
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:9069–9087
https://doi.org/10.1007/s11227-020-03549-8

1 3

A cellular automata rule placing a maximal number
of dominoes in the square and diamond

Rolf Hoffmann1  · Dominique Désérable2 · Franciszek Seredyński3

Accepted: 28 November 2020 / Published online: 2 February 2021
© The Author(s) 2021

Abstract
The objective is to demonstrate that a probabilistic cellular automata rule can place
reliably a maximal number of dominoes in different active area shapes, exemplarily
evaluated for the square and diamond. The basic rule forms domino patterns, but the
number of dominoes is not necessarily maximal and the patterns are not always sta-
ble. It works with templates derived from domino tiles. The first proposed enhance-
ment (Rule Option 1) can form always stable patterns. The second enhancement
(Rule Option 2) can maximize the number of dominoes, but the reached patterns are
not always stable. All rules drive the evolution by specific noise injection.

Keywords  Pattern formation · Probabilistic cellular automata · Asynchronous
updating · Matching templates · Overlapping tilings

1  Introduction

Pattern formation is an area of active research in various domains such as physics,
chemistry, biology, computer science or natural and artificial life. Cellular automata
(CA) are suitable and powerful tools for catching the influence of the microscopic
scale onto the macroscopic behavior of such complex systems [1–3]. At the least,
the 1-dimensional Wolfram’s “Elementary” CA can be viewed as generating a large

 *	 Rolf Hoffmann
	 hoffmann@informatik.tu‑darmstadt.de

	 Dominique Désérable
	 domidese@gmail.com

	 Franciszek Seredyński
	 f.seredynski@uksw.edu.pl

1	 Technische Universität Darmstadt, Darmstadt, Germany
2	 Institut National des Sciences Appliquées, Rennes, France
3	 Department of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University,

Warsaw, Poland

http://orcid.org/0000-0002-1307-4290
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03549-8&domain=pdf

9070	 R. Hoffmann et al.

1 3

diversity of 2-dimensional patterns whenever the time evolution axis is considered
as the vertical spatial axis, with patterns depending or not on the random initial con-
figuration [4]. Regarding the agent-based Yamins–Nagpal “1D spatial computer”
[5, 6] the authors emphasize therein how the local-to-global CA paradigm can turn
into the inverse global-to-local question, namely “given a pattern, which CA rules
will robustly produce it?” Such CA rules can be found by (i) proper design, (ii) by
exhaustive search or (iii) by heuristics like Genetic Algorithm (GA) or Simulated
Annealing, methods which were applied to solve the Density Classification Problem
[7], for instance.

The arrangement of dominoes in a grid of cells is a special case of pattern for-
mation. Possible applications are: parcel packing encountered in different logistics
settings, such as loading boxes on pallets, arrangements of pallets in trucks or cargo
stowage [8]; the design of a sieve for rectangular particles with a maximum flow
rate; or an optimal arrangement of nanoparticles; and so forth. Unlike the dimer in
statistical mechanics [9, 10]—a pure tiling problem—we do not allow dominoes to
contact with one another. That means that space between dominoes is mandatory.
As a result, the solution space is more complex than in the dimer case with tight
compaction. Domino arrangement is closely related to short-range interaction cou-
plings in spin systems [11].

1.1 � Previous and related work

In further previous work [12–14], different patterns were generated by agents with
embedded finite state control which was evolved by GA. Matching pattern templates
were also applied during the training period, but are not part of the CA rule as in our
current proposal. They were also defined in a different simple way in order to count
the number of dominoes for the fitness function during the evolutionary process.

In [15, 16], domino patterns were formed by moving agents. Agents’ behavior
was controlled by a finite state machine, evolved by GA. The effort to find such
agents was quite high, especially to find agents that work on any field size. In order
to avoid such a computational effort, a novel approach to construct directly the
required CA rule is proposed that will be presented thereafter. It has also the poten-
tial to be applied to further pattern formations. In addition, the new Rule Option 1 is
defined that drives the evolution to a stable patterns.

In [17], this approach was already applied for the domino problem in a square
field n × n , n even. Herein the purpose is to prove the robustness of the model
against field’s shape changing. Now the square size is generalized to any odd–even
n. Moreover, the rule is now extended to a rhombic diamond field’s shape, a �

4
–tilted

square. Again in this case, no confusion must be made with the Aztec diamond,
another pure dimer tiling problem [18].

Parallel Substitution Algorithm (PSA) [19] is a powerful generalization of CA,
which was also inspiring this work. PSA allows to substitute small locally defined
patterns P by other patterns Q in a non-conflicting way. Thereby, very complex com-
putations and transformations can be performed in a decentralized and parallel way.

9071

1 3

A cellular automata rule placing a maximal number of dominoes…

The problem of optimal domino placement is presented in Sect. 2. A basic probabil-
istic CA rule is designed in Sect. 3 that can form valid domino patterns. In Sect. 4, two
rule enhancements (options) are presented. Rule Option 1 allows to stabilize the pat-
tern, whereas Rule Option 2 drives the evolution to optimal patterns. Results of simula-
tion, performance evaluation and robustness are discussed in Sect. 5 before Conclusion.

