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Abstract. The major reason for using a simulator, instead of a real test-bed, is to enable
repeatable evaluation of large-scale cloud systems. CloudSim, the most widely used simula-
tor, enables users to implement resource provisioning, and management policies. However,
CloudSim does not provide support for: (i) interactive on-line services; (ii) platform hetero-
geneities; (iii) virtual machine (VM) migration modelling; and (iv) other essential models
to abstract a real datacenter. This paper describes modifications needed in the classical
CloudSim to support realistic experimentations that closely match experimental outcomes
in a real system. We extend, and partially re-factor CloudSim to “PerficientCloudSim” in
order to provide support for large-scale computation over heterogeneous resources. In the
classical CloudSim, we add several classes for workload performance variations due to: (a)
CPU heterogeneities; (b) resource contention; and (c) service migration. Through plausible
assumptions, our empirical evaluation, using real workload traces from Google and Microsoft
Azure clusters, demonstrates that “PerficientCloudSim” can reasonably simulate large-scale
heterogeneous datacenters in respect of resource allocation and migration policies, resource
contention, and platform heterogeneities. We discuss statistical methods to measure the ac-
curacy of the simulated outcomes.
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1 Introduction

Quantifying the performance of resource provisioning policies in a real cloud platform for dif-
ferent workload models under transient conditions is challenging due to, at least, three reasons:
(i) clouds exhibit varying demands, system sizes and hardware resources; (ii) cloud users have
heterogeneous and competing QoS requirements; and (iii) workloads have varying performance
needs [1]. Furthermore, the use of real IaaS (Infrastructure as a Service) clouds to benchmark the
workload performance and infrastructure energy consumption under these variable conditions is
constrained by real test-bed availability. Consequently, it is difficult to reproduce verified results
and findings that can be trusted. In addition, it would be time-consuming and, therefore, costly (in
terms of efforts) to re-configure benchmarking parameters across a large-scale real IaaS cloud for
multiple runs and experimentation. Therefore, in large-scale real IaaS clouds, it is not reasonable
to conduct benchmarking experiments in a repeatable and scalable manner, and other evaluation
methods should be adopted.
A more feasible alternative is the use of simulations. Simulation tools make it possible to evaluate
new research hypothesis, proposals, algorithms and/or ideas (here resource/CPU heterogeneity,
modelling workload co-location, migration performance and infrastructure energy consumption,
benchmarking the cloud workloads) in a controlled platform which helps to reproduce the results
easily. Simulations might also offer benefits by allowing to: (i) test services in a repeatable platform;
and (ii) tune system bottlenecks before deploying on to real clouds. Furthermore, to develop and
test adaptive application provisioning techniques in the context of cloud computing, simulations
enable evaluation of heterogeneous workloads, applications and datacenter resources. Note that,
due to the abstraction of the real system, it is not essential that the simulator must be as precise
as a complete real-world cloud platform in producing results and findings. However, comparable
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results could be produced very cheaply and quickly with small programming efforts. Precision and
accuracy of various cloud simulators including CloudSim is further described in [2], [3]. Further-
more, as workload performance varies with respect to resource heterogeneities – CPU architectures,
as shown in Fig. 1 – therefore, it is essential to model such variations in workload performance
during simulations. Similarly, energy consumption of a virtualised server is strongly correlated with
the number of VMs running on it but not server energy efficiency. VMs migrations cost energy and
degrade workload performance, therefore, users experience higher monetary costs. All these factors
have negative impact on the service provisioning and consolidation policies, cloud economics and
energy related costs. Therefore, it is important to choose appropriate models while simulating a
particular system.
There are a number of cloud simulators suggested in the literature. These include but are not
limited to DISSECT-CF [4], CloudSim [1], GreenCloud [5] and DCSim [6]. Albeit, none of these
simulators can abstract a complete real platform; however, each one can, at least, model a particu-
lar aspect of a real system. For example, CloudSim is more focused on modelling resource allocation
policies while GreenCloud is more focused on datacenter networks. CloudSim is an extension of
the GridSim [7] simulator that uses SimJava1 library as a framework for passing messages among
various entities and event handling. It is also capable to carry out simulations of heterogeneous IaaS
clouds where different applications (workflows) are being executed using numerous experimental
parameters. CloudSim and its variants enable programmers to deliberate different characteristics of
datacenters, including the number and specification (CPU models) of hosts, memory, storage, net-
work topology, bandwidth and design of datacenter usage. Besides these, turning on/off hosts, VM
consolidation through migrations, and integration of energy models (SPECpower2 benchmarks) are
the notable features of CloudSim to model energy, performance and cost efficient datacenters [8].
DCSim provides a very attractive and systematic rack layering approach for modelling a datacenter
architecture. In this paper, we make use of CloudSim due to two reasons: (a) its popularity and
wide use within the cloud research community; and (b) the theme of work i.e. resource allocation.
However, we believe that still CloudSim cannot model a realistic heterogeneous cloud platform.
For example, it does not provide a function to add or remove VMs while the simulation is running,
which is necessary for the implementation of a real datacenter that runs interactive, on-line, ser-
vices. Normally, all the simulation entities are instantiated at the beginning and terminated at the
end of the simulations. The main distribution of CloudSim expect users to specify the arrival times
and service demands of all VMs in advance, which is not possible for on-line services e.g. computer
games – most likely the resource demand of interactive services varies significantly over time. More-
over, VMs performance is strongly dependent on the CPU platform or architecture running them,
as demonstrated in [9] – similar workloads may experience quite different execution times. Simi-
larly, co-located VMs with similar workloads, particularly if competing for same resources, could
also negatively affect workload performance, execution times and, therefore, costs [10], [11]. For
example, Fig. 1 describes variations in workload runtimes when run over different CPU architecture
or when co-located with other VMs on a particular CPU architecture i.e. E5430 performs best while
E5645 performs worst for Bzip2 application. Similarly, energy efficiency of a virtualised host can
be related to the total number of VMs just like the fuel consumption, fare and number of people
in a car and a bus. A bus consumes more fuel but still cheaper than a car when available seats are
full. These performance models and variation in workload performance, due to CPU architecture,
co-location and service migration, would certainly affect infrastructure energy efficiency, service
revenues (energy bills) and user’s monetary costs. Therefore, it is essential to account for all these
factors when simulating a particular cloud system. We believe that these models, in particular, the
CPU heterogeneity model is not considered in available cloud simulators.
In this paper, we offer an extension to the classical CloudSim simulator through adding several
important features and characteristics of large-scale heterogeneous platforms, as described above.
We call this “PerficientCloudSim” – where perficient is both a portmanteau term for performance
and energy efficient, and also as a word in its own right relating “effective” or “something that

1 http://www.dcs.ed.ac.uk/home/simjava/tutorial/

2 https://www.spec.org/power ssj2008/
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Fig. 1: Variations in workload performance due to platform heterogeneities and interference [11],
[12], [left: Bzip2 runtimes over three different CPU platforms – right: two applications (Grep, Sort)
runtimes over two different CPU platforms with various number of co-located VMs] – a particular
host’s co-location interference is highly correlated with the number of VMs running on it

accomplishes or completes a task”. The proposed simulator can be used to simulate and evaluate
energy and performance aware resource provisioning, consolidation and management policies in
infrastructure clouds (IaaS). Our package consists of several important classes to model: (i) CPU
heterogeneity - as instances of similar types may perform quite differently on various architec-
tures [9]; (ii) migration energy consumption - migration also consumes energy because there are
two VMs running for the duration of the migration (one on the source host and another one, newly
created that should be synchronised, on the target host) [3]; (iii) virtualised power model to mea-
sure VM energy consumption [12]; and (iv) resource contention due to co-located VMs [11]. We
evaluate PerficientCloudSim for energy, performance and cost aware resource management policies
(resource allocation and consolidation) using several realistic, plausible assumptions, datacenter
set-up and real workload traces from the Google’s cluster [13]. Furthermore, we are not aware of
the existence of a similar simulator, which could model resource/platform (architecture) hetero-
geneities, in the cloud research community.
The rest of the paper is organized as follows. A discussion on the major shortcomings of the clas-
sical CloudSim simulator can be found in Sec. 2. Major contributions of the work presented in this
paper are illustrated in Sec. 3. We offer an overview of the related work and simulators in Sec. 4. In
Appendix A, we introduce the classic version of the CloudSim simulator; and a brief discussion of
its main and core classes. The extended version of the simulator i.e. PerficientCloudSim is described
in Sec. 5. The empirical evaluation study of the proposed PerficientCloudSim simulator, using real
workload traces, is described in Sec. 6. We discuss various validation and verification techniques
and the accuracy of the proposed simulator (results) in Sec. 7. Finally, Sec. 8 concludes this paper
along with several future research directions. A detail discussion of the CloudSim simulator can be
found in App. A.

2 Problem Description

As described earlier, cloud workloads may run quite differently and variations in runtimes can
be related to CPU heterogeneities and total number of co-located VMs on a particular host that
compete for same resources (i.e. they run similar workloads) [9], [11]. Moreover, energy efficiency
of resources (hosts) could be translated to energy consumption of individual VMs and their total
counts, accommodated on a host [14]. Similarly, migration of VMs may create resource contention
due to co-location that subsequently affects workload performance and energy consumption. Prior
studies [9], [11] have shown that, in public clouds, similar workloads run quite differently on same
VMs (instance classes) which are hosted on different or even similar servers (CPU architectures).
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Furthermore, a particular CPU model might run a specific application faster; but, same CPU
model may not run other applications with required quality of service. Therefore, performance
measurement is an important feature for cloud, in particular, real-time workloads. Subsequently,
performance affects users’ monetary costs; while energy consumption affects our environment and
infrastructure energy bills, therefore, revenue. Therefore, it is essential to account for all these
factors, particularly, when simulating public cloud scenarios where real world experimentation are
too difficult to carry out. The goal of a particular simulated environment would be to represent
a realistic platform in order to guarantee accurate and verifiable results. Most publicly available
IaaS cloud simulators do not account for such performance variations. Albeit, CloudSim is the most
widely used (and cited) simulator in the cloud research community, however, it has the following
major limitations:

– in IaaS cloud, VMs performance (runtime) is log-normally distributed with respect to CPU
architecture; and CloudSim does not account for this;

– on a particular host, co-located VMs with similar workloads competing for same resources suffer
from significant performance degradation (performance interference), and classical CloudSim
does not account for that;

– there is no migration technique implemented nor any abstract class or model is available that
could offer an affective approach to VM migration, such as pre-copy, post-copy etc. – albeit
migrations are performed;

– it does not have any model to account for VM migration energy consumption and performance
degradation; and

– since event-based simulations are, naturally, memory hungry; therefore, CloudSim abnormally
terminates when reading large files.

In order to accurately evaluate resource provisioning and management policies, particularly perfor-
mance and cost aware, the above limitations of the classical CloudSim package must be addressed.
In this paper, we propose “PerficientCloudSim” that accounts for the above limitations, as de-
scribed in Sec. 3. In particular, we offer several statistical models to capture a real heterogeneous
IaaS as close as possible. Furthermore, performance degradation due to CPU models and appli-
cation heterogeneities are integrated. Similarly, resource contention and virtualised host energy
models are abstracted. Researchers who are interested in gaining energy, performance, and cost
benefits, in infrastructure clouds, can use PerficientCloudSim simulator to evaluate appropriate
resource allocation, placement and consolidation with migrations techniques. Besides class naming
that starts from the word “Google”, as shown in Fig. 7, the proposed simulator is a general pur-
pose and can be used to replay real workload traces from other service providers such as Microsoft
Azure cloud [15], HPC [16] and PlanetLab [8].

3 Major Contributions

This paper suggests a simulator that can be used to model heterogeneous cloud datacenters with
varying demand and applications. The major contributions of the research conducted in this paper
are:

– an extended version of the well-known CloudSim simulator “PerficientCloudSim” is developed
that could abstract a real heterogeneous datacenter more closely (statistically validated and
verified);

– several modifications are presented, in terms of VM migration costs (such as energy consump-
tion and performance loss - 10% [8]), application heterogeneity [11], and architectural or design
level performance churns;

– an approach to model resource heterogeneity is presented – that captures the workload per-
formance loss or improvement due to: (a) service migrations among various servers having
different CPU architectures; and (b) resource contention due to co-located VMs that compete
for same resources;
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– a power model to accurately account for a single VM energy consumption – as energy efficiencies
of virtualised hosts can be strongly correlated to its power consumption and the total number
of VMs they are running; and

– we use real workload datasets from large-scale cloud service providers such as Google and
Microsoft Azure cloud in order to evaluate various resource allocation and consolidation policies
using the proposed “PerficientCloudSim” simulator.

