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Abstract
The behaviour of individual users in an online social network is a major contrib-
uting factor in determining the outcome of multiple network phenomenon. Group 
formation, growth of the network, information propagation, and rumour blocking 
are some of the many network behavioural traits that are influenced by the interac-
tion patterns of the users in the network. Network motifs capture one such interac-
tion pattern between users in online social networks (OSNs). For this work, four 
second-order (two-edged) network motifs have been considered, namely, message 
receiving pattern, message broadcasting pattern, message passing pattern, and recip-
rocal message pattern, to analyse user behaviour in online social networks. This 
work provides and utilizes a node interaction pattern-finding algorithm to identify 
the frequency of aforementioned second-order network motifs in six real-life online 
social networks (Facebook, GPlus, GNU, Twitter, Enron Email, and Wiki-vote). The 
frequency of network motifs participated in by a node is considered for the relative 
ranking of all nodes in the online social networks. The highest-rated nodes are con-
sidered seeds for information propagation. The performance of using network motifs 
for ranking nodes as seeds for information propagation is validated using statistical 
metrics Z-score, concentration, and significance profile and compared with baseline 
ranking methods in-degree centrality, out-degree centrality, closeness centrality, and 
PageRank. The comparative study shows the performance of centrality measures to 
be similar or better than second-order network motifs as seed nodes in information 
diffusion. The experimental results on finding frequencies and importance of differ-
ent interaction patterns provide insights on the significance and representation of 
each such interaction pattern and how it varies from network to network.
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1 Introduction

The OSNs such as Facebook, Twitter, YouTube, Instagram, WhatsApp, Snapchat, 
Google+, Quora, and LiveJournal are popular online communication platforms for 
the last few years, and their usages are increasing significantly [19]. Structurally, the 
OSNs are represented as a directed graph, where the users can be termed as nodes 
and the links are the different types of communications such as likes, replies to, and 
mentions established between nodes. Therefore, the OSN is an example of a com-
plex network through which the users build social communication and interaction, 
passing message based on the Internet platform [12]. The pattern of interaction of 
the users implies the social relationships with other users in real-life connections. 
According to Rogers [31], communication is a process in which participants gener-
ate, transfer, and receive information with one another to reach a mutual understand-
ing. Diffusion is also a kind of social change. It is defined as the process by which 
the structure and function of a social system are explained. To understand the behav-
iour of interaction patterns between the users in a network, a network motif plays an 
important role [27]. Many small sub-graphs of OSNs are significant in representing 
the fundamental topological communication patterns of the OSNs [24]. To uncover 
these structural interaction patterns, the network motif is an important tool. A net-
work motif is a small sub-graph of a given input network that occurs in significantly 
higher frequencies than expected in random networks [25]. The two-edged motifs 
have been described in [40], where the authors have investigated how the two-edged 
motifs influence the synchrony in a neural network. The two-edged motifs can be 
used to distinguish the basic communication patterns of the users with immediate 
nodes. Some users act in OSNs only as listeners; some users participate to broad-
cast the messages. In OSNs, some users’ interest is on both message passing and 
receiving and some users are close to each other so after getting the messages they 
reply. Using communication pattern findings, the overall behaviour of the informa-
tion diffusion process in the network can be recognized [24]. To identify the mes-
sage spreading patterns, basic communication pattern mining of a user is necessary. 
It tells how the users are participating to receive, broadcast, pass, and reciprocate the 
messages most efficiently in the network.

This paper focuses on the frequency computation of two-edged sub-graphs 
GSi , i.e. the convergent, the divergent, the chain, and the reciprocal, where i is 
the index of the sub-graphs, which represent the basic communication patterns 
such as message receiving pattern, message broadcasting pattern, message pass-
ing pattern, and reciprocal message pattern between the users, respectively, in a 
social network G(V,  E). This paper also investigates the two-edged motifs GSi , 
where i = {1, 2, 3, 4} of a social network G(V,  E) using the statistical measures 
of network motif—Z-score, concentration, and significance profile. Furthermore, 
based on frequencies of the communication patterns the influence nodes have 
been selected as seed nodes. Then the popular diffusion models—forest fire (FF) 
model, independent cascade (IC) model, susceptible-infected-recovered (SIR) 
model—have been used to evaluate the activated nodes. The results have been 
compared with different centrality measures.
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1.1  Motivation

In modern day life, OSNs have evolved as the most frequent medium of com-
munication. All kinds of information, something as global as a natural disaster 
like Tsunami to something as simple as the last meal one had, all information and 
opinions are shared on OSNs. The multitude of patterns and dependencies present 
in OSNs, and are mathematically represented as graphs, play an important role in 
regulating the information propagation in a network. The velocity, volume, and 
direction of information flowing through a network are dependent on the struc-
ture and orientation of structural patterns in the network. One such pattern is the 
network motif. Network motif is a statistically significant sub-graph or pattern of 
a large communication network or graph [26]. Large-scale networks like biologi-
cal networks, OSNs, electrical circuit networks, and so on can be represented as 
a graph, which includes a wide variety of network motifs. There are four second-
order connection motifs (two-edged motifs) of reciprocal, convergent, divergent, 
and chain connections and [40] investigates how these network structures can 
influence the tendency for a neuronal network to synchronize, albeit, independent 
of the dynamical model for each neuron.

