
This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3

Enabling Fast and Energy-Efficient FM-index Exact
Matching Using Processing-Near-Memory

Jose M. Herruzo · Ivan Fernandez ·
Sonia González-Navarro · Oscar Plata

Received: date / Accepted: date

Abstract Memory bandwidth and latency constitutes a major performance
bottleneck for many data-intensive applications. While high-locality access
patterns take advantage of the deep cache hierarchies available in modern
processors, unpredictable low-locality patterns cause a significant part of the
execution time to be wasted waiting for data. An example of those memory
bound applications is the exact matching algorithm based on FM-index, used
in some well-known sequence alignment applications. Processing-Near-Memory
(PNM) has been proposed as a strategy to overcome thememory wall problem,
by placing computation close to data, speeding up memory bound workloads
by reducing data movements.

This paper presents a performance and energy evaluation of two classes
of processor architectures when executing the FM-index exact matching algo-
rithm, as a reference algorithm for exact sequence alignment. One architecture
class is processor-centric, based on complex cores and DDR3/4 SDRAM mem-
ory technology. The other architecture class is memory-centric, based on sim-
ple cores and ultra high-bandwidth Hybrid Memory Cube (HMC) 3D-stacked
memory technology. The results show that the PNM solution improves perfor-
mance between 1.26× and 3.7× and the energy consumption per operation is
reduced between 21× and 40×.

In addition, a synthetic benchmark RANDOM was developed that mimics the
memory access pattern of the FM-index exact matching algorithm, but with

Jose M. Herruzo
E-mail: jmherruzo@uma.es

Ivan Fernandez
E-mail: ivanfv@uma.es

Sonia González-Navarro
E-mail: sonia@ac.uma.es

Oscar Plata
E-mail: oplata@uma.es
Department of Computer Architecture, University of Málaga, 29071 Málaga, Spain



2 Jose M. Herruzo et al.

a user configurable operational intensity. This benchmark allows us to extend
the evaluation to the class of algorithms with similar memory behaviour but
running over a range of operational intensity values.

Keywords FM-index · short-read alignment · random memory access
patterns · high-bandwidth memory · processing-near-memory

1 Introduction

In recent years, the computer architecture community has witnessed a growing
trend towards the development of applications that process large datasets [1].
These applications emerge in various areas, such as scientific and engineering
computing, and big data analytics, often using high performance computing
(HPC) techniques to achieve the required performance/power ratios.

In a contemporary computer, processing units and main memory are often
located far from each other. As a result, data must traverse substantial hard-
ware logic when moving from memory to the corresponding processing unit
to perform an operation on it. This data movement costs time and energy.
Large-scale data intensive workloads cause the movement of large amounts
of data across the memory channels, resulting in saturation and poor per-
formance due to their limited bandwidth. Moreover, these memory accesses
heavily contribute to the energy consumption, since the power consumed by a
memory access is higher than an arithmetic operation [2].

The presence of large and deep on-chip cache hierarchies is very helpful
in reducing the impact of this problem for many data-intensive applications,
specially for those that exhibit enough temporal/spatial locality when access-
ing data. However, many other computing workloads exhibit memory accesses
in a random and unpredictable way, making these cache hierarchies almost
useless. As an example, some applications in the bioinformatics field, like se-
quence alignments based on FM-index, present this unpredictable memory
access pattern [3].

Emphasizing this problem, the amount of data intensive applications has
grown in almost every area of science and technology, requiring computational
resources to be up to the task. Continuing with the previously considered
bioinformatics application, a number of high-throughput sequencing systems
have appeared in industry over the past years. These systems are able to
produce huge amounts of short reads per day of operation. For instance, the
Illumina NovaSeq 6000 [4] sequence system is able to produce up to 6 Terabits
of data, which need to be processed as fast as possible. Another example is the
huge increase in sensor data and the rise of the Big Data [5], which produces
huge amounts of unstructured information. This data is often accessed with
unpredictable access patterns.

The described behaviour found in many memory intensive applications im-
pacts on performance and energy in a very relevant way. As a consequence,
computer architects are encouraged to explore new memory architectures and

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 3

paradigms able to reduce both the energy and the execution time when pro-
cessing a specific workload. In this sense, some new trending memory tech-
nologies provide the opportunity to explore the Processing-Near-Data (PNM)
paradigm [6,7]. PNM promises to address the above problems, effectively im-
proving the performance and energy efficiency of computing systems, being
specifically focused on the memory side.

The FM-index exact matching algorithm for sequence alignment, that per-
forms fast exact matches of short reads to large genomes, is taken as a case
study in this paper, as its low operational intensity (being memory-bound)
and unpredictable memory access pattern make it a good candidate for near-
memory processing.

In general, this paper presents a performance and energy evaluation of two
classes of processor architectures when executing different implementations
of the FM-index exact matching algorithm, as a reference algorithm for exact
sequence alignment. One architecture class is processor-centric, based on high-
performance out-of-order cores, including a large and deep cache hierarchy
and using DDR3/4 SDRAM memory technology. The other architecture class
is memory-centric, based on lightweight in-order cores, including a small and
simple cache and using ultra high-bandwidth Hybrid Memory Cube (HMC) [8]
3D-stacked memory technology.

Although the focus is on the exact matching algorithm, however it is known
that its type of memory access pattern is common in many other sequence
alignment applications. For this reason, we developed a new synthetic bench-
mark (RANDOM) that mimics the memory access pattern of the FM-index exact
matching algorithm, but with a user configurable amount of computing opera-
tions. This benchmark allows us to extend the previously described evaluation
to the class of applications with similar memory behaviour but running over
a range of operational intensity values.

The main contributions of the paper can be summarized as follows:

– We define an evaluation framework based on representative commodity sys-
tem architectures and a PNM architecture. The conventional systems are
based on powerful cores with a deep and large cache hierarchy and SDRAM
memory technology, while the PNM system is based on lightweight cores
with a single and small cache and HMC 3D-stacked memory technology.

– We analyze the performance and energy efficiency of the FM-index ex-
act matching algorithm in the defined evaluation framework. We compare
typical commodity computing systems against the PNM architecture, ob-
serving that the PNM system obtains between 1.26× and 3.7× better per-
formance and between 21× and 40× better power consumption.

– We develop the RANDOM benchmark that mimics the memory pattern of the
FM-index exact matching algorithm. In addition, this benchmark is able to
perform a variable number of computing operations per each data loaded
from main memory (i.e., the operational intensity can be configured).

– We analyze the performance and energy efficiency of the RANDOM bench-
mark in the evaluation framework. The aim is to evaluate algorithms with

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



4 Jose M. Herruzo et al.

similar memory patterns as the FM-index exact matching algorithm but
for different operational intensities. In this analysis, the STREAM benchmark
is also considered as a baseline representation of applications with uniform
memory access patterns.

2 Sequence Alignment Based on FM-index

It is usual that the first step in genomic sequencing corresponds to sequence
alignment, where sequence reads must be aligned to a genomic reference to
identify regions of similarity [9].

In the case of large genomes, memory requirements become a big concern.
As a result, big efforts were devoted to design sequence alignment algorithms
based on FM-index [10], a structure specially suited for fast exact matches of
short reads to large genomes keeping a small memory footprint.

The searching process using FM-index exhibits irregular and unpredictable
memory access patterns. Each step of the algorithm accesses a section of the
index that it is not known in advance, making the cache hierarchy difficult to
exploit. Besides, the exact matching algorithm is a memory bound problem
due to its low operational intensity.

2.1 FM-index

Let T be a character string of length n drawn from an alphabet defined as
Σ = {A,C,G, T}. As a notation, let T [i] and T [i..r] denote the i-th character
of T and the substring of T from character i to character r, respectively. The
suffix array SA of T is an array of length n containing the starting positions
of all suffixes of T in lexicographical order.

The Burrows-Wheeler Transform (BWT) of T is another string of length
n + 1, denoted by T bwt, obtained as follows: (1) append to the end of T the
symbol $, which is lexicographically smaller than any symbol in Σ; (2) form
a conceptual (n+1)×(n+1) matrix M whose rows are the cyclic shifts of T$
sorted in lexicographical order; and (3) the last column of the matrix M is
T bwt [11].