4 Related Work

To perform larger-scale experiments and feasibility studies, cloud simulators could be used. A wide
variety of simulators (both open source and commercial) is available with different features, capa-
bilities and characteristics. They are designed with one (ad-hoc) or more objectives (generic) [17].
For example, few of them may simulate resource allocation or provisioning policies, but, networks
and corresponding congestion models may not be taken into account. Similarly, some may model
datacenter networks, workloads and/or cloud architecture, but, they lack simulating management
policies and datacenter resource heterogeneity. Albeit, none of them can be used to simulate a
whole cloud that resembles a real heterogeneous platform. However, few of them could, possibly,
be integrated in order to perform particular tasks or desired levels of simulations/experimentations.
Sharkh et al. [18], has presented a systematic review of several cloud simulators which are often
used by the cloud research community. The generic simulators can simulate a reasonable cloud,
but still with a particular dedicated feature – e.g. VM placement, network, service migrations. A
very limited taxonomy of various cloud simulators, which are most widely-used and cited in the
cloud research community, is presented in Fig. 2. For a detailed discussion and various surveys of
cloud/fog simulators, interested readers must read [19], [20]. Perez et al. [19] have discussed various
simulators for simulating cloud, fog and internet of thing (IoT) environments. These simulators
are largely discrete event-based, designed in Java. Fog and IoT simulators are not within the scope
of this work. The cloud simulators can be classified with respect to cloud back-end technologies
i.e. virtualisation, containerisation. Unfortunately, we are not aware of any simulator that could
offer support for running various kinds of sand-boxing technologies in a hybrid datacenter e.g. the
Intel’s CIAO platform3 [21].
Among these, CloudSim [1] is one of the most popular and widely used Simulator. CloudSim is
also highly cited in the cloud research community. By using CloudSim, researchers and industrial
developers can focus on specific system design issues that they want to investigate, without being
involved into the low level details related to cloud infrastructures and services. Largely, CloudSim
is used to evaluate resource scheduling, allocation and consolidation techniques. CloudSim can
simulate large-scale datacenters and virtualised hosts, with customizable policies for provisioning
host resources to VMs [8] and containers [22]. It provides an easy way to implement scheduling
and provisioning policies at both VM and host level. Some of its components or classes have been
already validated (but not as a whole) in its support for modelling resource consolidation and VM
migration [23]. Moreover, it provides several classes to model workloads that can be easily extended
to other real workloads such as the Google’s cluster dataset [13]. CloudSim already provides a way
to simulate energy and performance efficient clouds and datacenters through the use of DVFS
(Dynamic Voltage and Frequency Scaling) and resource consolidation with migration policies. Due
to its widespread use and high citations, there are several proposed extensions that add extra
capabilities to the classical CloudSim framework4.
CloudSim is based on Java programming language that provides portability across different plat-
forms and operating systems. Greencloud [5] is a sophisticated packet-level simulator for energy-
aware datacenters with a focus on cloud networks and communications. It offers a detailed fine-
grained modelling of the energy consumed by the datacenter IT equipment such as hosts, network
switches, and communication links. iCanCloud [24] is a simulation platform with a view to model
and simulate clouds. The key focus of iCanCloud is to predict the trade-offs between cost and

3 https://ciao-project.github.io/

4 http://www.cloudbus.org/cloudsim/
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Fig. 2: Taxonomy of various most widely-used cloud simulators [ad-hoc simulators address a partic-
ular concern while generic address a majority of cloud computing challenges] – YAFS is developed
in Python that stands for Yet Another Fog Simulator

performance of heterogeneous workloads executed on specific hardware, and then provide useful
information about resource provisioning costs. ContainerCloudSim [22] offers support for modelling
and simulating containers that may run either on bare-metal or inside VMs. EdgeCloudSim [25] can
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simulate edge computing platform that considers both computational and networking resources.
Moreover, iFogSim [26] is based on the CloudSim, which enables modelling and simulation of IoT
devices in the context of fog computing. MobFogSim [27] extends iFogSim to enable service migra-
tion and modelling of device mobility in fog infrastructure. MobFogSim is verified through relating
the results obtained in simulations with those achieved in a real testbed where services were as-
sumed running in containers. Furthermore, both cold and post-copy container migration methods
are outlined and subsequently simulated. A list of various extensions to the classical CloudSim can
be found on the link in footnote5. Note that, neither of these versions offers support for running
various kinds of sand-boxing technologies, such as virtualisation, containerisation, in a hybrid dat-
acenter with the notable exception of our work in [21].
DCSim [6] differs from GreenCloud in that it is more focused on virtualised datacenters which
provide IaaS platform to multiple tenants, similar to CloudSim. However, it differs from CloudSim
in that it focuses on transactional and continuous workloads6. As such, DCSim provides the addi-
tional capability of modelling replicated VMs sharing incoming workload as well as dependencies
between VMs that are part of a multi-tiered application. In addition, DCSim has a more layered
and realistic cloud architecture (hosts inside a rack, racks inside a cluster and clusters inside a
datacenter) in comparison to CloudSim. Moreover, DCSim provides support for inter-racks VM
migrations (migrating VMs among various hosts in a particular rack) and inter-clusters VMs migra-
tion (migrating VMs among hosts across several racks). The former one could potentially increase
rack utilisation, while the later one increases cluster utilisation.
DISSECT-CF [4] is a compact, highly customizable open source cloud simulator with a focus on
the internal organization and behaviour of IaaS systems. This simulator provides more in depth
energy estimation techniques both at host and VM level and is largely validated with real world
experiments. The high level components (e.g., IaaS level VM and host schedulers) of the simula-
tor were not validated with real life measurements but by comparing its results with two other
simulators: CloudSim [1] and GroudSim [28]. The experiments are demonstrated in [4], and the
relative error of DISSECT-CF compared to other simulators was revealed to be as low as 0.29%.
It is important to note that the offered high level schedulers are not necessarily following the im-
plementation details of any scheduler of real life IaaS systems, although they are having similar
behaviour, and are offered only to show simple example implementations. Gabor Kecskemeti de-
scribes about the accuracy of DISSECT-CF that “similar to the CPU models, for highly accurate
results, we must suggest a custom VM scheduler that closely matches the one used by our modelled
real life IaaS”7 [4].
GreenCloud is an extension of NS2 (network simulator) to evaluate energy-aware cloud datacen-
ters. The main strength of GreenCloud is the detailed modelling of communication in a datacenter
network. MDCSim [29] is a commercial discrete event simulator that models specific hardware
characteristics of different datacenter components such as hosts, communication links and switches.
Nunez et al. [24] proposed iCanCloud, which is a hypervisor-based simulator specifically with a
focus on simulating instance types provided by Amazon EC2. Some tools (simulators) that could
simulate an entire cloud stack include CloudSim [1] and DISSECT-CF [4]. However, CloudSim
provides limited or no support for more realistic and complex applications composed of commu-
nicating tasks and workflows, and has no cross-layer interaction. Furthermore, CloudSim does not
account for CPU model/platform/architecture heterogeneities. The DISSECT-CF simulator allows
access to internal cloud information (such as VMs and workloads) and accurately models energy
consumption of IaaS clouds at two different levels: (i) hosts (coarse-grained); and (ii) VMs (fine-
grained). Moreover, energy consumption of a VM migration is also modelled and implemented in
the DISSECT-CF simulator [30].
Another simulator “VMPlaceS” [17], [31], built on top of SimGrid, offers support for evaluating
various VM placement and consolidation policies. In addition, node failures (addition and removal)
and dynamic workload fluctuations are considered in large-scale clusters. Three well-known VM

5 http://www.cloudbus.org/cloudsim/

6 http://www.dummies.com/programming/cloud-computing/hybrid-cloud/types-of-workloads-in-a-hybrid-cloud-environment/

7 personal correspondence with Gabor Kecskemeti, a Research Fellow in Laboratory of Parallel and Distributed Systems, MTA SZTAKI –
www.lpds.sztaki.hu
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placement and consolidation approaches, i.e. Entropy, Snooze, and Dvms (that correspond to cen-
tralised, hierarchical and distributed scheduling, respectively), have been investigated for various
metrics such as performance, computation and reconfiguration durations, violation, and energy
efficiency. However, CPU heterogeneity, resource contention due to co-located VMs and migration
performance are not taken into account. Albeit, VMPlaceS can simulate large-scale IaaS clouds
that consist up to 8,000 hosts and 80,000 VMs; using real workload traces in a reasonable time.
The Google simulator8 offers support for simulating jobs/tasks scheduling; however, the notion of
VMs and related capabilities such as migration are not considered. Therefore, it can not be used to
simulate cloud computing platforms. CReST [32] simulator is a stand-alone application that offers
simulation at numerous levels of abstraction: from physical resources, energy consumption and
thermal flows within a datacenter, to infrastructure networking and application services’ virtuali-
sation with additional capabilities of variable user demand. In [32], CReST has been evaluated for
various communication protocols, thermal management, and network topologies. Unfortunately,
performance degradation models with respect to migrations, CPU heterogeneity, resource con-
tention, and co-located VMs is not discussed.
SimGrid Cloud Broker (SGCB) simulator, as designed in [33], offers support for simulating mul-
tiple Amazon IaaS (EC2) like clouds along with different availability zones (AZs) and regions.
Furthermore, cloud storage (S3, EBS) simulations, various instance types and integrating various
price models (accounting and billing service) are also possible with the proposed SGCB simulator.
The simulator has been tested and verified for large-scale clusters running up to 30,000 instances
in several regions. In addition, SGCB can simulate PaaS (platform as a service) and SaaS (soft-
ware as a service) cloud models. To some extent, performance of the resources (instances) and
disk drives are considered; however, resource contention, CPU heterogeneity, and infrastructure
energy consumption are not taken into account. SCORE [34] can simulate heterogeneous, both
real and synthetic workloads, in terms of power-efficient monolithic, as well as, parallel scheduling
models. Empirical tests confirm that SCORE is a reliable tool for testing energy efficiency, secu-
rity, and scheduling strategies in cloud-computing environments while offering: (i) the design of
an energy consumption model; (ii) extension of VM placement policies; (iii) shutting on and off
servers; (iv) heterogeneity resources; and (v) security profiles. GAME-SCORE [35] is an extension
of SCORE that offers support to balance between two conflicting requirements of datacenters i.e.
high throughput and low energy consumption. GAME-SCORE is based on a non-zero sum game
(Stackelberg) with a resource manager that maximises performance via placement decisions while
the energy-efficiency manager asks the resource manager to migrate applications for minimising
energy consumption via shutting down idle servers.
To meet the computational needs of cloud users, IaaS providers offer GPU-enabled services [12].
However, owing to the complications of the GPU devices, conventional virtualisation methods are
not applicable directly. Therefore, numerous virtualisation approaches including, full, para and
hardware-assisted virtualisation are implemented to share GPU among several VMs. To ease up
GPU-enabled experimentations, GPUCloudSim [36] is built on top of CloudSim that enables mod-
elling and simulation of GPU-enabled VMs in IaaS datacenters. The package also comprises various
models to simulate interference among co-running workloads, virtualisation overhead and energy
consumption of the GPU devices. Furthermore, provisioning and scheduling policies are integrated
to enable experimentations. Nutshell [37] is a recently proposed simulator that makes it easy to
model and simulate various cloud solutions. Prominent features presented by the Nutshell include:
provision of IaaS resources; creating new datacenter architectures; communication protocols; and
VM schedulers. Similarly, ECSNeT++ [38] is an extension of the most widely used OMNeT++
toolkit that could simulate distributed stream processing applications on edge and IaaS clouds (hy-
brid platforms i.e. mobile edge clouds). This validated simulator can measure network, processing
delays, and the average energy consumption of the edge devices. Similarly, 5GPy [39] is SimPy-
based simulator that can simulate a hybrid cloud, fog, RAN (radio access network) environment.
However, CPU heterogeneity, performance impacts due to resource contention and co-location are
not taken into account.

8 https://github.com/google/cluster-scheduler-simulator
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Compared to other cloud simulators, CloudSim offers an easy way to design and validate energy
efficient computation. The results produced using CloudSim are currently being validated (in terms
of energy consumption, VM provision/allocation and migration policies) in several real cloud plat-
forms such as OpenStackNeat [23], as described in [40]. However, all of its components and classes
are not validated, yet. With the only exception of the resource contention model, the accuracy of
“PerficientCloudSim” is demonstrated in [2]. However, due to abstraction and mathematical (sta-
tistical) models, the results produced in a simulation environment may not be still achievable on a
real platform. Therefore, it is essential to use various statistical techniques in order to validate and
verify simulated results and outcomes. To summarise these simulators, each one has a capability
to model certain aspects of an IaaS cloud and/or fog infrastructure. However, CPU heterogeneity
and performance impacts due to resource contention are relatively ignored. For example, GPU-
CloudSim can model performance impacts of resource contentions (w.r.t co-located workloads);
however, CPU heterogeneity, migration performance impacts and application heterogeneity ae not
taken into account. Furthermore, neither of the existing simulator has the capability to account for
resource contention (w.r.t hardware) and CPU heterogeneity. Table 1 describes summary of the
related work. We believe, information in this table will help our readers to quickly identify gaps
for further research, investigation and improvements.

