The Journal of Supercomputing (2021) 77:13046-13068
https://doi.org/10.1007/511227-021-03797-2

®

Check for
updates

Enriched multi-agent middleware for building rule-based
distributed security solutions for loT environments

Francisco José Aguayo-Canela’ - Héctor Alaiz-Moretén' -
Maria Teresa Garcia-Ordas' - José Alberto Benitez-Andrades?
Carmen Benavides? - Isaias Garcia-Rodriguez’

Accepted: 5 April 2021 / Published online: 19 April 2021
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract

The increasing number of connected devices and the complexity of Internet of
Things (IoT) ecosystems are demanding new architectures for managing and secur-
ing these networked environments. Intrusion Detection Systems (IDS) are security
solutions that help to detect and mitigate the threats that IoT systems face, but there
is a need for new IDS strategies and architectures. This paper describes a develop-
ment environment that allows the programming and debugging of distributed, rule-
based multi-agent IDS solutions. The proposed solution consists in the integration
of a rule engine into the agent, the use of a specialized, wrapping agent class with
a graphical user interface for programming and debugging purposes, and a mech-
anism for the incremental composition of behaviors. A comparative study and an
example IDS are used to test and show the suitability and validity of the approach.
The JADE multi-agent middleware has been used for the practical implementations.

Keywords Rule-based agent - Multi-agent systems - Intrusion detection system -
Development environment

1 Introduction

The proliferation of devices with Internet connection capabilities in the so-called
Internet of Things (IoT) is a trend that is generating an overwhelming amount of
new streams of data. These data are crucial to the operation of the systems where
the devices are located but must be properly managed to obtain useful information
for decision-making. The distributed nature of these systems demands decentralized
architectures for the management and control of the IoT devices, including tasks

< José Alberto Benitez-Andrades
jbena@unileon.es

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0000-0002-4450-349X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03797-2&domain=pdf

Enriched multi-agent middleware for building rule-based. .. 13047

such as monitoring or security assurance [1]. The multi-agent paradigm has proved
to be a convenient approach for building this kind of decentralized management and
control systems [2]. Regarding cybersecurity issues, the complex nature of IoT eco-
systems demands integrated defending systems that can cope with different threats
which such systems may be exposed to.

One of the needs for IoT ecosystems protection is to build tools able to detect
malware activity within a given network as soon as possible, in order to minimize
the number of devices affected or the extent of the damage that could be produced.
Intrusion Detection Systems (and Network-based Intrusion Detection Systems
(NIDS) in particular) are a family of technological solutions that have traditionally
being used with this purpose. In IoT scenarios, the number of different devices, pro-
tocols and communication acts take these security challenges to a new level. The use
of intelligent, cooperative agents has proved to be a convenient solution for defend-
ing such IoT ecosystems [3]; different tasks involved can be distributed among a
number of specialized software entities that cooperate by exchanging messages in
order to obtain a common goal. This approach has led to a shift in (N)IDS from
monolithic and very centralized solutions to distributed ones, who are known as
Collaborative Intrusion Detection Systems (CIDS) [4].

The “intelligence” provided by the agents in order to build their intrusion detec-
tion capabilities may be based on the use of rules, different sorts of logic and other
deliberative mechanisms and Al techniques [5]. Many existing cognitive functions
used for building intelligence into the agent are based on the reactive model, using
an event-driven mechanism that, with the aid of a set of rules, allows the agent to
trigger its behavior when a given condition is detected. This mechanism is specially
useful for building the so-called misuse or signature-based intrusion detection sys-
tems, as they use the known characteristics of malicious traffic in the network to rec-
ognize potential threats. The usual formal representation for this kind of knowledge
consists in a set of rules that are fired when their activation patterns match the moni-
tored traffic features, but building such rule-based reactive systems into the agents of
a multi-agent system (MAS) is a difficult, time-consuming task.

This research aims at designing and building a development environment for eas-
ing the construction and debugging of multi-agent-based security systems that use
rules for implementing the cognitive capacities of the agents. The solution is based
on a set of tools and functionalities incorporated into the multi-agent middleware
that eases the design, implementation, test and development of this kind of distrib-
uted NIDS systems.

The solution proposed includes a loosely coupled integration of the rule engine
into the agent, not depending on the implementation technology. The development
and deployment of the agents in the multi-agent platform will be incremental, with
aids for testing not only the own agent’s knowledge base, but also the cooperative
problem solving involving different agents.

The multi-agent middleware chosen for testing this proposal is JADE [6]. This
choice is based on its maturity, the size of the user community and the use of behav-
ior-based agents, which can be exploited to integrate the rule engine processes as
behaviors.

@ Springer

13048 F. J. Aquayo-Canela et al.

Extended middleware agent

P o e e e e e S e e B e e
Behavior library G I e
1
1
: Behavior Jade Shell ACL message
1 edition GUI GUI editor GUI
Rule files library 1
o |
0
1 Synchronous Asynchronous Rule file
: CLIPS/Jess/... CLIPS/Jess/... editor
1
1
1
i
R . S— el
H Q rule-engine behavior load

| Jess rule engine :
:]

:) Agent-to-rule actions and activation

3| CLIPSrule engine |49 AP'S engine

D communication »

: : Original

Other engines... J I JADE Agent

Lo L 0 0 .) i

ACL comm. module

1
1
1
1
1
1
1
1
]
]
1
1
1
1
Console & GUI console & GUI GUI :
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1

FIPA-compliant JADE Distributed Platform

Fig. 1 Framework for the proposed solution

Figure 1 shows a diagram of the proposed middleware architecture. The rule
engine (A) used by a given JADE agent is loosely coupled to it by means of a
software interface (B) according to the technology of the engine. The rule-based
agent will communicate with other rule-based agents by using the standard Agent
Communication Language (ACL) (C) and a set of technology-neutral concepts
for describing actions in the rule engines that is stored in a shared ontology (see
Table 1). As well as the agent-to-agent, also the agent-to-rule engine communica-
tion is achieved by using ACL messages that the agent sends to itself (D).

Besides the integration of the agent and the rule engine, the proposed solution
includes a set of facilities in order to ease the design, development and debug-
ging of rule-based multi-agent systems. The basic JADE Agent class has been
extended in order to build an incremental behavior composition system by using
a library of externalized behaviors (E) and a mechanism for the dynamic load and
incorporation of these behaviors into the agent (F). This functionality is detailed
in Sect. 4.

A number of graphical user interface windows have also been built into the extended
JADE Agent class to aid the programmer in the process of building the knowledge base
for each agent and test the distributed multi-agent system prior to put it into production.
The “agent management tab” (G) includes a behavior edition window, a JADE Shell
editor and an ACL message visualization and edition window; all of them are described
in Sect. 3.2. On the other hand, the “rule engine management tab” (H) includes a file
editor for creating and editing rules that are stored in an external library (I), a synchro-
nous shell for direct interaction with the given rule engine used by the agent and an

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13049

Table 1 Codes and description for possible activities to be communicated between rule-based agents

Code Description
LOAD_FILE Load the file indicated as a parameter
LOAD_FACTS Loads the facts file indicated as a parameter.

LOAD_FROM_RESOURCE
LOAD_FROM_STRING
LOAD_ASSERT_STRING
LOAD_BLOAD
LOAD_SLOAD
RUN_INFINITELY
RUN_NUMBER_OF_CYCLES
RUN_ONCE_THEN_BATCH
RUN_INNER_SHELL
MAKE_RESET
MAKE_CLEAR
MAKE_MEMORY_DUMP
MAKE_ASSERT_STRING
MAKE_BUILD
EVAL_COMMAND
SET_INPUT_BUFFER_COUNT
APPEND_INPUT_BUFFER
SET_UNWATCH
SET_WATCH
GET_FACT_SLOT
FACT_INDEX

Loads the given resource file indicated as a parameter.
Loads data from a CSV file indicated as a parameter.
Loads facts from a string.