2 � Optimal placement of dominoes

2.1 � The problem

Given is an array of N = (n + 2) × (n + 2) cells with state values s ∈ {0, 1} . The objec-
tive is to find a CA rule that can place a maximal number of dominoes within a given
shape of active cells Nactive ≤ (n × n) surrounded by inactive border cells with value 0.
A domino is given by two orthogonal adjacent cells of value 1. The constraint is that
between dominoes there shall be at least one empty cell with value 0, i.e., dominoes are
not allowed to touch each other.

The dominoes that we will use here in our solution are “domino tiles,” and we pro-
pose to use them to cover the given shape. A domino tile consists of two pixels with
value 1 (the kernel, in blue) and 10 surrounding pixels with value 0 (the hull, in green).
In order to avoid confusion with the regular cells, we call the elements of a tile (or the
later introduced templates) “pixels.” Two types of dominoes are distinguished, the hori-
zontal oriented domino ( DH ) and the vertical oriented ( DV ) (Fig. 1a). It is allowed—
and even necessary for a good solution—that green pixels from different domino tiles
overlap. The possible levels of overlapping, from 2 to 4, are displayed in Fig. 1(b–d).
We call the level of overlapping cover level v.

Our intention is to show that the CA rule is robust (insensitive) against a change
of the shape, and in addition, to improve the behavior of the CA rule (Option 1, in
Sect. 4.1). Two shapes are considered, the square and the diamond. The diamond can
be defined in the following way. Cells inside the diamond at position (x, y) (measured
from a corner cell of the whole field) are given by the conditions

The number of dominoes is denoted as d = dH + dV , where dH is the number of hori-
zontal dominoes and dV is the number of vertical dominoes. A further requirement
can be that the number of domino types shall be equal (or almost equal). We call

|x − (n − 1)∕2| + |y − (n − 1)∕2| ≤ (n − 1)∕2 if n odd,

|x − n∕2 − 1∕2| + |y − n∕2 − 1∕2| ≤ n∕2 if n even.

(a) (b) (c) (d)

Fig. 1   a Horizontal and vertical domino tile, b two pixels of two domino hulls are overlapping, marked
by 2, c the pixel marked by 3 is the overlap of three domino hulls, d a case with 4 overlapping hull pixels
(color figure online)

9072	 R. Hoffmann et al.

1 3

such patterns balanced patterns when dH = dV if dmax is even, and dH = dV ± 1 if
dmax is odd, where dmax(n) is the maximal possible number of dominoes that can be
placed into the field with overlapping.

2.2 � Domino enumeration

We expose here a theoretical framework [20] to support the simulation results which
will be presented in the sequel.

2.2.1 � Dominoes in the square

Given a square array Sn of (n + 2) × (n + 2) cells including a border with perimeter
4n + 4 enclosing a n × n field of order n2 , the maximal domino number �n(Sn) covering
Sn is given by the inductive formula

–	 n even: �0 = 0, �2 = 1, �4 = 4 and �n = �n−6 + 2(n − 2)

–	 n odd: �1 = 0, �3 = 2, �5 = 6 and �n = �n−6 + 2(n − 2)

for n ≥ 6, where 2(n − 2) denotes the maximal number of dominoes in the crown sur-
rounding the inner subgrid Sn−6.

□

Setting m = ⌊n∕2⌋ and p = ⌊m∕3⌋ , this hierarchy of configurations can then be
divided into the three equivalence classes S0,S1,S2 according to m mod 3, as illus-
trated in Fig. 2.

2.2.2 � Dominoes in the diamond

A diamond Dn is given with perpendicular diagonals of length n and surrounded by a
border with perpendicular diagonals of length n + 2.

∙ n odd . The order ∣ Dn ∣ of Dn fulfills

including a border of length 2n + 2 and Dn has an inner perimeter of length 2n − 2.

The maximal domino number �n(Dn) is given by the inductive formula

for n ≥ 6, where (n − 3) denotes the maximal number of dominoes in the crown sur-
rounding the inner subgrid Dn−6.

This hierarchy of configurations can be divided into the three equivalence classes
D0,D1,D2 according to m mod 3, as illustrated in Fig. 3.

The domino capacities in the square and diamond satisfy this strong relationship

∣ Dn ∣ = (n + 2) + 2 (1 + 3 +⋯ + n) = ((n + 2)2 + 1)∕2

�1 = 0, �3 = 1, �5 = 2 and �n = �n−6 + (n − 3)

�n =
1

2
(�n−1 + �) � = m mod 3 (mod 2)

9073

1 3

A cellular automata rule placing a maximal number of dominoes…

∙ n even . The order ∣ Dn ∣ of Dn fulfills

including a border of length 2n + 4 and Dn has an inner perimeter of length 2n.
The maximal domino number �n(Dn) is given by the inductive formula

∣ Dn ∣ = 2 (2 + 4 + 6 +⋯ + (n + 2)) = (n + 2)(n + 4)∕2

Fig. 2   Dominoes in the square. (↑) Equivalence classes S0,S1,S2, according to m mod 3 with n even.
From left to right: (S0,S6,S12), (S2,S8,S14), (S4,S10,S16). (↓) Equivalence classes S0,S1,S2, according
to m mod 3 with n odd. From left to right: (S1,S7,S13), (S3,S9,S15), (S5,S11,S17) (color figure online)

Fig. 3   Dominoes in the diamond Equivalence classes D0,D1,D2 according to m mod 3 with n odd. From
left to right: (D7,D13,D19), (D3,D9,D15), (D5,D11,D17), (color figure online)

9074	 R. Hoffmann et al.

1 3

for n ≥ 6, where O(n) denotes the number of possible dominoes in the crown sur-
rounding the inner subgrid Dn−6. The case n even is more intricate because the
“crown” parameter is fluctuating and only fulfills a weak property. It is possible to
define a generic family of diamonds as a complement of embedded squares, as illus-
trated in Fig. 4. The following three cases are considered (n ≥ 6).

and where �p = 1 iff p ≡ 0 mod 6, �p = 0 otherwise.

and where q =
⌊ p+1

4

⌋
 and � = m mod 2.