Table 1: Summary of the related work and simulators with respect to various evaluation criteria
[Mig - migration, RC - resource contention, App - application]

Parameters
Simulator Scheduling Energy Shutdown Scheduling Performance Network Resource

models aware policies strategies models models heterogeneity
Mig RC App

CloudSim × × × × × ×
CReST × × ×

DISSECT-CF × × × ×
VMPlaceS × × ×

GreenCloud × × × ×
DCSim × × ×
SCORE × × × × ×

GPUCloudSim × × ×
PerficientCloudSim × × × × × × × ×

5 PerficientCloudSim

CloudSim [1], its layered architecture, and the features provided, are briefly explained in App. A.
It is essential that readers should go through that discussion first in order to fully understand our
proposed simulator “PerficientCloudSim” and the list of additional capabilities offered through ab-
stract classes. Fig. 3 shows the block diagram of the CloudSim and its various components, offering
a view of different capabilities for which CloudSim can be used such as scheduling (CPU level), VM
placement and consolidation with migration techniques (host level). CPU level scheduling is not
within the scope of current work: the theme of this paper is VM allocation and migration which
is demonstrated with respect to the well-known CloudSim simulator. However, we found several
limitations that need to be addressed before implementing, evaluating energy, performance and,
therefore, cost aware scheduling and consolidation with migration techniques that closely resemble
a real heterogeneous datacenter. To tackle these issues, we extended existing or added additional
classes into the classical CloudSim package. Below we briefly describe various extended classes and
their implementation.
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Fig. 3: CloudSim high level block diagram that shows a list of CloudSim features such as vir-
tualisation, resource allocation and migration of VMs – users request VMs for their application
(workload) and can see the desired output [1] – see App. A for further details regarding CloudSim’s
architecture, various class and sequence diagrams

5.1 Modelling Interactive Services and Large-scale Dataset

For example, the available version 3.0.3 of the CloudSim simulator does not support dynamic cre-
ation of VMs at runtime. Moreover, reading large data, particularly, from Google cluster is not
feasible due to its huge size. To make it possible, we extend the DatacenterBroker class, with addi-
tional capabilities to read the Google data and monitor the submission time of each task to create
VMs at runtime. If a task cannot be allocated to a VM, the DatacenterBroker puts the task in its
waiting queue (W ) to handle it later when enough resources are available. The DatacenterBroker
also implements an instance type selection algorithm [12] to choose a suitable VM type, based
on the amount of requested resources (such as CPU, memory) and performance levels, for each
task and charge the user according to Google custom machine9 prices. This will enable the service
providers to evaluate various instance selection policies in order to optimise their datacenters and
revenues. We also extend the PowerDatacenter class to implement certain migration policies, in
particular, to take appropriate (energy, performance and cost aware) migration decisions. For ex-
ample, migrate those VMs that could recover their migration costs [3]; and in other words, avoid
migrating short running costly VMs.
We face two major issues while dealing with the above classes. For example, an existing problem
in the PowerDatacenter class was that several VMs were suddenly disappeared when they were
in migration process. In the extended class, we resolved this issue. In essence, there was no check
on the VM status during its migration and some of the VMs finished their execution while they
were in the migration process. Another issue was the heap memory, particularly, when dealing with
large-scale simulations that run for longer periods. As discussed earlier, CloudSim deals with each
entity as an object, and it is important to clear the corresponding memory states and references
when some objects are destroyed or not referenced. We noted that the Java garbage collector was
also unable to free memory space, as the objects were referenced even when they have been already

9 https://cloud.google.com/custom-machine-types/
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destroyed. We do not claim this as problem with the JVM platform, however, this usually happens
due to bugs in programming and/or creating/referring to unnecessary events or objects in the
simulations. To resolve this issue, we used two techniques: (i) modified the DatacenterBroker class
to explicitly destroy VM objects when they finish their execution; and (ii) force the Java garbage
collector to periodically clear the memory.
The classical CloudSim package consists of a WorkloadFileReader class that reads traces from the
given text files; and create VMs, accordingly. However, reading large trace files for long durations,
and creating VMs dynamically at runtime, are not supported. Therefore, the extended Google-
WorkloadFileReader class reads every task and requests the broker to create a VM at runtime.
We assume each Google cluster task is a VM, and extract its characteristics (required resources,
duration etc.) from the trace [13]. The required resources (CPU, memory), submission (request)
time and runtime (execution time) of every task are known prior to VM creation. Note that, the
execution time is calculated from the workload’s required MIPS on a particular CPU (GHz). It is
also possible that a user’s task has a deadline, and it might be useful to know before launching a
VM whether it is able to finish its execution in time or not – performance is guaranteed or not. The
VM various requirements which are described in Table 2, were incorporated in the GoogleJob class
that subsequently extends the classical Cloudlet class. In this case, every task request also goes
through an instance selection algorithm [3], and a suitable (that ensures the requested levels of
workload performance), cheap (the lowest price) instance type (VM) is selected from the available
pool of instance (VM) classes.
The Google cluster dataset is briefly explained in [13]. We wrote a Python script to read task
durations and start times from the dataset (available for free at the GitHub repository)10. Using
task runtime details from Google data, we wrote the dataset as a text file (.txt) which contains
various fields as shown in Table 2. The start times can be modelled as poison distribution, starting
from 0 and continue until simulation duration; while the finish time of each VM is computed as its
start time plus its execution duration. Furthermore, execution time of a VM is calculated through
dividing total MIPS needed (allocated task size) by CPU speed. Note that, the CPU needed for a
particular VM is converted into the notion of MIPS (Millions of Instruction Per Second) in order
to create consistency with the CloudSim. The GoogleWorkloadFileReader class reads the file and
sends an event for VM creation at runtime (start time). When a VM is created, the GoogleData-
centerBroker class sets its termination time (finish time) and sends a VmDestroy event when that
particular time is reached and observed.
As described earlier that reading large files containing millions of entries can create problems with
the JVM memory (heap). In such circumstances, the simulations on our server were significantly
slow and, later on, terminated abnormally. Perhaps, this is due to less amount of memory (RAM).
To resolve this issue, we used two approaches: (i) feed the data in chunks or multiple files instead
of a single file and explicitly clear the heap memory; and (ii) use statistical models instead of real
datasets. In respect of (i), the GoogleWorkloadFileReader class could now read the trace file(s)
in chunks; and clears up the heap memory at regular time. In respect of (ii), we observed that
using mathematical models instead of a real trace could significantly reduce the simulations times.
However, this may not be of significant worth as statistical models may not essentially represent
real data due to abstraction. Albeit, performance boost can be achieved through loading chunks
of data from disk, thus reducing JVM memory usage and employing statistical models instead
of real data sets. However, these statements are rather contradictory to earlier findings [41]. It is
well-understood that reading from a disk is always slower than RAM - discrete event simulation
are, in nature, memory hungry due to the amount of events it has to handle in large systems. We
also use another dataset from the PlanetLab (data related to CoMon project) [42] to validate the
simulations performed in the PerficientCloudSim. The PlanetLab data consists of CPU utilisation
values for more than a thousand of VMs with an interval of five minutes. It is also possible to
statistically model the workload variations and then use the derived model in simulations. Note
that, the classical CloudSim simulator already offers various classes for this purpose, as described
in App. A. Moreover, we only offer a brief discussion of the most important CloudSim classes which

10 https://github.com/google/cluster-data
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are essential to understand in order to incorporate the proposed classes of the PerficientCloudSim
simulator. For complete discussion of the the CloudSim simulator, interested readers are suggested
to read [1].

Table 2: Fields in the dataset [CPU requirements are described in MIPS to make them consistent
with the CloudSim – for example if a VM, which has 1 GHz CPU, runs for one hour then it needs
1000× 60× 60 = 3, 600, 000 MIPS [1], [3]]

Field name Type Description

Start time (integer) start time of the VM in seconds
CPU (integer) total number of MIPS that the VM needs to execute

Memory (integer) memory needed for the VM in MB
Network (integer) network resources needed for the VM in MB

Finish time (integer) finish time of the VM in seconds
Start time+Ex. time [computed via dividing MIPS by speed]

5.2 Modelling Energy Consumption

A slight modification was made to the PowerHost class in order to ensure that an idle host still
consumes idle power (Pidle). In the original class, the idle hosts were consuming no energy. To im-
plement realistic simulations (which resemble closely to a real test-bed), we extend the Host class
for host reconfiguration costs (in terms of energy consumption and delay), as shown in Table. 3 [43].
In addition, hosts could be kept in sleep mode, hibernated or standby - thus offering quick prepa-
ration if workload suddenly rises. These costs matter when switching on/off the resources (hosts)
using dynamic capacity planning (DCP). These changes were incorporated in the GooglePowerHost
class. To create a history of the VMs past runtimes, the Vm class was extended. The extended
PowerVmList then ensures that VMs selected for migration are in descending order of their past
runtimes (Rpast). These changes were incorporated in the GooglePowerVm class providing a way
to maintain the VMs runtimes history. All VM allocation policies were implemented through ex-
tending the VmAllocationPolicy class. The new class GooglePowerVmAllocationPolicyAbstract now
offers support for evaluating various energy, performance and cost efficient resource placement and
migration policies. However, there is no model implemented for the energy consumption of VM
migration in the classical CloudSim. We add a MigrationPowerModel class to the CloudSim pack-
age, which can be extended to any power model of the migration process. Initially, the migration
power model demonstrated in [44] was added to perform the simulations. We also add a new class
to the CloudSim, i.e. VmLevelHostPowerModel, to estimate the energy consumption of VMs on a
virtualised host. We extend this class with the VM power model as explained in [14] and which
is also demonstrated on a real cloud test-bed in [45], [46]. The VM power model is dependent
on the linear power model of the CPU energy consumption E i.e. CPU energy consumption is
proportional to its utilisation level (the more it is utilised the more it will consume and vice versa),
given by Eq. 1:

E = Pidle + (Pmax − Pidle)× U (1)

where U is the current utilisation level of the CPU, while Pidle and Pmax denote the CPU energy
consumption when idle and 100% utilised, respectively. This model can be translated to VM level
power model, as described later in Sec. 5.8. Furthermore, considering virtualised servers, alone the
VM energy usage is directly related with the number of VMs executing over that specific server.
Thus, it is realistically sensible to forecast/estimate the VM energy usage in context with the linear
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CPU energy usage model using Eq. 2:

EVM =

(
Pidle

NVMs

)
+ FVM × (Pmax − Pidle)× UVM (2)

where aggregated VMs housed on a server is given by NVMs, the extent of server’s resources, like
number of cores allotted to the VM, is given by FVM , and usage level of VM is shown by UVM .
The aggregated energy consumption of a virtualised server E being executing NVMs number of
VMs is given by Eq. 3:

E =

NV Ms∑
k=1

PVMk
(3)

Simply saying, we take up to consider resource like FVM as the number of cores. Though, additional
resources like CPU and memory may possibly be decided in resource allocation. The usage of UVM

for a VM mentions from the actual (predefined) workload datasets. By using FVM , it empowers
us to make it simple in consideration of an individual VM as an actual server. In IaaS clouds, sizes
of VMs are equally divided by the number of assigned cores (hyper-threaded) obtainable through
C cores on the server, or simply by allotting on amount of memory. To keep it simple, we use it
equivalent to only number of cores, given by Eq. 4.

FVM =
coresVM

C
(4)

The aforementioned model can be used to forecast energy consumption of a particular VM on
a specific server at suitable usage levels. Similarly, energy consumption of a migrated VM is the
amount of energy consumed at source or target host - since during live migration, there are two
VMs running for the duration of the migration. This will also include the energy consumed in
network and marginal migration cost [14].

Table 3: Host reconfiguration costs (energy consumption and set-up delay) [3], [43]

Old state New state Energy consumption delay
(joules) (seconds)

Off On 60.0 30
Standby On 14.3 5

Hibernate On 60.0 30
On Off 110.0 30
On Standby 14.3 5
On Hibernate 60.0 30

5.3 Modelling CPU Heterogeneity

CloudSim does not model the resource heterogeneity and performance variations due to CPU mod-
els and/or workload contention. However, the performance degradation due to migration is already
taken into account [8]. To model resource heterogeneity and performance variations, we use several
performance benchmarks from Amazon EC2, relate them to the Google workload to extract per-
formance parameters and feed them into the PerficientCloudSim. We extended the Host class with
various performance parameters (such as mean, standard deviation) to model variations in work-
load runtimes. The new GooglePowerHost class accounts for these parameters when running work-
loads; and the GooglePowerDatacenter class accounts for performance adjustments when migrating
workloads among various hosts. The former one computes performance degradation/improvement
in the executable workload (MIPS) given the type of host’s performance distribution, mean, stan-
dard deviation; and subtract/add these MIPS from/to the executable workload – thus impacting
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the workload total runtime (performance). The later one uses the z-score normalisation technique to
compute the remaining runtime which relates to a particular distribution (target host) for another
distribution (source host) [12]. For example, if a particular real host executes a given workload
in 42 – 57 minutes (log-normally distributed with given mean and standard deviation); then the
GoogleVmScheduler class would appropriately adjust the ratio of MIPS processed to produce sim-
ilar runtimes for the workload. Similarly, for migrations the expected remaining runtime (z-score)
is set for the VM on the target host using the GooglePowerVm class. From an implementation
point of view, when a particular VM is being migrated to a particular target host, its remaining
runtime on the source host is translated to a remaining runtime (expected) on the target host
using the z-score statistical technique [12]. For example, if we assume a source and a target host
with performance parameters, µs, σs, µt and σt, in terms of means and standard deviations (of
execution times), respectively. Then the remaining runtime (expected) Tt of a migrated VM on
the target host (after the migration) for its remaining runtime (Ts) on source host (before the
migration) can be computed as:

Tt = exp

[
σt ×

(
log(Ts)− µs

σs

)
+ µt

]
(5)

Note that, Eq. 5 has been derived using the standard score (a.k.a z-score normalisation) technique,
as given by Eq. 6. The standard score is used to calculate the probability of a particular score (T )
which occurs in the interior of a dataset (normally distributed) with given mean µ and standard
deviation σ. Furthermore, standard score provides an easy approach to relate two or more than
two different datasets which are normally distributed.

z =
T − µ
σ

(6)

Eq. 7 is used to compare the runtimes of the VM on the source and target hosts (Ts, Tt), respec-
tively; given the statistical means (µs, µt) and standard deviations (σs, σt) of both source and
target hosts having normal distributions.