The FM-index of T is a compressed full-text index based on T bwt. With
the help of two auxiliary data structures, the FM-index supports an efficient
searching of a pattern Q in T .

The FM-index was designed as a compressed structure such that the in-
dex size can be smaller than the original text. However, in the context of
sequence alignment, it is usually not compressed in order to achieve better
performance [9].

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 5

Algorithm BS: Backward Search

Input: C[], Occ[], Q query, n=|T|, m=|Q|

Ouput: (sp,ep): Interval pointers of Q in T

1:  sp = C[Q[m]], ep = C[Q[m]+1]

3:  for i from m-1 to 1 step -1

4:     sp = LF(Q[i],sp)

5:     ep = LF(Q[i],ep)

6:  end for

7:  return (sp+1,ep)

Fig. 1 Backward search algorithm.

2.2 Exact Matching: Backward Search

Given a pattern Q of length m, m<n, the FM-index allows to find all occur-
rences of Q in the text T [10]. The search process takes two steps: Count and
Locate. The first step is a rank query process that calculates the number of
occurrences of Q in T by identifying the first and last rows of matrix M (see
sec. 2.1) prefixed by the query Q. The Locate step uses the indexes of these
rows to access the suffix array, where it finds the position of every occurrence
of Q in the text T .

Figure 1 shows the backward search (BS) algorithm that implements the
Count step. Each iteration of the loop 3−6 in BS accesses the query string
and makes two calls to the LF () function, one with sp (start pointer) and the
other with ep (end pointer). Note that in every loop iteration, sp and ep are
updated using the value computed in the previous iteration. That constitutes
two dependency chains of calls to LF (), one for sp and the other for ep.

The main operation in the BS algorithm is a Last-to-First Mapping (LFM),
which is performed by calling the function LF (), defined as follows:

LF (Q[i], p) = C[Q[i]] +Occ[Q[i], p], (1)

where i is the index of the loop and p is either sp or ep. C[c] represents the
number of occurrences in T bwt of the symbols alphabetically smaller than c,
while the function Occ(c, p) denotes the number of occurrences of symbol c in
the prefix T bwt[1..p] (i.e., Occ() is a rank query).

The suffix array is usually a very large compressed data structure. However,
its size for the human genome is about 12 GB (3 Gigabases x 4 Bytes), so it
can be stored without compression in modern systems. This way, the Locate
step is very simple, as it only requires an access to the suffix array. For this
reason, this paper focuses in the Count step.

2.3 Sampled Occ Table

A key aspect in the BS algorithm is the implementation of the Occ() function,
which consumes most of the computing time of the algorithm. Other option is

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



6 Jose M. Herruzo et al.

to precompute the Occ() function and store the results in a look-up table [10,
12].

As a trade-off between memory space and computing time, only a fraction
of the Occ() values are stored in the table [10]. Specifically, the look-up table
only stores the Occ() values for pointers divisible by a given factor d. Hence,
such sampled table, denoted by sOcc, is defined as follows:

sOcc[c, p] = Occ(c, 1 + (p−1)×d) (2)

where p = 1, ..., n+ 1.
The values of the function Occ() not stored in sOcc are computed with the

help of T bwt as follows:

Occ(c, p) = Occ(c, q) + occur(c, T bwt[(q+1)..p]) =

sOcc[c, ⌊(p−1)/d+ 1⌋] + occur(c, T bwt[(q+1)..p])
(3)

being q=1+d×⌊(p−1)/d⌋≤p and occur(c,s) the number of occurrences in the
string s of the symbol c.

2.4 Improving Data Locality

To improve data locality, columns of the table sOcc and the string blocks of
T bwt required to compute the Occ() function should be placed next in memory.
This is accomplished in two steps (Figure 2 (left)). Firstly, rearranging T bwt

in an array of substrings of d consecutive symbols, called buckets [10]. This
table, named bT bwt, is defined as bT bwt[u, v] = T bwt[d×(u−1)+v], representing
the symbol v of the bucket u. Secondly, combining both sOcc and bT bwt tables
into a new one denoted by SFM. Row j in SFM refers to the column j in sOcc
and the row j in bT bwt, that is, the bucket required to compute the values of
Occ() up to the next sOcc column.

Using these sampled tables, an LFM operation is performed as follows:

sLF (Q[i], p, d) = C[Q[i]] + sOcc[Q[i], ⌊(p− 1)/d+ 1⌋]+
occur(Q[i], bT bwt[⌊(p− 1)/d⌋+ 1, [1..(m mod d)]])

(4)

Each LFM uses sOcc[] which is d times smaller than a full-sized look-up
table, but at the cost of performing more computation than using a full table.

2.5 Searching k Symbols in a Single Step

Arranging the backward search in steps (loop 3-6 in Figure 1) of k symbols
at a time (instead of only one) allows to improve data locality even more
and reduce computing cost, but at the cost of increasing slightly the memory
footprint for sOcc [12].

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 7

SFM row

C 1 4

1

1

4

2sOcc (n+1)/d

A C

2
A

C

1

2

n+1

C

C

T

Tbwt

1 d

1

(n+1)/d

bTbwt

C C

T

1

(n+1)/d

2

1 4

A C

1 d

C C

T

SFM

G T

3

G

T

2

3

G T

C2 1 16

1

1

2sOcc2
(n+1)/d

16

AA AC

2

AA

AC

1

2

n+1

GC

TC

GT

1 d

1

(n+1)/d

bTbwt

GC TC

GT

Tbwt

1

(n+1)/d

2

1 16

AA AC

1 d

GC TC

GT

SFM2

SFM2 row

2
2

Fig. 2 Sampled (left) and 2-step sampled (right) data structures.

To search k symbols in a single step, the original alphabet (Σ) is replaced
by a new one (Σk) composed of k-tuples whose elements come from Σ (per-
mutations with repetition). This change in the alphabet implies modifications
in the data structures. C is transformed into Ck, which is indexed by k-tuples
in Σk. sOcc becomes sOcck, whose first dimension is also indexed by k-tuples.
T bwt is transformed into T bwt

k , which is composed of k (n+1)-symbol strings,
namely the last k columns of the matrix M (see Section 2.1). These k strings,
however, can be encoded as only one (n+1)-symbol string, where each symbol
is now the concatenation of k symbols. Similarly to bT bwt, T bwt

k , encoded as
a single string of k-tuples of symbols, can be blocked into buckets of size d,
making up the new table bT bwt

k . As with SFM, the tables sOcck and bT bwt
k ,

are combined into a new one denoted by SFMk. Figure 2 (right) shows these
new tables for k=2.

The k-step version of the calculation of an LFM (denoted by sLFk()) is
an extension of the single-step version, sLF (), but using the extended tables.
A single sLFk() call resolves k symbols, being equivalent to k calls to sLF ().
This arrangement improves data locality. Moreover, the computational cost of
sLFk() is higher than that of sLF (), but resulting in a lower computing cost
per LFM.

2.6 Overlapping Independent Pattern Searches

BS is a memory latency bound algorithm since many cycles are lost waiting
for data due to a chain of dependent data accesses (lines 4-5 in Figure 1, where
the pair (sp,ep) updated in a loop iteration is used in the next iteration). As a
result, part of the available memory bandwidth is wasted. However, this mem-

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



8 Jose M. Herruzo et al.

Algorithm OBS: Query-Overlapped Backward Search

Input: C[], Occ[], Q[] array of queries

Input: n=|T[]|, Nq=|Q[]|, m=|Q[k][]|, j=1,...,Nq

Ouput: (sp[j],ep[j]): Interval array of pointers of Q[j] in T

1:    sp[j] = C[Q[j][m]], ep[j] = C[Q[k][m]+1], j=1,...,Nq

2:    for i from m-1 to 1 step -1

3:    for j from 1 to Nq step 1

4:    sp[j] = LF(Q[j][i],sp[j])

5:    ep[j] = LF(Q[j][i],ep[j])

6:    prefetch(Occ[Q[j][i],sp[j]])

7:    prefecth(Occ[Q[j][i],ep[j]])

8:    end for

9:  end for

10:  return (sp[j]+1,ep[j]), j=1,...,Nq

Fig. 3 Overlapped backward search algorithm.

ory latency can be hidden by issuing a given number of different independent
searches, overlapping their memory accesses (batch or offline processing). The
high number of independent read alignments which are usually involved in
solving genome mapping problems makes this approach feasible.