Memory restoring from a bin file.

Memory restoring from a plain text file.

Run indefinitely up to the end of rule activations.
Run a given number of cycles.

Run and give the control back to the Shell.

Execute the internal Shell.

Perform a reset command.

Perform a clear command.

Perform a security backup.

Inserts a fact from a string.

Compile a query.

Evaluate a sentence.

Requests the number of input characters entered.
Appends to the given command.

Not to analyze (debugger).

Analyze (Facts, Modules, etc.).

Get an slot value.

Move the cursor in the fact list.

asynchronous shell where the user can interact both with the rule engine of the same
agent and with any rule engine of any agent in the platform. Section 3.3 gives further
details about these windows and their functionalities.

The rest of the paper is organized as follows: Sect. 2 describes the integration of a
rule engine into the agent, showing its main features and a test for validating and com-
paring the solution to another similar one. Sections 3 and 4 present the enriched multi-
agent middleware and the externalization of the agent behaviors, respectively, while
Sect. 5 shows how the proposed solution can be used as a development environment for
building an example rule-based Network Intrusion Detection System. The objective of
Sect. 5 is to show and demonstrate the features of the enriched middleware to ease the
construction of such systems, not to build a fully functional NIDS solution. Some dis-
cussion is presented in Sect. 6 and, finally, Sect. 7 is devoted to show the conclusions
and future work.

@ Springer

13050 F. J. Aquayo-Canela et al.

2 Integrating a rule engine into an agent: the rule-based agent

The integration of the rule engine into the agent is the base of the proposed enriched
middleware; a detailed description of this solution can be found in [7]. The resulting
integrated solution includes the following characteristics:

— Neutrality concerning the particular technology of the rule engine, for example,
CLIPS [8], JESS [9] or Drools [10].

— The agent is the only responsible for the actions performed in its rule-based sys-
tem, controlling the execution of the rule base independently from other actions,
activities or behaviors. The rule engine is exclusively devoted to the agent, what
distinguishes this approach from other ones where the reasoning is built as a ser-
vice in a special agent devoted to solely perform the execution of the rules that
other agents demand [11]

— The rule engine associated with an agent does not block the basal agent behavior
while reasoning, allowing it to keep communicating with other agents.

— The design of the solution prioritizes the ease for the design and development of
rule-based multi-agent applications.

The communication mechanism between agents with integrated rule engines com-
plies with the Foundation for Intelligent Agents (FIPA) specifications, using ACL
messages and a domain ontology for storing the valid set of message contents. The
set of actions that a rule-based agent can ask another one to perform on its rule
engine is limited to a predefined set of concepts (see Table 1) that represent the
usual activities of these kind systems (loading facts and rules, executing a number of
firing cycles, query facts and rules, performing a reset or clear command, etc.).

These actions can be invoked by a rule-based agent when communicating to
another rule-based agent, but also by a human (working within the enriched inter-
face shell of an agent, see Sect. 3.3.3) that wants to communicate with any other
rule-based agent in the platform for development or debugging purposes. The size
of the ACL messages exchanged by the agents ranges from 2 to 5 kBytes, being the
bigger ones those who carry a set of fact or rule assertions in their payload.

2.1 Validation of the rule engine integration

In order to validate and test the proposed integration approach, a comparative study
has been designed and implemented. The study compares the solution described
in this paper to the integration described in [12]. The study is detailed and can be
reproduced by following the indications and using the software at https://secomuci.
com/research/MAS/IMAS/validation.

The study compares the performance and response times of an agent from the
framework proposed in this paper (referred to as DPSNodeAC) and a JessAgent
from the solution proposed in [12] (named HLCjessAgent in this section). The

@ Springer

https://secomuci.com/research/MAS/IMAS/validation
https://secomuci.com/research/MAS/IMAS/validation

Enriched multi-agent middleware for building rule-based. .. 13051

experiment consists in making a third agent, called Analyzer, generate a number
of messages to be sent to the agents under test (HLCjessAgent and DPSNodeAC).
The messages can be of two types:

— Presence request messages (used for testing if the agent is alive in the platform).
The response is a simple acknowledgement for confirming the presence of the
agent. The usual response time for this kind of message in the mentioned com-
puter was about 300 ms when the agent is free from other reasoning processes.

— Requests messages asking for solving sudoku problems of different difficulties.
The response to these messages is the solution found for the given problem and
so they take the agent more time to respond than the presence request messages.
There are four different sudoku problems to be solved, with solving times (in the
rule base) from around 200 ms to 2500 ms.

The sequence of messages used is shown in table 3. A total of 40 messages
were sequentially generated for each agent. The first four are of type “presence
request” (p in Table 2), the fifth is of type “sudoku” (S in Table 2), then nine more
“presence request” messages are sent and one “sudoku” follows; this sequence
is repeated twice, ending with five more “presence” messages. Each message is
scheduled to be sent from the Analyzing agent every 250 ms. So, the entire mes-
sage sequence is generated within an interval of 10 seconds.

The Analyzer agent is responsible for sending the messages and capturing the
corresponding responses, annotating the time at which the message was issued
and the time when the corresponding response from the agent arrived; the differ-
ence is the corresponding delay for the given message.

Figure 2 shows the delays in the responses for each message for the HLCjessA-
gent (a) and for the DPSNodeAC agent (b). As can be seen, the approach described
in this paper outperforms the results of the other solution. This improvement is
achieved by the implemented integration of the rule engine into the agent that, in
the case of the proposed solution, does not block the communication processes of
the agent, as opposed to the compared solution.

Table 2 Sequence of messages for the experimental test of the solution
Message# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Type pp PP S popp P PP PP P S P P P PP

Message# 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Type pp P P S pp&p &P PP P P P S P P P P P

@ Springer

13052 F. J. Aquayo-Canela et al.

3500 3500
3000 T 3000
2500
2000

1500

Delay in the response (ms)
Delay in the response (ms)

2500
1000
500

2000 % %
1500 % %
oAl |||”| ||||I||§_) i STTTHITTT T

Message number Message number

(a) HLCjessAgent (Cardoso, 2007) (b) DPSNodeAC (proposed solution)

Fig.2 Delays in the responses of HLCjessAgent vs DPSNodeAC

3 Description of the enriched middleware

As well as the integration of the rule engine into the agent, the other main contri-
bution of the proposed solution is the enriched multi-agent middleware to help in
the development and test of rule-based multi-agent systems. The next sections are
devoted to present different components of this enriched middleware.

3.1 The development environment

A core component of the solution is the “development environment,” built as an
agent extending the basic Agent JADE class. It is primarily intended to ease the
development and debugging of agents with rule-based behaviors. When in devel-
opment and debugging time, the rule-based agent must be invoked as a “devel-
opment environment” agent in the platform. This invocation causes the agent to
launch with an enriched graphical user interface with a set of functionalities for
building and testing rule-based agents.

This solution allows the interactive modification of the agent internal code,
as well as the interaction with its own rule engine, or even with any other rule
engine in any of the agents in the platform. The graphical interface of the devel-
opment environment agent has two main tabs (see Fig. 3). Tab 1 is called the
“agent management tab” and tab 2 is the “rule engine management tab.” Their
functionalities are presented in next sections.

3.2 The agent management tab
The agent management tab includes the following windows:
— The JADE shell window.

— The behavior editing window.
— The message viewing and editing window.

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13053

e: Empty-pocket@POSEIDON:1800.340F, Selected engine model: CLIPS —|o] x|

Setting execution-evel: ‘n_1jn_3‘n_s] ign-él u \llM»gra(e | l Bsmt

£ Empty-pocket: Desktop of this agent. [Cugnowledgebase&tools in this agent. ‘
Utiltties for building and debugging node-agents:

== — Y
JADE Shell Behavioiurs and Levels-scripts Editor ‘ g ACL Messages

Java BeanShell interpreter v.2.0b4 connected to JADE Agent, on JVM: 1.7.0_67-b01, over O.S.: Windows 7 with architecture: x86

Type help(); for basics instructions.