Different OSNs might have different dominating network motif, that is, the fre-
quency of different network motifs might differ among different graphs. Based 
on the dominant network motif, the information propagation can be predicted for 
a network, or the flow of information can be regulated for beneficiary results. 
Rumours resulting in mass hysteria and panic can be stopped, whereas informa-
tion of a natural disaster can be quickly propagated to benefit the masses.

1.2  Contribution

Identifying nodes of importance in a network is a research domain with multiple 
real-life applications. In that light, the contributions of this paper can be listed as

– A novel algorithm for generating random networks with similar degree distri-
bution to a given network.

– Identify the second-order motifs in different real-life OSNs and compare their 
frequency using six real-life OSNs.

– Analyse the efficiency of such second-order motifs as seed nodes in information 
diffusion in OSNs using six real-life OSNs and four popular centrality measures.

– Compare the performance of second-order motifs with high centrality nodes 
as seed for information flow.

The identified seed nodes can be crucial in enhancing and manipulating the flow 
of information within a network. This can find many real-life applications such as 
directed marketing, spreading awareness on social reforms and healthcare issues 
through online networks, identifying potential flash mob initiators, and other such 
activities.
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1.3  Organization

The rest of the paper is organized as follows. Section 2 reviews the literature based 
on network motifs to understand the patterns of complex networks, information dif-
fusion, and random graph model. The required network properties—graph terminol-
ogies, measurement tools for network motif, degree centrality measures, information 
diffusion models, and communication pattern initialization based on second-order/
two-edges sub-graphs—are defined in Sect.  3. In Sect.  4, the problem statement 
and proposed approach are discussed to identify the second-order motifs. Section 5 
exhibits the experimental results, discussion, and analysis. In Sect. 6, relevant appli-
cations are discussed. Finally, Sect. 7 concludes the work with a discussion related 
to future scopes.

2  Related work

The concept of network motif as a simple building block of the complex network 
is introduced by Milo R et  al. in [26]. They also define that the network motif is 
the patterns of interconnections occurring in complex networks at numbers that are 
significantly higher than those in randomized networks. Another paper by Milo et al. 
[25] present an approach for comparing network local structure, which is based on 
the SP of small sub-graphs in the network compared to randomized networks. Shen-
Orr SS et  al. [32] also define network motif as an interaction pattern that repeats 
in many different parts of a network at higher frequencies than those found in ran-
domized networks. The network motifs with higher frequencies than expected at 
random networks suggest that they may have specific functions in the information 
processing performed by the network.

In very recent work [13], authors define a new method to explain a network motif 
using the graph compression technique. They explain a sub-graph M considered as 
a network motif if the probability of M in G is greater than the probability of M in a 
null model of G. In [29] and [39], the authors review the different tools for finding 
network motifs in a network. Several papers like [38] and [33] propose clustering 
techniques using network motifs. In these papers, the authors discuss the topologi-
cal network motifs where patterns are similar but not necessarily identical, and they 
propose a statistical model for the occurrence of such motifs in a biological network, 
from which they derive a scoring function for statistical significance in [10]. Based 
on this scoring function, they introduce a search algorithm for topological motifs 
which is called graph alignment. In [32], the authors also focus on the gene network 
motif. In [27], the authors identify interaction pattern motifs using the coloured 
motif in an email network and measure the importance of nodes by degree prestige 
and degree centrality. Youngsoo et al. [20] concentrate on the user’s communication 
pattern on a Mobile Social Network and explore the users’ collective behaviour like 
chat, message, and group message.

In [36], the authors examine the records of user interactions to analyse interac-
tion patterns across large user groups on Facebook. In [30], the authors explain the 
information diffusion process in the Twitter network based on the various measures 
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of users’ activity, popularity, and influence. Another paper [23] focuses on the infor-
mation diffusion model in OSN, and they categorize the models into explanatory 
models and predictive models. According to Milo et. al. [26] network motif theory, 
the real networks’ frequencies of sub-graphs have been compared to suitably ran-
domized networks’ frequencies of sub-graphs and only select the patterns which 
appear in the real network at numbers significantly higher than in the randomized 
networks. Therefore, generating random networks is essential to determine the sta-
tistical significance of a sub-graph as a network motif. The undirected random net-
work model with N nodes is proposed in [17] which creates every edge with prob-
ability p ∈ (0, 1) independently of every other edge. Another very popular network 
model is the ‘Barabasi–Albert’(BA) [7] model. It is an algorithm for generating ran-
dom scale-free networks using a ‘preferential attachment’ mechanism which follows 
the power-law distribution:

Where p(k) is the fraction of nodes in the network with degree k, r is a parameter 
usually between 2 and 3.

