al.

Listing 1: COPY assembly code generated
with Arm HPC Compiler

1 #LOOP: ldp x17, x18, [x14, #-8]
2 #I subs x16, x16, #0x2
3 #I add x14, x14, #0x10
4 stp x17, x18, [x15, #-8]
5 #I add x15, x15, #0x10
6 b.ne #LOOP

Listing 2: COPY assembly code generated with
GCC

1 #LOOP: ldr x1, [x20, x0, lsl #3]
2 str x1, [x19, x0, lsl #3]
3 #I add x0, x0, #0x1
4 #I cmp x2, x0
5 b.ne #LOOP

To illustrate the importance of this optimization, we are going to analyze the
assembly code of COPY benchmark (see Listings 1 and 2), and relate it with the mi-
croarchitecture of the core. First, we take a look into SCALAR-ArmHPC assembly
(Listings 1), the Arm HPC compiler does a loop unrolling optimization and then
reduces the number of load instructions using ldp, as we mentioned before. GCC
generates a simpler assembly code, but to compute two iterations of the high-level
for loop code, GCC executes 10 instructions and Arm HPC Compiler just 6. This in-
struction reduction has an impact in the utilization of the inner structures of each core,
enabling more memory-level parallelism, i.e., more in-flight memory operations.

To get insights into this impact, we dig into the structure of our benchmarks and
the memory access patterns they exhibit. All benchmarks have two nested loops, the
outer loop counts the number of times the kernel is executed, and the inner loop(s)
executes the body of the region of interest for all the elements present in the data
structures. Therefore, in most benchmarks one data element is not accessed again
until all the elements of the data structure, or a partitioned block, have been accessed.
Because the size of the data structures is chosen to be representative of real HPC
applications, these rarely fit in low-latency private caches, leading to long-latency
misses. From the three types of misses (i.e., compulsory, capacity, and conflict), most
of them belong to the first or the second categories. This memory access pattern is
typically called streaming or non-temporal.

Programs with long-latency memory accesses have an interesting property. Ima-
gine we have two different binaries of this long-latency access program, and one
version executes less instructions on each iteration of the main loop. It is easy to
see that every 1000 instructions, the binary with less instructions in the main loop
has more memory accesses in-flight than the other binary. Due to the nature of the
accesses, this exposes additional memory-level parallelism. Out-of-order processors
are able to request multiple memory blocks in parallel to hide these latencies; there-
fore, having more outstanding requests in the short-loop binary allows hiding more
efficiently these long-latency misses. However, the number of memory accesses that
can be requested at same time is limited by the capacity of the processor to handle
them. Miss Status Holding Registers (MSHRs) are a microarchitectural component
in charge of keeping all the information of the pending misses. MSHRs are usually
limited to a few entries in L1 caches (i.e., 8 to 16 entries).

Figure 6 shows, for the COPY benchmark, that Arm HPC Compiler generates
more misses per kilo instruction (MPKI) than GCC code. This allows for a better util-
ization of the available memory bandwidth by saturating the available MSHR entries.

On the Use of ThunderX2 for HPC 15

0 5 10 15 20 25 30
of threads

45

50

55

60

65

70

75

80

M
PK

I
SCALAR-GCC SCALAR-ArmHPC

Figure 6: Misses Per Kilo Instruction of SCALAR-ArmHPC and SCALAR-GCC
binaries for COPY benchmark. Executed on ThunderX2 with different thread counts.

We measure the amount of MSHR entries that are busy, with respect to total available
entries as the MSHR utilization. Thus, when we say that a code is saturating the avail-
able MSHR entries this means that the utilization of the MSHR is 100%, and when
there is underutilization this means that is under 100%. However, to measure the util-
ization of th MSHR we need to know the number of entries of ThunderX2, and such
information is not publicly available. Therefore, we will suppouse that ThunderX2
has 12 MSHR entries at the L1 to help us illustrate an example.