In each case, the first term �� on the second side denotes the domino number
in the square field � × � embedded into Dn and the second term stands for the
capacities in dominoes of the four remaining wedges.

�0 = 0, �2 = 1, �4 = 2 and �n = �n−6 + O(n)

∙ �n = �2p + 4 (W1 +W2 + �p) for m ≡ 0 (mod 3),

where W1 =
p (p + 1)

2
and W2 =

⌈
p (p − 6)

12

⌉

∙ �n = �m−� + 4 (W �
1
+W �

2
+ q (1 + �)) for m ≡ 1 (mod 3),

∙ �n = �m+� + 4 (W �
1
+W �

2
+ q (2 − �)) for m ≡ 2 (mod 3),

where W �
1
=

(p − q)(p − q + 1)

2
and W �

2
=

3 q (q − 1)

2

Fig. 4   Dominoes in the diamond A family of diamonds with square subfields S� embedded in
them. Equivalence classes D0,D1,D2 according to m mod 3 with n even. From top to bottom:
(D6,D12,D18,D24,D30), (D8,D14,D20,D26,D32), (D10,D16,D22,D28,D34). Isolated cells (in red) exist-
ing on N–NE, E–SE, S–SW, W–NW, borders (color figure online)

9075

1 3

A cellular automata rule placing a maximal number of dominoes…

We should be aware that our construction can lead to a slight deficiency compared
to the simulation. This can be explained by the fact that our theoretical construction is
constrained by its own rule while the scenarios from the CA rule presented thereaf-
ter have more degrees of freedom. This deficit is due to the presence of isolated cells
(Fig. 4) existing on some borders of our constrained system.

2.2.3 � Space occupancy ratio

The space occupancy ratio �k for a given domino k is defined as

where �k,i is the occupancy ratio (the inverse 1/v of the level of overlapping) of its
pixel i. Since two dominoes cannot overlap, �k,1 = �k,2 = 1 always holds.

For illustration, the occupancy ratio of the surrounded tiles “k” in Fig. 5 yields:

1.	 �k = 2 + 10 × 1 = 12

2.	 �k = 2 + 6 × 1∕2 + 4 × 1∕4 = 6

3.	 �k = 2 + 4 × 1∕2 + 6 × 1∕3 = 6

4.	 �k = 2 + 6 × 1∕2 + 4 × 1∕3 = 19∕3 ≈ 6.33

Evidently, the second and third configurations are optimal, but an overall configuration
is constrained by the boundary conditions.

For any field F of order ∣ F ∣ and containing dmax dominoes, then

�k =

12∑
i=1

�k,i

dmax∑
k=1

�k = ∣ F ∣ whence

�n∑
k=1

�k = ∣ Sn ∣ and

�n∑
k=1

�k = ∣ Dn ∣

Fig. 5   Four typical arrangements of dominoes: (1) loosely coupled physical distancing configuration (2)
tightly coupled orthotropic configuration (3) tightly coupled staggered configuration (4) tightly coupled
isotropic configuration. Inset—The “domino tile” with numbered cells: the 2–cell kernel and the 10–cell
hull

9076	 R. Hoffmann et al.

1 3

for square Sn and diamond Dn, respectively. We observe that ratios ∣ Sn ∣ ∕�n and
∣ Dn ∣ ∕�n are decreasing Cauchy sequences which slowly converge towards the
fixed limit of maximal occupancy as n approaches infinity

and more generally for n even in any case. Our theoretical results are displayed in
Table 1.

lim
n→+∞

∣ Sn ∣

�n
= lim

n→+∞

12(n − 1)

2(n − 2)
= 6 ; lim

n→+∞

∣ Dn ∣

�n

= lim
n→+∞

6(n − 1)

(n − 3)
= 6

Table 1   Domino enumeration for n × n fields with m = n∕2 and p = m∕3 Domino numbers—�n(Sn) in
the square—�n(Dn) in the diamond. Space occupancy ratio—∣ Sn ∣ ∕�n in the square—∣ Dn ∣ ∕�n in the
diamond