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

[test.environment://Pocket/config/]# > |

Framework name: [area51] Agent loaded: [Pocket@POSEIDON:1099/JADE] Current level: [1]

Fig. 3 Graphical user interface of the development environment

3.2.1 The JADE shell window

The JADE shell window (see Fig. 4) contains the BeanShell component by [13]
connected to the agent to allow a human to program in Java and having direct
access to the JADE API objects, the methods and properties of the agent, the
methods and properties of the rule engine, etc. It allows to build new classes and
to instantiate new objects to be incorporated into the agent, to look at the help
files, to perform unitary tests, to watch the message queue, to build new mes-
sages and send them, to build and test new behaviors, etc.

The BeanShell component also has a non-graphical mode that is used when
the agent is in production (without this graphical user interface) to read and load
the behaviors of the agent at runtime (see Sect. 4).

3.2.2 The behavior editing window

The behavior editing (see Fig. 5) contains a text editor making use of the RSyn-
taxTextArea component (https://bobbylight.github.io/RSyntaxTextArea/). It is
used for loading and modifying the behavior files of the agent (see Sect. 4). It
has syntax highlighting and word auto-completion capabilities. On the left part
of the window, a list shows the set of all the possible behavior files for the agent
in order to be loaded into the editor.

@ Springer

https://bobbylight.github.io/RSyntaxTextArea/

13054

F.J. Aguayo-Canela et al.

Agent name: Empty-pocket@POSEIDON:1099/JADE, Selected engine model: CLIPS

Setting execution-evel: E’E"E] 0 n6! LT vigrate Exn

£5 Empty-pocket: Desktop of this agent. | 8% CLIPS: Knowledgebase & toois in this agent. |

Utilities for building and debugging node-agents:
JADE Shell r. Behavioiurs and Levels-scripts Editor rg ACL Messages l

Java BeanShell interpreter v.2.0b4 connected to JADE Agent, on JVM: 1.7.0_67-b01, over O.S.: Windows 7 with architecture: x86

KG — -;-’ade

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

[test.environment://Pocket/config/]# > innEngine .addRouter(myShell);
<true>

[test environment://Pocket/config/]# > pwd();
C:\home\areaS1\nodes\Pocket\config

[test.env1ronment:/[Pocket/conﬁg/]# > myAgent ;
<examples.psnode.util.PsPocket@e

[test.environment://Pocket/config/]# > myAgent .getA
.getAgentState()

.getAID

.getAllIntendedReceiver ()

.getAl1PerformativeNames ()

.getAl1Receiver O

.getAl1ReplyTo()
.getAl1UserDefinedParameters ()

.getAMsQ

.getArguments()
[test environment: //Pocket/conﬁgp%# > myAgent .getAID
<(agent-identifier :name Pocket@POSEIDON: 1099/JADE

[test.environment://Pocket/config/]# > myEngine
<examples.psnode.util.engines.RBEngineCLIP. ed4b7a>

[test.environment://Pocket/config/]# >

(O]
:addresses (sequence http://poseidon:7778/acc))>

]

[

F name: [area51] Agent loaded: [Pocket@POSEIDON:1099/JADE] Current level: [1]

Fig.4 JADE shell window

Agent name: Empty-pocket@POSEIDON:1099/JADE, Selected engine model: CLIPS

Setting executiondevel: -. 3 st [a| | T morate

£5 Empty-pocket: Desktop of this agent. | 6% CLIPS: Knowiedgebase & tools n this agent. |

Utiities for buiding and debugging node-agents:

! 340 shel | [] Behaviowrs and Levelsscrpts Edtor | B acL essages |

Agent’s Behaviours and agent’s levels saript Editor: Empty-pocket

Add. | Remove | :i Save I [1evel.e1.bsh] E]
beheviour.grid3x3p9.bsh - & * Title (es_ES) : Tecnicas para despliegue de arquitectura distribuida en sisa
class.Looper.bsh I 9 |* expertos basados en reglas empleando el paradigma nul.t\'agerg
class.ProcessRequester.bsh 0 |* m
LIPS.language |7 11 * Ph.D. Student : Francisco Jose Aguayo Canela
LIPS.patterns 12 * Thesis Director: Ph.D. Isaias Garcia Rodriguez

commandsJADE . 1anguage :‘3 :

help_en.txt i S

help_es.txt 15 * Ph.D. Program : Intelligent Systems at Engineering Science (Cod. 212)

e 16 |

devEL e0.bsh 17@import java.io.IOException;

LEveIOIbEN =| 7| 12 import java.text.MessageFormat;

Aevel .83, tsh 19 import java.io.BufferedReader;

level:@5.bsh 20 import java.io.DatalnputStream;

node.properties 21 import java.io.FileInputStream;

test.Agent-vs-innEngine-dialog.bsh 22 import java.io.FileNotFoundException;

test.behaviour.e2nr.bsh 23 import java.io.FilterInputStream;

test.clips-inner.bsh 24 import java.io.IOException;

test.clips-overload.bsh 7] 25 dimport java.io.InputStream; ||
test.clips.bsh 26 import iava.io.lnoutSt : -
test.files010.clp < I I I»]
test.fsm.threadEngine.bsh = Search next... || previous..

F name: [area51] Agent loaded: [Pocket@POSEIDON:1099/JADE] Current level: [1]

Fig.5 Behavior editing window

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13055

3.2.3 Message editor and trace window

The message editor window (see Fig. 6) contains a partial implementation of the
testAgent component in the jade.tools.testagent package distributed with the JADE
middleware. It allows to watch the events in the message queue of the agent and
manually build new messages.

3.3 The rule engine management tab

The “rule engine management tab” includes the functionalities to interact with the
associated rule engines of the multi-agent system. It is composed of three windows:

— The file editor, for the expert system managed by the agent.

— The synchronous shell, for communicating with the local rule engine.

— The asynchronous shell, for communicating with any remote rule engine in
another agent in the platform.

3.3.1 File editor window

Figure 7 shows the file editor window. It is used for editing expert system files
locally. It is based on the RSyntaxTextArea component and includes CLIPS and Jess
syntax highlighting. The files created here can be later loaded into the agent’s rule
engine or sent remotely to another rule-based agent.

Agent name: Empty-pocket@POSEIDON:1099/JADE, Selected engine model: CLIPS] = |:||j,

Setting executiondevel: [n-1[n-3[n-5 8!16' i |1,Mga(e E)E)ot

£2 Empty-pocket: Desktop of this agent. | CLIPS: Knowledgebase & tools in this agent.
Utiities for building and debugging node-agents:

JADE Shell | Behaviolurs and Levels-scripts Editor | g ACL Messages l
ACLGui y ACLTrace, The usual agents components by: Addin B.V.

