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Abstract
In this paper, a human-inspired optimization algorithm called stock exchange trading 
optimization (SETO) for solving numerical and engineering problems is introduced. 
The inspiration source of this optimizer is the behavior of traders and stock price 
changes in the stock market. Traders use various fundamental and technical analy-
sis methods to gain maximum profit. SETO mathematically models the technical 
trading strategy of traders to perform optimization. It contains three main actuators 
including rising, falling, and exchange. These operators navigate the search agents 
toward the global optimum. The proposed algorithm is compared with seven popu-
lar meta-heuristic optimizers on forty single-objective unconstraint numerical func-
tions and four engineering design problems. The statistical results obtained on test 
problems show that SETO is capable of providing competitive and promising per-
formances compared with counterpart algorithms in solving optimization problems 
of different dimensions, especially 1000-dimension problems. Out of 40 numerical 
functions, the SETO algorithm has achieved the global optimum on 36 functions, 
and out of 4 engineering problems, it has obtained the best results on 3 problems.

Keywords  Human-inspired meta-heuristic · Numerical optimization · Engineering 
design problems · Stock exchange trading optimization (SETO) algorithm

1  Introduction

Optimization plays a crucial role in various domains, like industrial applications, 
business, engineering, social science, and transportation [1–3]. A lot of problems in 
science and engineering are generally constraint or unconstraint optimization prob-
lems. Generally speaking, optimization is the process of selecting the best possible 
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solution for a given engineering/scientific problem [4]. An optimization problem P 
can be formulated mathematically as follows [5]:

where Q denotes the solution space defined over a finite set of optimization varia-
bles, C denotes a set of problem-dependent constraints, and f is an objective function 
that needs to be minimized or maximized. The goal is to find an optimum solution 
Q∗ with minimum objective function value f (q∗) ≤ f (q), ∀ q ∈ Q in minimization 
problems. In maximization problems, the objective value of solution q∗ is to be 
maximized. According to the structure measure, the optimization problems can be 
grouped into different classes: constraint or unconstraint, single- or multi-objective, 
and combinatorial problems [5]. Constraint optimization problems involve one or 
several certain restrictions that cannot be violated in the optimization process. On 
the contrary, unconstraint problems do not involve limitations or constraints. In sin-
gle-objective problems, there is only one specific objective, while in multi-objective 
mode there is more than one objective to be maximized or minimized. In combina-
torial optimization problems, the goal is to find or select a permutation of variables 
in a way that objective function is minimized or maximized.

The majority of real-world large-scale, multimodal, non-differentiable, and non-
continuous optimization problems are difficult to solve with conventional mathemat-
ical and deterministic methods such as quasi-Newton and sequential quadratic pro-
gramming. The classic deterministic and exact optimization methods often perform 
an exhaustive search by simple calculus rules and tend to utilize problem-specific 
information such as the gradients of the objective to guide the search process in 
solution space [6]. These methods may stick at the local optima, need to derivate 
the search space, and cannot efficiently balance between exploitation and explora-
tion [4]. Meta-heuristic optimizers are efficient alternatives when dealing with large-
scale and non-differentiable problems [7]. They have gained immense popularity 
amongst researchers due to their simplicity, durability, self-organization, coordina-
tion, easy implementation, robustness, and effectiveness in solving a variety of opti-
mization problems [6].

Meta-heuristics can solve optimization problems with limited complexity [4]. 
However, the performance of most meta-heuristics depends on the tuning of user-
defined parameters. Besides, meta-heuristics do not guarantee a global optimum 
solution is ever found but try to find a near-optimal solution within a reasonable 
time. Meta-heuristics are black-box optimizers that can be applied to a variety of 
optimization problems with only limited modifications. To solve an optimization 
problem, a meta-heuristic algorithm first creates one or multiple initial solutions. 
While stopping criteria are not satisfied, the algorithm explores and exploits the 
solution space with different actuators to generate new solutions. At each genera-
tion, the algorithm updates the solutions. Finally, a solution with the maximum fit-
ness is considered the optimal solution for the given problem. The key factor to effi-
cient search is the proper harmonization between exploitation (intensification) and 
exploration (diversification) [8].

(1)P ≐ (Q,C, f )
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The majority of meta-heuristic algorithms are inspired by the biological evolu-
tion, social behavior of humans, physics laws, and the survival and living systems of 
animals, insects, and birds [2, 4–6, 8, 9]. For example, particle swarm optimization 
(PSO) [9] models the social behavior of birds flocking. It starts the search process 
with a collection of solutions dubbed particles. Each particle navigates in the solu-
tion space using its local best and the global best knowledge found by other parti-
cles. Another example is ant colony optimization (ACO) [10], which simulates the 
searching of ants from the colony to the food source.

In recent years, we have witnessed human-inspired algorithms becoming increas-
ingly one of the most important topics in the optimization field. Human-inspired 
algorithms simulate the approaches that humans use to solve problems. The presi-
dential election algorithm (PEA) [11, 12] is a fundamental human behavior-inspired 
algorithm that models the interaction between voters and candidates in the elec-
tion campaign. A few well-known human-inspired algorithms are football game 
algorithm (FGA) [13] inspired by the behavior of players to score a goal under the 
supervision of the coach; political optimizer (PO) [14] inspired by the multi-phased 
process of politics; heap-based optimizer (HBO) [15] inspired by the rank hierar-
chy in organizations, deer hunting optimization algorithm (DHOA) [1] simulates the 
hunting methods of the human toward deer; and nomadic people optimizer (NPO) 
[16] models the migration behavior of nomadic people in their searches and move-
ment for sources of life including grass for grazing and water. Humans are the most 
intelligent creatures and always try to solve real-world problems in the best possible 
way; thus, modeling their behavior and actions can be a successful method to solve 
optimization problems. In the literature, human-inspired algorithms show outstand-
ing performance in solving optimization problems.

Recently, tremendous progress has been made in the development of meta-heu-
ristic algorithms. However, the field of meta-heuristics is far from maturity [5, 17]. 
According to the NFL theorem, it is possible that a certain meta-heuristic obtains 
better results on specific problems and not as good on others. In other words, no 
algorithm can solve all kinds of optimization problems at the same time [4, 18]. 
These reasons prove that there is still a need for introducing new algorithms or 
improving the existing ones. This paper presents a new human-inspired meta-heuris-
tic for solving optimization problems. The proposed algorithm is referred to as stock 
exchange trading optimization (SETO). The procedure of SETO attempts to find the 
best share with maximum profit (optimal or near-optimal solution) in the stock mar-
ket with the help of trading strategies. To the best of our knowledge, in the literature, 
there is no research, which simulates the stock trading strategies.

The stock exchange is a place where investors and traders can sell or buy their 
ownership of stocks. Equities or stocks represent fractional ownership in a company. 
The stock exchanges pursue two goals. The first objective is to provide capital to 
companies to expand their businesses. The secondary goal is to allow investors to 
share in the profits of publicly traded companies. Trade is the basic concept in the 
stock market that means the transfer of a share from a seller to a buyer based on an 
agreement on a price. Trading and investing are two different approaches to profit 
in the stock market. Both traders and investors seek profits through buying and sell-
ing shares. Investors buy shares and hold them for an extended period to earn large 
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returns. In contrast, traders attempt to make transactions that can help them profit 
quickly from price fluctuations over a shorter time frame. The objective of traders is 
to gain returns that outperform buy-and-hold investing. Traders often use different 
technical analysis tools such as stochastic oscillators and moving averages to find 
optimal share buy and sell points. They try to maximize profit by adopting opti-
mal trading strategies and selecting the best shares. The procedure of the proposed 
SETO algorithm attempts to find the most profitable share in the stock exchange 
with the help of simple trading strategies. The best share corresponds to the opti-
mal solution to the given optimization problem. The SETO algorithm first creates a 
population of candidate solutions. The algorithm improves the initial solutions using 
three operators including rising, falling, and exchange. The individuals in the popu-
lation gradually converge to the optimal point.

Briefly speaking, the main contributions of this paper are as follows:

•	 A new meta-heuristic algorithm named stock exchange trading optimization 
(SETO) algorithm is proposed for solving numerical and engineering optimiza-
tion problems. Most of the control parameters of SETO are already known and 
configured using the data drawn from the stock exchange and scientific resources 
about technical analysis. This issue turns the SETO into an optimizer quite easy 
to implement and execute.