We know that ThunderX2 has a ROB of 180 entries [26]. Therefore, analizing the
assembly code in Listings 1 and 2, we can compute how many iterations of the as-
sembly loop can be stored in the ROB, which is 30 complete iterations for SCALAR-
ArmHPC assembly (180/6 = 30) and 36 complete iterations for SCALAR-GCC
(180/5 = 36). Because we know the cache block size is 64 bytes and the memory
accesses pattern is sequential, we know every how many iterations there will be a
miss. Thus, we have 64 bytes/block

8 bytes/element = 8 elements per block. Notice that ldp and stp ac-
cesses two elements at same time. Therefore, every 4 instructions of ldp or stp there is
a miss. In the case of simple ldr or str instructions, there is a miss every 8 instructions
of this type. Thus, SCALAR-ArmHPC executes 15 misses for the 30 assembly iter-
ations stored in the ROB (30

4 × 2 = 15). However, there are only 12 MSHR entries,
so we can say that we are fully utilizing all MSHRs, exploiting memory-level paral-
lelism. On the other hand, for SCALAR-GCC there are 9 cache misses (36

8 ×2 = 9),
which is only a 75% utilization of the MSHRs. With this simple example we have
seen how shorter codes lead to a better utilization of the resources of the core and of
the available memory bandwidth.

16 Vı́ctor Soria-Pardos et al.

Listing 3: INT PREDICT assembly code
generated with Arm HPC Compiler

1 #LOOP:
2 #I lsl x2, x9, #3
3 #C ldr d0, [x22]
4 ldr d1, [x11, x2]
5 #C ldr d2, [x20]
6 ldr d3, [x12, x2]
7 #C ldr d4, [x19]
8 fmul d0, d1, d0
9 ldr d1, [x13, x2]

10 fmadd d0, d3, d2, d0
11 #C ldr d2, [x23]
12 ldr d3, [x14, x2]
13 fmadd d0, d1, d4, d0
14 #C ldr d1, [x21]
15 ldr d4, [x15, x2]
16 fmadd d0, d3, d2, d0
17 #C ldr d2, [x28]
18 ldr d3, [x16, x2]
19 fmadd d0, d4, d1, d0
20 #C ldr d1, [x27]
21 ldr d4, [x17, x2]
22 fmadd d0, d3, d2, d0
23 ldr d2, [x18, x2]
24 ldr d3, [x0, x2]
25 fmadd d0, d4, d1, d0
26 ldr d1, [x1, x2]
27 #C ldr d4, [x26]
28 fadd d2, d3, d2
29 #I cmp x9, x8
30 fadd d0, d0, d1
31 fmadd d0, d2, d4, d0
32 #I add x9, x9, #0x1
33 str d0, [x10, x2]
34 b.lt #LOOP

Listing 4: INT PREDICT assembly code gener-
ated with GCC

1 #LOOP:
2 ldr d0, [x0, x21, lsl #3]
3 ldr d1, [x0, x26, lsl #3]
4 ldr d16,[x0, x28, lsl #3]
5 fmul d0, d10, d0
6 ldr d6, [x0, x23, lsl #3]
7 fmadd d1, d9, d1, d0
8 ldr d5, [x0, x22, lsl #3]
9 ldr d4, [x0, x24, lsl #3]

10 ldr d3, [x0, x19, lsl #3]
11 ldr d2, [x0, x20, lsl #3]
12 ldr d0, [x0, x27, lsl #3]
13 ldr d7, [x0, x25, lsl #3]
14 fadd d1, d1, d16
15 fadd d0, d0, d7
16 fmadd d1, d11, d6, d1
17 fmadd d1, d12, d5, d1
18 fmadd d1, d13, d4, d1
19 fmadd d1, d14, d3, d1
20 fmadd d1, d15, d2, d1
21 fmadd d0, d8, d0, d1
22 str d0, [x0], #8
23 #I cmp x0, x1
24 b.ne #LOOP

6.2 Register Management.

Another important difference between GCC and Arm HPC Compiler is the manage-
ment of registers. Register content can be classified in three groups: control data (in-
dices, loop counters, addresses), constants (fixed values used on each iteration), and
variables. Between the two compilers, most differences are in the first two groups.