n m = n∕2 p = m∕3 ∣ S
n
∣ �

n
∣ S

n
∣ ∕�

n
∣ D

n
∣ �

n
∣ D

n
∣ ∕�

n

0 0 0 4 0 – 4 0 –
1 0 0 9 0 – 5 0 –
2 1 0 16 1 16.000 12 1 12.000
3 1 0 25 2 12.500 13 1 13.000
4 2 0 36 4 9.000 24 2 12.000
5 2 0 49 6 8.167 25 2 12.500
6 3 1 64 8 8.000 40 5 8.000
7 3 1 81 10 8.100 41 4 10.25
8 4 1 100 13 7.692 60 8 7.500
9 4 1 121 16 7.562 61 7 8.714
10 5 1 144 20 7.200 84 12 7.000
11 5 1 169 24 7.042 85 10 8.500
12 6 2 196 28 7.000 112 16 7.000
13 6 2 225 32 7.031 113 14 8.071
14 7 2 256 37 6.919 144 20 7.200
15 7 2 289 42 6.881 145 19 7.632
16 8 2 324 48 6.750 180 25 7.200
17 8 2 361 54 6.685 181 24 7.542
18 9 3 400 60 6.667 220 32 6.875
19 9 3 441 66 6.682 221 30 7.367
20 10 3 484 73 6.630 264 36 7.333
21 10 3 529 80 6.612 265 37 7.162
22 11 3 576 88 6.545 312 44 7.091
23 11 3 625 96 6.510 313 44 7.114
24 12 4 676 104 6.500 364 53 6.868
25 12 4 729 112 6.509 365 52 7.019
26 13 4 784 121 6.479 420 60 7.000
27 13 4 841 130 6.469 421 61 6.902
28 14 4 900 140 6.428 480 69 6.957
29 14 4 961 150 6.407 481 70 6.871

9077

1 3

A cellular automata rule placing a maximal number of dominoes…

3 � The design idea

The first approach was to design a deterministic rule with synchronous updating.
After some experiments and experience from previous work, it showed to be very
difficult if not even impossible to design such a rule that can converge always or
with a high probability to the optimal or near-optimal aimed pattern.

The second approach was to construct a probabilistic rule with synchronous
updating. Indeed, such a rule was found for a field of size 6 × 6 by GA, where each
cell is modeled as an agent that can turn in any direction. But the effort to find such
rules is high and the good behavior cannot be guaranteed in general. The third and
successful approach used here is the design of a probabilistic rule with asynchro-
nous updating in a methodical way.

3.1 � The basic rule

The basic idea is to modify the current configuration in a systematic way such that
increasingly more dominoes appear and at last the CA evolves to a stable pattern.
To do this, the CA configurations are searched for domino tile parts (specific local
patterns), and if an almost correct tile part is found, it is corrected; otherwise, some
random noise is injected.

The domino tile parts are called “templates” Ai . They are systematically derived
from the domino tiles (Fig. 6a). For each of the 12 pixels i of a domino (marked in
red, carrying the domino pixel value dval(i)), a template Ai is defined. A template
can be seen as a copy of the tile, but shifted in space in a way that the pixel i corre-
sponds to the center of the template.

In the computation, we represent a template �
�
 as an array of size (a� × b�) of

pixels, where a� = 2a − 1 , b� = 2b − 1 and (a × b) is the size of the tile (its bound-
ing box). Our horizontal tile is of size (3 × 4) ; thus, their templates are of size
(5 × 7) maximal (larger because of shifting). The pixels within a template are
identified by relative coordinates (�x,�y) , where �y ∈ {−(a − 1),… , a − 1} and
�x ∈ {−(b − 1),… , b − 1} . The center pixel (�x,�y) = (0, 0) is called “reference
pixel.” Each template pixel carries a value val(Ai,�x,�y) ∈ {0, 1, #} . The value of

Fig. 6   a 12 templates of the horizontal domino tile. The value of the template center (marked, the so-
called reference pixel) is used for cell updating if all other template pixel values match with the cor-
responding cell values of the current configuration. b Template A9 represented as an array with Don’t
Cares (#). The templates size was reduced from (5 × 7) to a matching window of size (5 × 5) (color figure
online)

9078	 R. Hoffmann et al.

1 3

the reference pixel is called “reference value,” refval(Ai) = val(Ai, 0, 0) ∈ {0, 1} .
Its value is equal to the red marked value of the corresponding tile pixel,
refval(Ai) = dval(i) . The symbol # represents “Don’t Care,” meaning that a pixel
with such a value is not used for matching (or does not exist, in another interpreta-
tion). Pixels with a value 0 or 1 are valid pixels; their values are equal to the values
derived from the original tile. Some templates can be embedded into arrays smaller
than (a� × b�) when they have Don’t Cares at their borders. Note that the valid pixels
are asymmetrically distributed in a template because they are the result from shifting
a tile.

Many of these templates are similar under mirroring, which can facilitate an
implementation. For the vertical domino, a similar set of 12 templates is defined by
90◦ rotation; altogether, we need 24 templates.

The templates A7 − A12 show white pixels that are not used because the template
size (for the later described matching process) was restricted to (5 × 5) . As an exam-
ple, the reduced template A9 is marked in Fig. 6b by the blue square. The implemen-
tation with these incomplete templates worked very well, but further investigations
are necessary to prove to which extent templates can be incomplete.

We need also to define the term “neighborhood template” that is later used in the
matching procedure. The neighborhood template A∗

i
 is the template Ai in which the

reference value is set to #, in order to exclude the reference pixel from the matching
process. The cell processing scheme is:

1.	 A cell is randomly selected.
2.	 The rule is applied asynchronously. The new cell state s� = f (s,B∗) is computed

and immediately updated without buffering, where s(x, y) ∈ {0, 1} is the cell’s
state at position (x, y). B∗(x, y) denotes the states of the neighbors of (x, y) within
a (5 × 5)-window, excluding the center. A new generation at time-step t + 1 is
declared after Nactive cell updates (sub-steps) during the compute interval between
t and t + 1 . We will update each cell once in a time interval in a random order
which is re-computed for each new time-step.