The resulting overlapped BS (OBS) algorithm is shown in Figure 3. OBS
executes a total of 2×Nq LFMs for each step (iteration of the outer loop
2−9), corresponding to an array of Nq different queries that are searched
concurrently. Note that after computing the two LFMs required for a given
query, two prefetch operations are issued to retrieve from memory the two
Occ values needed for computing the next two LFMs of the same query. The
latencies of these memory reads are hidden by computing LFMs from other
queries.

2.7 Split Bit-Vector Encoding

A loop iteration in the BS algorithm makes accesses to sOcck using the pair
(sp,ep) and updates the values of such pair to be used in the next iteration.
Due to nature of the input queries and T bwt, the search loop causes an access
pattern to sOcck not predictable and distributed along the whole table.

However, the two memory patterns, one due to accesses through sp and
the other through ep, are partially correlated. After performing some loop
iterations in BS, there are usually few matches in the reference text, and the
sp and ep pointers may have similar values. In that case, the LFMs executed
in a loop iteration likely access sOcck entries that are stored in the same cache
block. For the 1-step version, we have measured the ratio of these cache block
correlations for different query lengths and text sizes assuming 64-byte cache
blocks, obtaining a high degree of correlation (between 65% and 92% of the
cases the accesses belongs to the same cache block).

We designed the Split Bit-Vector Encoding [3] to take advantage of the
above memory pattern behavior and thus reduce the memory bandwidth con-
sumption. The upper part of Figure 4 shows a row of the SFMk data structure

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 9

1 2 3A C G T ... d
T T C AG TA

4 5 6 7

A 0 0 0 10 01

1 2 3 d...4 5 6 7

C 0 0 1 00 00

G 0 0 0 01 00

T 1 1 0 00 10

bvSFM

 rows

sOcc
SFM  row

bTbwt

sOcc bvTbwt

Fig. 4 SFMk (top) and new bvSFMk (bottom) tables for k=1 (the accessed data when
computing an LFM is shaded in red).

(for k=1). An example of all entries accessed in the computation of an LFM are
marked in red. Note that only a single entry in sOcc is accessed together with
a separated substring of bT bwt, that may be stored in different cache blocks.
As an example, for k=2, the alphabet size is 16 (|Σ|2) and thus a single sOcc2
column occupies a complete 64-byte cache block (16 entries × 4 bytes/entry
in sOcc2).

The goal of the Split Bit-Vector Encoding of a SFMk row, denoted by
bvSFMk, is that all data needed to perform an LFM is stored in a compact way,
occupying a minimum number of cache blocks. The bvSFMk table is obtained
from SFMk through two transformations: (1) partition each row of SFMk

into |Σ|k rows, where each of them consists of a single sOcck entry combined
with the complete bucket (from bT bwt

k ). Specifically, the row t of SFMk, that
is, SFMk[t, ∗] ≡ sOcck[∗, t] | bT bwt

k [t] (a concatenation of the column t of
sOcck and the bucket t) is transformed into |Σ|k rows of bvSFMk, of the
form, bvSFMk[(t− 1)|Σ|k+i, ∗] ≡ sOcck[i, t] | bT bwt

k [t], for i=1,...,|Σ|k; (2)
compression of each bucket using a bitmap where each symbol is represented
by a single bit. This representation is as follows: given the row bvSFMk[(t−
1)|Σ|k+i, ∗] (1≤ i≤|Σ|k), the corresponding bucket (bT bwt

k [t]) is replaced by
a bitmap of length d, where a symbol in the bucket is represented by a set bit
(1) if it is equal to the one associated to the entry sOcck[i, t], and by a unset
bit (0) otherwise.

The lower part of Figure 4 shows an example of all rows of bvSFMk (k=1)
encoded from the corresponding single SFMk row. With bvSFMk, all data re-
quired to calculate an LFM (in red) are placed together in memory and in a
compact way, minimizing memory bandwidth consumption. The transforma-
tion also allows the occur() function to be simplified, as it simply has to count
the number of set bits (1) in the accessed bucket.

According to [3], the new encoding provides a throughput between 60% and
135% better than best previous implementations, being able to reach around
95% of the peak random access bandwidth limit when executed on a Intel
Xeon Phi KNL [13].

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



10 Jose M. Herruzo et al.

3 Processing-Near-Memory

Trying to overcome the memory-wall performance and energy problems, new
computer architectures and techniques are appearing recently. One of the most
promising acceleration paradigms is Processing-Near-Memory (PNM). This
concept focuses on reducing time and power spent on memory accesses in
typical processor-centric systems. For this purpose, they place data closer to
the computing units, resulting in data-centric systems.

PNM approach has a relevant impact on memory-intensive applications,
specially those ones that fulfill one or more of the following properties: a) low
operational intensity, meaning that low computing power is required for each
memory access; b) highly parallelizable, because it is usually more efficient to
include more small cores than increasing core compute power; or c) not making
good use of the deep cache hierarchies (typical in multi-core processors), as
when the memory access patterns are irregular.

PNM usually relies on new technologies, specially modern chip manufac-
turing techniques, which make possible to reduce both the power consumption
and area of the computing units. Other hardware techniques include Through-
Silicon Vias (TSVs), vertical interconnections that enable fast communication
inside 3D-stacked memories.

Previous works present different implementations taking advantage of this
type of architectures. Some proposals change minimally the classic memory
chips, in order to include some computing units inside them, while others focus
their research on the Hybrid Memory Cube (HMC) [8] or the High Bandwidth
Memory (HBM) [14] systems, two different 3D-stacked memory technologies.
In the case of HMC, the specification even includes a lightweight logic layer
able to perform simple memory operations. Finally, some implementations
design entire new architectures.

In general, there are two different types of PNM architectures. On the
one hand, some approaches use general-purpose processors inside the memory
units. Those processors can be used for almost any application that require
intensive use of memory. However, those PNM-processors can be power-hungry
and the area required is relatively high. On the other hand, some architectures
include specific-purpose processing units, much more efficient but useful only
for some specific computations. Recently, some commercial DRAM-based PIM
products (UPMEM) start to appear in the market [15].

4 Evaluation Framework

4.1 System Architectures

We define two representative system architectures with DDR-type SDRAM,
one PNM architecture with HMC-type memory and a real commodity archi-
tecture (Intel i7-8700 with DDR4 SDRAM). These architectures serve as a
framework to evaluate and compare the performance and energy efficiency

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 11

Table 1 Summary of hardware architectures.

DDR Setup 1 (S1) DDR Setup 2 (S2) Intel i7-8700 PNM
Cores 64 @ 2.4 GHz 36 @ 3.6 GHz 6 @ 3.2-4.6GHz 64 @ 1.5 GHz
Type OoO OoO OoO in-Order
Hw Thr. 1 1 2 1
Arch. x86 x86 x86 ARM-Like
Technol. 22 nm 22 nm 14 nm 28 nm

L1 32K/32K per core 32K/32K per core 32K/32K per core 8K/8K per core
Cache 3-cycle latency 3-cycle latency 4-cycle latency 3-cycle latency
L2 256K per core 256K per core 256K per core
Cache 10-cycle latency 10-cycle latency 12-cycle latency -

8-way set associat. 8-way set associat. 4-way set associat.
L3 16M shared 16M shared 12M shared
Cache 30-cycle latency 30-cycle latency 42-cycle latency

16-way set associat. 16-way set associat. 16-way set associat. -
6 banks 6 banks 6 banks
H3 Hash H3 Hash

Block Sz. 64B 64B 64B 32/64B

Chann. 4 4 2 -
Memory DDR3 DDR4 DDR3 DDR4 DDR4 HMC
Freq. 1600 2400 1600 2400 2666 2500

DRAM LayersBank

V
a
u
lt

Logic Layer TSVs

CPU

L1I L1D

CPU

L1I L1D

Fig. 5 Evaluated PNM architecture based on a 3D-stacked memory, that includes in-order
cores placed on its logic layer.

of the RANDOM benchmark and the FM-index exact matching algorithm. Note
that the defined general-purpose PNM architecture is not particularly suited
for the FM-index exact matching algorithm. In addition, the conclusions of
this work are also valid for other applications that present similar memory
access patterns.

