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Abstract
The deployment of virtual network functions (VNFs) at edge servers potentially 
impairs the performance of latency-sensitive applications due to their computa-
tional cost. This work considers a new approach to addressing this problem that pro-
vides line rate acceleration of VNFs by employing field-programmable gate array 
(FPGA) equipped edge servers. This approach has been validated by practical use 
cases with both TCP and UDP as underlying protocol on a physical testbed environ-
ment. We examine the performance implications of executing a security VNF at an 
FPGA-equipped edge server. We experimentally demonstrate reduced VNF execu-
tion latency and energy consumption for a real-time video streaming application in 
comparison with a software-only baseline. In particular, the results show that the 
approach lowers VNF execution latency and power consumption at the edge by up 
to 44% and 76%, respectively, in our experiments while satisfying time constraints 
and maintaining confidentiality with high scalability. We also highlight the potential 
research challenges to make this approach viable in practice.

Keywords  Edge computing · Virtual network function (VNF) · Hardware 
acceleration · Data encryption · Task offloading

1  Introduction

With the exponential increase in the number of devices connected to the Internet of 
Things (IoT), the fog and edge [1] computing paradigms are gaining momentum, 
for example, in 5G technology specifications [2, 3]. Both bring cloud-like appli-
cations closer to end users and ‘things’ at the edge of cellular networks, enabling 
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new functions (services) with challenging performance requirements for latency 
and security that cannot be met by current cloud solutions running on remote data-
center sites [4]. Radically new applications, such as the Tactile Internet, real-time 
autonomic control, augmented reality, Industry 4.0, e-Health, smart cities/grids, or 
autonomous vehicle platooning, are key representative use cases to be supported by 
these emerging IoT architectures [5].

Multiple paradigms including cloudlets, fog and edge Computing have been pro-
posed to address challenging requirements of latency and security in different appli-
cation contexts, but all share the common idea of reducing the dependency on the 
remote cloud. These computing paradigms have opened many new frontiers for ver-
satile and uninterrupted services to be provided as IoT applications. Edge comput-
ing empowers tiny IoT devices with significant additional computational capabilities 
through computation offloading supporting acceleration of critical tasks. Similarly, 
IoT expands edge computing services to all types of smart objects ranging from sen-
sors and actuators to smart and (semi) autonomous vehicles. One of the key benefits 
of merging IoT and edge computing is lower latency due to the reduced physical 
and virtual communication distance in contrast to using remote clouds. However, 
the computational resources available at the edge for compute-intensive tasks such 
as data security/privacy for real-time applications are nevertheless limited although 
offering the advantages of short access distance, flexible geographical distribution 
and relatively richer computational resources than IoT devices.

Smart things equipped with tiny sensors (camera) are different from other things 
due to the critical and sensitive nature of the information and data-rate requirements 
for the video transfer. Thus, the interconnection of things with cameras is types of 
IoT devices used in various applications ranging medical, surveillance, smart mobil-
ity, etc. Lack of security implementation on such interconnected IoT devices makes 
the surveillance applications unsecure, because everything is Internet accessible in 
the IoT world. Information security of such Internet enabled devices is vital to build 
trust and consumer confidence in their use. Considering, consumers of these devices 
believe that their critical and personal information are not secure and can be misused 
or harmful, then they will be reluctant to use IoT devices. Despite the fact stated, it 
is also crucial that enabling information security does not degrade the performance 
of the time-sensitive IoT systems. Information security in the IoT systems is not only 
an important, but also challenging aspect, ranging from the technological to the 
psychological issues, such as privacy and trust. Knowing this can classify the IoT 
security threats into two categories such as physical and non-physical attacks. The 
physical attacks are threats generated by physical harming the things that are pub-
licly deployed in the common accessible areas and hard to be supervised constantly. 
The non-physical attacks are threats to the things when they start communications. 
These attacks range from eavesdropping, man-in-the-middle attack, routing infor-
mation compromise, denial of services, etc. Securing real-time video information 
transmission from eavesdropping and man-in-the-middle attack is addressed in this 
paper.