The following rule is applied:

The neighborhood templates A∗
i
 are tested against the corresponding cell neigh-

bors B∗(x, y) in the (5 × 5)–window at current position (x, y). Thereby, the marked
reference position (�x,�y) = (0, 0) of a neighborhood template is aligned with the
center of the window. If all values match, then the state of cell (x, y) is set to the
value refval(Ai) . Otherwise, with probability �0 , the cell is set randomly to either 0
or 1, or remains unchanged with probability 1 − �0 . The rule corrects the state of a

s�(x, y) =

⎧
⎪⎨⎪⎩

refval(Ai) �� ∃A∗
i
matches with CA–Neighbors B∗(x, y) (a)

���������

random ∈ {0, 1} with probability �0 (b1)

s(x, y) with probability 1 − �0 (b2)

.

9079

1 3

A cellular automata rule placing a maximal number of dominoes…

cell to the reference value if a matching neighborhood is detected; otherwise, cell’s
state is changed randomly. It is possible that several neighborhood templates match
(then tiles are overlapping), but there can be no conflicts because then all templates
have the same reference value as derived from the tile. As no conflicts can arise, the
sequence of testing the neighborhood templates does not matter, and one could skip
further tests after a first match.

It is important to note that the rule obeys the criterion of stability, which means
that a field filled with dominoes without gaps (uncovered cells) is stable because we
have matching at every site. Otherwise some random noise is injected in order to
drive the evolution to an aimed pattern.

3.1.1 � Test on the square

The rule was tested for Nrun = 1000 runs on ( 5 × 5)–fields with random initial con-
figuration, TLimit = 50 (simulation time-step limit), with �0 = 0.5 . We know that
there exist valid solutions with 6, 5, or 4 dominoes. The system converges after a
few iterations into one of two solution classes. In the class I (stable), the 4 dominoes
are covering the square totally without gaps and the reached pattern is stable. In
the class II (partially stable), the 4 dominoes are covering the diamond not totally
with at least one gap. The gap cells are toggling their state values ( 0 ↔ 1) due to the
injected noise that never ends. Nevertheless, the class II patterns contains 4 domi-
noes which do not change (neither position, nor orientation or number).

The number of stable patterns (class I) with d = 6, 5, 4 dominoes was 41, 514,
and 225, respectively. The average number of time-steps to reach stability for the
class I patterns was tavrg = 4.0 . The number of partially stable class II patterns with
an isolated toggling state was 194. The evolution of a class I and a class II pattern is
depicted in Fig. 7b, c.

3.1.2 � Test on the diamond

The rule was tested on ( 7 × 7 ) initially random fields for Nrun = 1000 , with
TLimit = 50 and �0 = 0.5 . This diamond has the same number of active cells (25)
as the (5 × 5)–square. We know that there exist only solutions with 4 dominoes.
The system converges after a few iterations into one of the two solution classes;
166/1000 runs evolved into a stable class I pattern, and the rest evolved into class II
patterns. The average number of time-steps to reach stability for the class I patterns
was tavrg = 5.1 . A simulation of a class I and a class II pattern is depicted in Fig. 7d,
e.

These tests showed that always either class I (stable) or class II (partially sta-
ble with gaps (isolated uncovered cells)) patterns evolved rapidly. The number of
dominoes was ranging from the minimum to the maximum, also validated by further
experiments not outlined here.

9080	 R. Hoffmann et al.

1 3

4 � Rule enhancements

The basic rule was enhanced by adding optional rules on top:

•	 (Option 1) The aim was to reach only stable class I patterns.
•	 (Option 2) The aim was to reach preferably patterns with a maximal number of

dominoes (max patterns).

A variable hit(x, y) was added to the cell’s state then becoming (s, hit). All hits can
be seen as an additional layer, also called hit matrix. The hit matrix stores the num-
ber of template hits for every site (x, y) that was selected for computation and updat-
ing. The number of hits on a site hit(x, y) is:

•	 0, if no neighborhood template matches or there is a gap.
•	 1, if exactly one neighborhood template with the reference value 0 matches,
•	 2–4, if there are 2–4 neighborhood templates with reference values 0 that match

at the same site (x, y). This means that 2–4 tiles are overlapping there.

Fig. 7   Basic rule. a–c (5 × 5)—square. d–e (7 × 7)—diamond. a Stable patterns with 6 resp. 5 dominoes.
b, d Evolution of a stable pattern. c, e Evolution of a partially stable pattern, containing a gap that tog-
gles between 0 and 1. Representation: (gray) border cell, (black) domino cell, (0) uncovered zero-state
cell/gap, (black half square with 0) uncovered one-state cell, (1) zero-state cell with cover level 1, and
(white) zero-state cell with cover level ≥ 2

9081

1 3

A cellular automata rule placing a maximal number of dominoes…

•	 100, if one neighborhood template with the reference value 1 matches. Note that
1-valued pixels are not allowed to overlap. The number 100 was arbitrarily cho-
sen in order to differentiate such a hit from the other.

Recall that we are using asynchronous updating, where a time-step interval consists
of Nactive sequential substeps. The value of a hit can be up-to-date, computed already
during the current time interval, or it can be the old value from the previous time
interval. In the case of a stable pattern the hit is equal to the cover level. In the case
of a transient pattern a hit can be equal to the cover level in regions where the pat-
tern shows already stable dominoes. So the hit matrix approximates the cover level
values.