The authors propose a diffusion technique for tracking the rate with which infor-
mation spread over underlying social interaction structure in the temporal domain 
and few social parameters in [21]. This work is motivated by the epidemic model 
and also proposes forward state transition and recoverable transition. This model 
supports predicting/forecasting of information diffusion in social media and infec-
tious disease spreading in the community to find out the optimal value of the suscep-
tible and infected number of people during the infection period. In [15], the authors 
investigate the information diffusion about the COVID-19 on several social media 
data sets. They have observed the spread of information using epidemic models and 
suggest that information spreading is driven by the interaction paradigm. This pat-
tern is determined by the specific social media or/and by the specific interaction pat-
terns of groups of users engaged with the topic. The authors establish the informa-
tion diffusion model based on the FF model and shows that information spreading 
across online social networks depends upon user–followers relationships, the sig-
nificance of the topic, and other features on Twitter network in [22]. In very recent 
work, [35] proposes the information diffusion model based on mean-field theory and 
compares it with the SIR model. They establish in their work that users’ mobility 
increases the connections among users which affects the spreading of information 
diffusion. In [34], the authors work in maximizing influence diffusion in large-scale 
networks using heuristics on independent cascade models.

Unlike the existing methods above, this paper investigates the second-order motifs 
for each node using several statistical tools to find the communication patterns of the 
users. By considering the highest frequencies of the different second-order motifs 
of a node, the seed nodes have been selected to experiment with the information 
diffusion process using independent cascade, susceptible-infected-removed, and for-
est fire models. The result is also compared with the highest centrality nodes. This 
helps to understand the importance of basic communication patterns of the nodes in 
several OSNs. The key novelty of this work is that the findings of basic interaction 

(1)p(k) ∼ k−r
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patterns (second-order motifs) of the users are based on the generation of a random 
graph with similar in-degree and out-degree sequences of the input graph and deter-
mining their effects on information diffusion in OSNs.

3  Network properties

3.1  Graph terminologies

3.1.1  Directed graphs and sub‑graphs

A complex network, which is represented as a directed graph G(V, E) composed by 
a finite non-empty set V of vertices or nodes connected by edges that belong to the 
set of edge E, has a direction associated with vertices. A directed sub-graph GSi of a 
directed graph G(V, E) is a graph whose vertex set belongs to V, that is VSi ⊆ V  , and 
whose edge set ESi is a subset of the edge set E, that is ESi ⊆ E and the direction of 
edges in sub-graphs follow the same of G(V, E).

3.1.2  Sub‑graph frequency

The frequency of sub-graph GSi is denoted by F(GSi) , where i = {1, 2, 3, 4} , is the 
number of occurrences of patterns in graph G(V, E). A motif is a pattern that is con-
sidered significant according to a particular frequency-based comparison.

3.1.3  In‑degree and out‑degree

For a directed graph G(V, E) with edges E and vertices V, the out-degree of v2 refers 
to the number of edges incident from v2. That is, the number of edges directed away 
from the vertex v2. The in-degree of v1 refers to the number of edges incident to v1. 
That is, the number of edges directed towards the vertex v1.

3.1.4  Network motif

A network motif is a small sub-graph which appears recurrently in a complex net-
work and satisfies the following conditions: 

1. Prob(F_rand(GS) > F_orig(GS)) ≤ P (This is used to check the higher frequency 
in original network rather than random network with same degrees)

2. F_orig(GS) ≥ U (It is used to check the minimum frequency occurrence in origi-
nal network)

3. F_orig(GS) − F_rand(GS) > D × F_rand(GS) (It checks the minimum deviation)

where {P,U,D,N} is a set of parameters and Milo [25] considers {0.01, 4, 0.1, 1000} , 
which refers the number of similar random networks is 1000, a sub-graph is consid-
ered as a motif if the chance that it appears more often in a random network than in 
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the original network is less than 1% , the sub-graph is present at least 4 times in the 
original graph and the difference between its frequency in the original network and 
the average frequency in random networks is at least 10% of that average frequency 
in random network.

Here, P is probability threshold, U is uniqueness threshold, D is proportional 
threshold, N is the number of random networks, F_rand(GS) is the frequency of 
sub-graph in random graph, and F_orig(GS) is the frequency of sub-graph in origi-
nal graph.