•	 Forty single-objective numerical optimization functions from CEC competitions 
and four engineering design problems are used to evaluate the performance of 
the SETO and comparison algorithms. The experimental results confirm the 
superiority of the proposed SETO compared with counterparts.

The SETO algorithm is simple and easy to implement. It can be applied to all opti-
mization problems that other optimizers can be applied for. SETO is an efficient 
choice to solve optimization problems in various disciplines such as physical sci-
ence, mathematics, agricultural science, economics, computer science, communi-
cation, mechanical applications, civil engineering applications, manufacturing, and 
many other areas.

The remaining parts of this paper are structured as follows: Section 2 reviews the 
literature. Section 3 describes the inspiration source, mathematical model, and the 
working principle of the proposed SETO algorithm. Section 4 presents the experi-
mental results obtained by the SETO and counterpart algorithms in solving single-
objective numerical optimization problems. Section  5 evaluates the applicability 
of SETO and comparison algorithms on real-world engineering design problems. 
Finally, Sect. 6 concludes the paper and lists potential directions for future research.

2 � Related work

According to the metaphor of the search procedures, the structure of the problem 
under consideration, and the search strategy, optimization meta-heuristics can be 
categorized into different classes. As shown in Fig.  1, two main groups of meta-
heuristics are metaphor-based and non-metaphor-based algorithms [8]. The former 
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category consists of algorithms that model the natural evolution, collective or swarm 
intelligence of creatures, human actions in real life, chemistry or physical opera-
tions, etc. The latter category of algorithms did not simulate any natural phenomena 
or creatures’ behavior for performing a search in the solution space of optimization 
problems.

The metaphor-based algorithms can be categorized into three main paradigms: 
biology-inspired, chemistry-/physics-inspired, and human-inspired algorithms. 
Biology-inspired algorithms simulate the evolution of living organisms or the col-
lective intelligence of creatures such as ants, birds, and bees. Two classes of biol-
ogy-inspired algorithms are evolutionary and swarm intelligence algorithms. Evo-
lutionary algorithms are inspired by the laws of biological evolution in nature [15, 
19]. The objective is to combine the best individuals to improve the survival and 
reproduction ability of individuals throughout generations. Since the fittest individu-
als have a higher chance to survive and reproduce, the individuals in the next gen-
erations may probably be better than previous ones [18]. This idea forms the search 
strategy of evolutionary algorithms, in which individuals will gradually reach the 
global optimum. The most popular evolutionary algorithm is the genetic algorithm 
(GA) [20] that follows Darwin’s theory of evolution. In GA, first, a population of 
solutions is created randomly. The population evolves over iterations through selec-
tion, reproduction, combination, and mutation. Few popular evolutionary algorithms 
are fast evolutionary programming (FEP) [21], differential evolution (DE) [22], 
biogeography-based optimization (BBO) [23], forest optimization algorithm (FOA) 
[24], black widow optimization (BWO) [25], farmland fertility algorithm (FFA) 
[26], and seasons optimization algorithm (SOA) [18].

Swarm intelligence algorithms often model the interaction of living creatures in 
a community, herds, flocks, colonies, and schools [6]. The core idea of swarm intel-
ligence algorithms is decentralization, in which the agents move toward the global 
optimum through simulated social and collective intelligence, and local interac-
tion with their environment and with each other [8]. The algorithms in this cate-
gory memorize the best solutions found at each generation to produce the optimal 

Meta-heuristic algorithms

Non-metaphor based algorithms

Human-inspiredBiology-inspired Chemistry/physics-inspired

Evolutionary Swarm intelligence

Metaphor based algorithms

Fig. 1   Broad classification of optimization meta-heuristic algorithms
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solutions for the next generations. The most popular algorithms in this category are 
PSO [9], ACO [10], and artificial bee colony (ABC) [27]. Some recently developed 
swarm intelligence algorithms are firefly algorithm (FA) [28], krill herd (KH) [29], 
elephant herding optimization (EHO) [30], spider monkey optimization (SMO) 
[31], grey wolf optimizer (GWO) [32], whale optimization algorithm (WOA) [19, 
33], butterfly optimization algorithm (BOA) [34], squirrel search algorithm (SSA) 
[35], grasshopper optimization algorithm (GOA) [36], seagull optimization algo-
rithm (SOA) [37], normative fish swarm algorithm (NFSA) [38], red deer algorithm 
(RDA) [39], and Harris hawks optimization (HHO) [7]. For more detail and deep 
discussion about swarm intelligence algorithms, refer to the survey given in [6].

Chemistry- and physics-based algorithms simulate the chemistry and physical 
rules in the universe such as chemical reactions, gravitational force, inertia force, 
and magnetic force [25]. The search agents navigate and communicate through the 
search space following the chemistry and physical rules. Simulated annealing (SA) 
[40] is one of the founding algorithms in this category. SA models the annealing 
process in metallurgy. Other widely used chemistry- and physics-based algorithms 
are gravitational search algorithm (GSA) [41], big bang–big crunch (BB–BC) [42], 
artificial chemical reaction optimization algorithm (ACROA) [43], galaxy-based 
search algorithm (GbSA) [44], physarum-energy optimization algorithm (PEO) 
[45], thermal exchange optimization (TEO) [46], equilibrium optimizer (EO) [47], 
magnetic optimization algorithm (MOA) [48]. For a survey and discussion about 
physics-inspired algorithms, refer to [49].

Human-based algorithms are developed based on metaphors from human life, 
such as social relationships, political events, sports, music, and math. Since humans 
are considered the smartest creatures in solving real-world problems, human-
inspired algorithms can also be more successful in solving optimization problems. 
Some human-inspired algorithms are harmony search (HS) [50], imperialist com-
petitive algorithm (ICA) [51], teaching–learning-based optimization (TLBO) [52], 
league championship algorithm (LCA) [53], class topper optimization (CTO) [54], 
presidential election algorithm (PEA) [11], sine–cosine algorithm (SCA) [55], socio 
evolution & learning optimization algorithm (SELO) [56], team game algorithm 
(TGA) [57], ludo game-based swarm intelligence (LGSI) [58], heap-based optimizer 
(HBO) [15], coronavirus optimization algorithm (CVOA) [59], political optimizer 
(PO) [14], and Lévy flight distribution (LFD) [4].

Some algorithms are inspired by machine learning, reinforcement learning, and 
learning classifier systems [60–62]. For example, ActivO is an ensemble machine 
learning-based optimization algorithm [63]. ActivO combines strong and weak 
learner strategies to perform a search for optimal solutions. The weak learner is 
considered to explore the promising regions, and the strong learner is considered to 
identify the exact location of the optimum within promising areas. Another exam-
ple is the molecule deep Q-networks (MolDQN) algorithm, which is developed by 
combining domain knowledge of chemistry and reinforcement learning techniques 
for molecule optimization. Researchers have proposed several methods for opti-
mizing trading strategies in the stock exchange [64–68]. For example, Thakkar and 
Chaudhari [67] investigated the application of meta-heuristic algorithms for stock 
portfolio optimization, and trend and stock price prediction along with implications 
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of PSO. In other work, Kumar and Haider [68] proposed RNN–LSTM and improved 
its performance using PSO and flower pollination algorithm (FPA) for intraday stock 
market prediction. It is important to notice that this paper does not focus on the opti-
mization or prediction in the stock exchange. To the best of our knowledge, in the 
literature, there is no research that simulates the stock trading strategies for develop-
ing numerical optimization meta-heuristics.

It should be noted that each of the meta-heuristic algorithms has been improved 
over the years, and several enhanced versions of them are available. The extended 
algorithms improve the basic operators or overcome the defections that exist in 
the conventional versions. For example, the chaotic election algorithm (CEA) [12] 
embeds the chaos-based advertisement operator to the conventional PEA algorithm 
[11] to improve its search capability and convergence speed. Some other algorithms 
that recently proposed and used in different applications are opposition-based learn-
ing firefly algorithm combined with dragonfly algorithm (OFADA) [69], random 
memory and elite memory equipped artificial bee colony (ABCWOA) algorithm 
[70], efficient binary symbiotic organisms search (EBSOS) [71, 72], efficient binary 
chaotic symbiotic organisms search (EBCSOS) [73], and binary farmland fertility 
algorithm (BFFA) [74].