For control data, GCC optimizes the use of registers and uses only one register
to store loop control counters and indices. To illustrate this optimization, we use the
previous code of COPY (Listings 1 and 2) and also INT PREDICT code (Listings
3 and 4). In the listings, we have labeled each ”index generation” or ”loop control”
instruction with the marker #I at the beginning of the line. In these benchmarks, we
can see how Arm HPC Compiler uses different registers for indexing addresses and
loop control. In Listing 1, line 2 is the loop control instruction and lines 3 and 5 are
the index calculations. In Listing 3, lines 29 and 32 are the loop control instructions
and line 2 is the index calculation. On the other hand, GCC uses control loop coun-
ters as addresses or indices. In Listing 2, lines 3 and 4 are the control loop and the

On the Use of ThunderX2 for HPC 17

index calculation instructions. In 4, line 23 is the control loop instruction, and address
calculation is done using post-increment indexing in line 22.

For COPY and INT PREDICT benchmarks the amount of extra instructions due
to control data is small, only one and two instructions, respectively. However, in the
case of VOL3D, Arm HPC Compiler executes 24 instructions to update addresses
while GCC only uses one instruction, which represents a 20% increase on the number
of instructions in the loop body.

For constants, GCC always tries to keep them stored in registers whenever pos-
sible. This makes the core access to constants only once before start executing the
kernel loop. On the other hand, Arm HPC Compiler tries to use the minimum number
of registers, so every iteration loads constants from memory. Out-of-Order execution
hides the latency of accessing these constants from the L1 cache. However, those in-
structions consume entries in the ROB, slightly harming performance. In Listings 3
and 4 we have labeled the instructions that load constants in every iteration with the
tag #C. As we can see, GCC executes 8 instructions less than Arm HPC Compiler
(25% less) for constants on each iteration, at the expense of occupying 8 additional
registers.

7 ThunderX2 and Skylake Performance Comparison

This section presents a quantitative comparison between ThunderX2 and Skylake-
based Xeon processors. Both processors are high-end products designed for HPC and
server workloads. Figure 7 shows the single-threaded performance speed-up com-
parison normalized to the execution time of ThunderX2 single-threaded SCALAR-
ArmHPC experiments. For the sake of clarity, all ThunderX2 results are the same
from Figure 2 with the prefix TX2, and Figure 7 adds the relative speed-ups us-
ing the Skylake processor as well. Skylake experiments correspond to 3 versions:
GCC without SIMD support (SKX-SCALAR-GCC), GCC with support for AVX512
(SKX-AVX512-GCC), and ICC with support for AVX512 (SKX-AVX512-ICC).

On average, SKX-SCALAR-GCC is 1.93× faster than SCALAR versions of
ThunderX2, i.e., Skylake cores are much more performant due to their aggressive
out-of-order design (see Table 1 for the details). When Skylake uses AVX512 ex-
tensions, it achieves a modest speed-up of 3.39×, while the potential speed-up of
AVX512 is up to 8×. The modest speed-up is because most benchmarks are already
memory bound, that is, the core is already saturating all the memory bandwidth
with the scalar versions of the benchmarks. This is apparent in low operational in-
tensity benchmarks (from COPY to HYDRO), for which SKX-SCALAR-GCC is
on par with SKX-AVX512-GCC. This precludes the Skylake core from obtaining
benefits due to vectorization. For the benchmarks with the lowest OI (COPY, MU-
LADDSUB, FLOYD WARSHALL), ThunderX2 is able to match Skylake perform-
ance. On the other hand, benchmarks with higher OI do benefit from the performance
boost AVX512 can offer, which results in over 8× speed-ups when compared to TX2-
SCALAR-ArmHPC.

We have seen how Skylake beats ThunderX2 performance for single thread ex-
ecutions. However, ThunderX2 has a significant lead in peak memory bandwidth

18 Vı́ctor Soria-Pardos et al.

CO
PY

MU
LA

DD
SU

B
FL

OY
D_

W
AR

SH
AL

L
HP

CG
IN

T_
PR

ED
IC

T
HY

DR
O

GE
MM

JAC
OB

I_1
D

EO
S

JAC
OB

I_2
D

VO
L3

D

HA
CC

K FIR

LT
IM

ES
Ge

om
et

ric
 M

ea
n

0.1

0.2

0.5

1.0

2.0

4.0

8.0

sp
ee

d-
up

TX2-SCALAR-ArmHPC
TX2-SCALAR-GCC

TX2-NEON-ArmHPC
TX2-NEON-GCC

SKX-SCALAR-GCC
SKX-AVX512-GCC

SKX-AVX512-ICC

Figure 7: Speed-up of single-threaded runs with respect to TX2-SCALAR-ArmHPC
on ThunderX2 and Skylake. Benchmarks sorted by increasing OI.