We present the details of the target architectures in Table 1. As it can be
noticed, we compare DDR3 and DDR4 configurations using 64 and 36 out-
of-order (OoO) cores at different frequency rates, with a 3D-stacked memory
configuration using 64 power-efficient in-order cores at lower frequency.

Applications featuring random memory accesses, as the FM-index exact
matching algorithm, usually do not take advantage from typical cache con-
figurations, being even penalized when using deep cache hierarchies. As data
is very rarely reused, in many cases a significant part of the cache block is
wasted. The key idea behind our proposal is the use of simple cores with only

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



12 Jose M. Herruzo et al.

one level of cache, that access memory with low latency and high bandwidth
using a PNM approach.

As a result, we define an optimized architecture for random memory ac-
cesses using simple ARM-A35 cores, which are 64-bit in-order ARMv8-A pro-
cessors, very efficient in terms of both power consumption and area. According
to the ARM technical reference manual, the smaller version of this architec-
ture is equipped with 8K/8K L1 caches per core and requires an area of less
than 0.4 mm2 using a 28-nm technology. This setup consumes approximately
90 mW at 1-GHz frequency [16]. We provide additional details in terms of
area and power consumption in Section 5.5. Using this approach, we are able
to reduce area and power consumption, as only one level of private caches
(L1) are used for the PNM architecture. We analyze the use of both 64 bytes
and 32 bytes for cache block sizes, trying to reduce even more the amount of
never-used data brought from main memory to cache.

The described PNM architecture is shown in Figure 5, where the simple
general-purpose cores are placed in the logic layer of a 3D-stacked memory
cube, taking advantage of the high bandwidth and lower latency compared to
a typical processor configuration.

4.2 RANDOM Benchmark

The FM-index exact matching (see Figure 1) is a memory-bound algorithm
with a random pattern of memory accesses. Although this paper is focused
on that algorithm, however it is known that this type of memory pattern is
common in many other sequence alignment applications. For this reason, in a
first phase, we developed a synthetic benchmark, called RANDOM, with the aim
of mimicking the memory access pattern of the exact matching algorithm, but
with a user configurable amount of computing operations. This benchmark
allows us to explore the memory behaviour for these applications running over
a range of operational intensity values.

The RANDOM benchmark pseudocode is shown in Figure 6. It uses C ran-
domly generated linked lists with no access locality. An array of head pointers,
p, is updated a number of times following the linked lists. After each pointer
update, the next list element is prefetched. Taking this into account, if C is
high enough, the latency of memory accesses will be hidden. A timing diagram
of the benchmark is presented in Figure 7.

The RANDOM benchmark can be configured in terms of: (1) cache block size,
(2) operational intensity, (3) data structure size, (4) number of threads, (5)
number of parallel linked lists and (6) datatype for the arithmetic operations.
This range of parameters allows to perform a comprehensive evaluation of the
performance/energy behaviour of algorithms with this kind of memory access
patterns.

In the evaluation we also considered the STREAM benchmark [17], which
is used as a baseline to compare the RANDOM results to those derived from
algorithms with uniform (stream) memory access patterns.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 13

Benchmark: RANDOM

Input: N: Number of random memory accesses
  C: Number of linked lists (dependency-chains)
  OP: Operations per memory block
  p: Array of head pointers to the linked lists

     begin
1:  for i from N-1 to 1 step C
2:     for k from 0 to C step 1
3:   p[k] = p[k] next
4:    for j from 0 to OP step 1
5:      tmp = tmp*p[k]
6:    end for
7:   prefetch(p[k])
8:     end for
9:  end for
10:end

Fig. 6 RANDOM benchmark.

Tmem Top

TLFM

MEM OPS

MEM OPS

MEM OPS

MEM OPS

MEM OPS

MEM OPS

OPS

Titer (first iteration)

OPS

Titer (rest of iterations)

Iter 1, List 1

Iter 1, List 2

Iter 1, List 3

Iter 1, List 4

Iter 1, List 5

Iter 1, List C

Iter 2, List 1

Iter 2, List 2

Iter 2, List 3

Iter 2, List C

Fig. 7 RANDOM benchmark timing model.

5 Evaluation

5.1 Methodology

5.1.1 ZSim

ZSim is an architectural simulator [18] able to simulate thousand-core systems
much faster (between 100-1000×) than other cycle-based simulators. This is
possible thanks to novel acceleration techniques used by ZSim. First, it pro-
vides a fast sequential simulation using DBT. ZSim uses instrumentation with
Intel Pin [19] to perform dynamic binary translation (DBT), eliminating the
need for functional modeling of x86 and placing most of the work on the instru-
mentation phase. Second, it uses parallel simulation for modeling multi-core
chips, using an event-driven parallelization technique to improve accuracy.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



14 Jose M. Herruzo et al.

This simulator is also focused in flexibility and usability, being able to
support two main types of core models. A simple core, which is a small core
with IPC=1 for all but load/store instructions, and an out-of-order (OoO) core,
a modern core with much more functionality present in real-life processors, as
branch predictor, complex instruction fetching and detailed arithmetic units.
Regarding to memory, ZSim supports a simple memory (fixed latency), a MD1
memory and a DDR (by default, DDR3) memory models. The chosen system
configuration (both core and memory models) influences the simulation speed.

In our PNM architecture, we simulate power-efficient, small ARM-like cores
using ZSim. However, ZSim does not support the ARM ISA and architecture.
Instead of that, we use the simple in-order core model (IPC=1) available in
ZSim, configured at low frequency, with a performance comparable to typical
ARM-A35 processors.

5.1.2 Ramulator

Ramulator [20] is a fast and cycle-accurate simulation tool for current and
future DRAM systems. It is able to accurately provide models for a variety of
different memory standards, as for example, DDR3, DDR4, LPDDR, GDDR5,
HBM, SALP, HMC and PCM. It can be used in two different ways: integrated
within an architecture simulator, like gem5 or ZSim, or standalone, being fed
with a memory trace or an instruction trace. When used as integrated, it
provides a simple memory controller which exposes an external API for sending
and receiving memory requests. In contrast, when used as standalone, it models
a simple CPU that issues the memory requests from the input trace.

We use Ramulator for modeling the memory system, since it is more accu-
rate and extensible than ZSim integrated memory models. Our in-house ZSim
and Ramulator integration have been performed by imitating the DRAM-
Sim2 [21] integration with ZSim, where ZSim issues memory requests to Ra-
mulator, waiting for the response in a similar way to a real system.

5.1.3 Simulation Setup and Workloads

The evaluation is conducted on the architectures described in Section 4.1. We
use ZSim git public version [22] together with Ramulator-PIM public version,
which allows us to simulate accurate memory systems. We validate the ob-
tained results running the DDR3 configurations using both Ramulator and
ZSim memory models.

We modify public ZSim version to support direct communication and in-
tegration with Ramulator, creating an in-house PNM simulation framework.
This integration is implemented imitating the way that ZSim communicates
to DRAMSim2 memory simulator (i.e., each memory request is issued and
dispatched on demand), avoiding the necessity of using memory traces and
allowing running very large simulations.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 15

We use McPAT [23] to obtain power estimations of the evaluated architec-
tures, which is an integrated power, area, and timing modeling framework for
multicore and manycore architectures.

We execute our simulations based on ZSim, Ramulator and McPAT in a
system with two Intel Xeon Gold 6154 (18 cores, 36 hardware threads) at
3 GHz and 384 GB DDR4 memory running Ubuntu 18.04.1.

Finally, we validate our conclusions running the experiments in a real sys-
tem based on an Intel i7-8700 Coffee Lake processor with 6 cores (12 hardware
threads) at 3.2 GHz each, able to reach 4.6 GHz using turbo-boost. It includes
64 GB of DDR4 memory and runs also Ubuntu 18.04.1.

We compile the benchmarks using GCC with common flags and -O3 opti-
mization level and configure them according to the following parameters.