In recent decade, micro-controller integrated devices, referred as “Things” are trans-
formed from very simple and low-power devices to computational complex devices 
requiring power-hungry sensors, bandwidth demanding communication and contain 
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various hardware platform and architecture (e.g., field-programmable gate arrays). The 
key advantage of FPGA platforms over application-specific integrated circuit (ASIC) 
is programming and design flexibility, which makes an FPGA a recognised and popu-
lar hardware for IoT devices [6]. This enables the FPGA an easy to interface platform 
by integrating temperature, pressure, position, acceleration, ADC and DAC convert-
ers, since these interfaces are required by new and smart “Things”. Another major rea-
son for FPGA in things is long life spans of IoT devices. Vendors may stop develop-
ing and rolling out software patches for a prototype/product if it reaches obsolescence. 
This motivates why security service should be implemented with re-programmable/
configurable hardware solutions (such as FPGAs) rather software patches. To facilitate 
such deployment, the prime contributions of this work can be summarized as:

•	 We combine the native advantages of edge computing and FPGA acceleration to 
effectively support encrypting video streams, while benefiting time-sensitive and 
bandwidth-hungry IoT applications for TCP and UDP traffic.

•	 We design and implement a proof-of-concept FPGA-equipped edge server. The 
testbed demonstrates that the approach can reduce the latency and power con-
sumption of VNF execution by up to 44% and 76%, respectively, against soft-
ware-only edge/cloud baselines.

•	 We identify the open challenges posed by this merger of these technologies.

The rest of this paper is organised as follows. Section  2 presents requirements 
for number of IoT use cases and significance of computational offloading and hard-
ware acceleration for these. Section 3 highlights the benefits of VNFs deployment at 
the edge and prime contributions of the work. Section 4 discusses the experimental 
testbed, physical components, and hardware specifications for the proposed system. 
Section 5 covers experimental scenarios and metrics with performance evaluations 
and analysis. Section 6 discusses the related work. Section 7 presents the conclusion 
and potential research challenges realised in this study.

2 � Motivating offloading and acceleration at the edge for IoT use 
cases

Computation offloading for IoT applications transfers resource-intensive tasks to an 
external platform, such as a cluster, grid, cloud, fog, edge server, or user device, 
including a processor, graphics processing unit (GPU) or field-programmable gate 
array (FPGA). Acceleration and offloading are necessary due to the current hard-
ware limitations of IoT devices and servers. The offloading decision can be based 
on network specifications (4G/5G/WiFi/WiMAX, available bandwidth), application 
requirements, server specifications (CPU, storage/memory) or user preferences (data 
confidentiality, reliability, experience).

Nowadays, it is common for applications such as commercial speech-based intel-
ligent personal assistants, such as Apple’s Siri, which employs a deep neural net-
work as its speech recognition model, to employ computation offloading to the cloud 
[7]. However, as the network conditions between user devices and remote clouds 
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are unreliable, offloading today’s compute-intensive applications may lead to high 
latency and result in poor user experience.

2.1 � Why offload to the edge?

By processing data close to consumers/producers, edge computing is proving to 
be a promising solution [3] for addressing the limitations of the cloud in support-
ing delay-sensitive and context-aware services. Addressing these limitations are cru-
cial for real-time applications, which not only rely on compute-intensive tasks and 
algorithms such as data aggregation/fusion, but also require timely responses. Recent 
work [4, 7, 8] has experimentally quantified the benefits of offloading to the edge. For 
instance, by placing VM-based cloudlets at the edge to accelerate the computational 
engine, [8] achieved a 4.9 × lower response time when compared with cloud-based 
offloading, enhancing the user experience and also saving mobile device power [9].

2.2 � Why use FPGAs for acceleration?

The use of FPGA-based accelerators is well established in the application context. 
For example, FPGA-based acceleration for convolutional neural networks (CNN) 
can achieve 2x − 2.5 × improvement in processing time for image classification over 
parallel GPUs [10]. GPUs have many cores (simpler than a CPU core) because they 
do similar processing at the same time. For instance, rendering an image is a mat-
ter of coloring lots of pixels and the process of doing that involves the same type 
of data being processed in parallel. GPU cores are specifically designed to do that 
type of processing many times per second. In another example, Sirius, an intelligent 
personal assistant [6], uses FPGAs to accelerate visual/speech processing workloads 
running in datacentres and achieves a query latency reduction of 16x. In [10–12], 
researchers compare hardware platforms to characterize their performance accel-
eration for CNNs and binarized neural networks (BNN) to show that FPGAs are an 
appealing solution. Moreover, FPGAs have already been employed for cloud com-
putation acceleration in datacentres by Microsoft [11].