After this short review, and from the experimental results reported in the litera-
ture, we can conclude that the obtained performances on most optimization prob-
lems are not perfect. This phenomenon clearly shows that a lot of effort is needed in 
the field. Each algorithm is suitable for solving certain types of problems. It seems 
that one of the interesting tasks in this field is to determine the best algorithms for 
each type of optimization problem. For deep analysis about meta-heuristic algo-
rithms, refer to surveys given in [2, 8, 75]. Table 1 summarizes some of the recently 
proposed meta-heuristic algorithms.

3 � Stock exchange trading optimization (SETO) algorithm

This section discusses the inspiration source and describes the mathematical model 
of the proposed stock exchange trading optimization (SETO) algorithm.

3.1 � Inspiration

A stock exchange or bourse is an exchange where traders and investors sell and buy 
all types of securities such as shares of stock, bonds, and other financial instruments 
issued by listed companies [76]. The stock exchange often acts as a continuous auc-
tion market in which sellers and buyers perform transactions through electronic trad-
ing platforms and brokerages. People invest and trade with an efficient strategy in 
mind to make the most profit. Shares price never goes up in a straight line. They rise 
and fall on their way to higher prices. A rise occurs because more people want to 
buy a share than sell it. In the rising phase, the price of shares moves up. When the 
shares rise for a long period, correction may start. A correction and all types of mar-
ket declines occur because investors or traders are more motivated to sell than buy. 
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At this time, sellers will start lowering prices until buyers tend to buy the shares. 
Traders can sell their shares at any time they see fit or add to their number of shares. 
They use various indicators to obtain the selling and buying signals and maximize 
their gains through the analysis of stocks’ momentum. Some of the most commonly 
used technical indicators are simple moving average (SMA), moving average con-
vergence divergence (MACD), relative strength index (RSI), stochastic oscillator, 
and Bollinger bands among others [76].

The RSI [77] is a well-known momentum oscillator used in technical analysis. It 
measures the magnitude of recent price changes to investigate overbought or over-
sold conditions in the price of a share. It produces signals that tell traders to sell 
when the share is overbought and to buy when it is oversold. The RSI is often meas-
ured on a 14-day timeframe, and it oscillates between 0 and 100. The indicator has a 
lower line typically at 30 and an upper line at 70. A share is often considered over-
sold when the RSI is at or below 30 and overbought when it is around 70 [78]. RSI 
between the 30 and 70 levels is considered neutral. An oversold signal recommends 
that short-term declines are reaching maturity, and a share may be in for a rally. In 
contrast, an overbought signal could mean that short-term gains may be reaching a 
point of maturity, and a share may be in for a price correction. As shown in Fig. 2, 
RSI is often illustrated on a graph below the price chart.

In addition to the indicator signals, many investors use fundamental analysis 
especially price-to-earnings (P/E) ratio to find out if a share is correctly valued [79]. 
P/E shows how cheap or expensive the share is. If all things are equal (the lower the 
price, the higher the return), the lower P/E means the lower price of a share that is 
suitable for investors. However, if all things are not equal, a lower P/E may not indi-
cate a good share for investing, because a share with a high P/E may provide a better 

Fig. 2   A schematic view of RSI indicator http://​forex-​indic​ators.​net/​rsi

http://forex-indicators.net/rsi
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return than a low P/E stock. Overall, in trading, it is better to compare the P/E of a 
share with its market peers to discover it is overvalued or undervalued.

Traders and shareholders try to maximize profits by looking for the best shares 
with the highest earning. The behavior of traders in the stock market is an adaptive 
optimization process.

3.2 � Mathematical model

This section shows how the trading behavior of traders and changes in share prices 
is mathematically modeled to design the stock exchange trading optimization 
(SETO) algorithm. Figure 3 shows the flowchart of the SETO algorithm. The SETO 
is a population-based optimization algorithm, which starts its work with an initial 

Initialize algorithm parameters

Generate a population of shares

Find fitness of shares

Compute the correction of shares (falling phase)

Compute the growth of shares (rising phase)

Stop conditions are met?

Return the best share

Define fitness function

Start

End

t=t+1

Replace the shares (exchange phase)

No

Yes

Calculate RSI

Fig. 3   Flowchart of the proposed SETO algorithm
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population of shares. Each share (stock) in the population is a potential solution to 
the problem. The objective is to find the most profitable share in the population, 
which corresponds to the optimal solution. The algorithm iteratively updates the 
population by three main operators including rising, falling, and exchange. Finally, 
the most profitable share is reported as the optimal solution. The rising phase mod-
els the growth of shares’ prices in the stock exchange. The falling phase models the 
prices decline of shares. In the exchange phase, traders replace their shares with the 
lowest profit with the most profitable shares. In the following, the components of the 
algorithm are described in more detail.

3.2.1 � Create initial population

To solve any optimization problem, the first step in the SETO algorithm is to cre-
ate an initial population of candidate solutions. Each solution in the population is 
referred to as a share or stock. In this paper, the terms “share” and “stock” are uti-
lized interchangeably in most cases. For an optimization problem F(x) with D vari-
ables {x1, x2, … , xD} , the initial population is defined as

where N is the population size. Each share Si ∈ S is a vector of D real-valued vari-
ables presented as follows:

where sij contains a possible value for the corresponding variable xj of problem F(x). 
The variable sij is initialized as

where �ij is a random number in the range [0, 1] generated by uniform distribution. li 
and ui are the lower and upper bounds of tij , respectively.

The profitability of shares is evaluated using a fitness function f, which is related 
to the objective function of the problem. The fitness (profitability) of each share Si is 
computed as follows:

where fi is the fitness of share Si according to the objective function of the problem. 
In minimization problems, the goal is to minimize the objective/cost function; how-
ever, in maximization problems, the goal is to maximize the objective function. In 
the terminology of SETO, for minimization problems, the fitness function equals 
the objective function, and for maximization problems, the fitness function has an 
inverse relation with the objective function. If a share is valuable, then its fitness 
will be greater and more traders will be attracted toward it. In this case, the share 
grows more and reaches higher prices. In other words, the share gradually converges 
to the optimal point.

(2)S =
[
S1, S2,… , SN

]T

(3)Si = {si1, si2,… , siD}

(4)si,j = (ui,j − li,j).�ij + li,j

(5)fi = f (Si) = f {si1, si2,… , siD}
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At any given time, each share has a number of sellers and buyers. To identify the 
initial traders, we use a random initialization mechanism. To do this, first the nor-
malized fitness ( nfi ) of each share Si is computed as follows:

The number of traders of Si is computed as follows:

where T is the total number of traders, and Ti is the number of traders of share Si . 
The number of traders can vary and change at any time. However, for simplicity, 
in the current implementation of SETO, the number of traders is considered con-
stant, and during the running of the algorithm, the total number of traders does not 
increase or decrease. The initial number of buyers and sellers of share Si is calcu-
lated as

where bi and si are the number of buyers and sellers of Si , respectively. The vari-
able r is a random number in the range [0, 1], which is generated by the uniform 
distribution.

3.2.2 � Rising

The rising operator simulates the growth of shares’ prices in the market. In this 
phase, shares can move to higher prices. Here the highest price that shares can reach 
is considered as the optimal point. If the price of a share reaches its highest value, 
then the traders who have that stock will make the most profit. To mathematically 
model the rising phenomenon, we proposed the following equation:

where Si(t) denotes the position of ith share at current iteration t, R is a 1 × D vector 
of random numbers generated every iteration, and Sg(t) is the best solution found 
until current iteration. The parameter R adds some amount of random deviations to 
the direction of movement in hope of escaping local optimums and more exploring 
solution space. Each element of vector rj ∈ R is defined as follows:

where the function U generates a random number using uniform distribution in the 
range [0, pci × d1] . The variable pci is the ratio of buyers to sellers of Si , and d1 is the 
normalized distance between Si(t) and Sg(t) defined as

(6)
nfi =

fi −min(M)

N∑
k=1

�
fk −min(M)

� , M = {fk�k = 1, 2,… ,N}

(7)Ti = ⌈nfi × T⌉

(8)
bi = ⌈r × Ti⌉
si = Ti − bi

(9)Si(t + 1) = Si(t) + R × (Sg(t) − Si(t))

(10)rj = U(0, pci × d1)
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ub and lb are the upper and lower bound of the search space, respectively. The dis-
tance between shares is naturally related to the domain of the search space. Thus, the 
distance is normalized using (ub − lb) in the denominator to avoid problem domain 
dependency. Supply and demand are two important factors in share growth. The 
higher the demand for a share, the more likely it is that the share will grow. For this 
purpose, the pci is considered in Eq. (10) to determine the impact of demand on 
share growth. Here, the demand for a share is indicated by the number of buyers. pci 
is simply defined as follows:

where bi and si are the number of buyers and sellers of share Si , respectively. To 
avoid the search boundary violation, the parameter pci is limited to a value in the 
range [0, 2]. So, Eq. (12) is revised as follows:

In the rising phase, the demand for shares increases. To model this phenomenon, at 
each iteration of the algorithm and during rising, we remove a seller from the selling 
queue of Si and add it to the buying queue as a buyer.