CO
PY

MU
LA

DD
SU

B
FL

OY
D_

W
AR

SH
AL

L
HP

CG
IN

T_
PR

ED
IC

T
HY

DR
O

GE
MM

JAC
OB

I_1
D

EO
S

JAC
OB

I_2
D

VO
L3

D

HA
CC

K FIR

LT
IM

ES
Ge

om
et

ric
 M

ea
n

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

sp
ee

d-
up

TX2-SCALAR-ArmHPC
TX2-SCALAR-GCC

TX2-NEON-ArmHPC
TX2-NEON-GCC

SKX-SCALAR-GCC
SKX-AVX512-GCC

SKX-AVX512-ICC

Figure 8: Speed-up of multi-threaded runs with respect to 1-thread TX2-SCALAR-
ArmHPC on ThunderX2 and Skylake. Benchmarks sorted by increasing OI.

(170 vs. 120 GB/s), and a more balanced architecture in terms of memory band-
width per flop. Figure 8 shows the speed-ups for multi-threaded executions. In this
case, the lead of Skylake over ThunderX2 diminishes significantly. On average, both
SCALAR versions have similar performance, and Skylake is only able to beat TX2-
NEON-ArmHPC (22× speed-up) on high OI benchmarks, especially when using the
AVX512 extension (28.20× speed-up). The additional memory bandwidth available
in ThunderX2 has a significant impact in terms of performance. In low OI bench-

On the Use of ThunderX2 for HPC 19

MU
LA
DD
SU
B

FL
OY
D_
W
AR
SH
AL
L

HP
CG

IN
T_
PR
ED
IC
T

HY
DR
O

GE
MM

JA
CO
BI
_1
D

EO
S

JA
CO
BI
_2
D

VO
L3
D

HA
CC
K FIR

LT
IM
ES

Ge
om
et
ric
 M
ea
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

GF
lo
ps
/W
at
t

SCALAR-ArmHPC SCALAR-GCC NEON-ArmHPC NEON-GCC

Figure 9: GFlops per Watt consumed for every benchmark executed in ThunderX2
node. Benchmarks are sorted by increasing OI. Benchmarks without floating point
operations are omitted for clarity.

marks such as COPY, MULADDSUB, FLOYD WARSHALL, INT PREDICT, and
JACOBI 1D; ThunderX2 is able to outperform Skylake. For high OI benchmarks,
ThunderX2 is only able to outperform Skylake in VOL3D. To conclude, HPC applic-
ation performance can be largely driven by the available memory bandwidth. Despite
having a modest single-threaded performance, ThunderX2 is able to compete with
a Skylake processor due to its 8 memory channels that yield a better memory band-
width. In high OI benchmarks, the AVX512 extension makes a large difference as it
is able to extract abundant data-level parallelism. The arrival of technologies such as
SVE in Arm platforms can help close this performance gap.

8 Power Efficiency of ThunderX2 Processor

As mentioned before, power efficiency is of paramount importance in large-scale
deployments. In this section, we first measure the power efficiency of ThunderX2,
and then compare it with other commercial solutions, namely Skylake. We employ
the power measuring infrastructure described in Section 3, which is shared by the two
evaluated processors. Using this infrastructure we are able to compute performance-
power metrics such as GFlops per Watt. This will enable us to gauge the relationships
that exist between the additional power devoted to achieve better performance (i.e.,
aggressive speculation, wider vector lengths, etc) and the final throughput obtained
in terms of GFlops.