2.3 � Why network functions on programmable hardware?

The use of virtual network functions (VNFs) has emerged as a transformative tech-
nology that will allow service providers to move to a truly virtualized network infra-
structure. VNFs will replace proprietary networking hardware with software func-
tions deployed on open hardware platforms such as GPU, Smart NICs or FPGAs 
allowing increased agility, value and performance. VNFs such as encryption algo-
rithms are computationally intense and expensive due to their complexity and itera-
tion requirements, essentially consuming the energy, processing and computational 
abilities of devices and servers for time-critical applications, but making them prime 
candidates for offloading. The use of programmable hardware facilitates on-chip 
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logic to be reconfigured with dedicated pipelines and parallelism for performance 
enhancement (i.e., low latency and high throughput).

2.4 � Use cases and requirements

The automotive and transportation sectors in smart and connected cities are experi-
encing a transformation due to innovative technologies enabled by increased connec-
tivity [13, 14], but the communication requirements such as latency, reliability and 
data confidentiality are being failed by current infrastructure support [14]. The appli-
cation-specific requirements for location-based services, traffic information, personal 
multimedia sharing and forwarding demand a rapid and secure service at the edge. 
In cloud computing environments, all such diverse data are uploaded to the cloud for 
analysis and learning for appropriate measures and information retrieval. Considering 
a range of transportation modes and their applications in a smart city, edge solutions 
are expected to have low cost, low energy consumption, high quality of experience, 
increased flexibility, high security and privacy and multivendor interoperability.

Numerous IoT devices will transform our homes/buildings in smart and intelligent 
pervasive surroundings, ranging from kitchen appliances to ambient light controllers. 
A key factor is their enhanced inter-working to cooperate with their users and cloud-
hosted applications. One challenging aspect of this connectivity relates to the new poten-
tial security threats that attackers can leverage to conduct their malicious activities. For 
example, in October 2016, exploiting firmware security flaws, cybercriminals launched a 
distributed denial of service (DDoS) attack using many smart-home IoT devices, against 
a Domain Name System (DNS) provider ISP Dyn, thus disrupting major Internet plat-
forms and services to large swathes of users in the EU and North America [15].

The fourth industrial revolution is the digitalization of industrial production processes 
[16]. To bring this to realization requires integrating industrial IoT, cyber-physical sys-
tems (CPSs) and computing technologies [17]. Industry 4.0 involves a hyper-connected 
system that includes the use of AI and robotics-based automation in industries to provide 
real-time information about operational behavior for quality assurance and system main-
tenance. The increased connectivity of industrial systems is a key for next-generation 
industrial standardization. The increasing openness, in Industry 4.0, will inevitably lead 
to significant security concerns. Indeed, the large number and the disparity of industrial 
equipment will lead to a myriad of security vulnerabilities exploitable by cyber attackers. 
Industrial information is of utmost importance for the competitiveness of a company. 
These concerns will greatly undermine the overall digitalization of industries.

Based on the stated use cases, requirements and benefits, this work studied the 
viability (i.e., its suitability for IoT applications) of using the security VNF deployed 
on FPGAs to support edge computing.

3 � Offloading VNFs at the edge

This work is inspired by the potential cumulative advantages of VNFs, edge com-
puting/offloading and use of FPGAs acceleration. The proposed approach aims to 
support edge computing to accelerate VNFs by offloading to networked FPGAs. In 
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a traditional edge computing architecture, the edge server processes the data before 
forwarding it to other edge servers or remote cloud sites. In our offloading approach, 
the incoming data at the cellular base station (BS), i.e., 4G-radio access network 
(RAN), are processed locally, at line rate, by an FPGA-equipped edge server execut-
ing a VNF such as encryption before forwarding it to the destination in order to 
negate potential security threats/risks posed by the public Internet.

In the IoT context, a natural question that arises is whether the implementation of 
VNFs using FPGAs can allow network functions executed at burdened edge serv-
ers to satisfy application requirements? To address this question, we conducted an 
experimental study of an encryption VNF to be deployed at an edge server equipped 
with a networked FPGA to compare performance against a traditional edge server 
using a physical testbed. To the best of our knowledge, this work is the first attempt 
to implement a VNF in a FPGA for edge computing to preserve data security and 
privacy while maintaining application latency requirements.