New If Send Open | Save : Open Save | Select Response View [Erase Stat.
[!;) message Qenvelope sort b,'idale _\' ® Ascending Descending &
erformative] [« || B messagetrace
isender
receivers
reply-to |NOT-UNDERSTOOD .
content zsgmlsf L
[«]__Ji_|auery-reF
enguage FEUSE .
lencoding

ntology
protocol vv
conv..id
in-reply-to
reply-with
reply-by V]
user-prop. | 5

Framework name: [area51] Agent loaded: [Pocket@POSEIDON:1099/JADE] Current levek [1]

Fig.6 Message editing window

@ Springer

13056 F.J. Aguayo-Canela et al.

Agent name: Empty-pocket@POSEIDON:1099/JADE, Selected engne model: CLIPS _

Setting execution-evel: [E][EE] 0 né! Mvane —) Exn

£M\ Empty-pocket: Desktop of this agent. | CLIPS: Knowledgebase & tools in this agent. |

Rule-Based Engine utilties:
f? Expert System Fies Management l >— | CLIPS: Asynchronous-Shel] -CuPS Synchronous-Shel 1

AsooademerlSystemﬂes}dmv

[Add.. H Remove] [Save] [solve.c1p | E}

gridéx4-pl.clp |a 6 iis =
gridaxa-ple.clp | | 7 ;;; Added Unique Rectangles E

griddx4-pl3.clp
griddx4-pl7.clp
gridaxd-p3.clp 10 i
gridaxa-pd.clp il 22
griddx4-p8.clp
griddx4-p9.clp
gridsxs-pl.clp
gridsxs-pll.clp
gridSxs-p3.clp
gridSx5-pd.clp
gridSxS-p6.clp
gridsxs-p9.clp

ERRRREREREEERRRREERLLLE
DEFTEMPLATES & DEFFACTS
BRRREESERRRZEEEERRZZZEE

13() (deftemplate position-value-color
14 (slot row)

15 (slot column)

1 (slot group)

(slot id)

(slot value)

(slot color))

hanoi.clp = 21((deftemplate chain

output-frills.clp 22 (slot start-row)

output-none.clp 23 (slot start-column) |
output-simple.clp 24 a1 (slot start-value) I I DIL
solve.clp

sudoku.clp = Search next... || previous..

Framework name: [area51] Agent loaded: [Pocket@POSEIDON:1099/JADE] Current levek: [1]

Fig.7 File editing window

3.3.2 The synchronous shell window

The synchronous shell allows a human to interact directly with the rule engine of
the agent. It performs a direct connection from the graphical interface to the inner
rule engine, emulating a shell of the underlying technology (CLIPS in the case of
Fig. 8). This window should only be used during the initial phases of the agent
development, and not during execution, where the asynchronous shell is preferred
for not to block the operation of the agent.

Agent name: Empty-pocket@POSEIDON:1099/JADE, Selected engine model: CLIPS -

E 8 n6! LT jrate eem

£ Empty-pocket: Desktop of this agent. | $5% CLIPS: Knowiedgebase & toos n this agent. |
Rule-Based Engine management utilities:
Expert System Fies Management f [o=] aups: Asynchronous shel i’ & cwps: simchronous shel |
Java Native Interface (INI): 0.5. C++ Language Integrated Production System (CLIPS): 0.5
Java Native Interface (INI): 0.5

C++ Language Integrated Production System (CLIPS) 0.5
Giarratano, Joseph C and Riley, Gary

CLIPS (6.31 5/19/15)
CLIPS> (facts)
f-0 (initial-fact)
For a total of 1 fact.
cLIPS> |

Setting execution-level: E

Fig.8 Synchronous shell window

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13057

3.3.3 The asynchronous shell window

This shell allows the communication with the rule engine of any agent in the plat-
form, including the one of the agent where the interaction takes place (see Fig. 9).
The command introduced in this window is included in an ACL message that is
sent to the rule engine of the destination agent. It allows the communication with
the agents and their rule engines at runtime, using an interaction protocol, without
blocking the agent behaviors or the engine execution.

Once the command is introduced in the upper text area, it can be dispatched by
using the combination Shift+Ctrl+Enter, or clicking on the “Execute!” button. The
list in the left allows selecting which of the agents in the platform will be the desti-
nation agent, including the own local agent (denoted by the word “itself” in the list).
The command is sent to the destination agent in an ACL message and, once the rule
engine of that agent processes the instructions, the results are sent back to the sender
in an ACL Notification message associated with the conversation thread created at
the beginning of the interaction. There is a text area at the bottom of the window
where the responses of the destination agent (usually the results of the processing of
the instructions by the rule engine) will appear. As a result of the solution designed,
the window is not blocked while waiting for the response, neither is the destination
agent. So, new commands can be sent even to the same destination agent.

4 Externalization and incremental composition of behaviors

The externalization of behaviors allows an agent to load or modify its behaviors
by loading and processing them in real time from local files. The Java interpreter,
incorporated into the agents (see Sect. 3.2), is responsible for the processing of these
external files and the incorporation of the behaviors in the task manager at a proper
time to avoid collisions and incoherences.

Agent name: Empty-pocket@POSEIDON:1099/JADE, Selected engine model: CLIPS (0] x|

Setting executiondeve!: [n-1[n-3 [n-s ,[:In{:' | | T | Migrate I}:Exn

™ Empty-pocket: Desktop of this agent. CLIPS: Knowledgebase & tools in this agent.
Rule-Based Engine management utilties:
Expert System Files Management CLIPS: Asynchronous-Shell - CLIPS: Synchronous-Shell

This is an access shel to RBES through ACL Message paradign
itself (by-default) : Usual sentences and patterns in CLIPS: - ﬁ ——
jpotee2
semaphore@@76
pump22@A
Wally

v 1«

Fig.9 Asynchronous shell window

@ Springer

13058 F. J. Aquayo-Canela et al.

Table 3 Runlevels and corresponding actions

Level Process

0 The setup() method for the agent finished its execution. The agent is already incorporated into
the multi-agent platform and its status is active. The script file [level.00.bsh] is loaded and
interpreted.

1 The script file [level.01.bsh] is loaded and interpreted, which results in the load of the “basal”

behaviors for the agent.

3 Load and interpretation of the script [level.03.bsh]. Activation of behaviors loaded in level [1],
objects of the type Behavior that appear in the behavior collection are also loaded.

5 Load and interpretation of the script [level.05.bsh]. Activation of the behaviors that were loaded
in level [3]. Whenever the scripts in [level.05.bsh] are processed, the agent is considered in the
state “in service,” and the execution level is set to [5].

6 The script [level.06.bsh] contains commands that result in a “hot reboot” of the agent, that
means that the agent is not removed from the platform, but its active behaviors are stopped and
removed from the agent. Following, the execution level [0] is entered.

Agent name: Empty-pocket@POSEIDON:1099/JADE, Selected engine PS (o] x|

Setting executiondeve!: |n-1[n-3 | n-s I:Iné‘ i,myate E)Exﬂ

£™ Emotv-pocket: Desktop of this agent. | §O% CLIPS: Knowledaebase & too's in this agent.

Fig. 10 Buttons for runlevel activation

This dynamic process of loading the agent behaviors is the base for the incremen-
tal composition of behaviors mechanism. The final, complete, behavior of the agent
can be composed of different behaviors that can be loaded one at a time. This way,
the behavior can be tested step by step, starting with the simplest or basal ones. To
ease this modularity and progressivity in the construction of the final behavior, the
agents are initialized by going through a series of steps very similar to the “runlev-
els” found in UNIX-like operating systems.

Five runlevels are defined; each of them has an associated script file associated
where the behaviors to be loaded are indicated. Table 3 shows different runlevels
and the associated processes that occur in each of them.

The execution level of the agent can be controlled with the buttons “n-1,” “n-3,”
“n-5” and “n-6!" in the graphical user interface (see Fig. 10).

In practice, these runlevels can be used to incrementally test the functionalities of
the agents, for example when building complex behaviors or when testing coordina-
tion mechanism with other agents.

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13059

5 An application example scenario: distributed intrusion detection
system

As stated in the introduction, the use of multi-agent systems for building intrusion
detection systems has a number of advantages; the distribution obtained by using
MAS technology helps to enhance the detection accuracy and makes a more effec-
tive system [4].

This section is devoted to show how the proposed enriched multi-agent middle-
ware helps to develop a simple example NIDS that could be used for detecting mali-
cious traffic in the network. As stated earlier, this presentation has the objective of
showing different features built in the enriched multiagent middleware and how can
they ease the development of these security solutions. First, different types of multi-
agent-based NIDS will be briefly presented. Then, two of them, using a rule-based
formalism, will be described to serve as a guide for designing the proposed exam-
ple NIDS. Finally, this example NIDS will be presented and the its agents will be
described, showing how the enriched middleware helps in their design, development
and debugging.