In the implementation of SETO, it is assumed that any trader can buy or sell a share 
at any time. Therefore, the buying and selling queue of each share Si are modeled as 
variables bi and si.

In the rising phase, the algorithm spread the solutions far from the current area of 
search space to explore different areas of search space.

3.2.3 � Falling

The falling phase simulates shares’ prices decline. To mathematically model the 
falling, we propose the following equation:

where Sl
i
(t) is the local best position the share Si has ever found. The local search 

experience increases the convergence of the algorithm. W is a 1 × D vector of uni-
form random numbers. Each element wj ∈ W is computed as follows:

(11)
d1 =

�
D∑
j=1

(S
g

j
(t) − Sij(t))

2

ub − lb

(12)pci =
bi

si + 1

(13)pci = min(
bi

si + 1
, 2)

(14)
bi = bi + 1;

si = si − 1;

(15)Si(t + 1) = Si(t) −W × (Sl
i
(t) − Si(t))



2139

1 3

Stock exchange trading optimization algorithm: a…

where function U generates a uniform random number in the range [0, nci × d2] . d2 is 
the normalized distance between Si(t) and Sl

i
(t) , which is calculated as follows:

nci is the ratio of sellers to buyers computed as

In the case of falling prices, the share supply increases. To model this issue, at each 
iteration of the algorithm and during falling, we remove a buyer from buying queue 
of Si and add it to the selling queue as a seller.

At each iteration, the number of buyers and sellers of each share is controlled so that 
the total number of buyers and sellers does not exceed the total number of traders.

3.2.4 � Exchange

In the exchange phase, traders replace their shares with the lowest profit with the 
most profitable shares. To do this, traders sell the lowest yielding shares and line up 
to buy the best shares. We implement this phenomenon by just picking one of the 
sellers from the sell queue of the worst share and assign it to the buy queue of the 
best share. The competition can be done among all shares to attract the traders; how-
ever, for simplicity, we assign the seller to the best share. To mathematically model 
this process, first, the worst share is identified. The share Sw with the lowest fitness is 
considered the worst if it obtains the lowest fitness.

Then, one of the sellers is removed from the selling queue of the worst share Sworst 
and added to the buying queue of the best share. The best share Sbest is determined 
as follows:

The exchange operator improves the population because it allows the best and worst 
shares eventually to grow. This reduces the number of sellers of the worst share and 

(16)wj = U(0, nci × d2)

(17)
d2 =

�
D∑
j=1

(Sl
ij
(t) − Sij(t))

2

ub − lb

(18)nci = min(
si

bi + 1
, 2)

(19)
si = si + 1;

bi = bi − 1;

(20)
Sworst = Sw where f (Sw) < f (Sj)

∀ j = 1, 2,… ,N, w ≠ j

(21)
Sbest = Sb where f (Sb) > f (Sj)

∀ j = 1, 2,… ,N, b ≠ j
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increases the number of buyers of the best share. Therefore, the ratio of buyers to 
sellers increases, and in this case, the possibility of rising the shares increases.

3.2.5 � RSI calculation

We use the RSI indicator to identify when the share rising or falling occurs. Accord-
ing to RSI value, SETO performs rising or falling as follows:

where p is a binary random number with values 0 or 1 regenerated at every iteration. 
p is computed as follows:

where function rand generates a random number in the range [0, 1] using uniform 
distribution. For a share Si , the RSI is calculated as follows [78]:

A simple moving average (SMA) method [76] is used to compute relative strength 
(RS) as follows:

where Pi and Ni are the upward and downward price changes, respectively. K indi-
cates the trading time frame of RSI. In the implementation of SETO, K is set to be 
14 days (iterations). In the SETO algorithm, the price of shares is represented with 
their fitness. Pi and Ni are computed as follows:

where fi(t) and fi(t − 1) are the fitness in the current and previous iterations, respec-
tively. Here, the fitness corresponds to the close price of the share. If the previous 
fitness is the same as the last fitness, both Pi and Ni are set to be zero. The RSI will 
rise as the number of positive closes increase, and it will fall as the number of losses 
increase.

(22)

⎧
⎪⎨⎪⎩

rising RSI ≤ 30

falling RSI ≥ 70

p × rising + (1 − p) × falling 30 < RSI < 70

(23)p =

{
1 rand ≥ 0.5

0 else

(24)RSI = 100 −
100

1 + RS

(25)RS =

K∑
i=1

Pi

/ K∑
i=1

Ni

(26)Pi =

{
1 if

(
fi(t) − fi(t − 1)

)
> 0

0 otherwise

(27)Ni =

{
1 if(fi(t − 1) − fi(t)) > 0

0 otherwise



2141

1 3

Stock exchange trading optimization algorithm: a…

3.2.6 � Stop condition

Until termination conditions are met, the algorithm iterates the rising, falling, and 
exchange phases on the population. Finally, the fittest share is returned as an opti-
mal solution for the problem. The following termination conditions are considered 
to stop the algorithm:

•	 A predefined number of generations (G) is reached.
•	 A specified number of fitness function evaluations (FEs) is reached.
•	 The fitness of the best share is unchanged in successive iterations.

Algorithm 1 summarizes the pseudo-code of the proposed SETO algorithm.
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Algorithm 1: Pseudo code of the proposed SETO algorithm
Input: The maximum number of iterations (G), number of shares (N), number of

traders (T ), RSI time frame (K)
Output: The fittest share Sg and its fitness

Initialize algorithm parameters;
Create an initial population of shares Si, i = 1, 2, . . . , N by Eqs. (2)-(4);
Calculate the fitness of shares by Eq. (5);
Determine the traders of shares;
Identify the best share Sg in the population;

t = 0;
while (t ≤ G) do

for i=1 to N do
if (t ≥ K and Si(t).RSI ≤ 30) then

[S]= Rising(Si(t), Sg);
else if (t ≥ K and Si(t).RSI ≥ 70) then

[S]= Falling (S);
else

r=rand;
if (r > 0.5) then

[S]= Rising(S);
else

[S]= Falling(S);
end

end

// Exchange phase;
[S]= Exchange(S);

// RSI calculation;
if (t >= K) then

Compute Pi by Eq. (26);
Compute Ni by Eq. (27);
Calculated RSI by Eq.(24);
Si(t).RSI = RSI;

end
Update the best solution Sg ;

end

t = t+ 1;
end
Return the fittest share Sg and its fitness;

3.3 � An example to show the functioning of SETO

To show the functioning of the SETO, it is benchmarked using the peak function. 
The purpose is to show how the shares move around the search space and gradually 
converge to the global optimum. The peak function is defined as follows:

(28)f (x, y) = xe−(x
2+y2) − 2 ≤ x, y ≤ 2



2143

1 3

Stock exchange trading optimization algorithm: a…

The global optimum of this problem is −0.4289 located at position 
(x, y) = (−0.0708, 0.002) . Figure  4a shows the graphical plot of the test func-
tion. Figure 4b shows the initial shares scattered throughout the search space. The 
shares are shown with a blue circle marker and the best share with a red star marker. 
Figure  4c, d shows the positions of shares at 5th, 10th, 15th, and 20th iterations, 

Fig. 4   The functioning of SETO on peak function
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respectively. Initially, the shares are scattered throughout the solution space and they 
are not in global optimum. In the 5th iteration, a share is close to the global opti-
mal point, while other shares are placed at local optimums. In the 10th iteration, the 
best share is more close to the global optimum, and in the 15th iteration, most of 
the shares are more close to the global optimum. Finally, at the 20th iteration, the 
majority of trees converge to the global optimum.

4 � Experiments

This section presents the performance evaluation of the proposed algorithm on a 
diverse set of unconstraint and single-objective numerical optimization functions. In 
the following, characteristics of test problems, performance metrics, parameter tun-
ing, as well as numerical results are presented.