The application of FPGAs at the edge to support VNFs is a new topic and the 
state-of-the-art is still very limited. However, there has been some work on accel-
erating complex but non-VNF implementations using FPGAs [8–12], which also 
lacks assessment in an Edge environment. Researchers in [18] offload the process-
ing of compute-intensive neural network applications to FPGAs. Their work estab-
lished a comprehensive understanding of offloading possibilities but does not offer 
networked FPGAs for VNF implementation at the edge and lacks assessment of 
the implications and performance of any real-time data processing (for example, 
as desired in encrypting video streams at line rate). In our implementation, FPGAs 
do not simply offload/onboard VNFs but also support parallel data processing by 
pipelining the design in contrast to traditional proprietary hardware solutions. This 
allows different phases of a network function to work in parallel for data processing 
at line rate. These characteristics are significant in a reliable and scalable transition 
from cloud to edge as considered below.

Compared to VNF, edge computing addresses the need to deploy third-party 
applications. Edge computing allows application deployment inside each environ-
ment to be managed by the environment operators. Nesting of virtualization technol-
ogies allow edge operators to support multiple environments by allocating a VNF to 
each third-party application environment owner. Each third-party application envi-
ronment owner can further allocate resources assigned to VNF to the other applica-
tions and services.

4 � Video streaming testbed

Our study addresses video streaming as a representative use case in which this 
approach to deploying network functions (in this case, data security) is imminent 
and offers significant advantages.

According to Cisco VNI [19], camera-based applications will be the largest mar-
ket for next-generation IoT solutions worldwide exemplified by the widespread use 
of video sensor networks. These systems are already becoming deeply interwoven 
into our lives given the significant focus on making homes, cities, electric grids, 
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factories, and health services among others, safer, more efficient, and easier to moni-
tor and manage [14]. Considering the costly implementation and complexity of tra-
ditional camera deployments, which are dependent on cable and fiber connections 
to support these services at scale, wireless low-powered cameras significantly sim-
plify the implementation and management complexity of such deployments in dense 
and urban communities. Additionally, newer form factors that use body-attached, 
vehicle-mounted or drone-mounted cameras can only be connected wirelessly. Such 
devices will often communicate with a local gateway (GW) which in turns offers 
a multiplexed wireless connection toward the wider internet. The major question 
around wireless as the connectivity medium of choice for video networks until now 
has been whether it can support the required bandwidth and latency requirements for 
real-time, high-definition camera feeds without compromising security and privacy 
requirements. Protection of video data is always critical due to the privacy concerns 
of citizens and such data should only be accessed by authorized entities in video 
surveillance applications.

While bandwidth limitations may be solved by the expected widespread deploy-
ment of 5G networks, ensuring the security and privacy of the video contents are 
particularly challenging, especially for resource-constrained GWs due to finite 
energy supply and low-computing power. These factors are typically at odds with 
most existing security protocols and schemes proposed for the IoT because of the 
intensive computational nature of the cryptographic algorithms involved. In addi-
tion, leaving IoT data unencrypted can exploit vulnerabilities in IoT devices.

Offloading can provide assured protection on demand for personal data (audio, 
video and identification) without putting further load on edge servers. Moreover, 
FPGAs allow hardware rules to be updated easily when compared to proprietary 
hardware. The ability to deploy custom policies/rules at the edge server using a 
FPGA can also be a performance advantage over software alternatives. Thus, our 
work also provides an experimental demonstration and evaluation of assured protec-
tion of video data without overloading GWs or edge servers.

A high-level overview of the study is presented in Fig.  1, while Fig.  2 illus-
trates the physical testbed. In Fig. 1, the edge servers are equipped with hardware 

Fig. 1   High-level system diagram of proposed edge-cloud environment
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accelerators (HAs) comprising of FPGAs. The remote cloud site also has a pool of 
HAs, on which a variety of network functions and services can be boarded. This 
testbed allows us to investigate the impact and benefits of offloading VNFs from 
edge servers to FPGAs at both the edge and cloud as presented in Fig. 2. Users’ pri-
vacy and security concerns are a significant obstacle deterring users allowing their 
devices to be participants in edge-cloud environments [20]. This testbed considers 
an encryption VNF case-study. Selection of this function was based on its signifi-
cance to supporting user trust and data privacy as motivated in use cases.