– STREAM benchmark: it defines an array size of 10,000,000 elements. Re-
ported values are the maximum of all STREAM results.

– RANDOM benchmark: it uses a 1 GB data structure, with 3,000,000 random
accesses.

– FM-index exact matching algorithm: the different versions are based on a
1 GB genome and they search for 500,000 short sequences (approximately,
200 bases each).

All benchmarks and applications have been run on all the available threads
in each system. Experiments have been run at least three times and we have
reported the average value of them. We found very low variance between the
obtained values, which means that taking the average value leads to consistent
results.

5.2 Benchmark Analysis

We first run experiments using STREAM and RANDOM benchmarks. Figure 8
shows the maximum memory bandwidth attained from the execution of both
benchmarks. As it can be noticed, a significant bandwidth improvement is
obtained when using PNM architectures, achieving between 2.7× and 3.4×
better performance when compared to the i7-8700 architecture. On the other
hand, these PNM systems obtain between 1.4× and 1.9× better performance
when compared to the 36-core and 64-core systems.

Figures 9 and 10 show the RANDOM benchmark results for different oper-
ational intensities. As the FM-index exact matching algorithm uses integer
operations, we define the operational intensity as the number of LFM opera-
tions (see section 2.2) per accessed cache block from main memory. Given the
techniques discussed in section 2 to exploit data locality, the best implemen-
tations for the BS algorithm require to access one or two consecutive cache
blocks per query step (that is, 2 × k LFM operations). That is the reason to
configure the two options in the RANDOM benchmark.

As expected, the PNM architecture takes advantage of lower operational
intensities where memory bandwidth becomes relevant. However, this archi-
tecture provides lower performance results than DDR-based systems for higher

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



16 Jose M. Herruzo et al.

operational intensities. This fact is explained because of the lower frequency
and lower computing power of the in-order cores in the PNM architecture.
There is a trade-off between bandwidth and computing power when compar-
ing Figures 9 and 10, showing the memory bandwidth and the amount of
integer operations performed per second, respectively. Additionally, Figure 9
shows that the PNM architecture reaches half of the memory bandwidth when
using 32-byte cache blocks instead of the 64-byte ones.

We make three key observations. First, the operational intensity determines
if an application is a good fit for the PNM setup or not. Second, for those PNM-
friendly applications, the PNM architecture takes advantage of the higher
memory bandwidth of the architecture, which leads to better performance.
Third, the performance of random-access applications (e.g., RANDOM) is similar
to the performance of sequential-access applications (e.g., STREAM) when using
the PNM architecture. In contrast, we find a larger difference when using
DDR-based solutions. This fact is explained because of the higher memory
latency and the deeper cache hierarchies that are present in the DDR-based
systems.

5.3 Roofline Analysis

We build the Roofline models for the experiments conducted in the architec-
tures of Table 1 and present the results in Figures 11, 12, 13 and 14. For
this task, we obtain the memory bandwidth usage directly from STREAM and
RANDOM benchmarks.

The horizontal lines represent the computing limit for each architecture,
which are measured with our RANDOM benchmark. We obtain such limit con-
figuring the benchmark to perform a huge amount of integer operations per
each loaded block from memory (65,536). On the other hand, diagonal lines

DD
R3

 12
@

3.2
GH

z
DD

R4
 12

@
3.6

GH
z

i7
-8

70
0 1

2
@

3.2
GH

z
DD

R3
 36

@
3.2

GH
z

DD
R3

 64
@

2.4
GH

z
DD

R3
 36

@
3.2

GH
z Z

sim
DD

R3
 64

@
2.4

GH
z Z

sim
DD

R4
 36

@
3.6

GH
z

DD
R4

 64
@

2.4
Gh

z

PN
M

 32
B

PN
M

 64
B

0

20

40

60

80

B
an

dw
id

th
 (G

B
/s

)

17.9
21.4

17.1

34.5 32.8 32.7 32.8

50.2 50.7

39.5

79.0

24.4
27.8 29.2

43.0 43.8 43.3 46.3

58.4 58.4

44.4

81.6
RANDOM
STREAM

Fig. 8 Memory bandwidth for STREAM and RANDOM benchmarks in different architectures.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 17

0 8 16 32 64 128 256 512 1024
Operations per block

0

20000

40000

60000

80000
B

an
dw

id
th

 (M
B

/s
)

Sim. DDR3 i7-8700
Sim. DDR4 i7-8700
i7-8700 12@3.2GHz
DDR3 S2 36@3.2GHz

DDR3 S1 64@2.4GHz
DDR3 S2 36@3.2GHz*
DDR3 S1 64@2.4GHz*
DDR4 S2 36@3.6GHz

DDR4 S1 64@2.4Ghz
PNM 32B 64@1.5GHz
PNM 64B 64@1.5GHz

0 8 16 32 64 128 256 512 1024
Operations per 2 consecutive blocks

0

20000

40000

60000

80000

B
an

dw
id

th
 (M

B
/s

)

Fig. 9 Memory bandwidth for the RANDOM benchmark in MBytes per second using different
operational intensities (operations per each accessed cache block or two cache blocks).

represent the memory bandwidth limit, both for uniform accesses (measured
with STREAM) and for random accesses (measured with RANDOM) being config-
ured to perform very few operations per byte. As shown in previous sections,
obtained random access bandwidths are always lower than uniform ones, being
the difference less significant on the PNM architecture.

Those figures show how the RANDOM benchmark fits well to the Roofline
model, specially for the Intel i7-8700 architecture. DDR architectures achieve
better performance when the operational intensity is high (up to 2× instruc-
tions per byte). On the other hand, the PNM architecture provides significant
better performance and higher bandwidth usage when the operational inten-
sity is low. This fact can be noticed when checking the bandwidth limits lines,
which present a more vertical shape than the DDR ones. Another important
observation is that the bandwidth limits for the PNM system are very close
when comparing random versus uniform memory accesses (both lines are al-
most overlapped in Figure 13, a fact that does not occur for the other systems).
In other words, when executing applications with random access patterns in
the PNM system, the performance is very similar to an application that follows
a uniform pattern. This is explained because 1) the smaller cache hierarchy
present in the PNM system with respect to the conventional ones, where a
cache miss incurs in less penalty, and 2) the reduced distance between com-

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



18 Jose M. Herruzo et al.

pute units and memory. As consequence, the PNM system is a better fit to
applications that follow this unpredictable access pattern, as FM-index.

Finally, we observe that the Intel i7-8700 architecture results present cer-
tain deviation between the real and simulated ones (Figure 14). This fact is
explained because of the higher processor frequency achieved by the real sys-
tem using turbo boost, which can not be simulated on the current version of
ZSim. However, our conclusions are valid as we observe the same behaviour.

0 8 16 32 64 128 256 512 1024
Operations per Block

0

50000

100000

150000

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Sim. DDR3 i7-8700
Sim. DDR4 i7-8700
i7-8700 12@3.2GHz
DDR3 S2 36@3.2GHz

DDR3 S1 64@2.4GHz
DDR3 S2 36@3.2GHz*
DDR3 S1 64@2.4GHz*
DDR4 S2 36@3.6GHz

DDR4 S1 64@2.4Ghz
PNM 32B 64@1.5GHz
PNM 64B 64@1.5GHz

0 8 16 32 64 128 256 512 1024
Operations per 2 consecutive blocks

0

50000

100000

150000

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Fig. 10 RANDOM benchmark operations per second using different operational intensities.

0 2 4 6 8 10 12 14 16
Instructions per Byte

0

20

40

60

80

100

120

140

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d

DDR3 S1 comput.
DDR3 S2 comput.
STREAM lim.

RANDOM lim.
DDR3 S1 64@2.4GHz
DDR3 S2 36@3.2GHz

Fig. 11 Roofline model for the DDR3-based systems.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 19

0 2 4 6 8 10 12 14 16
Instructions per Byte

0

20

40

60

80

100

120

140

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d

DDR4 S1 comput.
DDR4 S2 comput.
STREAM lim.