The enhanced execution mode is now for each cell: (1) compute the new state s′
according to the basic rule, (2) compute the hit value, (3) modify the new state to
s′′ by Option 1 and then (4) modify the new state to s′′′ by Option 2. Because of the
asynchronous updating scheme, the new state replaces the state s then immediately.

4.1 � Rule option 1: stabilizing the pattern

We have seen in Sect. 3.1 that the basic rule can evolve class I and class II patterns.
We define now an additional rule that will turn class II patterns into class I patterns.
Analyzing the class II patterns, we can see isolated toggling cells with hit = 0 . The
idea is to disseminate this information to the cells in the von Neumann neighbor-
hood. If a cell in the neighborhood detects a hit-zero cell, it will produce additional
noise in order to drive the evolution to a stable pattern without gaps. The optional
rule is

Two tests were performed with 100 runs and Tlimit = 300 , one on a (5 × 5)–square
and another on a (7 × 7)–diamond.

4.1.1 � Test on square

All 100 reached patterns were now stable (class I). The frequency of patterns with
d = 6, 5, 4 was 2, 70, 28 and tavrg = 10.2 (min 2 – max 41).

4.1.2 � Test on diamond

All 100 reached patterns were stable. The number of dominoes was d = 4 , the only
possibility as expected, with tavrg = 37.0 (min 2 – max 197).

4.2 � Rule option 2: maximizing the number of dominoes

The idea is to maximize the overlap between tiles by destroying non–overlapping
situations ( hit = 0 ) through additional noise, allowing a reordering with higher hit

s��(x, y) =

{
random ∈ {0, 1} with probability �1 �� ∃hit(x ± 1, y ± 1) = 0

s�(x, y) ���������

9082	 R. Hoffmann et al.

1 3

rates. First, the new state s′′ (or s′ if Option 1 is not applied) is computed and then
the hit matrix. Then, the new state is modified to s′′′:

When this option is applied it is not clear whether a reached domino pattern remains
stable. In fact, it turned out that stability can only be reached if there exists a til-
ing, where every tile overlaps with at least another one or the border (called totally
overlapping tiling), i.e., the cover level is v ≥ 2 everywhere inside the active area,
e.g., a totally overlapping tiling exists for (10 × 10) but not for (8 × 8) square fields.
Therefore, the number of dominoes will reach the maximum and remain stable in a
(10 × 10) field, whereas the number of dominoes in a (8 × 8) field is reaching a max-
imum, and then it is decreasing and fluctuating and is driving again towards another
maximum, and so forth.

Four tests were performed on the (5 × 5)–square and the (7 × 7)–diamond, each with
1000 runs and Tlimit = 500.

4.2.1 � Test with option 2 only

•	 Square. The frequency of patterns with d = 6, 5, 4 was 96.0%, 4.0%, and 0%.
The max patterns with d = 6 were stable. The patterns with d = 5 were changing
between different solutions but did not reach a max pattern because of the limited
time. tavrg(d = 6, 5) = 120 (3 − 497) . For averaging, the time of the first appear-
ance of that number of dominoes was used.

•	 Diamond. All patterns contained 4 dominoes, the only number possible, and all
of them were not stable, changing from one solution to another because no totally
overlapping solution exists. The average time of the first appearance of a valid solu-
tion was tavrg(d = 4) = 59.9.

4.2.2 � Test with option 2 and option 1

•	 Square. The frequency of patterns with d = 6, 5, 4 was 94.7%, 5.3%, and 0%.
All max patterns with d = 6 were stable. The patterns with d = 5 were changing
between different solutions. tavrg(d = 6, 5) = 135.1 (3 − 500) . For averaging, the
time of the first appearance of that number of dominoes was used.

•	 Diamond. All patterns contained 4 dominoes, the only number possible, and all
of them were not stable, changing from one solution to another because no totally
overlapping solution exists. The average time of the first appearance of a valid solu-
tion was tavrg(d = 4) = 40.7.

These tests suggest that Option 1 is not really helpful when Option 2 is used in order to
find a max pattern. One can see Option 1 only as another unnecessary source of noise.
Therefore, in the following we will use only Option 2 because our objective is to find
max patterns.

s���(x, y) =

{
random ∈ {0, 1} with probability �2 �� hit(x, y) = 1

s��(x, y) ���������

9083

1 3

A cellular automata rule placing a maximal number of dominoes…

5 � Performance and robustness

5.1 � Performance for different field sizes

The basic rule with Option 2 (maximizing dominoes) was simulated for the
square and diamond with �0 = 0.5 and �2 = 0.05 . The simulation time limit Tlimit
was set large enough to yield max patterns for every simulation run in each test
set of runs, e.g., Tlimit = 40 000 for n = 12, 16 , two slow converging cases. The
number of runs in a test set for averaging was Nrun = 100 for n ≤ 10 and 20 for
n > 10 . The average time tavrg is shown in Table 2. It corresponds to the Work per
Cell if each cell is considered as a processor, because the total (parallel) Work
is tavrg × Nactive . We divide further the work per cell by the problem size Nactive .
This quotient E = tavrg∕Nactive is a constant if the work per cell would increase
linear with Nactive . So this measure can show us a superlinear increase in work per
cell if it increases with problem size. The minimal and maximal times were also
recorded for each run and related to the average time. On average, the minimal/
maximal time recorded was 0.085/4.02 times tavrg . These extensive simulations
confirmed that the basic CA rule with Option 2 converges to patterns with a max-
imal number of dominoes if the time limit is large enough, no matter whether the
square shape or the diamond shape was used. It was surprising that E shows some