4.1 � Physical architecture and components

The testbed mirrors an edge telecommunication operator’s infrastructure with wire-
less access to network services. In particular, the control and forwarding functions 
are decoupled using OpenFlow [21], offering many advantages over single vendor-
based networking designs. It is worth mentioning that the user and edge setup (video 
generator and NetFPGA-equipped edge servers) were located in Dublin City Uni-
versity, Ireland, while the cloud part (pool of HAs and servers) was located in the 
University of Genoa, Italy. There are several components at each layer of the pro-
posed approach as discussed in Sect. 4.1. The hardware and software specifications 
of components at three layers which are integrated in the experimental framework 
are detailed in Table 1.

Fig. 2   Experimental testbed

Table 1   System components and their specifications

Traffic generator Ixia 
XM2

Edge server NetFPGA-10G Cloud (institutional-server)

Intel Pentium Mobile Intel Core i7 Xilinx Virtex-5 Intel i7-3770
2 GHz 2.5 GHz, 4 cores 1 GHz, 2 Core 3.4 GHz, 20 cores
2 GB RAM
250 GB SATA​

6 GB RAM DDR3 Two 4 GB DDR3
256 MB Strata Flash

32 GB RAM DDR3
2-TB HDD

Windows/Linux Ubuntu 16.04.6 LTS Fedora 14 (x86_64) Ubuntu 16.04.6 LTS
2 × 10Gbps Ethernet 10 Gbps Ethernet 4 SPF Ports × 10 Gbps 

Ethernet
10 Gbps Ethernet
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4.1.1 � User‑end

Video streaming devices are selected as a test application for experiments due to 
its stringent requirements. The 4 K video resolution with a frame rate of 30 fps 
using H.264 MPEG format is produced. A 4 K video chunk requires a data rate 
of ≈ 15Mbps for smooth streaming. An Ixia traffic generator is used to generate 
video streams. The video resolution is set to 4 K with a frame rate of 30 fps using 
H.264 JMPEG. Once a video stream is initiated, the video packets are sent to the 
edge server application using LTE connectivity through eNodeB which is real-
ized using the Amari LTE 100 suite.

4.1.2 � Edge layer

The edge server application reorganizes the incoming video stream into 128-, 
256- or 512-byte chunks as configured in the test cases presented in Table 2. At 
this point, video chunks are forwarded to the NetFPGA, which is responsible for 
encrypting the incoming chunks. When encryption is finished, data are forwarded 
from the NetFPGA to the TCP or UDP port as per configuration. The edge server 
application serves as client and server for parsing the data, encrypting/decrypting 
and timestamping for latency measurements.

Table 2   Video latency results

The bold values reflect the time consumed as a performance indicator in terms of end-to-end delay and 
encryption VNF execution time

Test Protocol Chunk size Mean execu-
tion time 
(ms)

Standard 
deviation 
(ms)

Mean E2E 
latency [ms]

Standard 
deviation 
(ms)

Case 1 (No-VNF) TCP Default N/A N/A 29.73 9.17
UDP Default N/A N/A 21.80 9.13

Case 2 (SW-VNF) TCP 128 29.57 7.17 49.14 13.52
TCP 256 27.38 6.34 46.56 12.62
TCP 512 25.44 6.28 44.24 9.81
UDP 128 27.95 5.48 47.38 8.63
UDP 256 25.11 5.11 44.21 9.15
UDP 512 23.68 5.09 42.6 11.71

Case 3 -(HW-VNF) TCP 128 2.68 5.77 31.47 7.06
TCP 256 2.06 3.93 30.66 8.28
TCP 512 1.91 3.95 28.20 3.91
UDP 128 2.18 4.58 30.8 6.19
UDP 256 2.06 2.81 27.07 5.11
UDP 512 1.91 2.54 24.45 2.37
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The edge server is composed of a 4-core Intel i7 2.5  GHz (running Ubuntu 
16.04.6 LTS) and 6 GB DDR3. It has two sub-components, namely an edge con-
troller and an offloading module. The edge controller is implemented using Open-
Flow to accept incoming video chunks and forward them to NetFPGA for VNF 
execution or to the remote cloud.

NetFPGA-10G [22] is based on Xilinx Virtex-5 (running Xilinx-Linux) and is con-
nected via a 10Gbps on-chip bus. The NetFPGA logic area is programmed in Ver-
ilog for hardware implementation of the security VNF.