RANDOM lim.
DDR4 S1 64@3.6GHz
DDR4 S2 36@3.2GHz

Fig. 12 Roofline model for the DDR4-based systems.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instructions per Byte

0

20

40

60

80

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d 

(M
ill

io
ns

) 

Comput. Limit
STREAM lim.
RANDOM lim.

PNM 32B 64@1.5GHz
PNM 64B 64@1.5GHz

Fig. 13 Roofline model for the PNM system.

0 2 4 6 8 10 12 14 16
Instructions per Byte

0

10

20

30

40

50

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d

Real i7-8700 comput.
Sim. i7-8700 comput.
RANDOM lim.
STREAM lim.

Real i7-8700
Sim. DDR3 i7-8700
Sim. DDR4 i7-8700

Fig. 14 Roofline model for the Intel Core i7-8700 system.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



20 Jose M. Herruzo et al.

i7
-8

70
0 Z

Si
m

 

 D
DR

3 1
2@

3.2
GH

z
i7

-8
70

0 Z
Si

m
 

 D
DR

4 1
2@

3.6
GH

z
i7

-8
70

0 
 12

@
3.2

GH
z

DD
R 

Se
tu

p 2
 

 D
DR

3 3
6@

3.2
GH

z
DD

R 
Se

tu
p 1

 

 D
DR

3 6
4@

2.4
GH

z
DD

R 
Se

tu
p 2

 (Z
sim

) 

 D
DR

3 3
6@

3.2
GH

z
DD

R 
Se

tu
p 1

 (Z
sim

) 

 D
DR

3 6
4@

2.4
GH

z
DD

R 
Se

tu
p 2

 

DD
R4

 36
@

3.6
GH

z
DD

R 
Se

tu
p 1

 

 D
DR

4 6
4@

2.4
Gh

z
PN

M
 32

B 
 

64
@

1.5
GH

z
PN

M
 64

B 
 

64
@

1.5
GH

z

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Th

ro
ug

hp
ut

 (G
LF

O
PS

)

0.8 0.9
1.2

1.8
2.0

1.7 1.7

2.3
2.5

3.1 3.2

0.4
0.5 0.5

0.8 0.8 1.0 1.0
1.2 1.2

1.5 1.6

0.3 0.5 0.4

0.9 0.9 1.0 1.0
1.2 1.3 1.3 1.3

k2d64bv
k2d16
k1d32

Fig. 15 Performance for three FM-index exact matching versions.

To sum up, the takeaway of Figures 11, 12, 13 and 14 is two fold: 1) ran-
dom access applications do not take fully advantage of deep cache hierarchies
because of the almost absence of data locality, and 2), low operational inten-
sity is bandwidth-hungry and bottlenecked in conventional DDR architectures.
FM-index is an example of a random access application with low operational
intensity, being a good candidate for acceleration in a PNM system (where we
get rid of deep cache hierarchies and provide higher memory bandwidth).

5.4 FM-index Exact Matching Analysis

Once tested the RANDOM benchmark, we evaluated the FM-index exact match-
ing algorithm as a real application that presents a similar memory access
pattern. Figure 15 shows the obtained performance for three different FM-
index implementations: two k-step sampled FM-index versions, with k = 1,
d = 32 (k1d32) and k = 2, d = 16 (k2d16), and our split bit-vector FM-index
version, with k = 2 and d = 64 (k2d64bv). Performance is measured in giga
LFM operations per second (GLFOPS) (see section 2.2).

As it can be noticed, PNM architectures achieve between 2.7×-3.7× bet-
ter performance than the 12-core ones. We can also observe that the PNM
approach provides between 1.26× and 1.87× better performance than 36-core
and 64-core architectures with DDR3 and DDR4 memory technologies. On
the other hand, DDR4-based architectures provide approximately 25% better
performance than DDR3-based ones.

When comparing the FM-index implementations, the split bit-vector 2-step
version is able to achieve almost twice the amount of LFM operations per sec-
ond than the other FM-index versions. Another observation is that the PNM

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 21

architecture that uses 32-byte cache blocks gets roughly the same performance
as the one using 64-byte cache blocks.

5.5 Area and Power Consumption Analysis

We used McPAT to obtain the power consumption and area for the cores used
in the evaluated architectures. However, in order to make a more accurate
estimation, we also considered the power consumption and area specification
from real equivalent processors and we compared them against the estimations.

An in-depth area analysis of the high performance cores were not performed
since they are not restricted by the logic layer available in the 3D-stacked
memory.

5.5.1 PNM Architecture with Low Power Cores

We first evaluated our PNM architecture with simple in-order cores. According
to McPAT, when using a 28-nm technology, each small PNM core that runs
at 1.5 GHz requires an area of 2 mm2 and has a power consumption of 0.5 W.
In contrast, when using a 22-nm technology, the required area by one of those
cores is 0.61 mm2 area and the power consumption decreases to 0.2 W.

We designed the cores used in this PNM architecture imitating the smallest
A35 cores from ARM, but using a higher frequency. Considering this fact,
we can estimate the area and power of the PNM cores based on the ones
corresponding to the real ARM cores. We conservatively assumed an area of
0.4 mm2 and 0.18 W of power consumption per each small core when running
at 1.5 GHz (double than the 1 GHz reported power consumption, considering
that power consumption does not scale linearly on frequency).

5.5.2 Commodity Architecture with High Performance Cores

For comparison purposes, we consider a dual-socket Intel Xeon Gold 6154
including 36 cores at 3.0-3.7 GHz and an Intel Xeon Phi 7210 [13] with 64
cores at 1.3-1.5 GHz. Intel reports a TDP of 200 W for the Xeon Gold and
215 W for the Xeon Phi.

Our first evaluated architecture (see Table 1) includes 64 cores at 2.4 GHz,
which can be considered as a Xeon Phi with a higher frequency. Based on the
TDP reported by Intel for those two configurations, we analytically estimate
that a modified Xeon Phi at 2.4 GHz should have a TDP between 420 W and
450 W. In contrast, our second architecture is very similar to a dual Xeon Gold
setup, which TDP is almost 400 W. These estimations are comparable to those
provided by McPAT, which reports a TDP of 450.68 W for the architecture
using 64 cores at 2.4 GHz each (Setup 1), and 375.36 W for the setup with 36
cores at 3.6 GHz each (Setup 2). Finally, for the Intel i7-8700, we consider the
TDP value of 65 W reported by Intel.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



22 Jose M. Herruzo et al.

Figure 16 shows the estimated and reported power consumption for both
real systems and simulated architectures. The grey top section of the bars
shows the power consumption of the memory system.

The 3D-stacked memory power consumption is estimated using Micron
HMC power consumption calculator tool. DDR power consumption is esti-
mated obtaining a value of 3 W per memory module, using the Micron power
calculators as well [24]. This value is considered reasonable for DDR4 DIMM
modules [25].

5.6 Power Efficiency of Random Accesses Analysis

Providing McPAT with the power consumption data presented in Section 5.5
and the ZSim output stats, we obtain the efficiency for each architecture mea-
sured in LFM operations performed per consumed Joule. Figure 17 shows the
efficiency for both our RANDOM benchmark and the k2d64bv FM-index version.

We can observe a great improvement for the PNM architectures when com-
pared with conventional DDR memory systems, being able to perform 8×more
LFM operations and random accesses per joule than i7-8700. Compared to the
high-performance systems, with a higher number of cores, the improvement
are even greater, using around 21× less energy per LFM operation.

6 Related work

In this section we present the state-of-the art in 1) sequence alignment acceler-
ation techniques and 2) Processing-Near-Memory as an approach to accelerate
memory-bound applications.