Ts − µs

σs
=
Tt − µt

σt
(7)

Since, prior studies [3], [9] have shown that VMs runtimes are usually lognormal; therefore, the exp
in Eq. 5 is used to translate the normal distribution to an equivalent lognormal distribution. In order
to model performance interference, we use applications runtimes, as described in [11], that were
obtained on a real platform (see right of Fig. 1). The performance interference is strongly correlated
to the number of VMs running on a particular host. Based on experimental evaluation in [11], we
can use various statistical techniques such as linear regression to fit a line, for each particular host.
For example, for CPU model “E5620” and application type “Grep”, we get R2 = 0.9104 with the
following regression line.

y = 2.4429(x) + 4.7333 (8)

where y is the runtime and x is the number of co-located VMs. From an implementation point
of view, when a VM is launched (new), terminated or migration happens, we compute the total
number of running VMs on a particular host. Using the old number of VMs (x1) and new number
of VMs (x2), we compute the increase or decrease in the performance interference i.e. y = y2 − y1.
Finally, the increase or decrease in the performance interference (y) is added or subtracted to each
VM runtime, accommodated on that particular host. We are aware that the runtime will certainly
be affected by the VM sizes as well. For example, a host that runs two VMs of large type will
suffer from lower contention as compared to same host when running 10 VMs of small type. This
behaviour can be modelled with respect to heterogeneous VMs. Moreover, the contention may be
higher if co-located VMs are highly utilised than when underutilised. Therefore, requiring to profile
each function for different data sizes and aspects seems infeasible. We will consider such complex
models in the future. We believe, a generalised model should be adapted in order to account for
these various options. This discussion in not within the scope of our current work. Further details
on a generalised heterogeneity model can be found in [47].
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5.4 Modelling Workload Heterogeneity

As described earlier, using the CloudSim notion of MIPS as a single measure implies homogeneous
workloads. Moreover, we assume MIPS as a single proxy to denote both resource and application
heterogeneities; since there is no other way to simulate the differences among various workloads
e.g. a disk-bound and a CPU bound task, of integer/floating point operations and etc. It is also
possible that utilisation levels of workloads may vary; however, this only provides a way to dif-
ferentiate between CPU intensive and non-intensive workloads. Moreover, utilisation levels can
translate to variations in runtimes. Therefore, we assume that workloads can be classified through
their requests for larger or smaller MIPS i.e. runtimes. Due to non-availability of a performance ori-
ented real workload dataset within the cloud research community, we use tasks’ priorities from the
Google’s cluster dataset as proxy to represent workload type. We believe this assumption can ac-
curately represent application types since tasks’ priorities affect billing (users monetary costs) [13].
Moreover, tasks’ runtimes that belong to a particular priority are assumed as variations in work-
load performance. To make our assumptions valid, the workload type and characterization could
be achieved through mapping or comparing Google tasks’ runtimes to runtimes of real benchmark
workloads i.e. distributions of runtimes normalised over the same scale; and the closer similarity is
assumed as a particular type of workload [12].
Note that, the assumption that each instruction requires at most one CPU cycle in order to be
executed constitutes a very optimistic approach. There are substantial differences in IPC (instruc-
tions per cycle) values among cores (in particular those which share various components) with
different pipelines, speculative mechanisms, hyper-threading, memory and cache hierarchy, which
is the gist of CPU or workload heterogeneity and variations in execution times. For example,
hyper-threading allows cores to hold the states of two instructions in execution (threads), simul-
taneously. In case, both threads compete for same resources, contention will definitely happen [9].
Therefore, we believe that validation through actual workload execution on microprocessors can
be misleading when they leverage the same or very similar microarchitecture. Besides these archi-
tectural heterogeneities, workload performance can also be affected by the speed at which data is
transferred from memory to the CPU. Moreover, memory space measures can also affect workload
performance if is close to full. Finally, the shared storage systems, along with network devices, may
create performance bottlenecks for various workloads. Note that, our simulated model for workload
heterogeneity is based on monte-carlo simulations using a log-normal distributions of data given
in Table 4.

Table 4: Runtimes of different workloads across various CPU models (seconds) [48]

Workload type CPU model Runtimes
povray E5507 544s

E5430 579s
bzip2 E5507 641s

E5430 447s

5.5 Modelling Resource Contention

Performance of workloads may be affected with resource contention which potentially occurs due
to co-located VMs i.e. VMs running on a particular host compete for same or similar resources as
demonstrated in [11]. Co-located VMs may suffer from approximately 6.96% to 37.5% performance
loss [9], [11]; possibly due to the: (i) mismatch between the available host’ resources; and (ii)
aggregated resource utilisation levels of co-located VMs. Moreover, these variations in performance
vary for various applications; some applications are impacted slightly while others may experience
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heavy losses in performance which are directly proportional to the total numbers of co-located VMs
and strongly dependent over CPU platforms. In other words, the larger number of co-located VMs
on a host, the more losses can be seen across all VMs. The former relationship, i.e. performance
loss due to number of co-located VMs, can be modelled using either regression/trend lines or other
models suitable for positive linear relationships. The later one, i.e. performance loss across various
applications over various CPU platforms, can be modelled through statistical distributions (multi-
modal) – where multi-modality denotes runtimes’ variations of a particular application over several
CPU architectures. The overall performance loss (or improvement) due to resource contention is,
therefore, given by:

Trc = Dp + L (9)

where Dp and L represent the difference between runtimes (distributions of variations in run-
times due to CPU architectures) and linear model (regression equation for number of co-located
VMs), for a particular application, respectively. In our case, Dp is computed using the z-score
normalisation technique, as described above. Therefore, Dp = Tt as given in Eq. 5. Moreover, L is
estimated through plotting the trend/regression line over the real data gathered in [11], as shown
in Fig. 4. Note that, L varies with respect to various applications and their resource demand or
usage. From implementation point of view, for a particular application, the Trc is converted into
equivalent MIPS; and, then, added or subtracted to denote either performance loss/degradation
or gain/improvement, respectively. A generic (workload independent) model is still needed which
can represent performance churns for all workloads (applications), which are col-located across
heterogeneous datacenters’ resources. For example, we can normalise the four regression models,
as shown in Fig. 4, into an integrated generic model (probably averaged) i.e. a single equation;
which can be used for various numbers of co-located VMs, with respect to two different workload
types and CPU models. We believe, similar models would certainly help in simulating real IaaS
clouds, closely and accurately. Note that, our simulated model for resource contention of different
hosts is based on several monte-carlo simulations using the log-normal distributions of data given
in Table 5.

Application Hardware
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Fig. 4: Resource contention due to co-located VMs for two different applications i.e. Grep (left)
and Sort (right) running over two different CPU platforms [11] – ∼2% to 9% errors are expected

5.6 Modelling Resource Migrations

Note that, the VM migration process is very straightforward in the classical CloudSim simulator.
From implementation point of view, when a VM is triggered for migration, it is terminated on
the source host and after the migration duration, another one is created on the target host. This
procedure does not really represent a valid migration process such as pre-copy (where migrations
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Table 5: Runtimes of different workloads on co-located VMs (seconds) [11]

Number of VMs
Workload CPU model 2 4 6 8 10 12
type Runtimes
Sort E7420 21 28 43 65 76 85

E5620 16 22 38 59 69 78
Grep E7420 20 22 25 29 38 44

E5620 13 14 16 21 31 36

happen in various rounds); particularly, in dynamic network scenarios where bandwidth and con-
gestion vary significantly. Moreover, during live migration, as VM’s memory is often transferred
iteratively which may consume considerable network I/O resources and could, therefore, severely
disrupt VM services. The performance of a migration approach is reliant on the VM workload,
available resources on source and target hosts, and co-located services on both hosts [49]. Fur-
thermore, in real scenarios, different approaches to migrations would have different performance
impacts on VMs running various kinds of workloads. For example, as shown in Fig. 5, the migra-
tion durations largely overlap for two applications (Bzip2 and Dacapo) when migrated with two
different migration algorithms (pre-copy and post-copy); however, the down times are completely
different. Therefore, it is essential to add migration models that can simulate various approaches to
migration, given different experimental parameters such as: (a) the dynamic behaviour of network
bandwidth; (b) workloads priorities for migration; (c) time limitations for completing migrations;
and (d) serial or parallel migrations11. The VmigSim12 simulator offers support and extensions
(additional classes) to the classical CloudSim for implementing several approaches to VM migra-
tions such as the well-known pre-copy technique. However, instead of inter-datacenter migrations,
VmigSim offers intra-datacenters migrations. In the current version of PerficientCloudSim, we use
the default migration technique offered in classical CloudSim. However, with trivial programming
efforts, VmigSim can be integrated into PerficientCloudSim.
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Fig. 5: Migration durations and down times for two different benchmark applications using two
different approaches to migrations i.e. pre-copy and post-copy [left: Bzip2 – right: Dacapo] – the
migrations data was collected on a real cluster [49]

Moreover, a VM may experience severe performance loss during its migration duration. In the

11 http://www.uni.net.th/wunca regis/wunca32 doc/21/014 WUNCA32 Presentation Thammasat.pdf

12 https://github.com/poa28451/VmigSim
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classical CloudSim, a 10% decrease in workload performance is assumed, as described earlier [1].
However, this may hold only for certain kinds of workloads, e.g. CPU intensive; but, other work-
loads may experience different levels of degradation. Moreover, a VM (in migration) may also affect
the performance of other workloads running both on source and destination hosts [50]. Therefore,
the available resource capacities both on source and destination hosts have impacts on VM migra-
tion performance. Similarly, different approaches to migration, such as pre-copy, post-copy, may
have different impacts on the workload performance. Due to non-availability of a representative
VM migration workload13, with the only exception of [49], migration performance modelling is
relatively un-explored. Fig. 6 shows that performance loss for various applications and migration
policies can be modelled as log-normally distributed. In [49], a machine learning technique has been
used to model VM migration performance and durations. Moreover, the performance degradation
is noted having a relationship with the VM utilisation levels i.e. approximately 1–3% (up to 80%
utilisation) and approximately 5% (up to 97% utilisation). In order to account for the implemen-
tation of such models, we added an abstract class MigrationPerformanceModel ; which can further
be extended with the desired migration performance model.
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Fig. 6: Performance degradation during migrations for two different benchmark applications using
two different approaches to migrations i.e. pre-copy and post-copy [left: Dacapo – right: Parsec]
– the migrations data was collected on a real cluster [49]

As described in [14], during a live VM migration, there are exactly two VMs running that cost extra
energy – the original one on the source host and another one on the target host. When migrating
for energy efficiency, this cost must be taken into account, particularly, when workloads run for
short durations. For short lived VMs, migration efforts might be wasted [3]. Largely, the energy
is consumed while moving the data (memory and ephemeral storage) of the migrated VM [51].
Beside this, energy consumption of both source and destination hosts (therefore, running VMs
– co-located) is also affected [52]. The abstract MigrationPowerModel class adds the capability
to measure the VM migration energy consumption. This class can be further extended with the
desired migration energy model.

5.7 Putting All Efforts Together

To build PerficientCloudSim, the above models were integrated into the classical CloudSim sim-
ulator. Fig. 7 shows the UML (Unified Modelling Language) class diagram of several extended
classes in the proposed PerficientCloudSim simulator. The classes in the google package extend the
CloudSim functionality for various VM allocation and migration policies. Similarly, the classes de-
fined in the googlecluster package read Google data and create VMs according to their arrival rate

13 https://csap.snu.ac.kr/software/lmdataset
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Fig. 7: PerficientCloudSim class diagram [The classes shown in red, green or blue inside google and googlecluster packages are extensions to the
classical CloudSim default classes. In util package, we extend the WorkloadModel with GoogleWorkload to read the Google cluster data [13],
the green classes in google package are the proposed allocation and migration policies while the green class in models package is the migration energy
consumption model – the VmLevelHostPowerModel is implemented inside the PowerModel class – the blue GooglePowerVm class extends the
PowerVm class to account for VMs past runtime and the blue GooglePowerHost class extends the PowerHost class to account for host reconfiguration
costs. Similarly, the ResourceContentionModel class implements the performance loss in workloads due to co-located VMs – this class can further
be extended to model the desired levels of degradation in workload performance] – the word “Google” cannot make PerficientCloudSim a specific
purpose simulator, it can be used to replay other traces
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(at runtime). Readers who are unaware of the basics of CloudSim, should read [1] first to appreci-
ate how these classes relate to each other and what they are supposed to do. Sec. 5.8 summarises
various additional and extended classes of the PerficientCloudSim package.

5.8 PerficientCloudSim Extra Classes

Following are the major classes that were extended to add additional capabilities in the classical
CloudSim:

AmazonInstanceType: offers several types of instances that relate to various Amazon EC2
instances14. This class can be easily modified to add and delete additional instances along with
their prices.

GoogleDatacenterBroker: models and provides support for users - resources interaction, reads
VMs details from text files, selects a suitable and cheaper instance, creates VMs at runtime, and
optimises the datacenter state through offering support for resource management and workload
consolidation.

GooglePowerDatacenter: offers several options to control migrations, for example, migrate rel-
atively long running VMs, only; and adjust VMs/workload performance when they are being
migrated among various heterogeneous hosts.

GooglePowerHost: provides support for modelling platform heterogeneities (variations in run-
times due to CPU architectures and co-location). The heterogeneity parameters in terms of run-
times (i.e. mean and standard deviation) must be specified for each host. This class also models
the resource interference (performance) or contention – VMs with similar workloads that compete
for similar resources experiences significant performance loss (the co-location interference is highly
correlated with the total number of VMs running on a particular host) [11]. Note that, the per-
formance interference model (in terms of regression line equation) is directly integrated into the
GooglePowerHost class.

GooglePowerVm: provides a way to store previous runtimes of VMs in order to trigger ap-
propriate scheduling and consolidation decisions.

GoogleVmScheduler: is responsible for the implementation of the host heterogeneity through
allocating and deallocating CPU (MIPS) to run a particular workload. Moreover, this class also
implements the migration performance model [51]. Similarly, the resource contention model also
feed loss or improvement in performance to this class in order to update processing of the co-located
VMs.