OpenFlow implementation in NetFPGA-10G In this work a NetFPGA-10G assisted 
OpenFlow switch1 is extended to forward data packets as presented in Fig. 3. The 
edge controller module exchanges flow updates with the NetFPGA-10G OpenFlow 
controller. This is a programmable customized 4-port 10GE switch, which consists 
of a hardware implementation and associated software module. The software mod-
ule is responsible for exchanging updates between edge server and NetFPGA Open-
Flow controllers. The hardware component changes and forward packet from one 
port to other port(s), according to flowtable. The ports are configured for the follow-
ing tasks.

Port 1: Incoming video chunks.

Fig. 3   OpenFlow implementation on NetFPGA-10G

1  https://​github.​com/​NetFP​GA/​NetFP​GA-​public/​wiki/​NetFP​GA-​10G-​OpenF​low-​Switch.

https://github.com/NetFPGA/NetFPGA-public/wiki/NetFPGA-10G-OpenFlow-Switch
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Port 2: Encrypt/decrypt VNF (TCP).
Port 3: Encrypt/decrypt VNF (UDP).
Port 4: Outgoing video chunks.

Security VNF Encryption can offer a flexible way to protect data in transit for point-
to-point and point-to-multipoint applications. In current real-time applications, traf-
fic exchange among MEC and cloud is mostly unencrypted and subject to eavesdrop-
ping. Due to high computation involved in security protocols, lightweight symmetric 
ciphers have gained interest for data security in constrained computing environ-
ments. Considering the significance of information security, an encryption VNF is 
implemented in the proposed platform. We extended a lightweight symmetric block 
cipher, PRESENT [23]-based encryption/decryption on the NetFPGA-10G. PRE-
SENT is implemented in two stages in NetFPGA. In the first stage, PRESENT is 
designed for a standard NetFPGA platform using Verilog, and in the second stage, 
the traditional FPGA implementation was imported to LabVIEW FPGA using the 
IPIN node. Data transfer between applications running on the real-time processor 
(edge server) and programs running on the FPGA (encryption/decryption) is based 
on writing data to controls and reading data from indicators using OpenFlow.

4.1.3 � Cloud layer

The cloud layer consists of servers that represent a traditional cloud. It has Intel 
3.4 GHz i7 processors with 20 Core CPUs and memory of 64 GB, which is more 
powerful than most virtual machines provided in commercial cloud services. We 
implemented the cloud layer using institutional servers at the University of Genoa in 
the H2020 INPUT2 project. The servers have video applications to enable streaming, 
computing and storage. To consider the dynamic network conditions such as content 
location and load balancing, netem is configured for the default cloud settings [9].

5 � Performance evaluation

5.1 � Evaluation scenarios and metrics

The experiments replicate a setup of an end-to-end video stream from IoT devices 
to a remote cloud through an FPGA-enabled edge environment. The purpose of ena-
bling encryption VNF at the edge is to provide the applications/devices with pri-
vacy, confidentiality and trust, while data are in transit through public networks. 
The experiments focus on metrics that are significant to time-sensitive video stream-
ing applications, namely end-to-end latency, VNF execution time, and power con-
sumption for the encryption VNF in the test cases. The latency measurements in all 
experiments have a mean value over 10 test runs with 95% confidence interval. The 
metrics are defined as following:

2  https://​www.​input-​proje​ct.​eu/.

https://www.input-project.eu/
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•	 Execution time is the time taken by the VNF module from starting to encrypt or 
decrypt data packets until it finishes.

•	 End-to-end (E2E) latency is the time from when data are sent by an IoT device 
until the data are received at the cloud. Latency results from several factors: 
packet processing, egress and ingress delays, packets queuing delay and transmis-
sion and propagation delays. However, the measurements presented here corre-
spond to latency of the packets. This time includes encryption and decryption at 
the edge and cloud, respectively. A specification of 25 ms < low latency < 50 ms 
is a reference performance indicator for this work, as defined by the category 4 
service requirement [24] for video surveillance, online auctions and live sports 
events.

•	 Power consumption is the power consumed by the VNF module while process-
ing the data. We obtain the FPGA on-chip power consumption using the Xilinx 
Power Estimator (XPE) 2017.4. For the edge server power consumption, we use 
the powertop tool to measure the VNF energy consumption.