Table 2   For the square and the diamond with Nactive(n) cells, the average time tavrg to yield a maximum
number dmax of dominoes for each simulation in a set of simulation runs was evaluated. The quotient
tavrg∕Nactive(n) gives the number of necessary time-steps per active cell

n Square Diamond

dmax Nactive tavrg tavrg∕Nactive dmax Nactive tavrg tavrg∕Nactive

2 1 4 0.93 0.23 1 4 0.89 0.22
3 2 9 3.22 0.36 1 5 2.4 0.48
4 4 16 75 4.7 2 12 49 4.08
5 6 25 126 5.0 2 13 75 5.77
6 8 36 986 27.4 5 24 60 2.5
7 10 49 90 1.8 4 25 55 2.2
8 13 64 258 4.0 8 40 178 4.5
9 16 81 375 4.6 7 41 84 2.1
10 20 100 1 185 11.9 12 60 2 497 41.6
11 24 121 2 272 18.8 10 61 116 1.9
12 28 144 8 477 58.9 16 84 12 598 145.0
13 32 169 1 305 7.7 14 85 168 2.0
14 37 196 2 563 13.1 20 112 491 4.4
15 42 225 2 920 13.0 19 113 432 3.8
16 48 256 11 220 43.8 26 144 3 348 23.3
17 54 289 8 790 20.0 25 145 14310 98.69
18 60 324 26 971 83.2 32 180 3 802 21.12

9084	 R. Hoffmann et al.

1 3

remarkable peaks and drops, in addition of a weak increase with problem size. In
the investigated range E was highest for n = 12 in the diamond and for n = 18 in
the square. An explanation is that max patterns have a certain frequency among
all valid patterns, and that there a harder tasks (field sizes) where the frequency
of max patterns is very low and therefore more difficult to reach by the walk
through the pattern space. For example, there are only 4 highly symmetric opti-
mal solutions in the diamond D12 but a lot of non-symmetric optimal solutions in
D14 . In Fig. 4, only symmetric solutions were shown. Further research is neces-
sary to make a sound statement about the time complexity for large n. Figure 8
shows some patterns evolved by the CA rule with Option 2 for the square and the
diamond for n = 12, 13 . All are max patterns except (d). (a, c, e, g) are balanced.
(a, b, c, f) are totally overlapping (no v = 1 is visible). Some larger balanced max
patterns evolved with Option 2 are shown in Fig. 9.

Our theoretical results displayed in Table 1 should be compared with simulation
results in Table 2. ∣ Sn−2 ∣ and ∣ Dn−2 ∣ in Table 1 correspond with Nactive in Table 2
while �n and �n tie in dmax . Let us observe the slight deficit for �16 , �17 . Looking at
Fig. 9, let us observe a slight deficit for �24 , �25 and a big deficit for �26 . Looking
back to Fig. 4, let us observe again the presence of isolated cells on the diamond’s
border, that is likely to explain this phenomenon of domino’s deficit.

5.2 � Robustness

We have seen that the rule works reliable for two different shapes, and it works
also for the circle and rectangle when being tested. Further experiments have
shown that the CA rule is also robust (insensitive) against the initial configuration
and the order in which the cells are updated.

Fig. 8   Some patterns evolved with Option 2. All are max patterns except (d). a, c, e, g are balanced. a, b,
c, f are totally overlapping (cover level v > 1)

9085

1 3

A cellular automata rule placing a maximal number of dominoes…

5.2.1 � Initial configuration

In all the simulations conducted here, the initial cell states were random. As already
shown in [17], the rule works similarly well if the initial configuration is black or
white everywhere.

5.2.2 � Self‑stabilization

This term was introduced in 1973 by Dijkstra [21, 22]. It means that a system will
always converge to a desired system state even if it is disturbed. This is a very impor-
tant feature for systems to be reliable. When in our system failures appear from time
to time, they will not influence the overall dynamics, because if the system is in an
early stage it will result in just another random initial state, and if the system is in a
late stage, then errors are corrected or the system will drive to another valid solution.

Fig. 9   Some balanced max patterns evolved with Option 2 in the diamond. Numbers represent the cover
levels. Diamonds of size n = 24, 25, 26, 27 , with dmax = 54, 53, 63, 61

9086	 R. Hoffmann et al.

1 3

5.2.3 � Updating sequence

We used here for each time interval a different random order in such a way that
every cell is updated once. In the former work [17], there was no ordering, cells
were picked up at random and updated. Thereby, a cell can be updated never or
multiple times in a time interval (updating Nactive times). By this method, the
domino patterns evolved similarly.

In addition we tested also the row-by-row sweep sequence and the “checker-
board sequence.” For the checkerboard sequence, first the cells are updated for
(x + y) even, then for (x + y) odd. Also these tests suggest that the cell-by-cell
updating order does not significantly influence the overall evolution. An explana-
tion is that the rule is probabilistic, and any deterministic order is destroyed by
the rule’s inherent randomness. This is useful when the computation is executed
on a parallel supercomputer with several computing nodes / cores. Then all cores
can compute in parallel and the order of processing the border cells between the
subareas (including data exchange between neighboring cores) is not critical and
can be scheduled in a way that the slowdown is minimal.