GooglePowerVmAllocationPolicyAbstract: provides support for energy, performance and
cost efficient resource management through VM allocation, datacenter optimisation with con-
solidation. The optimisation module is responsible to trigger effective workload placement and
migrations. Various allocation policies may be used to extend this class.

GooglePowerVmSelectionPolicy: offers support for implementing various VM selection poli-
cies that are used to select appropriate VMs for migrations from under-utilised and over-utilised
hosts.

GoogleJob: denotes a task (cloudlet) that belongs to a particular workload. Several additional
job characteristics, such as execution time, required CPU and memory capacity, were added into
this class.

14 https://aws.amazon.com/ec2/instance-types/
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GoogleWorkloadFileReader: reads tasks information from a text file, either in chunks or as
a whole. This class can read very large files through offering a way to clear the heap space at
regular intervals.

GoogleWorkload: extends the WorkloadModel class in order to account for tasks details in the
Google trace [13].

MigrationPowerModel: is used to model the energy consumption of a VM migration process.
Moreover, this class can be extended with other appropriate models.

MigrationPowerModelSimple: this class implements a very simple, but, reasonably accurate
model to measure the energy consumption of a migrated VM, as suggested in [51]. In the proposed
model, energy consumption (Costmig) is strongly dependant and directly proportional to the size
or amount of the VM data (measured in MBs) being copied over the available network bandwidth
(MB/s), given by Eq. 10.

Costmig = 0.512× VMdata + 20.165 (10)

where the VMdata denotes the VM memory (in case of live VM migration) plus ephemeral storage
(in case of non-shared block VM migration). Note that, Costmig and VMdata are measured in Wh
(Watt hour) and MBs (Megabytes), respectively. More accurate VM migration energy consumption
models, as demonstrated in [30] can also be integrated into this class. Maio et al. [30] suggest that
the energy consumption of both source and destination hosts is affected during a VM migration.
Therefore, it is essential to account for churn in energy consumption at both source and destination
hosts.

MigrationPerformanceModel: is used to model the workload performance loss, due to a VM
migration, on: (i) migrated VM; (ii) source host; and (iii) destination host. Moreover, this class
can be extended with other appropriate models.

MigrationPerformanceModelSimple: extends the MigrationPerformanceModel class with a
simple technique. Note that, during a VM migration, workloads running both at source and des-
tination hosts may experience trivial performance loss. We believe, such loss in performance is
considered in the resource contention model. This class implements a simple performance model
from [50], [51], in respect of migrated VM, source and destination hosts.

ResourceContentionModel: this class provides support for adding a particular resource con-
tention model that denotes performance loss or gains due to co-located VMs. The increase or
decrease in MIPS are fetched to the GoogleVmScheduler class in order to update VMs processing,
accordingly. This parent class can further be extended to implement the desired levels of perfor-
mance loss in VMs workloads.

ResourceContentionModelDistrLinear: This class implements the resource contention model
from [11], in terms of performance degradation due to: (i) CPU heterogeneity (through runtimes
distributions mapping); and (ii) number of co-located VMs (linear relationship), as described earlier
in Sec. 5. Moreover, for each application L is taken from Fig. 4.

Trc = Tt + L (11)

where Tt denotes distributions of variations in runtimes due to resource contention (co-located
VMs) - a part of Eq. 9.

VmLevelHostPowerModel: models and estimates the energy consumption of a single VM (Eh
vm)

using the linear relationship between CPU usage, fraction of hosts resources allocated to the VM,
and energy. The VM with larger resources consumes more energy as compared to a VM with
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smaller resources [3], [12], [52].

Eh
vm =

Ph
idle

N
+Wh

vm × (Ph
busy − Ph

idle)× Uh
vm (12)

where N is the total number of VMs on a particular host h, Ph
idle and Ph

busy are the energy consumed

when h is idle (0% utilised) and fully utilised, respectively. Further, Wh
vm are the host resources

(cores) allocated to the VM and Uh
vm is the VM utilisation level. Note that, Wh

vm ensures that
each VM is accounted for energy consumption in the amount of resources they have provisioned -
the more resources (or CPU cores) they provision the more energy they consume and vice versa.
A more accurate model will also distribute the idle energy consumption among co-located VMs
according to their Wh

vm and not N .

6 Performance Evaluation

In order to evaluate the performance and working mechanism of the PerficientCloudSim, we use a
simple experiment. The experiment runs a particular workload on various heterogeneous servers and
VMs using several VM allocation and consolidation with migration policies. The VM allocation and
server consolidation can be assumed as a kind of bin-packing problem. Such problems can be solved
using various heuristic algorithms. Albeit, heuristics may not ensure optimal results, however, they
are fast enough for achieving the task i.e. VM placement and, therefore, more realistic in large-
scale systems [53]. It is reasonable to assume an analogous VM packing problem as switching from
an initial datacenter state to an ideal state, which should be one using the fewest hosts [14]. We
achieve a datacenter state through the implementation of various scheduling heuristics, with VM
packing then needing to guarantee energy efficiency and performance. To evaluate the effect of this,
we consider dynamic consolidation using migrations. As described in [54], dynamic consolidation
can be achieved either using a single threshold or double threshold values. In this paper, we use
two threshold values i.e. a lower one and an upper one. If the utilisation level of a particular host
decreases below 20% (lower threshold) or increases above 80% (upper threshold), then all the VMs
running on this particular host are being migrated to other hosts.

Evaluation Metrics To evaluate the performance of the proposed policies, we consider several,
essential, performance evaluation metrics. Two most important of these metrics are the total energy
consumption (measured in KWh) of physical hosts and the workload total runtime (i.e. total
execution time measured in minutes). The energy consumption was calculated according to values
taken from the SPECpower benchmarks and the workload runtimes. Another metric is the total
number of migrations started during the datacenter state optimisation. Other metrics include
the SLA Violation (SLAV), which denotes how much SLA was violated in response to the VM
migration, performance degradation and server down time. An SLA violation occurs if a particular
VM cannot receive the requested amount of MIPS. This might happen if several VMs share the
same host and demand for performance that cannot be ensured due to resource consolidation or
migration. The metric SLAV denotes the level by which QoS requirements are being violated, due
to management policies, that were determined between the provider and users. We assume that
service providers pay penalties to users if SLAs are being violated [55]. The key metrics are the
energy consumption and SLAV; but, these metrics are usually adversely interrelated as energy can
typically be decreased by the increased level of SLA violations. The main objective of resource
management is to reduce the energy consumption with minimum SLA violations. Therefore, a
combined metric i.e. Energy and SLA Violations (ESV), suggested in [8], is used to capture both
energy consumption and the level of SLAV [Table 9].

6.1 Experimental Setup

The simulated datacenter comprises 800 heterogeneous physical hosts, which consists of 50% HP
ProLiant ML110 G4 servers, and 50% HP ProLiant ML110 G5 servers. Various characteristics of
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these servers are described in Table 6. The energy consumption of these servers were considered
according to SPECpower15 benchmarks. Note that, these values for energy consumption relate to
results of a particular benchmark test [i.e. SPECpower ssj2008, published in 2011]. Furthermore,
as these benchmark results concern a very specific type of workload [Server Side Java Operations
Per Second – SSJ-OPS] – this may not be suitable to represent a more general scenario. However,
in this paper, we use these results just for comparison purposes. Note that, simulation of less
powerful CPUs is more beneficial as lighter workload can easily overload the hosts; and, therefore,
creating more chances for VM consolidation. That’s why servers with more cores were not pre-
ferred. Note that, similar to the classical CloudSim, millions of instructions per second (MIPS) is
the core performance metric used in the PerficientCloudSim. Note that, for resource heterogeneity
and co-located VMs contention we consider only the CPU and workloads; whereas, other hardware
resources can also affect VM performance as described in Sec. 5.4. Therefore, using MIPS ratings
as a single measure for various performance metrics should not be the only scale of measurement
under different situations.
The hosts‘ CPU frequencies were mapped onto MIPS ratings: 1,860 MIPS for each core of the HP
ProLiant ML110 G5 host, and 2,660 MIPS for each core of the HP ProLiant ML110 G5 host. The
performance parameters of these two hosts were assumed as described in Table 7. Moreover, each
host has 1 GB/s network bandwidth, half is used for VMs communication and the other half is
available for migration purposes [8]. All hosts in the simulated datacenter were fully connected
[using the CloudSim’s default network topology – topology.brite] and, therefore, migrations could
occur between any pair of hosts. We are aware that data of each VM transferred over a commu-
nication link should also cause some latency. However, in this paper, this latency was not directly
considered during the simulation experiments; that would certainly affect simultaneous migrations
occurring over the same communication link. We assume that the performance model [49] which
we have used in our experiments has already considered this latency; and, therefore, we have trans-
lated these delays into the execution times of the migrated VMs.

Table 6: Host types and their characteristics – Pidle and Pmax denote the power consumption of
server when they are idle (0% utilised) and maximum utilised, respectively; this linear power model
is suggested to be more than 90% accurate for certain workload types [2]

Host type CPU Model Speed Num. of RAM Pidle Pmax

(MHz) cores (GB) (Wh) (Wh)

HP ProLiant
ML110 G4 Intel Xeon 3,075 1,860 2 4 86 117
HP ProLiant
ML110 G5 Intel Xeon 3,075 2,660 2 4 93.7 135

The features and characteristics of the various VM types [as shown in Table 8] resembles to Ama-
zon EC2 instance types with the only exception that all the VMs were single-core, as the workload
data come from single-core VMs [8]. For the same reason, the amount of RAM was divided by the
number of cores for each VM type, as shown in Table 8. Moreover, the computational requirements
of each VM, which should be expressed in MIPS, were also mapped to CPU frequencies e.g. 1000
MIPS means 1GHz of host’s CPU. We further assume that each instruction require at most one
CPU cycle in order to be executed. Primarily, the VMs were assigned agreeing to the resource
desires defined by the VM types. But, throughout the lifespan, VMs consumed fewer resources
agreeing to the input workload data, making chances for dynamic VM consolidation. In our simu-
lations, every VM was assigned a single workload trace randomly with the objective to stress the
consolidation algorithms, having no memory limits. The energy consumption of a VM is computed

15 https://www.spec.org/power/
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Table 7: Hosts performance parameters (runtimes in hours) for Bzip2 workload (mapped to
Google’s cluster tasks) that were calculated from simple visual inspection, using log-normal distri-
butions, as described in [56]

Host type performance parameters

min max mean (µ) std. deviation (σ)

HP ProLiant
ML110 G4 15.70 19.99 17.42 1.145
HP ProLiant
ML110 G5 19.04 24.5 20.78 1.267

Table 8: VM/instance types and their characteristics

VM type CPU (MHz) RAM (GB)

High-CPU Medium G4 2,500 0.85
Extra Large 2,000 3.75
Small 1,000 1.7
Micro 500 0.613

using the model in Eq. 12. The performance interference models were computed using the real
data, as described in [11], with regression line equations.

6.2 Experimental Results

The VM allocation policy proposed in [56] was implemented as an abstract allocation policy in
the PerficientCloudSim simulator, and the results of three various VM allocation techniques, i.e.,
Mbfd [8], Epobf [57], and Cbfd [56], and three migration policies i.e. MMT [8], Cmur, and
Cmur+Mcp [56], were being evaluated using several plausible assumptions and workloads. The
allocation policies are based on various heuristic approaches that select appropriate VMs, in terms
of various objectives such as energy efficiency, and performance, to run a particular workload.
For example, the Mbfd allocation scheme that extends the best fit decreasing heuristic, runs the
workload on those VMs that consume less energy. The migration policies look for consolidation
opportunities through examining the hosts’ utilisation levels; and if certain hosts utilisation levels
are approaching to some pre-defined threshold values, then suitable VMs are being migrated from
under-utilised/over-utilised hosts to other average utilised hosts. We use two statistical techniques
to identify under-utilised/over-utilised hosts i.e. Local Regression (LR) and Thresholds (THR) [8].
The later one uses a lower and an upper static threshold values; and the former one uses a pre-
dictive mechanism to estimate the future workload utilisation. The workload consists of several
thousands tasks (approximately 18k), where each task was allocated to a single VM. The results
are shown in Table. 9. The focus of the experiment is not on various resource management poli-
cies, their energy consumption and workload performance; but, to show that PerficientCloudSim
successfully accounts for workload performance degradation and improvements which are essential
while moving workloads around heterogeneous resources [3].
From the above experiments, we can see that the allocation policy, as suggested in [56], could
save up-to 9.38% more energy than the “Mbfd” policy for different host overload detection tech-
niques such as LR, and THR [8]. Furthermore, we also observed that a combination VM allocation
“Cbfd” and migration policy “Cmur” could save more energy, particularly, in large-scale systems.
The mean results (energy consumption, average number of migrations, SLAV and ESV) for various
workload traces, various allocation and migration policies are shown in Table 9. The VM alloca-
tion technique (Cbfd) combined with the migration technique (Cmur) has significantly improved
(∼41.25%) the ESV (product of energy and SLAV metrics) i.e. 2,495.14 is reduced to 1,465.86
– approximately 41.24% overall improvement. This clearly shows that these methods outperform
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Table 9: Total energy consumption, workload runtimes and number of migrations [THR: uses an
upper threshold (0.8) for host overload, Mbfd, default VM allocation policy in CloudSim, MMT:
minimum migration time, Cbfd: Combined BFD, Cmur: Combined MUR, Mcp: Migration
Control Policy – ‘best’ approaches are shown in bold]

Policy Avg. energy Avg. exe. Avg. number SLAV ESV
Host overload Allocation Migration E (kWh) time of migrations % (E×SLAV)