5.2 � Evaluation results

A combination of options such as transport protocol, presence of encryption, and 
encryption chunk length was configured in the testbed. The motivation for such test-
ing lies in the desire to be able to draw conclusions about the effect of video encryp-
tion on network performance; determine the parameters that result in optimal per-
formance of encrypted video in terms of latency and execution delay; and compare 
performance with legacy approaches. For the purpose of result presentations, the 
experiments are divided into three test cases.

Case 1 (No-VNF) and Case 2 (SW-VNF) are baselines for this study versus 
Case 3 (HW-VNF). Case 2 and Case 3 consist of six experiments each, which were 
derived by using different combinations of options for the chunk size (128/256/512 
bytes) and the transport protocol (TCP/UDP). The latency measurement results are 
taken using three sets of chunks considering AES for H.264 and MJPEG encod-
ing scheme requirements. The encoding of the data was done for the camera video 
stream, while the stream was decoded in the latency measurement application utiliz-
ing the FFMPEG library. The data packets sent from the camera are accepted by 
the application and are reorganized into fixed size chunks of 128, 256 or 512 bytes, 
depending on data length encryption settings. For each case, two sets of results were 
obtained. One set represents execution time, while the other represents E2E latency.

Video latency measurements are presented in Table 2. It is noticeable that both 
Case 2 and Case 3 have higher mean values when compared to the Case 1 (No-VNF) 
due to the fact that there is additional data processing in VNF test cases. However, 
Case 3 stands out with mean latency for tests of both TCP and UDP being close 
to Case 1. This shows that HW-VNF implementation has minimal influence on the 
latency of video transmission in comparison with the software implementation in 
Case 2. The lowest secure video latency measured is in Case 3 (28.2 ms using TCP 
and 24.45 ms using UDP). The overall lowest latency for secure video was obtained 
using the combination of 512-byte chunks with UDP. An observation can be made 
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that cases with the TCP protocol result in higher latency than UDP due to difference 
in protocol implementations. Case 2 is conducted with software implementation of 
VNF resulting in 11x − 13 × higher execution time and 18–20 ms higher latency than 
Case 3 for a single stream.

Given encouraging results for a single stream, a further experimental campaign 
was performed to investigate the scalability of the HW-VNF implementation. A 
video stream with 5, 25, 50 and 100 videos is used for testing and evaluation repre-
senting four scales of transmission intensity (low, med, high and dense). Experimen-
tal results across the range of performance parameters are presented in Fig. 4.

Fig. 4   Scalability performance evaluation: (a) E2E Latency (b) Power consumption
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Based on the results shown in Table 2, the lowest latency combination of UDP 
and 512-byte chunks was used for these scalability experiments. The latency in 
securing and retrieving streamed video frames in Case 3 (HW-VNF) is approxi-
mately similar to Case 1 (No-VNF) for all scales as presented in Fig. 4a. The latency 
of Case 2 (SW-VNF) for low intensity is 76% and 86% higher than Case 3 and Case 
1, respectively. At the dense intensity, Case 2 (SW-VNF) results in 77% higher 
latency compared to Case 3 (HW-VNF). In Fig.  4b, the power consumption for 
various video intensity levels is measured. Scaling the FPGA hardware frequency 
(between 63.5 and 125 MHz), using the frequency scaling technique developed in 
NetFPGA [25], the HW-VNF consistently consumes 72–76% lower energy than 
the SW-VNF at the edge server. The HW-VNF also consumes lower energy than 
Case 1 (No-VNF) because of the absence of adaptive transmission in the proprietary 
hardware.

In Fig. 5, the average hops for unsecured video transmission are evaluated for a 
public cloud (Microsoft Azure) and the private cloud. Both HW-VNF and SW-VNF 
have only 1 hop of unsecure transmission from end-user GW to cloud as compared 
to 9 and 14 hops, respectively.

6 � Related work

We highlight how previous research combines EC and NFV, while lists of various 
edge approaches can be found in state-of-the-art surveys [26–28]. We present the 
related works that deploy VNFs at the edge in this section.