4.1 � Test problems

To investigate the precision, convergence speed, and search capability of the pro-
posed SETO and comparison algorithms, forty well-studied test problems are cho-
sen from the literature [4, 7, 18, 25, 80, 81]. This test set covers four classes of func-
tions as follows:

•	 Group I F1−F10 are fixed-dimension problems. This test set investigates the 
local optimum avoidance capacity of algorithms in solving problems with a fixed 
number of variables [18].

•	 Group II F11−F22 are single-objective unimodal functions. These test cases 
have a unique global best in their landscape. They are considered to measure the 
exploitation (intensification) ability of the algorithms [18, 80].

•	 Group III F23−32 are multimodal functions that consist of multiple local opti-
mums in their landscape. The dimensionality and multiple local optima make 
multimodal functions more difficult and more complex to optimize. This group 
of functions is considered to reveal the local avoidance and exploration (diversi-
fication) capability of optimization algorithms [7].

•	 Group IV F33−F40 are shifted, rotated, hybrid and composite functions. This 
test set is drawn from CEC 2018 competition [81] on single-objective real-
parameter numerical optimization problems. These functions evaluate the reli-
ability, accuracy, and ability of the algorithms in providing a balance between 
exploration and exploitation.

The characteristics of test problems are summarized in Tables 2, 3, 4, 5, and 6. In 
the tables, the parameter fmin means the global optimum of the test function, Vars 
indicates the number of dimensions of the problem, and Range denotes the bound-
ary of search space.
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Table 2   Descriptions of fixed-dimension test functions

Function Name Range Vars fmin

F1 Adjiman [– 1, 2] 2 – 2.02181
F2 Bartels Conn [– 500, 500] 2 1
F3 Brent [– 10, 10] 2 0
F4 Bukin 6 [(– 15, – 5), (– 5, – 3)] 2 180.3276
F5 Easom [– 100, 100] 2 – 1
F6 Egg Crate [– 5, 5] 2 0
F7 Matyas [– 10, 10] 2 0
F8 Schaffer N. 4 [– 100, 100] 2 0.292579
F9 Three-Hump Camel [– 5, 5] 2 0
F10 Zettle [– 5, 10] 2 – 0.00379

Table 3   Descriptions of 
unimodal test functions

Function Name Range Vars fmin

F11 Brown [– 1, 4] 30 0
F12 Dixon and Price [– 10, 10] 30 0
F13 Powell Singular [– 4, 5] 30 0
F14 Powell Sum [– 1, 1] 30 0
F15 Rosenbrock [– 30, 30] 30 0
F16 Schwefel’s 2.20 [– 100, 100] 30 0
F17 Schwefel’s 2.21 [– 100, 100] 30 0
F18 Schwefel’s 2.22 [– 100, 100] 30 0
F19 Schwefel’s 2.23 [– 10, 10] 30 0
F20 Sphere [– 100, 100] 30 0
F21 Sum Squares [– 10, 10] 30 0
F22 Xin-She Yang 1 [– 20, 20] 30 0

Table 4   Descriptions of 
multimodal test functions

Function Name Range Vars fmin

F23 Ackley [– 32, 32] 30 0
F24 Alpine N. 1 [– 10, 10] 30 0
F25 Griewank [– 100, 100] 30 0
F26 Periodic [– 10, 10] 30 0.9
F27 Rastrigin [– 5.12, 5.12] 30 0
F28 Salomon [– 100, 100] 30 0
F29 Trignometric 2 [– 500, 500] 30 0
F30 Xin-She Yang 2 [– 5,5] 30 0
F31 Xin-She Yang N. 2 [– 2pi, 2pi] 30 0
F32 Xin-She Yang N. 4 [– 10, 10] 30 – 1
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4.2 � Comparison algorithms

The proposed SETO is compared with seven well-established optimization meta-
heuristics such as GA [82], PSO [83], GSA [41], SCA [55], SELO [56], HBO [15], 
and LFD [4] algorithms. GA, PSO, and GSA are three well-studied algorithms in 
science and engineering. SCA, SELO, HBO, and LFD are recently proposed effi-
cient human-inspired optimization algorithms that obtain competitive results on sin-
gle-objective unconstraint numerical function and constraint real-world engineering 
problems. SCA is an iterative math-inspired algorithm that uses the sine and cosine 
relations to search the solution space. SELO is inspired by the social learning behav-
ior of humans organized as families. HBO models the organization of people in a 
hierarchy called corporate rank hierarchy (CRH). It uses the heap data structure to 
map the concept of CRH. LFD is inspired by the Levy flight motions and the wire-
less sensor networks environment.

Table 5   Descriptions of group IV test functions

Function Name Range Vars fmin

F33 Shifted and Rotated Rastrigin’s Function (CEC4) [– 100, 100] 10 400
F34 Shifted and Rotated Lunacek BiRastrigin Function (CEC6) [– 100, 100] 10 600
F35 Shifted and Rotated Non-Continuous Rastrigin’s Function 

(CEC7)
[– 100, 100] 10 700

F36 Shifted and Rotated Schwefel’s Function (CEC9) [– 100, 100] 10 900
F37 Hybrid Function 1 (N = 3) (CEC10) [– 100, 100] 10 1000
F38 Hybrid Function 6 (N=4) (CEC15) [– 100, 100] 10 1500
F39 Composite Function 1 (N = 3) (CEC20) [– 100, 100] 10 2000
F40 Composite Function 6 (N = 5) (CEC25) [– 100, 100] 10 2500

Table 6   Control parameters of the algorithms used in the tests

Algorithm Control parameters

GA [82] Pc = 0.67,Pm = 0.33

PSO [83] c1 = 2, c2 = 2,� = 0.2

GSA [41] G0 = 100, � = 20, k = [N → 1]

SCA [55] � = 2, r1 = 1 − t
2

G
, r2 ∈ [0.2�], r3 ∈ [0, 2], r4 ∈ [0, 1]

SELO [56] P = 2,O = 3, rp = 0.999, rk = 0.1, follow_prob_factor_ownparent = 0.999

follow_prob_factor_otherkids = 0.9991, r = [0.95000 → 0.99995]

HBO [15] C = ⌊G∕25⌋, p1 = 1 − (t∕G), p2 = p1 +
1−p1

2

LFD [4] Threshold = 2, CSV = 0.5,

� = 1.5, �1 = 10, �2 = 0.00005, �3 = 0.005, �1 = 0.9, �2 = 0.1

SETO Initial number of traders (T)=100
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4.3 � Experimental setting

The experiments were performed using MATLAB 2016b on a Laptop machine with 
8GB main memory and 64-bit i7 Intel (R) Core (TM) 2.2GHz processor. The popu-
lation size (N), the maximum iteration number (G), and the maximum number of fit-
ness function evaluations (FEs) for all the algorithms were set to be 25 and 103 × D , 
respectively. D indicates the dimension of problems. The configuration of control 
parameters for comparison algorithms is summarized in Table 6. The parameters are 
tuned as recommended in the corresponding literature. Most of the control param-
eters of SETO are already known and configured using the data drawn from the 
stock exchange and scientific resources about technical analysis. This issue turns the 
SETO into an optimizer quite easy to implement and execute. In the current imple-
mentation of the SETO algorithm, the only parameter that needs to be adjusted is the 
initial number of traders (T). As given in Table 6, the parameter T is set to 100. Dif-
ferent values of the variable T do not affect the performance of the algorithm. The 
parameter T is used to calculate the ratio of buyers to sellers (pc) and the ratio of 
sellers to buyers (nc). The values of pc and nc do not change significantly as the total 
number of traders increases or decreases. These parameters are limited to a value in 
the range [0, 2]. Regarding population size, it is obvious that with increasing popu-
lation size, the performance of optimization algorithms improves, but also the exe-
cution time of the algorithms increases. However, the population size is considered 
the same for all algorithms. To fair comparison, the basic standard versions of the 
algorithms are used for tests. We used the source codes published by the authors and 
customized them to be compatible with our experimental configuration. The quality 
of solutions reported by the algorithms is calculated by the Mean and the standard 
deviation (Std) measures. In an ideal state, the Mean is equal to the global optimum 
of the problem, and the std is 0. As the std increases, the reliability of the algorithm 
decreases. To obtain the statistical results, the algorithms were executed 30 times on 
each test problem following the experimental instructions provided in [18, 84]. The 
results at each run are recorded to calculate the mean and the standard deviation of 
the best solutions found in 30 independent runs.