5.1 Different types of multi-agent NIDS

There are a number of different approaches to build multi-agent-based (N)IDS; they
differ in the agent architecture as well as in the techniques and algorithms used to
perform the agent reasoning [4]. Some of the solutions are implemented by knowl-
edge-based systems using rules to implement the agent cognitive functions [14, 15];
other approaches use machine learning techniques [16], artificial neural networks
[17] or (more recently) deep learning techniques [18]. It is also usual to find hybrid
systems using more than one of these approaches.

The implementation to be described next would be included in the category of
knowledge-based NIDS, where the detection capabilities of the agents are based on
the use of known features of the monitored network traffic considered as malicious.
These features are modeled in an explicit or implicit conceptual structure, while the
reasoning is performed by means of rules that use patterns resembling the traffic fea-
ture values the IDS is looking for.

The solution presented in [14] describes a multi-agent system with the following
agents:

— Monitor Agent is responsible for monitoring activities and host statuses. It cap-
tures network packets and forwards them to the analysis agent for further pro-
cessing.

— Analysis Agent, this agent has multiple instances running at the same time. It
processes the traffic with the aid of a knowledge base, deciding if it is malicious
or not. If it is malicious, then the Executive Agent is called.

— Executive Agent, it is in charge of warning other nodes in the distributed IDS.
Also when the Analysis Agent detects malicious packets, but the pattern of intru-

@ Springer

13060 F. J. Aquayo-Canela et al.

sion is new, then the Executive Agent adds this new pattern to the Knowledge
Base.

— Manager Agent. The function of this Manager Agent is to supply information of
host performing malicious activities to the Analysis Agent.

The agents use a common knowledge base component, consisting of attack patterns,
malicious code patterns that are used by the analysis agents and updated by the exec-
utive agent. That means it contains certain rules which help the Executive Agent
decide upon as to which data are malicious and thus generate warning. Authors do
not provide any information about the practical implementation of the approach or
the technologies used.

The OMAIDS system [15] uses an ontology for explicitly modeling the knowl-
edge of the domain. The systems detect the attacks through the intelligent MisuseA-
gent agent, which uses the ontology to enrich data intrusions and attack signatures
by semantic relationships. The multi-agent system is comprised of the following
agents:

— The SnifferAgent captures packets from the network, preprocesses them and send
the results to the MisuseAgent.

— The MisuseAgent receives the packets from the Sniffer-Agent. It transforms
these packets to OWL (Ontology Web Language) format in order to be compat-
ible with the Semantic Web Rule Language (SWRL) rules stored in the ontology.
If there is a similarity between the OWL packets and the SWRL rules that define
the attack’s signatures, then the agent raises an alert to the ReporterAgent.

— The ReporterAgent generates reports and logs.

Authors used the JADE multi-agent platform for their implementation, but do not
provide information about the solution used for integration of the rule engine into
the agent or other technological details.

5.2 The example NIDS solution

The proposed NIDS solution to be used as a demonstrator for the enriched multi-
agent middleware uses three different types of agents:

— Watchdog agents are responsible for processing previously captured network traf-
fic pcap files and converting them to fact files to be used by expert system agents.

— A NIDSBoardAgent is responsible for loading fact files into a shared knowledge
base, maintaining and announcing the state of the capture files (whether if the
capture is being, or has been, processed by any agent in the platform) and rising
the corresponding notification when an alarm is raised by the rule-based expert
system agents

— Rule-based expert system agents are responsible for analyzing the capture files,
comparing the capture features against different rule patterns they have, and

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13061

sending messages to the NIDSBoardAgent for updating the alarm status (indicat-
ing if an alarm must be notified, for example).

The enriched middleware proposed in this research allows the incremental imple-
mentation of each of the mentioned agents and their interactions. Moreover, it allows
the debug of the agents in real time when they are running.

The following subsections show different functionalities of the enriched middle-
ware in the context of the construction of the previously described NIDS agents. The
code and detailed instructions for reproducing this experiment can be downloaded
and consulted at https://secomuci.com/research/ MAS/IMAS/NIDS

5.2.1 The NIDSBoardAgent

The NIDSBoardAgent is a specialized agent responsible for maintaining the knowl-
edge base of network traffic captures, along with the state information about the pro-
cessing status and the results of the analysis notified by the processing agents (rule-
based expert system agents). The enriched middleware for this type of agent includes
three tabs when being used in development time (see Fig. 11 -split into two for read-
ability purposes-): the Ticket’s Repository Table, the Behaviors and Execution-level
Editor, and the JADE Shell. The repository table tab includes a view of the knowl-
edge base containing the information for each of the network traffic captures:

— The TIDREPLY column contains the ID of the conversation between this agent
and the corresponding rule-based expert system agent that requested the capture
for analysis.

— The DEWEYCODE column contains identification for the type of packets that
the capture comprises; these data can be used for specializing the rule-based
expert system agents, allowing them to retrieve only the data they can analyze.

— The STATEUNTIL column contains the analysis status as notified or stated by
the rule-based expert system agent:

— checkout: the capture is being processed by the corresponding rule-based
expert system.

— aborted: the analysis finished with an error.

— ALERT !: the analysis finished and contains one or more alerts.

— finished: the analysis finished with no malware patterns detected.

— Other columns contain, among others, the name of the agent processing the cor-
responding capture (PARMETHOD), the firing strategy used by the correspond-
ing rule engine of the agent that performed the analysis (KEYMETHOD) or the
name of the file containing the rules used by the corresponding agent for the
analysis (ENGINE). All this information is very useful for testing and debugging
purposes as well as fine-tuning the NIDS operation.

The JADE Scripting Shell tab allows the access to all the internals of the
NIDSBoardAgent. The agent variables can be obtained and manipulated using

@ Springer

https://secomuci.com/research/MAS/IMAS/NIDS

13062 F.J. Aguayo-Canela et al.

TE.NIDsBoardAgent@127.0.0.1:1099/JADE. DataBase type: 'HSQLDB'

Ticket Board Agent name: NIDsBoardAgent
r Ticket Repository Service tools:
Ticket's Repository table Behaviours and execution-levels Editor JADE Scripting Shell
Tickets on repository: NIDsBoardAgent.HSQLDB

TID DATASTORE SENDER TIDREPLY FRAMEWORK DEWEYCODE [
210328003 |zeus-10h.pcap.facts Watchdog401 (886543443 |Malware-Analysis-Lab |UDP-SSDP -
210328004 |synology-12h.pcap.facts Watchdog404 |765933426 |Malware-Analysis-Lab |UDP-SSDP -
210328005 [synology-18min.pcap.facts Watchdog404 (212237665 |Malware-Analysis-Lab |UDP-SSDP -
210328008 |synology-20min.pcap.facts |Watchdog401 |- - UDP-SSDP -
210328009 |sirius-12h.pcap.facts Watchdog401 |- - UDP-SSDP -
210328010 tesla-4h.pcap.facts Watchdog404 Malware-Analysis1ab UPD-TCP-IP -
210328002 |server-30min.pcap.facts Watchdog401 (887676565 |Malware-Analysis-Lab |UPD-TCP-IP -

Date Converted file PCAP conte

Converter Agent name

TicketBoard flaunched from Framework: [Malware-Analysis-Lab] Board name: [NIDsBoardAgent@127.0.0.1:10!

= O X

ws| [et

Setting execution-evel: lrn-l‘ n-3

D... STATEFROM STATEUNTIL KEYMETHOD PARMETHOD ENGINE
pending |checkou Efficacy SspdAgent501 CLIPS.UDP-Loader.dp
dlosed |finished Constant Effort |SspdAgent515 Jess.UDP-Loader.clp
closed aborted Constant Effort |SspdAgent515 Jess.UDP-Loader.clp
pending u s s £
pending |- - - -
pending finished Efficacy SspdAgentS01 CLIPS.FULL-Loader.clp

ant Analayzer agent RBES Loader

Alert |

99/JADE] Current execution-level: [5]

Fig. 11 Ticket’s Repository Table of NIDSBoardAgent

@ Springer

Enriched multi-agent middleware for building rule-based. ..