Authors present an architecture of a NFV-based MEC platform, and present an 
experimental study of the Quality of Experience (QoE) of HTTP videos deployed 
using such a platform [29]. Their findings confirm that MEC can further improve 

Fig. 5   Video transmisstion through unsecure hops
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the QoS of the application as opposed to running the same application on cloud/
remote servers. However, their approach does not rely on any orchestration platform 
for deploying/managing VNFs for real-time applications. These functions are hard-
coded on the machines, which do not allow for runtime changes. Such an approach 
cannot guarantee performance because of the missing resilience through an orches-
tration platform. Authors present a framework for on-the-fly transcoding in an edge 
environment [30]. The authors deploy a transcoding service as a VNF that can 
ensure dynamic rate switching of the streamed video. The authors report that the 
proposal can improve the QoE of users. However, the verification of this approach is 
made in a simulated environment. Also, like the above works, this approach does not 
rely on an orchestration platform to handle a compute-intensive task such as encryp-
tion at a very high data-rate. Researchers in [31] present an NFV-enabled MEC sim-
ulated framework to manage allocation of sufficient resources in order to guarantee 
continuous satisfaction of the application latency requirements. To demonstrate the 
usefulness of the proposed approach, a simulation-based performance evaluation of 
an augmented reality application with 1800 mobile users was carried out. Authors 
claimed that only their approach ensured MEC services respond to user requests on 
time.

Other researchers have focused on integrating GPUs with VNFs. In [32], 
researchers demonstrated the use of a general-purpose GPU in the context of VNFs 
for video transcoding. Zhi et al. [33] proposed a real-time distributed video transcod-
ing system based on an edge-like environment of networked machines equipped 
with GPUs. The authors use Apache Storm [34], to ensure the communication of 
the video streams and to orchestrate the transcoding tasks in a group of networked 
physical machines. Work in [35] presents NetML, an NFV platform that allows the 
execution of machine learning algorithms in the edge server. NetML is built on top 
of OpenNetVM [36] NFV platform and uses GPUs to perform intensive ML tasks. 
The authors evaluated their work by calculating the throughput of an ML application 
performing object detection on streaming image data.

In a recent work [37], a mobile edge (ME) system is proposed that is based on 
the integration of a MEC architecture with an NFV framework. To demonstrate the 
viability, authors deployed and evaluated the performance of an ME application for 
CPU-intensive immersive video services. The edge infrastructure hosting the ME 
application exploits the use of GPUs to perform high CPU-intensive tasks. How-
ever, these works do not provide the resilience against information security for time-
critical and continuous applications. Our work leverages NetFPGA as a networking 
device for the deployment of VNFs at the edge for the first time and conducts an 
investigation of its detailed performance based on time-sensitive application, in a 
real-time physical testbed.

7 � Conclusion and research challenges

This paper evaluates the combined advantages arising from edge offloading 
using FPGAs at the network edge to accelerate VNF execution. The experimen-
tal results confirm the benefit of this approach over current edge counterparts by 
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offering data security (as a VNF) with 37–44% lower latency and 72–76% lower 
power consumption. While NetFPGA-based edge offloading is still in its early 
stage, we believe that this paper sheds lights on the potential to leverage new 
technologies to improve network services. Going further, placement/integration 
of programmable networked hardware at the local GW can provide end-to-end 
security requirements for sensitive and confidential data and zero trust.

Although, the realization of this approach is very promising, we must antici-
pate the inherent challenges due to the merger of these technologies.

•	 FPGA-based development is a complicated process requiring substan-
tial FPGA engineering knowledge. Especially, when FPGAs are used with 
advanced edge middleware, web services and software systems, co-design is 
challenging. FPGA design is always a complicated task. The design process 
requires specific FPGA engineering knowledge, which remains a challenge 
for developers and usually results in a loss of productivity. Especially, when 
FPGAs are used together with advanced software systems become a real chal-
lenge.

•	 GPU is another widely used hardware. The GPUs can achieve higher through-
put and peak speed is usually faster than FPGAs. In contrast, FPGA brings 
lower latency for single request, consume less energy and offers reconfigur-
ability. The new FPGA’s are in design phase to speed up the performance in 
comparison with latest GPUs

•	 The complexity of resource management grow manifold in the FPGAs not 
only due to virtualization of resources, but also due to requirements at dif-
ferent levels or domains such as network slice, network service and network 
resource (physical/virtual). Hence, a holistic resource management guided by 
defined policies is essential to ensure the appropriate management of FPGA 
resources.

•	 FPGA development, testing and debugging are more difficult than a software-
only system. Current applications in the cloud are primarily software oriented.

•	 To enable a VNF-based open hardware platform, vendors must provide economi-
cal devices. Today, the cost of a high-end FPGA device is almost 10 × of a Giga-
bit NIC. A higher price will ruin the business case for using FPGA technologies 
in VNF.
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