4.4 � Numerical results and discussion

Tables  7, 8, 9, and 10 summarize the statistical results obtained by the proposed 
SETO and comparison algorithms. The main objective is to evaluate the perfor-
mance of the comparison algorithms in finding the optimal solutions and measure 
the quality of the found solutions. In the tables, the symbol ⊖ means that SETO 
performs better than the counterpart algorithm on the specified test function, ⊕ 
indicates that the competing algorithm has performed better on the specified func-
tion than SETO, and ⊙ indicates that both the competing algorithm and SETO have 
attained the same results. The best results are illustrated in boldface. Overall, SETO 
outperforms its counterparts in terms of statistical tests on most benchmark prob-
lems. Inspecting the results reported in Tables 7, 8, 9, and 10, we have the following 
observations:
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•	 In the case of fixed-dimension test cases, the SETO and HBO take 1st rank for 
all test functions in terms of best mean results. However, in terms of std, the 
first position belongs to SETO, which shows its stable convergence behavior in 
solving fixed-dimension problems. Both SCA and PSO attain third rank among 
others. GA, PSO, GSA, SCA, SELO, HBO, LFD, and SETO, respectively, gen-
erate 5, 7, 5, 7, 6, 9, 6, and 9 best mean results out of the total 10 functions. 
From the results given in Table 7, it is evident that both SETO and HBO have 
excellent exploitation ability; however, SETO is more stable than HBO. The high 
exploitation power of SETO is due to two reasons. First, the algorithm updates 
the position of shares in the search space if the next positions are better than 
precedent positions. Second, shares move toward the best solution from different 
directions at each generation that helps them jump out of local optima. Figure 5a 
illustrates the results of the Friedman mean rank test [85] on fixed-dimension 
functions. The Friedman mean rank value of SETO is minimum, which shows 
that it obtains 1st rank compared with other algorithms.

•	 The results reported by SETO in solving unimodal functions are superior. It 
generates the best mean results in all test functions. The second rank belongs to 
HBO with 7 best mean results out of the total 12. This confirms that SETO has 
superior exploitation power and convergence speed in solving unimodal func-
tions. GA, PSO, GSA, SCA, SELO, HBO, LFD, and SETO, respectively, gen-
erate 0, 0, 0, 0, 1, 7, 1, and 12 best mean results out of the total 12 functions. 
Inspecting the std values shows that SETO attains the best standard deviations 
among other algorithms, which confirms its stability in the searching process. 
Figure  5b shows the results of the Friedman test on unimodal functions. As 
shown in the plot, SETO obtains the best mean rank among others.

•	 As shown in Table 9, SETO is very powerful in solving multimodal functions. It 
generates the best mean results for all test functions except F29. Inspecting the 
results, we conclude that SETO significantly outperforms its counterparts due to 
its high exploration power. The reason for this success lies in the position updat-
ing mechanism in the rising phase, in which the shares jump out of the local 
optima and move toward the best solution from different directions. GA, PSO, 
GSA, SCA, SELO, HBO, LFD, and SETO, respectively, generate 1, 1, 0, 0, 1, 
3, 2, and 9 best mean results out of the total 10 functions. As shown in Fig. 5c, 
the SETO attains 1st position and HBO 2nd rank among all algorithms on multi-
modal functions.

•	 The performance of SETO in solving group IV shifted and rotated, hybrid and 
composite functions is superior, and it outperformed other algorithms on F33–
F38 functions. For F39 and F40, HBO and LFD generate the best mean results, 
respectively. The mean results for F39 and F40, where SETO is not the top per-
former algorithm, are still very comparable and competitive to the best results 
attained by HBO and LFD. As illustrated in Fig. 5d, SETO attains the best mean 
rank among others in solving group IV functions. This confirms that SETO can 
provide a proper balance between exploitation and exploration mechanisms in 
solving complex and difficult problems. GA, PSO, GSA, SCA, SELO, HBO, 
LFD, and SETO, respectively, generate 0, 1, 1, 0, 1, 5, 3, and 6 best mean results 
out of the total 8 functions.
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The key factor to efficient search is the proper harmonization between exploration 
(diversification) and exploitation (intensification). In the SETO algorithm, the ris-
ing operator is responsible for exploring the search space, and the falling operator is 
responsible for exploiting the promising areas. The rising operator directs the search 
agents (shares) in the solution space to explore unvisited areas and finds the prom-
ising areas, whilst the falling operator tries to carefully examine the inside of the 
promising areas via accumulated local knowledge. The falling operator moves the 
solutions far from the current area of search so that explorative move should reach 
all the regions within search space accessed at least once. On the other hand, using 
local experience, the falling operator forces the solutions to converge quickly with-
out wasting too many moves. The results confirm that SETO can provide a proper 
balance between exploitation and exploration mechanisms in the search and optimi-
zation process.

Figure 6 presents the mean and overall ranks of comparison algorithms computed 
by the nonparametric Friedman test [85] on all benchmark functions. The results 
reveal that SETO obtains 1st overall rank and HBO obtains 2nd rank among all algo-
rithms. The third and fourth ranks belong to SELO and LFD, respectively. The dif-
ference between the LFD and SELO is insignificant and minute. GA is ranked last. 
This phenomenon suggests that the introduction of new algorithms or the improve-
ment of existing ones is needed to solve classic and modern optimization problems.

Table 11 presents the results of the multi-problem-based Wilcoxon signed-rank 
test [85] at significant level � = 0.05 for benchmark functions. This test is performed 
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to determine the significant differences between the reported results by comparison 
algorithms. In Table 11, the SETO is the control algorithm. The results show that 
the SETO is statistically successful than its counterparts in solving test functions.

To show the quantitative differences between the results of SETO and those 
attained by comparison algorithms on benchmark functions, we perform a contrast 
estimation [85]. The objective is to determine by how far the SETO outperforms its 
counterparts. As shown in Table 12, SETO has a significant difference with other 
algorithms that shows its good optimization ability on different test problems.

4.5 � Scalability analysis

The convergence speed and optimization ability of algorithms will decrease as the 
dimension of problems increases. To investigate this issue, we performed a series 
of tests on 1000-dimension benchmark functions to evaluate the scalability of algo-
rithms. The experiments are performed on scalable unimodal functions F11–F22 
and multimodal functions F23–F32. The algorithms terminate when they reach the 
global optimum point, or they have failed to find a better solution than the exist-
ing solution during the last 50,000 FEs. The results are listed in Tables 13 and 14. 
From the results, it can be concluded that SETO attains all the best mean results in 
1000 dimension problems except F15. However, the best mean result for F15 is very 
competitive to the best result. SELO, LFD, and HBO generate good performances; 
however, their difference with SETO is not minute. The results confirm the superior 
scalability of SETO compared with its counterparts. Figure 7 illustrates the execu-
tion time consumed by algorithms to reach the global optimum. From the figure, we 
observe that SETO takes less execution time than other algorithms in most test func-
tions. SETO performs exploration and exploration at the same time and converges 
faster. Therefore, SETO has less search time than other algorithms. After reaching 
the global optimum, the solutions do not change, and according to the termination 
conditions mentioned in Sect. 3.2.6, the algorithm stops.

4.6 � Convergence test

To investigate the searching performance of the algorithms, we perform a conver-
gence test on five candidate functions F6, F11, F28, F35, and F40 as representatives 
from each benchmark group of fixed-dimension, unimodal, multimodal, shifted and 
rotated, and composite test functions, respectively. Figure 8 illustrates the graphi-
cal representation, convergence plot, and distribution of solutions for test functions. 
The convergence plots confirm that the SETO avoids premature convergence; how-
ever, it converges relatively faster than other optimizers in solving different types of 
test functions. This is due to the efficient exploitation, exploration, and local avoid-
ance ability of SETO compared with others. As shown in the box-and-whisker plots, 
SETO generates solutions with the minimum dispersion, which proves its stability 
in the search process.
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4.7 � Computational complexity

4.7.1 � Time complexity

The time complexity of SETO is calculated as follows:

•	 The population initialization phase costs O(ND).
•	 Calculating the initial fitness of all shares needs O(NC), where C indicates the 

cost of the objective function.
•	 The time complexity of the rising phase bounded by O(ND + NC).
•	 The falling phase costs O(ND + NC).
•	 The exchange phase costs O(N).
•	 The time complexity of the RSI calculation phase is O(N).