TE.NIDsBoardAgent@127.0.0.1:1099/JADE. DataBase type: ‘HSQLDB"

. Ticket Board Agent name: NIDsBoardAgent
Ticket Repository Service tools:

Ticket's Reposttory table

ehaviours and execution-levels Editor JADE Scripting Shell
Java BeanShell interpreter v.2.0b4 connected to JADE Agent, on JVM: 1.8.0_281-b09, ot .: Windows 10 with architecture: x86
: PR A e A
NLayer : com. dpsframework . PsNodeSet t ings@fbs6c

___ BoardGridLocal@ledf921

Beanshell Console Class adapted to JADE, for Windows, GNU-Linux and 0S-X operating systems.
ASSWORD: ___ password
AFFIRMATIVE:

rrect
D org. hsq1db]db(JDBCConnection@d95940
dbConnection: :file:nodes/NIDsBoardAgent/var/data/ticketDB;ifexits=true

ps.node. behaviour- bcpb—yes, ps.node. agent . debugging.mode=yes, ps.node.agent.default-execution-levei=

[NIDsBoardAgent]:/config/$ >
<org.hsqldb. jdbc. o act ionadbsseos

[NIDsBoardAgent]:/config/$ > javap(myDB);

Class class org.hsqldb.jdbc.JDBCConnection extends class java.lang.Object

public synchronized void org.hsqldb. jdbc. JDBCConnection,satheadonly(boolean) throws java.sql.SQLException
public synchronized void org.hsgldb.jdbc.JDBCConnection.close() throws Java sql.SQLEXception

public java.lang. Ob?ect org.hsqldb. jdbc, IDBCConnection. unwrap(java. lang.Class) throws java.sql.SQLException
public void org.hs jdbc.JDBCConnection.reset() throws java.sql.SQLException

public synchronized boolean org.hsqldb.jdbc.JDBCConnection. isReas lonly() throws]ava sq1.SQLException

public void org.hsqldb. jdbc.IDBCConnection. abort (java.util.concurrent.Executor) throws java.sql.SQLException
public boolean org. hsq]db jdbc.JDBCConnection.isvalid(int) throws java.sql.SQLException

Settng executon-evel: n-1/n3/ns| | {1 06!

ofd: Jjade.domain.FIPAAgentManagement . DFAgentDescription@40799e
board(onﬁgpath \Users\faguayo\research\Malware-Analysis-Lab\nodes\NIDsBoardAgent\config\
myBOB {0C: 173 bcpb:basal ibhy. bepb. bahoBoardcapabi1it] est oader 281686575, 0050:1: Jamo:basal:bhv. jamo.bsh=JAMONodeManagement 2@
nodeconﬁgPath' C:\U sers\faguayo(research\Ma'lu.are -Analysis-| Lab\nodes\NIDSBoardAgent\conﬁg\

— id
nodeProp2: ____ {ps. node behavmur -grid=yes, ps.node. agent framework-board-name=NIDsBoardAgent, ps. node agent.verbose.mode=yes, p

T

o

[« i

0]

TicketBoard launched from Framework: [Malware-Analysis-Lab] Board name: [NIDsBoardAgent@127.0.0.1:1099/JADE] Current execution-levek: [S]

Fig. 12 JADE Scripting of ShelINIDSBoardAgent

shell commands, including the database containing the knowledge base of the

NIDS (see Fig. 12).

The Behaviors and execution-level Editor tab (Fig. 13) allows the incremental
programming of the NIDSBoardAgent agent, and the modification of its behav-

iors in run time.

TE.NIDsBoardAgent@127.0.0.1:1099/JADE. DataBase type: 'HSQLDB

Setting executiondevel: n-1//n-3/in-5 j:y né!

Ticket Board Agent name: NIDsBoardAgent

Ticket Repository Service tools:
Ticket's Repository table ehaviours and execution-levels Editor JADE Scripting Shell
or Class files:
Add | | Remove Save | |bhv.grid.bsh =l

bhv.b2nr.bsh
bhv.bcpb. bsh

bhv. jamo.bsh

board. methods .bsh
board.properties
class.B2NREResponder . java
class.BoardCapabilitiesioader2.java
class.BoardGridLocal. java
class.JAMONodeManagement2. java
test.ssdpAgent.inquiries.4020.bsh
test.ssdpAgent.receptions.4€40.bsh
test.watchdog.receptions.4010.bsh

import jade.core.Agent;
import jade.core.behaviours.OneShotBehaviour;

import javax.sql.RowSetListener;

import javax.sql.rowset.CachedRowSet;
import javax.swing.SwingUtilities;

import javax.swing.event.TableModelListener;
import javax.swing.table.DefaultTabletiodel;
import javax.swing.table.Tabletodel;

source("class.BoardGridLocal.java");

stmt = myDB .createStatement();
rs = stmt .executeQuery(“"select * from ticketnids");

@
-
-
&

= new BoardGridLocal(myAgent, rs);
id.setBehaviourName("grid”)

-~

return (BoardGridLocal) grid;

o«
%
!
a

launched from Framework: [Malware-Analysis-Lab] Board name: [NIDsBoardAgent@127.0.0.1:1099/JADE] Current execution-level: [S]

Search next... | | previous...

Fig. 13 Behaviors and execution-level Editor of ShelINIDSBoardAgent

@ Springer

13064 F. J. Aquayo-Canela et al.

Different functionalities can be associated with different run levels and so the
agent can be put into different working states in order to incrementally test its func-
tionalities. Once the agent is ready, it will be invoked in the MAS platform without
this enriched set of tabs.

5.2.2 The rule-based expert system agent

The rule-based expert system agents have, during developing time, three tabs
devoted to the management of its integrated expert systems and two more tabs for
managing its behaviors and properties. Figure 14 shows the tab devoted to editing
different files that will form the expert system of the agent. By clicking on the cor-
responding file on the left, the rules can be edited and managed. The CLIPS shell
tabs can be used to test the rule-based expert system of the agent by simulating the
existence of given set of capture packets inserting them as facts in the agent knowl-
edge base. The agent rules can be tested at run time by putting it into an execution
level that does not include the communication capabilities with other agents in the
platform, thus isolating it from the rest of agents until the expert system is ready to
be put into production.

Different behaviors for each of the run levels of the agent can be programmed
and tested using the behavior editing tab for the agent (see Fig. 15). The agent has a
JADE shell in order to access and edit its internal variables and source code. When
the behavior of the agent is modified it can be restarted by a direct click on the n-6
button or by incrementally setting the run level from n-1 to n-6 with the correspond-
ing buttons.