Figure 9 depicts the GFlops per Watt achieved for every benchmark. As in pre-
vious sections, benchmarks are sorted by operational intensity. We can observe that
OI is correlated with performance per power unit. In low OI benchmarks, processors

20 Vı́ctor Soria-Pardos et al.

MU
LA

DD
SU

B
FL

OY
D_

W
AR

SH
AL

L
HP

CG
IN

T_
PR

ED
IC

T
HY

DR
O_

1D

GE
MM

JAC
OB

I_1
D

EO
S

JAC
OB

I_2
D

VO
L3

D

HA
CC

K FIR

LT
IM

ES
Ge

om
et

ric
 M

ea
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

GF
lo

ps
/w

at
t

TX2-SCALAR-ArmHPC
TX2-SCALAR-GCC

TX2-NEON-ArmHPC
TX2-NEON-GCC

SKX-SCALAR-GCC
SKX-AVX512-GCC

SKX-AVX512-ICC

Figure 10: GFlops per Watt consumed for every benchmark executed using 32 threads
in ThunderX2 (TX2, dashed bars) and 28 threads in Skylake (SKX). Benchmarks are
sorted by increasing OI. Benchmarks without floating point operations are omitted
for clarity.

waste most of their cycles waiting for data to arrive. In contrast, high OI benchmarks
achieve significantly better performance per unit of power, as they spend most of the
time executing floating point operations. In general, all benchmarks are far from the
theoretic maximum GFlops/W for ThunderX2, which is 2.84 = 512 peak GFlops

180 watts TDP . This
is expected as reaching peak floating-point performance is challenging. On average,
ThunderX2 achieves an efficiency of 0.20 GFlops/W. HPCG present the lowest power
efficiency, around 0.003 GFlops/W for GCC and 0.007 for Arm HPC Compiler.

We have performed the same experiments on the Skylake processor. Figure 10
shows the performance per Watt comparison between ThunderX2 (labeled as TX2)
and Skylake (labeled as SKX) processors. As in previous figures, for Skylake we have
SCALAR an AVX512 versions using GCC, and AVX512 versions using ICC.

On average, Skylake is around 7% more efficient when comparing SCALAR ver-
sions, and 50% when comparing SIMD versions. There are several factors that affect
performance-power trade-offs and explain these differences. One factor is the fact
that Skylake has two execution units more than ThunderX2, these can improve per-
formance when turned on, and are easy to switch off when unused. Additionally,
Skylake uses a decoded instruction cache, which allows turning off the decode and
fetch stages frequently. Finally, Skylake’s vector length is four times that of Thun-
derX2. Wider vector lengths present good power efficiency when there is sufficient
vector utilization, as can be seen in high OI benchmarks.

The power efficiency of both processors is similar for low OI benchmarks, as per-
formance is memory-bound, which hides microarchitectural differences. On the other
hand, in high OI benchmarks, Skylake is clearly more efficient in most benchmarks,

On the Use of ThunderX2 for HPC 21

as can be seen in JACOBI 1D, JACOBI 2D, HACCK FIR, and LTIMES benchmarks;
nonetheless ThunderX2 is better in EOS and VOL3D kernels. Overall, we conclude
that for SCALAR versions both processors have similar performance-power metrics,
and the main difference resides in Skylake’s wider vectors, which lead to better ef-
ficiency when their utilization is high. As mentioned above, technologies like SVE,
that will enable wider vectors on Arm platforms, can close this performance-power
gap and make future Arm-based SoC more competitive.

9 Conclusions

This article characterizes in detail the Marvell ThunderX2 processor running HPC
workloads. We have seen how even with 170 GB/s of bandwidth, performance of 8
out of 14 HPC benchmarks is memory bandwidth limited. Memory bandwidth pre-
cludes benefits coming from the utilization of SIMD extensions. When bandwidth is
not the limiting factor, NEON vectorization improves performance, ranging between
1.32× and 2.0× for JACOBI 2D and VOL3D benchmarks, respectively. However, in
some cases, suboptimal vector code generation leads to processor performance that
is far from the memory bandwidth and computational ceilings.

We have compared the performance of two different compilers, GCC and Arm
HPC Compiler, in order to test their maturity and expose differences in code gen-
eration. We can conclude that the Arm HPC Compiler is already a solid tool able
to yield better performance than GCC on average. Furthermore, to understand per-
formance differences across the two compilers, we have dug into the details of the
generated assembly code to identify the different optimizations applied. In general,
simple optimizations are effective in order to speed-up the workloads, which is no-
ticeable in single-thread executions. These optimizations try to reduce the amount
of total instructions executed, by replacing multiple consecutive memory accesses
by pair memory accesses, by unifying the control loop counters with the array in-
dices, or by keeping constants in registers. However, these optimizations do not make
a substantial difference on multi-threaded executions due to the memory bandwidth
bottleneck.