The overall time complexity of SETO within one iteration in the worst case can be 
calculated as
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Fig. 6   The mean and overall ranks of optimization algorithms computed by Friedman test for all bench-
mark functions

Table 11   Results of multi-
problem-based two-sided 
Wilcoxon signed-rank test at 
0.05 significant level for SETO 
against counterpart algorithms 
on benchmark functions

SETO vs. T+ T– p value winner

GA 466 30 0.00001 SETO
PSO 358 20 0.00001 SETO
GSA 281 19 0.00001 SETO
SCA 427 8 0.00001 SETO
SELO 168 22 0.00001 SETO
HBO 65.5 25.5 0.00298 SETO
LFD 220 56 0.00016 SETO
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Since the cost of computing objective function varies for each optimization problem, 
Eq. (29) can be revised as follows:

The overall time complexity of SETO is O(GND) or O(GNC) when the algorithm 
iterates for G iterations. The overall time complexity of GA, PSO, GSA, SCA, 
SELO, HBO, and LFD is O(GND) in the worst case. The time complexity of the 
SETO is asymptotically equivalent to its counterparts. This proves that the SETO is 
computationally efficient compared with other algorithms.

4.7.2 � Space complexity

The proposed SETO needs O(N × D) space to store population at each generation, 
where N denotes the population size, and D is the number of dimensions of prob-
lems. Besides, the algorithm uses O(N) space to store the fitness of shares. The over-
all space complexity of the SETO is O(ND).

5 � Engineering problems

To show the applicability of the SETO algorithm on real-world problems, we applied 
it to four well-studied engineering problems including three-bar truss design, rolling 
element bearing design, pressure vessel design, and speed reducer design. Since the 
engineering problems consist of several constraints, the SETO is equipped with a 
constraint handling method to handle the design constraints. In this way, if each of 
the solutions violates the constraints, the algorithm ignores that solution and regen-
erates a valid one instead.

(29)
O(ND) + O(NC) + O(ND + NC) + O(ND + NC) + O(N) + O(N) =

O(ND) + O(NC) + 2O(ND + NC) + 2O(N)

(30)
{

O(ND) + O(ND) + 2O(ND + ND) + 2O(N) ≈ O(ND) if(D > C)

O(NC) + O(NC) + 2O(NC + NC) + 2O(N) ≈ O(NC) otherwise

Table 12   Contrast estimation between optimization algorithms on all test problems

GA PSO GSA SCA SELO HBO LFD SETO

GA 0 – 0.2255 – 0.2400 – 0.1660 – 0.2435 – 0.3139 – 0.3520 – 0.3792
PSO 0.2255 0 – 0.0145 0.0595 – 0.0181 – 0.0884 – 0.1265 – 0.1538
GSA 0.2400 0.0145 0 0.0740 – 0.0036 – 0.0739 – 0.1120 – 0.1393
SCA 0.1660 – 0.0595 – 0.0740 0 – 0.0775 – 0.1479 – 0.1860 – 0.2132
SELO 0.2435 0.0181 0.0036 0.0775 0 – 0.0704 – 0.1085 – 0.1357
HBO 0.3139 0.0884 0.0739 0.1479 0.0704 0 – 0.0381 – 0.0654
LFD 0.3520 0.1265 0.1120 0.1860 0.1085 0.0381 0 – 0.0273
SETO 0.3792 0.1538 0.1393 0.2132 0.1357 0.0654 0.0273 0
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5.1 � Three‑bar truss design problem

Figure 9a shows the structure of the three-bar truss design problem. This problem is 
one of the most studied test cases used in the literature [7, 36]. The objective is to 
design a truss with three bars so that its weight to be minimal. The problem has two 
parameters including the area of bars 1 and 3 and the area of bar 2. To design the 
truss, three constraints should be considered: stress, deflection, and buckling. The 
problem is mathematically defined as follows:

Table 15 compares the optimization results obtained by algorithms on the three-
bar truss design problem. To generate results, the algorithms were iterated 30 times, 
each time with a different initial population. The population size and the FEs are set 
to 25 and 100,000, respectively. The results confirm that SETO outperforms other 
algorithms in finding the optimal parameters and the weight of the truss.

5.2 � Rolling element bearing design problem

Figure  9b shows the schematic view of the rolling element bearing design prob-
lem. It is a maximization problem, which contains ten geometric variables and nine 
design constraints to control the assembly and geometric-based restrictions [15]. 

(31)

let �⃗X =
�
x1, x2

�
=
�
A1,A2

�
minimize f ( �⃗X) = l × (2

√
2x1 + x2) 0 ≤ x1, x2 ≤ 1

subject to g1(
�⃗X) =

√
2x1+x2√

2x2
1
+2x1x2)

P − 𝜎 ≤ 0

g2(
�⃗X) =

x2√
2x2

1
+2x1x2)

P − 𝜎 ≤ 0

g3(
�⃗X) =

1√
2x2+x1)

P − 𝜎 ≤ 0

where l = 100cm, P = 2KN∕cm2, and 𝜎 = 2KN/cm2

0

20

40

60

80

100

120

140

160

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32

T
im

e 
(s

ec
.)

Test function

GA

PSO

GSA

SCA

SELO

HBO

LFD

SETO
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Fig. 8   Convergence graphs and solution distributions of comparison algorithms on F6, F11, F28, F35, 
and F40 test functions
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The objective is to maximize the dynamic load-carrying capacity of a rolling ele-
ment bearing. This problem is mathematically formulated as follows [15]:

Table 16 summarizes the solutions obtained by the proposed SETO and comparison 
algorithms for the rolling element bearing design problem. Inspecting the results in 
Table 16, we conclude that the SETO obtains superior results compared with other 
optimizers and exposes the best design.

5.3 � Speed reducer design problem

Figure 9c shows a schematic view of the speed reducer design problem. The objec-
tive is to design a simple gearbox with the minimum weight that is embedded 
between the propeller and the engine in light aircraft [15]. The problem consists of 
constraints on surface stress, bending stress of the gear teeth, stresses in the shafts, 
and transverse deflections of the shafts. The mathematical formulation of the prob-
lem is as follows [15]:

(32)

maximize

Cd = fcZ
2∕3D1.8

b
if(D ≤ 25.4mm)

Cd = 3.647fcZ
2∕3D1.4

b
if(D > 25.4mm)

subject to

g1(z⃗) =
𝜙0

2sin−1(Db∕Dm)
− Z + 1 ≤ 0, g2(z⃗) = 2Db − KDmin(D − d) > 0,

g3(z⃗) = KDmax(D − d) − 2Db ≥ 0, g4(z⃗) = 𝜉Bw − Db ≤ 0,

g5(z⃗) = Dm − 0.5(D + d) ≥ 0, g6(z⃗) = (0.5 + e)(D + d) − Dm ≥ 0,

g7(z⃗) = 0.5(D − Dm − Db) − 𝜀Db ≥ 0 g8(z⃗) = fi ≥ 0.515,

g9(z⃗) = fo ≥ 0.515

where

fc = 37.91
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D = 160, d = 90

Bw = 30, ri = ro = 11.0330.5(D + d) ≤ Dm ≤ 0.6(D + d),

0.15(D - d) ≤ Db ≤ 0.45(D − d), 4 ≤ Z ≤ 50, 0.515 ≤ fiand fo ≤ 0.6,

0.4 ≤ KDmin ≤ 0.5,

0.6 ≤ KDmax ≤ 0.7, 0.3 ≤ e ≤ 0.4, 0.02 ≤ e ≤ 0.1,

0.6 ≤ 𝜉 ≤ 0.85
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Fig. 9   Engineering design problems used in the tests

Table 15   Comparison of result 
obtained by algorithms for tree-
bar truss design

Best results are illustrated in boldface

Algorithm Problem parameters Optimum weight

x
1

x
2

GA 0.792 0.399 263.9037
PSO 0.7901 0.4042 263.8974
GSA 0.7898 0.4052 263.8967
SCA 0.7875 0.4117 263.8989
SELO 0.7878 0.4108 263.8964
HBO 0.7887 0.4082 263.8959
LFD 0.7879 0.4106 263.8963
SETO 0.7886 0.4083 263.8958
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As shown in Table 17, HBO obtains the best results. With a slight difference from 
HBO, the proposed SETO takes the second rank. Except for HBO, the proposed 
SETO attains the best results compared to other optimizers, which confirms that it 
can be a suitable choice for designing the speed reducer.