6 � Conclusion

A probabilistic CA rule with two options was designed that can form high qual-
ity domino patterns. The basic rule uses 24 matching templates derived from the
two (3 × 4) domino tiles. Each selected cell is tested against the templates and
is adjusted in the case that a template matches in the neighborhood. The basic
rule is sub-optimal with respect to the number of placed dominoes. The evolved
patterns are not always stable if there exist isolated gaps. Rule Option 1 distrib-
utes the gap information to the neighborhood, then the additional noise drives the
evolution to stable patterns. Rule Option 2 injects noise where there is no overlap
(overlap level 1) which drives the evolution to a maximal number of dominoes.
A reached optimal pattern remains stable, if it is totally overlapping (no overlap
level 1 exists). The basic rule and its options are robust against the active shape
(square, diamond) and the order in which the cells are updated.

Funding  Open Access funding enabled and organized by Projekt DEAL..

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

9087

1 3

A cellular automata rule placing a maximal number of dominoes…

References

	 1.	 Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge Univer-
sity Press, Cambridge

	 2.	 Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation.
Birk, East Lymeäuser

	 3.	 Désérable D, Dupont P, Hellou M, Kamali-Bernard S (2011) Cellular automata in complex mat-
ter. Complex Syst 20(1):67–91

	 4.	 Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601–644
	 5.	 Nagpal R (2008) Programmable pattern-formation and scale-independence. In: Minai AA, Bar-

Yam Y (eds) Unifying themes in complex sytems IV. Springer, Berlin, pp 275–282
	 6.	 Yamins D, Nagpal R (2008) Automated Global-to-Local programming in 1-D spatial multi-agent

systems, In: Proceedings of the 7th International Joint Conference. AAMAS, (pp 615–622)
	 7.	 Tomassini M, Venzi M (2002) Evolution of asynchronous cellular automata for the density task

PPSN, 2002. In: Guervós JJM, Adamidis P, Beyer HG, Schwefel HP, Fernández-Villacañas JL (eds)
Parallel problem solving from nature-PPSN VII. Springer, Berlin, pp 934–943

	 8.	 Birgin EG, Lobato RD, Morabito R (2010) An effective recursive partitioning approach for the
packing of identical rectangles in a rectangle. J Oper Res Soc 61:303–320

	 9.	 Temperley HNV, Fisher ME (1961) Dimer problem in statistical mechanics - an exact result. Philos
Mag 6(68):1061–1063

	10.	 Kasteleyn PW (1961) The statistics of dimers on a lattice. Physica 27:1209–1225
	11.	 Niss M (2005) History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phe-

nomena. Arch Hist Exact Sci 59:267–318
	12.	 Hoffmann R (2014) How agents can form a specific pattern. In: Sirakoulis G, Bandini S, Wa̧s J (eds)

Cellular automata. Springer, Cham, pp 660–669
	13.	 Hoffmann R (2016) Cellular automata agents form path patterns effectively. Acta Phys Pol B Proc

Suppl 9(1):63–75
	14.	 Hoffmann R, Désérable D (2016) Line patterns formed by cellular automata agents. In: Bandini S,

Wa̧s J, El Yacoubi S (eds) Cellular automata. Springer, Cham, pp 424–434
	15.	 Hoffmann R, Désérable D (2017) Generating maximal domino patterns by cellular automata agents,

PaCT 2017. In: Malyshkin V (ed) Parallel computing technologies. Springer, Cham, pp 18–31
	16.	 Hoffmann R, Désérable D (2019) Domino pattern formation by cellular automata agents. J Super-

comput 75:7799–7813
	17.	 Hoffmann R, Désérable D, Seredyński F (2019) A probabilistic cellular automata rule forming dom-

ino patterns. In: International Conference on Parallel Computing Technologies. Springer, Cham (pp
334-344)

	18.	 Fendler M, Grieser D (2016) A new simple proof of the Aztec diamond theorem. Gr Combinatorics
32:1389–1395

	19.	 Achasova S, Bandman O, Markova V, Piskunov S (1994) Parallel substitution algorithm. World Sci-
entific, Singapore

	20.	 Désérable D (2020) On arrangement of dominoes in square and diamond and on occupancy ratio,
(personal communication)

	21.	 Dijkstra Edsger W (1974) Self-stabilization in spite of distributed control. Commun ACM
17(11):643–644

	22.	 Schneider M (1993) Self-stabilization. ACM Comput Surv 25(1):45–67

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A cellular automata rule placing a maximal number of dominoes in the square and diamond
	Abstract
	1 Introduction
	1.1 Previous and related work

	2 Optimal placement of dominoes
	2.1 The problem
	2.2 Domino enumeration
	2.2.1 Dominoes in the square
	2.2.2 Dominoes in the diamond
	2.2.3 Space occupancy ratio

	3 The design idea
	3.1 The basic rule
	3.1.1 Test on the square
	3.1.2 Test on the diamond

	4 Rule enhancements
	4.1 Rule option 1: stabilizing the pattern
	4.1.1 Test on square
	4.1.2 Test on diamond

	4.2 Rule option 2: maximizing the number of dominoes
	4.2.1 Test with option 2 only
	4.2.2 Test with option 2 and option 1

	5 Performance and robustness
	5.1 Performance for different field sizes
	5.2 Robustness
	5.2.1 Initial configuration
	5.2.2 Self-stabilization
	5.2.3 Updating sequence

	6 Conclusion
	References