We have also presented a comparison between ThunderX2 and a Skylake-based
processor. In scalar single-thread performance Skylake, is 1.93× faster than Thun-
derX2. However, multi-threaded executions in ThunderX2 nearly match Skylake’s
performance, mainly due to higher memory bandwidth available. In addition, we have
also compared the power efficiency of both processors and found that the Skylake ar-
chitecture is ahead in terms of performance per power unit (GFlops/W). While this
difference is not large in scalar executions, i.e., around 7%, it is quite noticeable on
SIMD runs, where Skylake is about 50% more efficient due to its AVX512 extension.

In the future, we intend to research the effects of Arm SVE on performance and
power efficiency and include additional compilers, in order to have a broader view of
the Arm HPC ecosystem.

22 Vı́ctor Soria-Pardos et al.

References

1. Adrià Armejach, Helena Caminal, Juan M. Cebrian, Rekai González-Alberquilla, Chris Adeniyi-
Jones, Mateo Valero, Marc Casas, and Miquel Moretó. Stencil codes on a vector length agnostic
architecture. In Proceedings of the 27th International Conference on Parallel Architectures and Com-
pilation Techniques, PACT, pages 13:1–13:12. ACM, 2018.

2. Adrià Armejach, Helena Caminal, Juan M. Cebrian, Rubén Langarita, Rekai González-Alberquilla,
Chris Adeniyi-Jones, Mateo Valero, Marc Casas, and Miquel Moretó. Using arm’s scalable vector
extension on stencil codes. J. Supercomput., 76(3):2039–2062, 2020.

3. Adrià Armejach, Marc Casas, and Miquel Moretó. Design trade-offs for emerging HPC processors
based on mobile market technology. J. Supercomput., 75(9):5717–5740, 2019.

4. F.F Banchelli-Gracia, D. Ruiz, Y. Hao-Xu-Lin, and F. Mantovani. Is Arm software ecosystem ready
for HPC? In SC17: International Conference for High Performance Computing, Networking, Storage
and Analysis, 2017.

5. E. Blem, J. Menon, and K. Sankaralingam. Power struggles: Revisiting the RISC vs. CISC debate
on contemporary ARM and x86 architectures. In 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), pages 1–12, Feb 2013.

6. BSC. Extrae: Paraver trace-files generator. https://tools.bsc.es/extrae, 2019. [Online;
accessed 21-July-2019].

7. Inc. Free Software Foundation. GCC 8.2.0. http://aiweb.techfak.uni-bielefeld.de/
content/bworld-robot-control-software/, 2019. [Online; accessed 21-July-2019].

8. M. Garcia-Gasulla, F. Mantovani, M. Josep-Fabrego, B. Eguzkitza, and G. Houzeaux. Runtime mech-
anisms to survive new hpc architectures: A use case in human respiratory simulations. The Interna-
tional Journal of High Performance Computing Applications, page 1094342019842919.

9. D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. E. Nagel, M. Simon, and Y. Georgiou. HDEEM:
High definition energy efficiency monitoring. In Proceedings of the 2Nd International Workshop on
Energy Efficient Supercomputing, E2SC ’14, pages 1–10, 2014.

10. Arm Holdings. Arm HPC compiler 19.0. https://developer.arm.com/
tools-and-software/server-and-hpc/arm-architecture-tools/
arm-allinea-studio/download, 2019. [Online; accessed 21-July-2019].

11. A. Jackson, A. Turner, M. Weiland, N. Johnson, O. Perks, and M. Parsons. Evaluating the arm ecosys-
tem for high performance computing. In Proceedings of the Platform for Advanced Scientific Com-
puting Conference, PASC 19, New York, NY, USA, 2019. Association for Computing Machinery.