No migrations

Mbfd [8] 2,318.6 419.2 0 0 -
Epobf [57] 1,503.7 411.3 0 0 -
Cbfd [56] 1,493.2 409.8 0 0 -
Cbfd+ 1,145.8 398.6 0 0 -

With migrations

Mbfd MMT 1,246.069 431.8 26,779 10.14 2,495.14
Epobf MMT 1,201.9 428.9 25,543 10.23 2,062.44

THR Cbfd MMT 1,192.483 427.9 37,100 10.135 1,950.82
Cbfd+ Cmur 1,157.89 397.8 19,367 10.07 1,589.95
Cbfd+ Cmur+Mcp 1,157.91 398.6 11,187 10.01 1,580.68

Mbfd MMT 1,233.638 417.5 28,389 9.6 2,242.92
Epobf MMT 1,189.01 417.9 29,452 10.1 1,909.0

LR Cbfd MMT 1,170.816 399.9 31,202 9.5 1,622.75
Cbfd+ Cmur 1,154.79 400.1 18,530 9.47 1,465.86
Cbfd+ Cmur+Mcp 1,152.21 402.3 10,091 9.36 1,424.69

Fig. 8: Variations in workload performance due to platform heterogeneities, performance interfer-
ence and migration downtime [left: no migration – right: with migration] – lower values denote the
‘best’ performance

the well-known Best Fit Decreasing (BFD) heuristic. Table 9 also shows that the workload per-
formance could be, possibly, improved (1.16%) at slight increase (0.013%) in energy consumption
using the migration control policy “Mcp”. Moreover, the number of migrations could be signifi-
cantly decreased that could be approximately 45.54% less than using the Cbfd policy combined
with Cmur technique. Lastly, the energy savings achievable through efficient allocation policies
are higher than using consolidation with migration techniques. A simple intuitive reason for this
could be resource heterogeneities and that migrations are costly.
These experimental results, as described in [11], [12], demonstrate significant performance vari-
ations among similar VMs that are largely caused by the hardware (CPU) heterogeneities and
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performance interferences among various VMs – co-located on same host that compete for same
resources. These variations in workload performance affect runtimes and, therefore, costs. Resul-
tantly, potential performance and, therefore, cost benefits can be achieved in infrastructure clouds
through: (i) performance aware resource allocation – launching appropriate VMs over suitable
CPU platforms; and (ii) performance aware consolidation – minimising the performance interfer-
ence among VMs through migrations. In respect of (ii), if performance of a particular workload is
not satisfactory on certain resources; it might also be migrated to other machines that offer better
performance. In respect of (i), if users always look for efficient resources (where their workloads
perform better) this might result in the well-known instance seeking problem [9]. Instance seeking
problem may affect infrastructure utilisation levels, energy efficiency, and service providers’ rev-
enues. To further explain these variations in workload performance (runtimes), we describe other
experiments and empirical evaluation in Sec. 6.3.
Next, we investigate total cost savings in a heterogeneous datacenter through energy, performance
and cost ”Epc-aware“ allocation and migration i.e. if energy, performance efficiencies are assured
then allocation and/or migrations decisions are taken. The total electricity bill, user monetary
costs and costs savings (in US dollars - $) are described in Table 10. For these analyses, we assume
a PUE16 of 1.10 and energy price of 0.88$ per KWh17 that mimic a Google datacenter located in
the Oklahoma state, USA. Moreover, we assume that the users bills are computed at 0.0017$ per
second18. In case, an SLA violation occurs for a particular VM, the providers pay a penalty of $1.0
- which is subtracted from users’ bills and total costs savings. The service providers could save up
to 20.14% costs using the ”Epc-aware“ allocation and consolidation technique instead of using
the first fit policy.

Table 10: Costs savings [energy and users monetary costs are described in US dollars]

Allocation Energy Performance Users monetary Total costs
policy costs ($) (minutes) costs ($) savings (%)

No migrations
First fit 2090.54 418.88 42.73 2133.25
Epc-aware 1600.21 400.09 40.81 1641.02

Migrate all
First fit 1929.43 422.87 43.13 7.53
Epc-aware 1633.56 415.73 42.4 -2.13

Epc-aware migrations
First fit 1454.38 409.78 41.8 29.86
Epc-aware 1269.92 398.84 40.68 20.14

6.3 Results Discussion

How hosts are addressed or physically ordered in a datacenter has an impact on the scheduling
and migration approaches. For example, if available hosts are in increasing order of their energy
efficiencies and a first fit (FF) algorithm is used for allocation, then the total energy consumption
would be different if hosts are arranged in decreasing order of their energy efficiencies. Similarly, if
hosts are ordered based on their performance efficiencies (CPU models), then the existing trade-off
between energy and performance would also differ for various scheduling policies (VM allocation
and migration) and different workloads. Therefore, we discuss the impact of host ordering and

16 https://www.google.co.uk/about/datacenters/efficiency/

17 https://www.eia.gov/electricity/monthly/

18 https://aws.amazon.com/ec2/pricing/
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scheduling approaches on energy efficiency and workload performance. Each allocation and migra-
tion policy selects a host to run a VM and the starting point for such decisions could produce
variations in energy, performance and hence cost. For example, if the initial ordering were reversed
or changed (physically or logically through the scheduling approach), this may potentially alter
our results and outcomes.
To determine the impact this may have on infrastructure energy consumption and workload perfor-
mance, we run the experiments from our previous work [12] three times with three different initial
physical orders for hosts: (i) no order (NR) – random; (ii) increasing order based on Ef (INC);
and (iii) decreasing order based of Ef (DEC). The Ef for each host is calculated by dividing its
maximum power consumption by the number of slots (cores or GCEUs) it has. For example, if we
have three hosts (h1, h2 and h3) having Eh1

f = 4, Eh2

f = 1 and Eh3

f = 2 where smaller Ef repre-
sents lower energy efficiency. Then the orders would be: NR – [h1, h2, h3], INC – [h2, h3, h1] and
DEC – [h1, h3, h2]. Note that, Ef denotes the overall energy consumption of a host, but, not for a
particular VM. For Workload (3), unfortunately we were unable (due to stranded resources)19

to schedule all VMs for NR and DEC, therefore we increased the number of hosts from 12,583 to
18,583. This demonstrates that the order of hosts does matter and could affect energy efficiency
and workload performance (hence cost).
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Fig. 9: Variations in total energy consumption when hosts are physically ordered based on their
levels of energy consumption – efficiency factor (Ef ) [left - Workload (1), middle - Workload
(2), right - Workload (3)] – note that, these experiments were performed using the simulation
set-up as described in [12] [NR: no order, INC: increasing order of Ef , DEC: decreasing order of
Ef ]

Fig. 9 and Fig. 10 both demonstrate variations in energy consumption and performance (runtime)
for different kinds of workload and hosts orders (based on their energy efficiency – Ef ). These
experiments suggest that the physical order of hosts could significantly affect the IaaS energy
consumption and application performance depending on the workload type. For example, no or-
dering may be energy efficient for Workload (1), but, not much affective for Workload (2)
and Workload (3). Similarly, the increasing order is energy efficient for Workload (2) and
Workload (3), but, worst for Workload (1). Surprisingly, the no ordering is, on average, more

19 the host that cannot be allocated due to a single resource unavailability - enough CPU is available but there is insufficient memory [58]
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Fig. 10: Variations in runtimes (performance) when hosts are physically ordered based on their
levels of energy consumption – efficiency factor (Ef ) [left - Workload (1), middle - Workload
(2), right - Workload (3)] – note that these experiments were performed using the simulation
set-up as described in [12] [NR: no order, INC: increasing order of Ef , DEC: decreasing order of
Ef ]

performance efficient that other orders. This is due to the fact that cloud workloads are distributed
over various resources; and the no ordering approach creates more opportunities to run workloads
on more performance efficient hosts. Moreover, different scheduling policies offer different levels
of energy consumption and workload performance for various combinations of hosts ordering and
workloads. Here, ordering is discussed in terms of allocation policies that means logical addressing
and is not a physical shift. However, this might be extended to: (i) putting hosts in different racks;
and/or (ii) physically shifting hosts inside a rack [3]. Note that, the proposed cloud simulator
“PerficientCloudSim” is used in our previous works such as [2], [12], [56], [59].

6.4 Generalisation of Outcomes

In order to demonstrate that PerficientCloudSim simulator can replay real workload traces from
various cloud providers, we use the data provided in [15] from the Microsoft Azure cloud. Various
properties and characteristics of the dataset are further described in [15]. The experimental pa-
rameters, datacenter set-up, hosts and VMs characteristics (in terms of energy consumption and
resource contention) were kept the same, as described earlier in Sec. 6.1. However, the number of
hosts, VMs, workload execution times and their utilisation patterns were kept varying over differ-
ent experimental scenarios. Moreover, various combinations of VM allocation techniques (Round
Robin - RR, First Fit - FF, Fill Up - FU) and consolidation with migration policies (no migration
at all - NO, migrate all - ALL, migrate VMs if their migration costs are recoverable - CMCR)
were assumed [14], [60]. Note that, the CMCR (i.e. Consolidation with Migration Cost Recovery)
approach migrates relatively long-running VMs; using the theory of probability – VMs that have
run for longer durations (before migrations) have higher chances to continue their execution even
after their migrations to other hosts [14].
The results obtained, in terms of energy consumption and execution times (performance), are shown
in Table 11. These results are averaged over ten different runs. The standard deviations (values
followed by ±), when overlapped, mean that both approaches perform similar. Our evaluation, as
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shown in Fig. 11, suggests that these outcomes and findings are largely consistent with our previous
outcomes. When no migrations are considered, then the FU approach offers the best performance
- as more energy and performance efficient hosts are utilised first. The ALL migration approach
can be expensive than the NO migration approach; which favours no-consolidation. Consolidation
of workloads could be affective and could save energy if unnecessary or costly migrations can be
avoided. For example, the CMCR approach ensures significant energy savings and performance
gains.

Table 11: Energy consumption and performance (averaged over ten runs) – the value after ±
denotes standard deviation [FU performs better than RR]

Policy Energy consumption Performance
Allocation Migration (KWh) (minutes)

NO 3,042.67±211.35 574.10±3.47
RR ALL 3,134.99±244.69 562.52±2.53

CMCR 2,478.45±188.34 549.59±4.02
——————————————————————

NO 2,967.45±129.34 546.63±3.47
FU ALL 2,898.02±231.44 531.41±4.01

CMCR 2,100.23±101.56 528.04±4.29

Fig. 11: Variations in workload performance due to platform heterogeneities, performance interfer-
ence and migration downtime [left: no migration – right: with migration] – lower values denote the
‘best’ performance

To further generalise our outcomes and validate that the proposed simulator can simulate large-
scale heterogeneous IaaS, we run several experiments with different datacenter sizes, VMs, and
workload types (with various combinations). The three workload types i.e. W1, W2, and W3 repre-
sent variations in CPU utilisation levels and their execution times, as described in Sec. 6.5. These
experiments were performance using the FU VM allocation and migrate ALL approaches. Table
12 shows our observed results in terms of number of migrations, energy consumption and work-
load performance with respect to minimum (Min) and maximum (Max) across three runs. The
outcomes suggest when a mix of different workloads are taken into account, larger variations may
happen in the workload performance and, subsequently, in energy consumption. These findings are,
largely, inline with our previous discussion that suggest and justify the scalability of the proposed
simulator.
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Table 12: Different workloads and their combination on various datacenter sizes

Workload Datacenter Number of Number of Energy usage Performance
type size VMs migrations (KWh) (Minutes)

(servers) Min Max Min Max Min Max
W1 3,000 50k 528 672 71.22 71.26 19.34 19.56
W2 6,000 70k 500 563 167.13 167.78 88.2 90.01
W3 9,000 0.1m 487 501 295.73 311.69 171.9 201.56

W1, W2 6,000 0.12m 1,001 1,098 171.81 175.51 101.23 111.56
W2, W3 9,000 0.17m 1,792 1,891 203.25 352.75 277.89 279.01
W1, W3 6,000 0.15m 934 1,056 203.49 207.75 189.56 201.44

W1, W2, W3 12,000 0.22m 2875 3221 578.79 584.83 391.67 399.7

6.5 Impact of Workload Types on Performance

In this section, we investigate the impacts of various workload types, such as CPU, memory and
disk intensive, on resource provisioning, migration and simulation behaviour. Furthermore, we also
study the behaviour of threshold values used to optimise the state of the datacenter to reduce
energy consumption and improve performance. These workloads were classified according to their
demand for resources. For example, the CPU utilisation of the CPU intensive workloads (W1)
varies between 80% to 95%; while other resource demands were kept lower than 30%. Similarly, for
memory intensive workloads (W2) their CPU utilisation levels were kept 50% to 75% while memory
usage was 80% to 95%. For disk intensive workloads (W3), the CPU demand varies between 20% to
45% while disk utilisation were kept higher than 80%. Besides these, workloads may be classified
as batch and production services. These synthesized workloads were modelled using a normal
distribution function based on findings from real cloud workload traces such as Google [12] and
Microsoft Azure clusters [15]. As, we only account for CPU heterogeneity; therefore, we discuss
our results in terms of CPU intensive workloads. A first fit (FF) VM allocation policy combined
with different approaches to migrations (such as NO, ALL and CMCR) was used while other
experimental setup was the same, as described previously in Sec. 6.1.