5.4 � Pressure vessel design problem

Pressure vessels are widely used in industry structures such as gas tanks and cham-
pagne bottles. The goal is to design a cylindrical vessel with the minimum fabrica-
tion cost. The problem consists of four design parameters including the thickness of 

(33)

minimize f (x⃗) = 0.7854x1x
2
2
(3.3333x2

3
+ 14.9334x3 − 43.0934)−

1.508x1(x
2
6
+ x2

7
) + 7.4777(x3

6
+ x3

7
) + 0.7854(x4x

2
6
+ x5x

2
7
)

subject to g1(x⃗) =
27

x1x
2
2
x3
− 1 ≤ 0, g2(x⃗) =

397.5

x1x
2
2
x2
3

− 1 ≤ 0,

g3(x⃗) =
1.93x3

4

x2x3x
4
6

− 1 ≤ 0, g4(x⃗) =
1.93x3

5

x2x3x
4
7

− 1 ≤ 0,

g5(x⃗) =
1

110x3
6

√(
745x4

110x2x3

)2

+ 16.9 × 106 − 1 ≤ 0

g6(x⃗) =
1

85x3
7

√(
745x5

110x2x3

)2

+ 157.5 × 106 − 1 ≤ 0

g7(x⃗) =
x2x3

40
− 1 ≤ 0, g8(x⃗) =

5x2

x1
− 1 ≤ 0

g9(x⃗) =
x1

12x2
− 1 ≤ 0, g10(x⃗) =

15x6+1.9

x4
− 1 ≤ 0

g11(x⃗) =
1.1x7+1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,

5.0 ≤ x7 ≤ 5.5

Table 16   Comparison of results for rolling element bearing design problem

Best results are illustrated in boldface

Algorithms GA PSO GSA SCA SELO HBO LFD SETO

Dm 127.4083 127.5557 125 125.812 126.3521 125.7189 126.3999 125.7227
Db 20.3698 20.2762 20.6628 20.8214 21.0299 21.4233 21 21.4233
Z 11 11 11 1100 1100 1100 11 11
fi 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515
fo 0.515 0.515 0.5333 0.5182 0.515 0.515 0.5251 0.515
Kdmin 0.4 0.5 0.5 50 0.4 0.4 0.5 0.4
Kdmax 0.6 0.6 60 0.63 0.6011 0.7 0.6 0.7
� 0.3 0.7 0.3469 0.3003 0.3 0.3 0.3 0.3
e 0.1 0.3 0.02 0.0669 0.1 0.0998 0.1 0.1
� 0.6 0.0956 0.6884 0.6001 0.6004 60 0.6 0.6
Cd 80863.22 80433.47 81373.29 81256.51 83805.29 85537.48 83670.78 85539.19
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the head ( Ts ), the thickness of the body ( Th ), the inner radius (R), and the length of 
the cylindrical section (L). Figure 9d shows the overall structure of the pressure ves-
sel design problem. The problem is mathematically defined as follows [4]:

Table  18 reports the results attained by SETO and comparison optimizers. The 
parameters and costs of SETO are very competitive to those obtained by other algo-
rithms. This confirms that the SETO is able to deal with the constrained search 
space of pressure vessel design problem.

(34)

let x⃗ = [x1, x2, x3, x4] = [Ts, Th,R, L] where 0 ≤ x1, x2 ≤ 99,

10 ≤ x3, x4 ≤ 200,

minimize f (x⃗) = 0.6224x1x2x4 + 1.778x2x
3
2
+ 3.1661x2

1
x4 + 19.84x2

1
x3

subject to c1(x⃗) = −x1 + 0.0193x3 ≤ 0,

c2(x⃗) = −x3 + 0.00954x3 ≤ 0,

c3(x⃗) = −𝜋x2
3
x4 −

4

3
𝜋x3

3
+ 1, 296, 000 ≤ 0,

c4(x⃗) = x4 − 240 ≤ 0

Table 17   Comparison of results for speed reducer design problem

Best results are illustrated in boldface

Algorithm Problem parameters Optimal cost

x
1

x
2

x
3

x
4

x
5

x
6

x
7

GA 3.599614 0.7 17 7.300000 7.715320 3.350238 5.286655 3033.6028
PSO 3.600000 0.7 17 8.299999 7.715358 3.352207 5.286655 3043.0812
GSA 3.500252 0.7 17 7.750236 7.715629 3.351082 5.286725 2998.8137
SCA 3.564661 0.7 17 7.300000 7.858052 3.356281 5.288056 3025.4368
SELO 3.500195 0.70002 17 7.307411 7.918465 3.350301 5.286724 2999.2274
HBO 3.500000 0.7 17 7.300000 7.715320 3.350210 5.286650 2994.4711
LFD 3.500006 0.7 17 7.304732 7.715321 3.350224 5.286655 2994.5173
SETO 3.500013 0.700001 17 7.300330 7.715996 3.350216 5.286655 2994.4991

Table 18   Comparison of results 
for pressure vessel design 
problem

Best results are illustrated in boldface

Algorithm Problem parameters Cost

Ts Th R L

GA 0.87591 0.43296 45.38407 139.77943 6074.4540
PSO 0.86919 0.43221 45.03562 143.43608 6071.4145
GSA 1.12500 0.62500 55.98870 84.45420 8538.8359
SCA 0.86390 0.42703 44.76160 146.21210 6048.6169
SELO 0.87871 0.43435 45.52902 138.30634 6080.3521
HBO 0.84186 0.41600 43.60000 159.00000 6003.3650
LFD 0.84308 0.41674 43.68298 157.94655 6005.8844
SETO 0.81268 0.40171 42.10791 176.53302 5947.3050
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In the current implementation of the SETO algorithm, it faces three challenges:

•	 Tuning some of the control parameters with optimal values for different appli-
cations. Most of the control parameters of SETO are already known and con-
figured using the data drawn from the stock exchange and scientific resources 
about technical analysis. This issue turns the SETO into an optimizer quite easy 
to implement and execute. However, in some applications, different values for 
the parameters can increase the performance of the algorithm. Parameter setting 
is not specific to the SETO algorithms and exists in all algorithms.

•	 Increasing the execution time of the algorithm due to the calculation of the 
Euclidean distance between shares in rising and falling phases. As the dimension 
of the problem increases, the execution time of the algorithm also increases,

•	 The algorithm still traps in local optima on some benchmark functions and can-
not converge to the global optimum, as we can see in speed reducer design prob-
lem and some numerical functions such as F39, F40. This suggests that increas-
ing the exploitation and exploration power of the genetic algorithm is needed.

To summarize, the advantages of the SETO algorithm are as follows:

•	 It can be used for both continuous and discrete problems with some easy modifi-
cations.

•	 It is simple and efficient. It achieves superior results on different groups of 
numerical functions and engineering optimization problems.

•	 It can be applied to all problems that other algorithms can be applied for.
•	 It converges to the global optimum of the optimization problems faster than its 

counterparts.
•	 It outperformed other algorithms on most benchmark functions. Out of 40 

numerical optimizatin functions, SETO has achieved the global optimum on 
36 functions, and out of 4 engineering complex problems, it obtained the best 
results on 4 cases.

6 � Conclusion

This paper presents a novel stock exchange trading optimization (SETO) algo-
rithm to solve numerical and engineering optimization problems. The algorithm is 
based on technical-based trading strategies in the stock market. Rising, falling, and 
exchange are the three main phases of the algorithm that hopefully causes the solu-
tions to converge to the global optimum of the cost function. SETO is easy to imple-
ment and conceptually simple. To test the performance of SETO, it is compared 
with several state-of-the-art optimizers in solving a wide variety of numerical global 
optimization and real-world problems. The results confirm that SETO attained out-
standing performance compared with its counterparts in most test cases. This issue 
is demonstrated with the experiments and the statistics of results. There remain sev-
eral directions for future research. One of the interesting works is to apply the SETO 
to a variety of real-world applications to precisely determine the advantages and 
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weaknesses of the algorithm. Another work is to develop a multi-objective version 
of the SETO to employ it for solving multi-objective problems. Finally, modeling 
various indicators and phenomena in the stock exchange such as options and share 
portfolio, and improving the potential of algorithm operators can be helpful to guide 
the search process and further improve the performance of the algorithm.
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