12. A. Jundt, A. Cauble-Chantrenne, A. Tiwari, J. Peraza, M. A. Laurenzano, and L. Carrington. Compute
bottlenecks on the new 64-bit arm. In Proceedings of the 3rd International Workshop on Energy
Efficient Supercomputing, E2SC ’15, pages 6:1–6:7, 2015.

13. J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. Dip: A parallel program development
environment. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-
Par’96 Parallel Processing, pages 665–674, 1996.

14. Sandia National Laboratories. HPCG benchmark. https://github.com/hpcg-benchmark/
hpcg/, 2018. [Online; accessed 21-July-2019].

15. Argonne National Laboratory. HACCKernels benchmark. https://xgitlab.cels.anl.
gov/hacc/HACCKernels, 2018. [Online; accessed 21-July-2019].

16. Lawrence Livermore National Laboratory. RAJAPerf. https://xgitlab.cels.anl.gov/
hacc/HACCKernels, 2018. [Online; accessed 21-July-2019].

17. M. A. Laurenzano, A. Tiwari, A. Jundt, J. Peraza, W. A. Ward, R. Campbell, and L. Carrington.
Characterizing the performance-energy tradeoff of small Arm cores in HPC computation. In Fernando
Silva, Inês Dutra, and Vı́tor Santos Costa, editors, Euro-Par 2014 Parallel Processing, pages 124–137,
2014.

18. Kevin T. Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant D. Patel, Trevor N. Mudge,
and Steven K. Reinhardt. Understanding and designing new server architectures for emerging
warehouse-computing environments. In 35th International Symposium on Computer Architecture
(ISCA 2008), June 21-25, 2008, Beijing, China, pages 315–326. IEEE Computer Society, 2008.

19. Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Yusuf Onur Koçberber, Javier
Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Özer, and Babak Falsafi. Scale-out
processors. In 39th International Symposium on Computer Architecture (ISCA 2012), June 9-13,
2012, Portland, OR, USA, pages 500–511. IEEE Computer Society, 2012.

On the Use of ThunderX2 for HPC 23

20. S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru. Comparative benchmarking of the first
generation of HPC-optimised Arm processors on Isambard. In Cray User Group, 5 2018.

21. F. Petrogalli and P. Walker. LLVM and the automatic vectorization of loops invoking math routines:
-FSIMDMATH. In 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC), pages 30–38, Nov 2018.

22. N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. O. Vilarrubi, C. Gomez, L. Backes, D. Nieto, H. Ser-
vat, X. Martorell, J. Labarta, E. Ayguade, C. Adeniyi-Jones, S. Derradji, H. Gloaguen, P. Lanucara,
N. Sanna, J. Mehaut, K. Pouget, B. Videau, E. Boyer, M. Allalen, A. Auweter, D. Brayford, D. Ta-
fani, V. Weinberg, D. Brmmel, R. Halver, J. H. Meinke, R. Beivide, M. Benito, E. Vallejo, M. Valero,
and A. Ramirez. The mont-blanc prototype: An alternative approach for HPC systems. In SC ’16:
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 444–455, Nov 2016.

23. G. Ramirez-Gargallo, M. Garcia-Gasulla, and F. Mantovani. Tensorflow on state-of-the-art HPC
clusters: A machine learning use case. In 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pages 526–533, May 2019.

24. A. Rico, J. A. Joao, C. Adeniyi-Jones, and R. V. Hensbergen. Arm HPC ecosystem and the ree-
mergence of vectors: Invited paper. In Proceedings of the Computing Frontiers Conference, pages
329–334, 2017.

25. N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell, G. Magklis,
A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. The Arm Scalable Vector Extension.
IEEE Micro, 37(2):26–39, March 2017.

26. Wikichip. Wikichip: Vulcan microarchitecture. https://en.wikichip.org/wiki/
cavium/microarchitectures/vulcan, 2019. [Online; accessed 21-July-2019].

27. S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual performance model for
multicore architectures. Commun. ACM, 52(4):65–76, April 2009.

28. D. Yokoyama, B. Schulze, F. Borges, and G. Mc Evoy. The survey on arm processors for hpc. The
Journal of Supercomputing, 2019.

29. T. Yoshida. Fujitsu high performance CPU for the post-k computer. In Hot Chips 30 Symposium
(HCS), Series Hot Chips, volume 18, 2018.