On Stage:SsdpAgent501@127.0.0.1:1099/JADE=>Engine:CLIPS m}
—— i T]
Settng executonseve: [3 3]g ns! \ LTt |] [:_)E}
| €5 ssdpAgents01: Desktop ’ CLIPS: Knowledgebase & tools l
Rule-Based Engine management utilities:
Expert System Fies | [P CLIPS: Synchronous-Shel ' CLIPS: Asynchronous-Shell ‘
Assodiated Expert System files Editor
T T 4 =T
[dd. || Remove | {|[save | [Rute-1907-s50P.c1p R
RBES-Malware-rule-loader.clp| [1E(defrule Rule1907 "SSDP Rules” (]
Rule-1724-SNMP.clp 2@ (packet
Rule-1787-Telnel-rules.clp 3 (protocol ssdp)
Rule-1787-Telnel.clp (source_ipaddr any)
Rule-18@2-TFTP-Rule.clp KS?“F(ETPOW any)
Rule-1802-TFTP.clp (direction ->)
fule-1814-50:clp (destination_ipaddr any)
Rule-1907-S50P.clp (destination_port 169)
(content "|@@ 01 75 a@ 21 46 78|")
\ (ID 2023) 3
11 (dateID any) (recordID any)
12)
13 =>
143 (assert [
158 {(Hetailed_report
6 (header "Alert, TFTP GET filename overflow attempt")
(datagramDate (packet (dateID)))
(datagramID (packet (redordID)))
)
] I 154}
Search next... previous..
Framework name: [Malware-Analysis-Lab] Agent loaded: [SsdpAgent501@127.0.0.1:1099/JADE] Current level: [1]

Fig. 14 File editor window of a rule-based expert system agent

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13065

On Stage:SsdpAgent501@127.0.0.1:1099/JADE=>Engine:CLIPS

m}
setog exeasonseset: (11 [o3[s] | 3 s [| Tymoae | | [Som |

| N ssdpAgents01: Desktop ’ CLIPS: Knowledgebase & tools ‘
Utilities for building and debugging node-agents:
. JADE Shell [Behavioiurs and Levels-scripts Editor ‘

Agent's Behaviours and agent's levels script Editor: SsdpAgentS01
| Add. || Remove | [save | [ohv.aceb.bsh s HE

bhv.acpb.bsh 1 // Expert System Files to load at Agent startup. [~
bhv.bkum.bsh @Ry 2 // The JADE WakerBehaviour (acpb) behaviour has 1.2 seconds of delayed.
bhv.e2aa.bsh 3

bhv.e2as.bsh 4Fimport jade.core.Agent;

bhv.e2nr.bsh 5 import jade.core.behaviours.WakerBehaviour;

bhv. jamo. bsh import com.dpsframework.core.behaviour.ACPBEngineLoader; L

bhv.n2hr.bsh
bhv.n2nr.bsh
bhv.nmig.bsh
bhv . rswm.bsh
bhv.v2ad.bsh

// Technique: Selection of files and startup procedures
initload = new S (10143

11 switch (myNode.engineSelected) { |

. 12 case "CLIPS":
bhv.v2ai.bsh a initload = new String[][] {
Medida.ACL . . "null"}
node.methods.bsh , myNode .relativeEnginePath + "CLIPS.UDP-Loader.clp” }
node.properties 1 , "null” }
notebook. txt 17 ELY"; "null® }
test.aclmessage.ma 1
test.malware.patte |19 acpb = new ACPBEngineLoader(myAgent, 1200L, initlLoad);
test.review.pcap.p | 20 break; s <
i D Search [[next... | previous.. |

Framework name: [Malware-Analysis-Lab] Agent loaded: [SsdpAgent501@127.0.0.1:1099/JADE] Current level: [1]

Fig. 15 JADE shell window of a rule-based expert system agent

6 Discussion

This work describes an enriched middleware solution for multi-agent platforms
with the aim of easing the development of distributed, rule-based, security solu-
tions for Internet of Things scenarios. The solution is based on an integration of the
rule engine into the agent and an enriched development environment that is built by
extending the MAS platform agent components with a series of extra functionalities
and graphical interfaces.

The integration of the rule engine into the agent is achieved by means of a loosely
coupled strategy, implementing a mechanism for the communication of the agent
with its rule engine that allows the agent not to be blocked while performing rea-
soning in its rule engine and so being able to keep receiving messages from other
agents in the platform. This integration outperforms the usual ones found in similar
approaches (as shown in Sect. 2) that, while performing the reasoning in the rule
engine, block the functions of the agent preventing it from keeping communicating
with other agents in the platform. The integration proposed in this research is crucial
for improving the working speed of agents when they are part of an Intrusion Detec-
tion System.

By means of the example NIDS that has been built, different features of the
enriched middleware have been presented. These features convert the multi-agent
platform and the agent component into a complete development environment where
agents can be designed, incrementally programmed, deployed and tested.

This research is centered in building rule-based multi-agent systems. Today,
the trend about NIDS is to use machine learning and deep learning algorithms and

@ Springer

13066 F. J. Aquayo-Canela et al.

techniques for implementing the agent reasoning capabilities [4], as they allow the
detection of previously unknown malicious traffic. The solution proposed in this
research could be used for building hybrid NIDS that would use both these new
anomaly-based strategies as well as the traditional misuse strategies that are usually
built by means of rules. In this sense, the enriched middleware designed could be
extended to include these new types of reasoning.

The use of the JADE multi-agent MAS platform makes this work useful only for
IoT scenarios where the nodes where the agents will run have the adequate process-
ing capabilities to run such relatively heavy software artifacts. While many wireless
sensor networks with constrained devices cannot use this solution, many other use
cases, as home or industrial scenarios, as well as cloud-based IoT architectures, can
benefit from this approach.

An important consideration when building distributed NIDS solutions based
on multi-agent systems is the concern about security and trust of the NIDS solu-
tion. The existence of different software agents, with their own set of behaviors
and mobility capabilities, as well as the set of communications between agents that
occur during the MAS NIDS operation poses a number of new threats that, if not
adequately addressed, may involve a new source of security issues for the network.
In order to build security and trust into multi-agent platforms, the usual approach
consists in building encrypted communication channels as well as implement-
ing trust assurance mechanisms for the agents. In this sense, the JADE-S add-on
[19] includes functionalities for message encryption and signature, agent actions
authorization against agent permissions, and user authentication. This add-on has
been successfully used in IoT scenarios [20] but demands even more resources from
the nodes where the agents using it live. A more recent approach for building secu-
rity and trust into multi-agent systems is the use of techniques based on blockchain
technologies [21]. These techniques have been recently applied to a multi-agent
Network Intrusion Detection System using the JADE MAS platform with promis-
ing results [22]. This technology allows to secure the ACL communications among
agents while regulating this process by implementing a smart contract mechanism
for trust management. Also, blockchain technologies do not imply a great overload
for the nodes in an IoT environment and have been applied in scenarios including
constrained devices [23]

7 Conclusions

The enriched multi-agent middleware presented in this paper eases the incremental
development and debugging of rule-based multi-agent systems. The strategy used
for integrating the rule engine into the agent made it possible to obtain a more flex-
ible and faster solution than other similar ones, what is an advantage in knowledge-
intensive multi-agent applications, as is the case of Intrusion Detection Systems in
IoT environments.

There are a number of limitations regarding this work, as stated in the previ-
ous section. Further work is needed in order to build the possibility of including
agents which use modern machine learning and deep learning algorithms as long as

@ Springer

Enriched multi-agent middleware for building rule-based. .. 13067

the rule-based ones in order to build hybrid NIDS. Security and trust mechanisms
should be built into the multi-agent system, in this sense, the recent application
of blockchain technologies to multi-agent-based IDS is a promising research area.
Future work also includes the implementation of more complex collaboration and
coordination mechanism for the rule-based agents, and the use of Semantic Web
formalisms (RDF, SWRL, etc.) for representing rules and facts into the agents.

Funding This work was supported by Junta de Castilla y Le6n, Spain [grant number LE078G138].