Table 13: Performance of three different types of workloads (averaged over ten runs) – the value
after ± denotes standard deviation in workload runtimes

Policy Workload CPU utilisation Performance
Allocation Migration type (normalised) (minutes)

NO 935.45±11.68
ALL CPU intensive 0.8 - 0.95 912.35±16.32

CMCR W1 901.21±17.56
——————————————————————

NO 1,327.21±6.21
FF ALL Memory intensive 0.5 - 0.75 1,298.32±11.89

CMCR W2 1,213.67±12.73
——————————————————————

NO 1,599.31±4.99
ALL Disk intensive 0.2 - 0.45 1,556.12±10.23

CMCR W3 1,500.98±8.45
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Table 13 summarises the results which we achieved for three different types of workloads. We
observed larger variations for CPU intensive application while their level of performance were
optimal as compared to other two application types. The performance improvements are essentially
due to the workload demands - if CPU resources (more formally MIPS in the notion of CloudSim)
are allocated in high amount; then workload will finish quickly. Furthermore, the variations in
runtime are significant due to the fact that workloads compete for CPU resources (contention)
or co-located. Workloads’ performance could be more severely affected with migrations due to
platform heterogeneities. When CPU demand is lessened (in case of memory and disk intensive
workloads), then besides their increase runtimes (i.e. lower performance) smaller variations can be
observed. Unfortunately, the memory and disk usage models and heterogeneities are currently not
supported in the proposed simulator. Another important factor is the predefined threshold values
(Uthreshold - upper threshold, Lthreshold - lower threshold) which are setted to optimise the state of
the datacenter. The Uthreshold can avoid overloading hosts while Lthreshold can help in switching off
idle hosts to increase performance and energy efficiencies, respectively. However, it is a tedious job
to set appropriate threshold values. Moreover, static threshold may be appropriate in situations
where the workload is stationary; however, for dynamic workloads (as usually happens in clouds)
adaptive thresholds are more affective [8].

Table 14: Impact of CPU utilisation thresholds (averaged) on energy consumption – the value after
± denotes standard deviation

Allocation Workload (Normalised) Number of Hosts Energy Performance
Migration type Lthreshold Uthreshold migrations switched-off (KWh) (minutes)

0.1 0.9 101 12 467.34±5.2 909.43±15.84
CPU 0.2 0.8 167 34 424.98±4.8 912.35±16.32

0.3 0.7 122 19 441.46±6.1 907.01±14.67
—————————————————————————————–

FF 0.1 0.9 95 13 723.09±11.3 1,291.67±12.01
+ Memory 0.2 0.8 189 37 699.34±9.9 1,298.32±11.89

ALL 0.3 0.7 211 55 584.24±9.7 1,304.11±10.5
—————————————————————————————–

0.1 0.9 454 73 927.99±1.8 1,558.6±10.1
Disk 0.2 0.8 489 72 923.77±2.1 1,556.12±10.23

0.3 0.7 532 73 924.69±2.0 1,555.78±9.4

For example, setting a higher value for Uthreshold would essentially affect the workload performance;
while a lower value would increase the unneeded migration opportunities. Similarly, a high value for
Lthreshold will not guarantee appropriate migrations; while a lower value would unnecessary switch
off hosts. Similar to datacenter temperature level, which are usually kept as low as 55◦F (threshold),
a one degree increase could save significant amount of energy20; hosts’ utilisation thresholds have
significant impacts on energy efficiency and workload performance. In our case, an upper utilisation
threshold during the allocation process ensures that hosts are not over-utilised – since a VM can
only be placed if there are enough resources and the utilisation threshold is not exceeded. We carried
out several experiments while adjusting the lower and upper utilisation thresholds during the
consolidation. Table 14 describes variations in energy consumption and workload performance along
with total number of migrations and hosts switched off to save energy when different thresholds
and workload types are taken into account. We observed that for CPU intensive workloads, the
impact of thresholds might be severe and, therefore, difficult to guess the most appropriate ones.

20 https://blog.se.com/datacenter/2013/02/01/4-ways-to-reduce-energy-consumption-in-any-data-center/
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In such situations, adaptive thresholds may be more affective. However, workloads that do not
demand for CPU frequently, the impact could be trivial or even negligible. The lower one affects
the number of switched off hosts (energy efficiency) while the upper one has great impacts over the
workload performance (possibly due to resource contention). However, this needs further research
and investigation.

7 PerficientCloudSim Accuracy

Numerical results which are computed using simulators may not be guaranteed. Furthermore, it is
essential to ensure that the simulator produces accurate results that are similar to those computed
in a real test-bed. Unfortunately, a real test-bed is not available to us. Therefore, two different
techniques are most widely used in order to ensure that the simulator is just like a real test-bed
and can produce accurate results: (a) map simulated models to analytical, simplified, models;
and/or (b) map the simulated models with other simulated, but verified, models [2]. The fastest
method to ensure the accuracy of our results is to map them with simplified, analytical results
which were achieved in a real test-bed. Nevertheless, this is not ensured that a simplified model
must be always available. Moreover, this method can only be used in simple scenarios, because
locating analytical models for real problems could be difficult or, at least, impossible; and perhaps,
this might be a reason for using numerical simulations [1].
Fortunately, various modules of our simulator, the VM level host efficiency model, performance
interference, migration energy cost have already considered in real test-beds. For example, Ibrahim
et al. [45] proposed a similar power consumption model and produced their outcomes at Leeds cloud
test-bed at the University of Leeds, UK21. Recently, the authors extended their model in [45] to
account for heterogeneous workloads [46]. Furthermore, Xu et. al [11] experimentally evaluated
performance interference due to co-located workloads. Since, we use the VM level host efficiency,
performance interference, migration energy cost as baseline models for various resource placement
and migration algorithms in the PerficientCloudSim simulator. Therefore, if we can map results
obtained over these baseline models to analytical results, as demonstrated in [45], [46], [11]; then, it
is possible to ends up with a method to approximate the simulated results and PerficientCloudSim’s
accuracy to a real test-bed.

Real Test-bed In [45], [46], a cluster comprising four homogeneous hosts is considered for eval-
uation of the power model. Every host comprises a 4-cores X3430 Intel Xeon CPU, that runs
at 2.40GHz clock speed, and 8GB of memory (RAM). All hosts are inter-connected through a
Gigabit/s Ethernet link. To measure the energy consumption, a watt meter is attached to every
host. According to authors, same hosts are part of the Leeds test-bed that comprises a cluster of
commodity servers (Dell), as described in [45]. If we knew the idle (Pidle) and peak (Pmax) energy
consumption of various hosts in the Leeds test-best, then, it is possible to use a linear power model
(to measure energy usage) which is assumed as more than 90% accurate [8]. Unfortunately, with
the exception of CPU, memory and disk capacities, we do not know further information of these
machines. Therefore, to simulate the energy consumption of hosts and VMs, we use SPECpower
benchmarked values (in terms of real energy consumption, for particular hosts, measured in Wh
at certain level of CPU utilisation e.g. 0%, 10%, 20% ... and 100%)22. Moreover, we assume that
the VM workload demand for CPU cores is random (stochastic) – utilises the requested resources
exactly, as described in [1].
In another experiment, the authors evaluated that increasing the total number of VMs in a par-
ticular host (co-located) affects its overall energy consumption that can be accurately modelled
through a positive linear relationship. This is in-line with [11], which describes a linear relationship
between the number of co-located VMs, on a particular host, and performance interference. The
linear growth in energy consumption (with respect to the number of co-located VMs) and the total

21 https://institutes.engineering.leeds.ac.uk/computing/research/distsys/facilities.shtml

22 https://www.spec.org/power ssj2008/results/res2010q2/power ssj2008-20100420-00252.html
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energy consumption of the host can be described, is given by Eq. 13:

Y = 10.127X + 72.587 (idle power) [R2 = 0.9996] (13)

where X is the total number of co-located VMs that collectively run on a particular host h and Y is
the power consumption of h. Using the host power model (virtualised) in [14], the VM-level power
consumption of all 4 VMs collectively is almost similar to host’s total energy consumption (similar
utilisation levels) [45]. Moreover, Xu et al. [11] verified a linear relationship between the number
of co-located VMs and performance interference, as described in Sec. 5.5. Various linear equations
and parameters for the performance interference model are shown in Fig. 4. For example, resource
contention of “Sort” application on “E7420” CPU platform is given by:

Y = 6.9429X + 4.4 [R2 = 0.9792] (14)

Since, we also use similar VM-level host power and performance models (virtualised) as a base-
line for various resource allocation and management policies, in the proposed PerficientCloudSim
simulator. Therefore, if the results obtained in PerficientCloudSim for the power and performance
models have similarities to outcomes obtained on a real test-bed in [45], and [11], then Perficient-
CloudSim could be considered as accurate and verified.

Simulated Model We simulated a simplified model of the above numerical experiment in a real
test-bed. We assume three baseline models i.e. (a) the host level energy consumption; and (b) the
linear relationship between energy consumption and number of VMs on a particular host; and (c)
the linear relation ship between the number of co-located VMs on a particular host and level of
performance interference. Note that, the exact idle and peak power consumption of the real test-
bed resources is unknown. In our experiments that use SPECpower benchmarks, the idle power
consumption Pidle of every host is approximately 61.3 Watts per hour (Wh). For simplicity, we
ignore the peak power consumption as it is useless here. If we assume the Y intercept, in the linear
model i.e. Eq. 13, as the host’ idle power consumption (72.587 Wh), then the regression line’ slope
(m1 = 10.238) of the simulated model (i.e. Eq. 15) is very near to the slope (m2 = 10.127) of
the linear model in real test-bed experiments (Eq. 13). These slopes of regression lines describe a
similar rate of change in the energy consumption with respect to the total number of co-located
VMs on a particular host. Unfortunately, the type of workload running in VMs within the real test-
bed. Therefore, we simulate stochastic workloads that have random behaviour in utilising the host’
CPU resources. Note that, the stochastic utilisation model is already available in the CloudSim
class file “UtilizationModelStochastic()”. To validate the model over this random behaviour, we ran
the same experiment ten times and, then, mapped the average values to those of the real test-bed
results [2].

Y = 10.238X + 61.3 (idle power) [R2 = 0.9315] (15)

In Eq. 15, X is the total number of VMs running on a particular host and Y is the total power
consumption of the host. Furthermore, the simulated performance interference for the “E7420”
CPU model was modelled as (where the intercept was explicitly defined as 4.4 to match with real
model in Eq. 14):

Y = 7.009X + 4.4 [R2 = 0.9792] (16)

The simulated results (host level energy consumption with respect to the number of co-located
VMs) closely match the real-life values obtained in a real test-bed. Similarly, the performance
interference model also mapped closely to that of the real test-bed. The relative error (RE) which
is the difference between the slopes of both linear models (m1, m2 - real and simulated) is less
than 1.096. For the performance interference models, the RE is equal to approximately 1.01. The
RE is computed as:

RE = ±
[
100−

(m1

m2
× 100

)]
(17)

Therefore, compared to the real test-bed outcomes, our simulations of the simplified model (in
PerficientCloudSim) and results can be assumed approximately 98.904% (100 - 1.096) – 98.99%



34 Zakarya M., et al.

(100 - 1.01) accurate. With this accuracy, we can easily compute the expected errors in energy
or performance efficiencies of various policies and, therefore, simulator. For example, the resource
management policy “CMCR” [43], which is suggested approximately 3.66% more energy and 1.87%
more performance efficient than the no migration technique, could potentially save approximately
3.66±0.04% more energy and is ∼1.87±0.019% more performance efficient than the no migration
approach. Note that, the ±0.04 and ±0.019 are the REs which are approximately 1.096% of 3.66
and 1.01% of 1.87 – computed as 1.096

100 × 3.66 and 1.01
100 × 1.87, respectively. However, with this it

is understood that “a model which works for simple scenarios is not assured to work for complex
scenarios; however, a model which does not work for simple scenarios will absolutely not work for
complex ones” [2].

8 Conclusions and Future Work

To support and accelerate the research related to clouds, applications and services, it is essen-
tial that accurate software tools (simulators) are designed and developed to aid researchers and
industrial developers. In order to examine and evaluate clouds, datacenters and various applica-
tions behaviours, simulation-based approaches also offer significant benefits. For example, they
allow cloud researchers to: (i) determine the performance of their provisioning and service deliv-
ery policies in a repeatable and controllable environment (largely free of cost); and (ii) tune the
performance bottlenecks before real-world deployment on commercial clouds. In this paper, we
discussed the design and development of the “PerficientCloudSim” simulator that can reasonably
simulate large-scale heterogeneous datacenters in terms of performance variations due to hardware
(CPU) heterogeneities and co-located VMs. Our experimental evaluations suggest that significant
performance and, therefore, cost benefits could be achieved, in IaaS clouds, through scheduling
the demand on available resources using appropriate resource allocation and consolidation with
migration policies.
In this paper, the heterogeneity of resources was considered through relating the Google data to
real benchmark workloads [12]. Resource contention due to co-located VMs and migration was
statistically modelled and implemented. We also used the performance parameters of hosts in a
real cloud (Amazon EC2) as demonstrated in [9]. Using real workload data from cloud service
providers, we proposed “PerficientCloudSim” which accounts for resource heterogeneities in terms
of CPU architecture, energy consumption, workload migration and resource contention due to co-
location. Our evaluation suggests that “PerficientCloudSim” can reasonably simulate performance
degradation (variations in runtimes), caused by CPU heterogeneity and resource contention, in
cloud workloads. Moreover, energy consumption and performance of migrated workloads was con-
sidered. We believe, modelling such a heterogeneous datacenter was not possible in available cloud
simulators, before. Furthermore, cloud researchers can use “PerficientCloudSim” to test and vali-
date various resource allocation and management policies, before they are implemented over real
heterogeneous infrastructure clouds. In addition, we suggest that other cloud simulators should
also be adapted to represent resource and workload heterogeneities in real clouds. Based on our
findings, we can take this study further to suggest generalised models for CPU architecture hetero-
geneity, resource contention and migration. The model would be able to demonstrate performance
variations (runtimes) for various workloads based on the CPU model (architecture) and migration
opportunities or decisions. Moreover, we are working to integrate various migration approaches
(pre-copy) into the proposed simulator.
Further research is needed to determine what kinds of workload are not suitable for migration
and can run more energy and performance efficiently without being migrated. Similarly, investi-
gation of workload runtimes is required for aggregation based VM placement techniques which
put similar workloads/VMs onto the same heterogeneous hosts. Such resource provisioning poli-
cies are currently used in many production clouds but not in Google’s cluster [58]. Similar VM
placement policies are demonstrated in [61], however, it is assumed that runtime of workloads is
known in advance. There is a need for the investigation of similar runtime based VM placement
and their impacts on infrastructure energy consumption and workload performance, particularly,
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when co-located VMs compete for similar resources. Moreover, besides CPU heterogeneity, re-
source contention and consolidation through migrations, workloads (VMs) performance can also
be substantially affected by the heterogeneities of other on-board hardware resources such as RAM,
GPU card; and that needs further investigation and research. Similarly, investigation of the energy
consumption and performance of the migrated VMs, using real workload dataset [49], is essential
in order to study their impact with respect to various migration policies, co-location and work-
load types. These parameters can further be used to predict energy, performance and cost efficient
migrations, migration durations and possibilities of performance losses or improvements; in or-
der to automate energy, performance and cost efficient resource management across hyper-scale
cloud datacenters [15]. Note that, for resource heterogeneity and co-located VMs contention we
considered only the CPU and workloads aspects; whereas, other hardware resources can also affect
VM performance as described in Sec. 5.4. Therefore, using MIPS ratings as a single measure for
various performance metrics should not be the only scale of measurement under different situa-
tions. In the future, we will consider incorporating other hardware heterogeneity features into the
PerficientCloudSim.
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and Ignacio M Llorente. icancloud: A flexible and scalable cloud infrastructure simulator. Journal of
Grid Computing, 10(1):185–209, 2012.

25. Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim: An environment for performance
evaluation of edge computing systems. Transactions on Emerging Telecommunications Technologies,
29(11):e3493, 2018.

26. Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya. ifogsim: A toolkit for
modeling and simulation of resource management techniques in the internet of things, edge and fog
computing environments. Software: Practice and Experience, 47(9):1275–1296, 2017.
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[ Appendix A: CloudSim ]

CloudSim [1] is a tool-kit to model and simulate IaaS clouds. CloudSim is an extension of the
GridSim [7] simulator that uses SimJava23 library as a framework for event handling and passing
messages between entities. Due to several limitations of SimJava, CloudSim is designed using a
new discrete event management framework as demonstrated in [1]. CloudSim is widely used to
simulate resource provisioning techniques. It has the ability to perform simulations of IaaS clouds
where heterogeneous workload is assigned and executed with different experimental conditions. It
enables users to express datacenter characteristics, including the number and specification of hosts,
storage, network topology and design of datacenter usage. It enables the design of VM placement
policies, allocation of host cores (PEs) to VMs and division of CPU time between users’ work-
loads. Switching on/off hosts, VM consolidation with migration, and integration of energy models
(SPECpower24 benchmarks) are the notable techniques to model energy and performance efficient
datacenters in CloudSim [8].
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Fig. 12: CloudSim basic architecture [1]

Within CloudSim, the application layer is managed by a broker which requests VMs creation. A
broker can concurrently own one or more VMs, that are kept running on hosts until their explicit
de-allocation by the broker i.e tasks are finished or some local requests are waiting (high priority)
according to the SLA lease. VMs and host capacities are defined in Million of Instructions Per Sec-
ond (MIPS). For example, a CPU of 2.0GHz is defined 2,000 million instructions per second, which
means that it can execute 2,000 instructions per second. Tasks (cloudlets) are allocated to VMs

23 http://www.dcs.ed.ac.uk/home/simjava/tutorial/

24 https://www.spec.org/power ssj2008/
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and defined in terms of the number of CPU instructions necessary for their completion (MIPS).
Note that, if MIPS is used as a single measure, it means that workloads are basically homogeneous.
Therefore, we assume larger or smaller MIPS as proxy for various workloads, represented by their
CPU architecture-specific runtimes, since there is no other way to simulate the distinction between
various workloads (e.g. a disk-bound and a CPU bound task). This provides a motivation for the
discussion of CPU architectures and workloads at this point, which seems relevant. From CPU het-
erogeneity point of view, smaller or larger MIPS would certainly translate to variations in runtimes
even for similar workloads. From application heterogeneity point of view, applications’ (workloads)
runtimes (therefore, smaller or larger MIPS) are mapped statistically to runtimes of several bench-
mark workloads, such as Bzip2, Povray [9]. Closer similarities in runtimes (i.e. smaller or larger
MIPS) are assumed as different types of applications. Fig. 12 shows the multi-layered design of the
CloudSim simulator framework and its various architectural components [1].
The basic requirements to run CloudSim include: (i) Sun’s Java version 8 or newer; and (ii) Apache
ant25 or Maven26 to compile CloudSim. Both Ant and Maven “simplifies Java project management
by providing various tools and plugins for project building, testing, and packaging, dependency
management, etc.” CloudSim is not compatible with older versions of Java and may not be com-
patible with non-Sun Java version, such as GCJ or J++. A numerical library such as Flanagan’s27

or Apache Math28 is needed to run several built in examples inside the CloudSim. CloudSim can be
installed on any desktop machine that supports Java 8 or newer version. However, machines with
large memories are preferable, particularly, when dealing with large-scale datacenter simulations.
Each CloudSim entity is an object, created at the start of the simulation, and this may cause
heap memory issues when the Java garbage collector is not able to find un-referenced objects for
deletion.
CloudSim has been widely used to: (i) measure the effects of energy-aware VM allocation and
migration algorithms on datacenter OpEx (operational expenditures); and (ii) evaluate scheduling
mechanisms to allocate tasks to VMs [62]. Because CloudSim is an event driven simulation toolkit,
its components maintain a message queue and generate messages, which they pass to other entities.
A CloudSim simulation can instantiate several datacenters, each of which comprises several hosts
(heterogeneous), which in turn host/accommodate multiple VMs executing one or more tasks. A
datacenter is then characterized by its policy of placing requested VMs onto hosts (with the default
strategy being to select the host with the least CPU cores in use) [8]. Moreover, each datacenter
can be configured to charge users with different prices for storage, VM usage, and data transfer
(i.e. pricing models).
Each host has its own policy, which defines how its compute resources are to be divided among
accommodated VMs, i.e. whether VMs operate on shared (time shared) or distinctly separated
(space shared) resources and whether over subscription of resources is allowed or not. In a similar
fashion, each VM also comes with a scheduling policy which specifies how its compute resources are
to be divided among tasks. On top of this architecture, an application-specific datacenter broker
supervises the whole simulation. The broker is responsible to: (a) make requests for allocation and
deallocation of VMs inside the datacenter, and (b) assign tasks to VMs for execution. Fig. 13 shows
the UML class diagram of CloudSim and its various components.
As a completely customizable tool, CloudSim allows extension of policies in all its components,
which makes it a suitable research tool that can handle the complexities arising from simulated
platforms [1]. Several extensions to CloudSim have been presented in the literature. For exam-
ple: (i) NetworkCloudSim [63], which introduces sophisticated network modelling and inter-task
communication; (ii) EMUSIM [64], which uses emulation to identify the performance requirements
and runtime workload characteristics and feeds this information to CloudSim for more accurate
simulation; and (iii) CloudMIG [65], which “facilitates the migration of software systems to the
cloud by contrasting different cloud deployment options based on the simulation of a code model
in CloudSim”. The internal processing of CloudSim in the form of a sequence diagram is shown

25 http://ant.apache.org/

26 https://maven.apache.org/

27 https://www.ee.ucl.ac.uk/ mflanaga/java/

28 http://commons.apache.org/proper/commons-math/
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Fig. 13: CloudSim class design diagram [1] [an explanation of these classes is given in Sec. 8.1]

in Fig. 14. The two methods updateVMProcessing() and updateCloudletsProcessing() are the core
processes of the simulation internal processing. At datacenter level, at each simulation step, the
former method updates VMs processing inside the hosts. Similarly, at host level, the former method
invokes the latter one to update tasks execution which are currently running inside VMs. A com-
prehensive discussion of the simulation internal processing is available in [1].
Despite its popularity and number of citations, CloudSim is not validated and verified yet, although
there are several models inside CloudSim which have been validated in the real world. For exam-
ple, the linear power model and migration performance model are validated as accurate (∼10%
degradation) [66]. However, the linear power model assumes that energy consumption exclusively
depends on CPU utilisation by ignoring other components such as memory and network. Moreover,
CloudSim does not take into account several important parameters in its VM migration model such
as over commitment and memory dirtying rate [67]. Similarly, there is no model to capture the
overhead involved in the virtualisation and migration technologies29. Das et al. [40] have extended
CloudSim with these models and have validated it through comparing with real world experiments
with an approximate error of ±2%.
CloudSim simulator is designed with using two different kinds of classes: (i) the main classes which
interact with each other to simulate a cloud [Sec. 8.1]; and (ii) the core classes which make simula-
tions possible [Sec. 8.2]. We briefly describe these classes, here as we believe it would help readers
in understanding CloudSim and our extensions; a detailed discussion of these classes can be found
in [1].

8.1 Main Classes

The class diagram of the CloudSim main classes is shown in Fig. 13 [1].

BwProvisioner: (abstract class) models the provisioning policy of network bandwidth to VMs.

CloudCoordinator: periodically monitors the internal state of datacenter (resources) and un-
dertakes dynamic load-shredding decisions.

Cloudlet: models the cloud-based application services (each Cloudlet refers to a user’s job/task).

29 http://www.cloudbus.org/cloudsim/
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Fig. 14: CloudSim sequence diagram [40] [the CloudSim core classes are described in Sec. 8.2]

CloudletScheduler: (abstract class) can be extended by the implementation of different poli-
cies to determine the share of processing power (CPU) among Cloudlets that are running inside
a VM. Two types of provisioning policies are offered in CloudSim: (i) space-shared; and (ii) time-
shared [1].

CloudletSchedulerTimeShared: represents a provisioning policy which allows resources of a
single VM to be shared among various cloudlets or tasks - allocate VMs resources to cloudlets or
tasks.

CloudletSchedulerSpaceShared: represents a provisioning policy which does not allow re-
sources of a single VM to be shared among various cloudlets or tasks - allocate whole VM to
a single and exactly one cloudlet or task.

Datacenter: models the core infrastructure-level services (hardware) that are offered by cloud
providers (such as Google).

DatacenterBroker: discovers suitable cloud service providers by querying the CIS and under-
takes on-line negotiations for allocation of resources that can meet the application requirements.

DatacenterCharacteristics: contains configuration information of datacenter resources.
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Host: models a physical resource – host/server and its characteristics.

NetworkTopology: contains the information for inducing network behaviour (latencies) in the
simulation.

RamProvisioner: represents the provisioning policy for memory (RAM) allocation to VMs.

SanStorage: models a Storage Area Network (SAN) that is commonly ambient in datacenters
for storing data (such as Amazon S3).

Vm: models a VM and its characteristics, which is managed and hosted by Host class.

VmAllocationPolicy: represents a provisioning policy to place VMs on hosts.

VmScheduler: models the policies (space-shared, time-shared) to allocate processor cores (PEs)
to VMs.

VmSchedulerTimeShared: represents a provisioning policy which allows resources of a sin-
gle host to be shared among various VMs - allocate processor cores (PEs) to VMs.

VmSchedulerSpaceShared: represents a provisioning policy which does not allow resources
of a single host to be shared among various VMs - allocate whole processor core (PE) to a single
and exactly one VM.

8.2 Core Classes

The class diagram of the CloudSim core classes is shown in Fig. 15 [1].

Fig. 15: Class diagram of CloudSim core classes [1]

CloudSim: responsible to manage event queues and control execution of the simulation events.
Every event generated by the CloudSim entity at runtime is stored in a queue (future events).
The events are sorted based on their creation time. Each event that is scheduled at the simula-
tion step is removed from the queue (future events) and is added to another queue (deferred events).
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CloudInformationService: provides resource registration, indexing, and discovering capabili-
ties [1].

CloudSimShutdown: waits for the termination of all end-user and broker entities, and then
signals the end of simulation to CIS.

CloudSimTags: consists of various static events/commands which indicate the action taken by
CloudSim entities when they receive or send events.

DeferredQueue: implements the deferred event queue.

FutureQueue: implements the future event queue.

SimEntity: (abstract class) represents a simulation entity that is able to send messages to other
entities. Furthermore, CIS is responsible to process received messages, fire and handle events. All
entities must override the three core methods in this class: (i) startEntity() – entity initialization;
(ii) processEvent() – processing of events; and (iii) ShutdownEntity() – entity destruction.

SimEvent: represents a simulation event that is passed between two or more entities.

The above classes when linked with each other can model a simple, but, complete datacenter. Be-
sides these classes, other classes might exist in CloudSim simulator and its various variants, such as
FederatedDataCenter, containerDataCenter, VmScheduler, and CloudletScheduler. All these classes
are inherited either from the above core classes or main classes in some or other way. Therefore, we
do not include them in this paper. A detailed discussion, functionalities/capabilities and explana-
tion of these inherited classes can be found in [1], [22]. Further materials, documentations, on-line
courses, publications and several variants of the CloudSim simulator are available at the portal of
CLOUDS Laboratory30.

30 http://www.cloudbus.org/cloudsim/
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