PN
M

 A
RM

-A
35

 
 64

@
1G

Hz

i7
-8

70
0

12
@

3.2
GH

z
Xe

on
 G

ol
d 6

15
4 

 18
@

3G
Hz

Xe
on

 P
hi

 72
10

 

 64
@

1.3
GH

z
DD

R2
 x8

6 O
oO

 
 36

@
3.6

GH
z

DD
R2

 2x
 X

eo
n G

ol
d 

 36
@

3.6
GH

z
DD

R1
 M

od
. X

eo
n P

hi
 

 64
@

2.4
GH

z
DD

R1
 x8

6 O
oO

 
 64

@
2.4

GH
z

Architecture

0

100

200

300

400

Po
w

er
 c

on
su

m
pt

io
n 

(W
)

5.76 23.17 24.71
65.0

200.0 215.0

387.36
412.0 410.0

462.68
Memory power consumption
Official TDP value
Estimation
McPAT estimation

PN
M

 A
RM

-A
35

 
64

@
1.5

GH
z 

PN
M

AR
M

 In
-O

rd
er

64
@

1.5
GH

z

Fig. 16 Instantaneous power consumption for each architecture.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 23

DD
R3

 12
@

3.2
GH

z
DD

R4
 12

@
3.6

GH
z

DD
R3

 36
@

3.2
GH

z
DD

R3
 64

@
2.4

GH
z

DD
R4

 36
@

3.6
GH

z
DD

R4
 64

@
2.4

Gh
z

PN
M

 32
B

PN
M

 64
B

0.0

0.5

1.0

1.5
G

B
 lo

ad
ed

 p
er

 jo
ul

e

0.25 0.23
0.09 0.07 0.08 0.07

0.89

1.77
Random

0

50

100

150

M
LF

O
P 

pe
r j

ou
le

20.4 18.3
7.3 6.5 6.8 6.3

144.7 143.9
FM-index

Fig. 17 Memory bandwidth and mega LFM operations per Joule (MLFOP) for the RANDOM
benchmark and the k2d64bv FM-index version.

6.1 Sequence Alignment Optimizations

Biomedical applications, like genome or protein sequencing, are having a great
impact in many fields of bioinformatics [26]. To support progress in these ap-
plications, fast tools and algorithms have been developed recently for sequence
alignment, an usual first step in genome or protein sequencing. Many of the
most popular alignment methods are based on some type of index structures,
like suffix trees, being FM-index widely used. Examples of sequence aligners
based on FM-index are HISAT2 [27] and Bowtie/Bowtie2 [28].

Regarding the acceleration of the above tools on high-performance archi-
tectures [26], we can find different proposals in the literature for specific archi-
tectures or hardware accelerators, including multi-core processors [29], GPUs
(Arioc [30], Clusters (CUSHAW3 [31]), Clouds (BigBWA [32]) and FPGAs
(FHAST [33]). Another example is the GenAx accelerator [34], which pro-
vides around 30× speedup compared to a 14-core Xeon server. We also find
dataflow implementations based on FPGA for Smith-Waterman Matrix-fill
and Traceback stages (commonly used in BWA-MEM and Bowtie2) in [35],
but the FPGA is only in charge of the Smith-Waterman part (i.e., the rest
stages have to run in the CPU). Attached to an IBM POWER8 CPU, the
authors also accelerate the Smith-Waterman algorithm using and FPGA as
coprocessor, achieving 1.6× speedup compared to the CPU-only execution.
The DRAGEN platform [36] is another FPGA-based sequence aligner which
operates with a dual Intel Xeon processor in a hardware-software collaboration
manner. DRAGEN is a proprietary architecture from Illumina that achieves
between 16× and 18× speedup compared to a software-based implementation.

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



24 Jose M. Herruzo et al.

6.2 Processing-Near-Memory

Over last years, new architecture paradigms based on PNM are gaining im-
portance [37,6], in order to solve the problems derived from the memory wall
and data-intensive applications.

Consequently, a significant amount of works around these topics have ap-
peared during the last years. Most of them, like ours, based on the Micron
HMC architecture, expanding or completely reworking the logic layer. For ex-
ample, some works based on HMC are: [38], oriented to optimize parallel graph
processing; [39], analyzing the performance of Google workloads; [40] and [41],
optimizing graph processing applications; [42], presenting a NDP accelerator
for basic data analytic operators; [43], including general near-data processors
in the logic layer and analyzing their performance for common applications
like MapReduce, PageRank and neural networks; [44], focused on neural net-
work acceleration; [45], with some common points with our work, improving
bioinformatics applications performance through PNM; and [46], NATSA, a
PNM accelerator for time series analysis.

Furthermore, some works are oriented to use different architectures, like
[47], working with NDP on GPUs; [48], mixing CPUs and GPUs close to the
data; [49] and [50], implementing these techniques with commodity DRAM
modules.

In summary, there are some previous related works in both algorithm opti-
mizations and hardware development fields. However, to the best of our knowl-
edge, there are no prior works that propose a method to evaluate unpredictable
access pattern applications and take FM-Index as case study.

7 Conclusions

This paper presents an analysis and evaluation of the random memory access
pattern of a typical algorithm in the genome sequence alignment arena (exact
matching based on FM-index) on both commodity and emerging PNM system
architectures. In addition, we developed a RANDOM benchmark that mimics the
memory access pattern of the above algorithm, but with a configurable amount
of computing operations. With this benchmark we explore the behaviour of the
class of applications showing this memory pattern over a range of operational
intensity values.

Our experiments show that the PNM architecture, using a 3D-stacked
memory with in-order power-efficient cores, achieve better performance with
a significant lower energy consumption than conventional architectures with
conventional memory technology (DDR). More specifically, the PNM archi-
tecture achieves more than 3× the performance when running the RANDOM

benchmark, and between 1.26× and 3.7× when executing the FM-index exact
matching algorithm, compared with typical DDR-based systems. Regarding
energy efficiency, the PNM architecture shows a reduction in energy consump-

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 25

tion between 21× and 40× compared to systems with commodity DDR-based
memories and systems with deep and large cache hierarchies.

References

1. Chen, C., Zhang, C.Y.: Data-intensive applications, challenges, techniques and tech-
nologies: a survey on big data. Information Sciences 275 (2014) 314–347

2. Kestor, G., Gioiosa, R., Kerbyson, D.J., Hoisie, A.: Quantifying the energy cost of
data movement in scientific applications. In: 2013 IEEE International Symposium on
Workload Characterization (IISWC). (2013) 56–65

3. Herruzo, J., Gonzalez-Navarro, S., Ibañez, P., Viñals, V., Alastruey, J., Plata, O.: Ac-
celerating sequence alignments based on FM-index using the Intel KNL processor.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 17(4) (July
2020) 1093–1104

4. NovaSeq System Specifications The next era of sequencing starts now. https://www.

illumina.com/systems/sequencing-platforms/novaseq/specifications.html
5. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mobile Networks and Applications

19(2) (Apr 2014) 171–209
6. Mutlu, O., Ghose, S., Gomez-Luna, J., Ausavarungnirun, R.: A modern primer on

processing in memory. arXiv preprint arXiv:2012.03112 (2020)
7. Ghose, S., Boroumand, A., Kim, J., Gomez-Luna, J., Mutlu, O.: Processing-in-memory:

A workload-driven perspective. IBM Journal of Research and Development 63(6)
(November 2019) 3:1—-3:19

8. Micron Technology, Inc. Hybrid Memory Cube (HMC). https://www.micron.com/

products/hybrid-memory-cube
9. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation

sequencing. Briefings in Bioinformatics 11(5) (May 2010) 473–483
10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: 41st

Annual Symposium on Foundations of Computer Science. (2000) 390–398
11. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech-

nical Report 124, Digital Equipment Corporation (1994)
12. Chacon, A., Moure, J.C., Espinosa, A., Hernandez, P.: n-step FM-index for faster

pattern matching. Procedia Computer Science 18 (2013) 70–79
13. Intel Xeon Phi Processor 7210 (16GB, 1.30GHz, 64 core) Product Speci-

fications. https://ark.intel.com/content/www/us/en/ark/products/94033/

intel-xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html
14. Lee, D.U., Kim, K.W., Kim, K.W., Kim, H., Kim, J.Y., Park, Y.J., Kim, J.H., Kim,

D.S., Park, H.B., Shin, J.W., Cho, J.H., Kwon, K.H., Kim, M.J., Lee, J., Park, K.W.,
Chung, B., Hong, S.: 25.2 A 1.2v 8Gb 8-channel 128GB/s high-bandwidth memory
(HBM) stacked DRAM with effective microbump I/O test methods using 29nm process
and TSV. In: IEEE International Solid-State Circuits Conference (ISSCC’14). (2014)
432–433

15. Devaux, F.: The true processing in memory accelerator. In: IEEE Hot Chips 31 Sym-
posium (HOTCHIPS 2019). (August 2019)

16. Each milliwatt matters − ultra high efficiency application processors.
http://www.armtechforum.com.cn/attached/article/ARM_Each_Milliwatt_

Matters20151210111238.pdf
17. McCalpin, J.D.: Stream: Sustainable Memory Bandwidth in High Performance Com-

puters. Technical report, University of Virginia, Charlottesville, Virginia (1991-2007) A
continually updated technical report. http://www.cs.virginia.edu/stream/.