References

1. Walker-Roberts S, Hammoudeh M, Aldabbas O, Aydin M, Dehghantanha A (2020) Threats on
the horizon: understanding security threats in the era of cyber-physical systems. J Supercomput
76(4):2643. https://doi.org/10.1007/s11227-019-03028-9

2. Savaglio C, Fortino G, Ganzha M, Paprzycki M, Badicd C, Ivanovi¢ M (2017) Agent-based comput-
ing in the internet of things: a survey. Studies in Computational Intelligence

3. Coulter R, Pan L (2018) Intelligent agents defending for an IoT world: A review. Comput Secur
73(2018):439. https://doi.org/10.1016/j.cose.2017.11.014

4. Bougueroua N, Mazouzi S, Belaoued M, Seddari N, Derhab A, Bouras A (2021) A survey on multi-
agent based collaborative intrusion detection systems. J Artif Intell Soft Comput Res 11(2):111.
https://doi.org/10.2478/jaiscr-2021-0008

5. Pico-Valencia P, Holgado-Terriza JA (2018). Agentification of the Internet of Things: A systematic
literature review. https://doi.org/10.1177/1550147718805945

6. Bellifemine F, Poggi A, Rimassa G (2001) JADE: A FIPA2000 compliant agent development envi-
ronment. In: Proceedings of the Fifth International Conference on Autonomous Agents - AGENTS
’01, vol 153, ACM Press, New York, pp 216-217. https://doi.org/10.1145/375735.376120

7. Aguayo-Canela FJ, Alaiz-Moretén H, Garcia-Rodriguez I, Benavides-Cuellar C, Benitez-Andrades

JA, Novais P (2019) A FIPA-compliant framework for integrating rule engines into software agents

for supporting communication and collaboration in a multiagent platform. In: Rocha A, Adeli H,

Reis LP, Costanzo S (eds) New knowledge in information systems and technologies. WorldCIST’ 19

2019. Advances in Intelligent Systems and Computing, vol 931, Cham, pp 124—133. https://doi.org/

10.1007/978-3-030-16184-2_13

JC Giarratano. CLIPS 6.4 user’s guide (2014)

9. EJ Friedman-Hill, et al. Jess: Java Expert System Software (2018)

10. Proctor M (2012) Drools: a rule engine for complex event processing. In: Schiirr A, Varr6 D, Varré
G (eds) Applications of graph transformations with industrial relevance. AGTIVE 2011. Lecture
Notes in Computer Science, vol 7233, Springer, Berlin

11. Bassiliades N (2012) Agents and knowledge interoperability in the semantic web era. In: Proceed-
ings of the 2nd International Conference on Web Intelligence, Mining and Semantics - WIMS 12
(June 2012), 1 (2012). https://doi.org/10.1145/2254129.2254140

12. Cardoso HL (2007) Integrating jade and jess. https://jade.tilab.com/documentation/tutorials-guides/
integrating-jade-and-jess/. https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-
and-jess/. Accessed: 2020-10-05

13. P. Niemeyer. Beanshell - The Lightweight scripting for Java (2000)

14. Brahmkstri K, Thomas D, Sawant ST, Jadhav A, Kshirsagar DD (2014) Ontology based multi-agent
intrusion detection system for web service attacks using self learning. In: Meghanathan N, Naga-
malai D, Rajasekaran S (eds) Networks and communications (NetCom2013), Springer International
Publishing, Cham, pp 265-274

15. Brahmi I, Brahmi H (2015) Omaids: a multi-agents intrusion detection system based ontology. In:
Jackowski K, Burduk R, Walkowiak K, Wozniak M, Yin H (eds) Intelligent data engineering and

automated learning — IDEAL 2015, Springer International Publishing, Cham, pp 156-163

®

@ Springer

https://doi.org/10.1007/s11227-019-03028-9
https://doi.org/10.1016/j.cose.2017.11.014
https://doi.org/10.2478/jaiscr-2021-0008
https://doi.org/10.1177/1550147718805945
https://doi.org/10.1145/375735.376120
https://doi.org/10.1007/978-3-030-16184-2_13
https://doi.org/10.1007/978-3-030-16184-2_13
https://doi.org/10.1145/2254129.2254140
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/
https://jade.tilab.com/documentation/tutorials-guides/integrating-jade-and-jess/

13068 F. J. Aquayo-Canela et al.

16.

17.

18.

20.

21.

22.

23.

Mehmood A, Mukherjee M, Ahmed SH, Song H, Malik KM (2018) NBC-MAIDS: Naive Bayesian
classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks.
J Supercomput 74(10):5156. https://doi.org/10.1007/s11227-018-2413-7

Shuang-Can Z, Chen-jun H, Wei-ming Z (2014) Multi-agent distributed intrusion detection system
model based on BP neural network. Int J Secur Appl 8(2):183

Laqtib S, Yassini KE, Hasnaoui ML (2019) A deep learning methods for intrusion detection systems
based machine learning in manet. In: Proceedings of the 4th International Conference on Smart City
Applications, SCA ’19, Association for Computing Machinery, New York, NY, USA. https://doi.
org/10.1145/3368756.3369021

Strzatek M, Patka P (2012) The issue of confidentiality, authentication, integrity and data non-repu-
diation in the multiagent systems

Hatzivasilis G, Papadakis N, Hatzakis I, Ioannidis S, Vardakis G (2020) Artificial intelligence-
driven composition and security validation of an internet of things ecosystem. Appl Sci 10(14).
https://doi.org/10.3390/app10144862, https://www.mdpi.com/2076-3417/10/14/4862

Calvaresi D, Dubovitskaya A, Calbimonte JP, Taveter K, Schumacher M (2018) Multi-agent sys-
tems and blockchain: Results from a systematic literature review. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 10978 LNAI(June), 110. https://doi.org/10.1007/978-3-319-94580-4_9

Liang C, Shanmugam B, Azam S, Karim A, Islam A, Zamani M, Kavianpour S, Idris NB (2020)
Intrusion detection system for the internet of things based on blockchain and multi-agent systems.
Electronics 9(7). https://doi.org/10.3390/electronics9071120

Haro-Olmo FJ, Alvarez-Bermejo JA, Varela-Vaca AJ, Lépez-Ramos JA (2021) Blockchain-based
federation of wireless sensor nodes. J Supercomput. https://doi.org/10.1007/s11227-019-03028-91

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Francisco José Aguayo-Canela' - Héctor Alaiz-Moretén’ -
Maria Teresa Garcia-Ordas' - José Alberto Benitez-Andrades?® .
Carmen Benavides? - Isaias Garcia-Rodriguez’

2

Francisco José Aguayo-Canela
francisco.aguayo @ieee.org

Héctor Alaiz-Moret6n
hector.moreton @unileon.es

Maria Teresa Garcia-Ordas
mgaro@unileon.es

Carmen Benavides
carmen.benavides @unileon.es

Isafas Garcia-Rodriguez

isaias.garcia@unileon.es

SECOMUCI Research Group, Escuela de Ingenierias Industrial e Informatica, Universidad de
Ledn, Campus de Vegazana s/n, C.P. 24071 Le6n, Spain

SALBIS Research Group, Department of Electric, Systems and Automatics Engineering,
University of Leén, Campus of Vegazana s/n, Ledn, 24071 Ledn, Spain

@ Springer

https://doi.org/10.1007/s11227-018-2413-7
https://doi.org/10.1145/3368756.3369021
https://doi.org/10.1145/3368756.3369021
https://doi.org/10.3390/app10144862
https://www.mdpi.com/2076-3417/10/14/4862
https://doi.org/10.1007/978-3-319-94580-4_9
https://doi.org/10.3390/electronics9071120
https://doi.org/10.1007/s11227-019-03028-9
http://orcid.org/0000-0002-4450-349X

	Enriched multi-agent middleware for building rule-based distributed security solutions for IoT environments
	Abstract
	1 Introduction
	2 Integrating a rule engine into an agent: the rule-based agent
	2.1 Validation of the rule engine integration

	3 Description of the enriched middleware
	3.1 The development environment
	3.2 The agent management tab
	3.2.1 The JADE shell window
	3.2.2 The behavior editing window
	3.2.3 Message editor and trace window

	3.3 The rule engine management tab
	3.3.1 File editor window
	3.3.2 The synchronous shell window
	3.3.3 The asynchronous shell window

	4 Externalization and incremental composition of behaviors
	5 An application example scenario: distributed intrusion detection system
	5.1 Different types of multi-agent NIDS
	5.2 The example NIDS solution
	5.2.1 The NIDSBoardAgent
	5.2.2 The rule-based expert system agent

	6 Discussion
	7 Conclusions
	References