18. Sanchez, D., Kozyrakis, C.: ZSim: Fast and accurate microarchitectural simulation
of thousand-core systems. In: 40th Annual International Symposium on Computer
Architecture (ISCA’13). (June 2013) 475–486

19. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J., Hazelwood, K.: Pin: Building customized program analysis tools with dynamic
instrumentation. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’05). (June 2005) 190–200

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



26 Jose M. Herruzo et al.

20. Kim, Y., Yang, W., Mutlu, O.: Ramulator: a fast and extensible DRAM simulator.
IEEE Computer Architecture Letters 15(1) (mar 2015) 45–49

21. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: a cycle accurate memory system
simulator. IEEE Computer Architecture Letters 10(1) (mar 2011) 16–19

22. s5z/zsim: a fast and scalable x86-64 multicore simulator. https://github.com/s5z/zsim
23. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: McPAT:

an integrated power, area, and timing modeling framework for multicore and manycore
architectures. In: 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’09). (December 2009) 469–480

24. Micron Power Calculators. www.micron.com/support/tools-and-utilities/

power-calc

25. Crucial (Micron Technology, Inc.) How much power does memory use? https://www.

crucial.com/support/articles-faq-memory/how-much-power-does-memory-use

26. Schmidt, B., Hildebrandt, A.: Next-Generation Sequencing: big data meets high per-
formance computing. Drug Discovery Today 22(4) (April 2017) 712–717

27. Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L.: Graph-based genome
alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology
37 (August 2019) 907–915

28. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie2. Nature Meth-
ods 9 (March 2012) 357–359

29. Langmead, B., Wilks, C., Antonescu, V., Rone, C.: Scaling read aligners to hundreds of
threads on general-purpose processors. Bioinformatics 35(3) (February 2019) 421–432

30. Wilton, R., Budavari, T., Langmead, B., Wheelan, S.J., Salzberg, S.L., Szalay, A.S.:
Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-
and-extend search space. PeerJ 3:e808 (2015)

31. Gonzalez-Dominguez, J., Liu, Y., Schmidt, B.: Parallel and scalable short-read align-
ment on multi-core clusters using UPC++. PLoS One 11(1) (2016)

32. Abuin, J.M., Pichel, J.C., Pena, T.F., Amigo, J.: BigBWA: Approaching the Burrows-
Wheeler aligner to big data technologies. Bioinformatics 31(24) (2015) 4003–4005

33. Fernandez, E.B., Villarreal, J., Lonardi, S.: FHAST: FPGA-based acceleration of Bowtie
in hardware. IEEE/ACM Transactions on Computational Biology and Bioinformatics
12(5) (2015) 973–981

34. Fujiki, D., Subramaniyan, A., Zhang, T., Zeng, Y., Das, R., Blaauw, D., Narayanasamy,
S.: Genax: a genome sequencing accelerator. In: ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA’18). (2018) 69–82

35. Koliogeorgi, K., Voss, N., Fytraki, S., Xydis, S., Gaydadjiev, G., Soudris, D.: Dataflow
acceleration of Smith-Waterman with Traceback for high throughput next generation
sequencing. In: 29th International Conference on Field Programmable Logic and Ap-
plications (FPL’19). (2019) 74–80

36. Miller, N.A., Farrow, E.G., Gibson, M., Willig, L.K., Twist, G., Yoo, B., Marrs, T.,
Corder, S., Krivohlavek, L., Walter, A., et al.: A 26-hour system of highly sensitive whole
genome sequencing for emergency management of genetic diseases. Genome Medicine
7(1) (2015) 1–16

37. Ghose, S., Hsieh, K., Boroumand, A., Ausavarungnirun, R., Mutlu, O.: Enabling the
adoption of processing-in-memory: challenges, mechanisms, future research directions.
arXiv preprint arXiv:1802.00320 (2018)

38. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A Scalable Processing-in-memory
Accelerator for Parallel Graph Processing. In: Int’l. Symp. on Computer Architecture
(ISCA’15). (2015) 105–117

39. Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., Thakur, R., Kim,
D., Kuusela, A., Knies, A., Ranganathan, P., Mutlu, O.: Google Workloads for consumer
devices: Mitigating data movement bottlenecks. In: ACM 23rd International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’18). (March 2018) 316–331

40. Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., Kim, H.: GraphPIM: enabling
instruction-level PIM offloading in graph computing frameworks. In: 23rd IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA’17). (February
2017) 457–468

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3



Enabling Fast and Energy-Efficient FM-index Exact Matching using PNM 27

41. Zhang, M., Zhuo, Y., Wang, C., Gao, M., Wu, Y., Chen, K., Kozyrakis, C., Qian, X.:
GraphP: reducing communication for PIM-based graph processing with efficient data
partition. In: 24th IEEE International Symposium on High Performance Computer
Architecture (HPCA’18). (February 2018) 544–557

42. Drumond Lages De Oliveira, M.P., Daglis, A., Mirzadeh, N., Ustiugov, D., Pi-
corel Obando, J., Falsafi, B., Grot, B., Pnevmatikatos, D.: The Mondrian Data Engine.
44th International Symposium on Computer Architecture (ISCA’17) (June 2017)

43. Gao, M., Ayers, G., Kozyrakis, C.: Practical near-data processing for in-memory an-
alytics frameworks. In: 24th International Conference on Parallel Architectures and
Compilation Techniques (PACT’15). (October 2015) 113–124

44. Gao, M., Pu, J., Yang, X., Horowitz, M., Kozyrakis, C.: TETRIS: scalable and efficient
neural network acceleration with 3D memory. In: 22nd ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’17). (April 2017) 751–764

45. Kim, J.S., Cali, D.S., Xin, H., Lee, D., Ghose, S., Alser, M., Hassan, H., Ergin, O.,
Alkan, C., Mutlu, O.: GRIM-Filter: fast seed location filtering in DNA read mapping
using processing-in-memory technologies. BMC Genomics 19(2) (2018) 23–40

46. Fernandez, I., Quislant, R., Gutierrez, E., Plata, O., Giannoula, C., Alser, M., Gomez-
Luna, J., Mutlu, O.: NATSA: a near-data processing accelerator for time series analysis.
In: IEEE 38th International Conference on Computer Design (ICCD’20). (2020) 120–129

47. Hsieh, K., Ebrahimi, E., Kim, G., Chatterjee, N., O’Connor, M., Vijaykumar, N., Mutlu,
O., Keckler, S.W.: Transparent Offloading and Mapping (TOM): enabling programmer-
transparent near-data processing in GPU systems. In: ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA’16). (June 2016) 204–216

48. Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J.L., Xu, L., Ignatowski, M.:
TOP-PIM: throughput-oriented programmable processing in memory. In: 23rd Inter-
national ACM Symposium on High-Performance Parallel and Distributed Computing
(HPDC’14). (June 2014) 85–98

49. Farahani, A.F., Ahn, J.H., Morrow, K., Kim, N.S.: NDA: Near-DRAM accelera-
tion architecture leveraging commodity DRAM devices and standard memory mod-
ules. 21st IEEE International Symposium on High Performance Computer Architecture
(HPCA’15) (February 2015) 283–295

50. Asghari-Moghaddam, H., Son, Y.H., Ahn, J.H., Kim, N.S.: Chameleon: versatile and
practical near-DRAM acceleration architecture for large memory systems. In: 49th An-
nual ACM/IEE International Symposium on Microarchitecture (MICRO’16). (October
2016)

This is the author's version of an article that has been published in Jounal of Supercomputing. 
Changes were made to this version by the publisher prior to publication. The final version of record is 
available at https://doi.org/10.1007/s11227-021-03661-3