Table 1 refers to the calculated frequency of each second-order network motif in 
the original OSN graphs, and the mean frequency of the same in the random graphs. 
For the purpose of this work, the values of {P,U,D,N} have been considered as 
{0.01, 4, 0.1, 100} . Based on these values, the network motifs that are expected to be 
not dominant in each of the real-life OSNs can be predicted. For the Facebook data 
set, the reciprocal motifs can be predicted to be non-dominant. Similarly, for Twitter, 

Table 1  Values of the proposed network motif frequency of original graph and mean frequency of 100 
random graphs with similar in-degree and out-degree sequences of original graph

Dataset Interaction pattern Original_Motif_fre-
quency

Mean_Motif_
Random_Fre-
quency

Facebook Receiving 2649368.0 2337039.16
Broadcasting 3975462.0 1963597.76
Message passing 2690019 2401185.64
Reciprocal 0.0 451.54

Twitter-scrapped Receiving 105264.0 245.28
Broadcasting 4102.0 5.18
Message passing 952 25.6
Reciprocal 18 0.0

Email Receiving 5483067.0 10792220.62
Broadcasting 21123559.0 2428672.04
Message passing 19000389 8892559.12
Reciprocal 44620.0 3661.26

Gplus Receiving 40652.0 10799406.26
Broadcasting 14563326.0 9060.05
Message passing 195592 48480.31
Reciprocal 48.0 1.84

GNU Receiving 153351.0 175955.94
Broadcasting 185113.0 140042.62
Message passing 180230.0 176648.72
Reciprocal 0.0 10.2

Wiki-vote Receiving 4285079.0 3622650.18
Broadcasting 7062816.0 780579.74
Message passing 4542805 1651593.4
Reciprocal 2927.0 451.72
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Email, GPlus, GNU data sets, the sets of non-dominant network motifs are (recipro-
cal), (receiving), (receiving, reciprocal), respectively. The Wiki-vote data set has no 
such apparently non-dominant network motif that can be predicted based on just the 
frequency. However, for the completeness of the comparative study, all the network 
motifs have been considered for all experiments hereinafter in this article.

3.2  Measures for network motif

3.2.1  Concentration

Concentration is the measure of a particular k size of network motif [37]. It is the 
ratio of the frequency of a particular size of sub-graph and the total frequency of all 
possible sub-graphs with the same size. Lets consider a sub-graph GSi , the concen-
tration of GSi is defined as

where F_orig(GSi) is the frequency of the specific sub-graph and i is the index of all 
possible sets of size k sub-graph. So, the denominator represents the total number of 
all frequencies of the sub-graph of size k. Here, the size of the graph refers to the car-
dinality of its edge set. The concentration of a network motif refers to how frequent 
it is in the network compared to other sub-graphs of the same size [14]. Table  4 
shows the percentage of the proposed network motifs. In Facebook, Email, GPlus, 
GNU, and Wiki-vote, the concentration of broadcasting motif is a higher percent-
age value that means the interaction pattern broadcasting is statistically significant 
than other motifs/interaction patterns like receiving, message passing, and recipro-
cal motifs. In Twitter-scrapped, the concentration value of the receiving interaction 
pattern is more significant as a motif rather than broadcasting and message passing.

3.2.2  Z‑score

Z-score is another measurement tool of motif [37]. It is the ratio between the differ-
ence of the frequency of the sub-graph GSi in the original network G(V, E) and the 
arithmetic mean frequency of GSi in n number of random networks and the standard 
division of frequency of GSi of n number of random networks. The random networks 
will be followed the degree distribution of G(V, E). The formulation of Z-score is 
defined as follows:

where F_orig(GSi) is the frequency of GSi in original network, mean(F_rand(GSi)) 
is the mean frequency of GSi and std(F_rand(GSi)) is the standard division of fre-
quency of GSi in n random networks. The Z-score is high if the sub-graph is over-
represented and negative if it is under-represented and close to zero otherwise [16]. 

(2)C(GSi) =
F_orig(GSi)

∑

i F_orig(GSi)

(3)Zscore(GSi) =
F_orig(Gi) − mean(F_rand(GSi))

std(F_rand(GSi))



5458 S. Sinha et al.

1 3

Therefore, the larger Zscore(GSi) value of GSi means that GSi is the more significant 
sub-graph as a network motif in graph G(V, E). Table 3 shows the Z-score values 
of the proposed network motifs. In Facebook and Wiki-vote, the Z-score value of 
receiving, broadcasting, message passing motifs are positive and high which means 
the interaction pattern-receiving, broadcasting, message passing motifs are over-
represented, whereas the motif/interaction pattern like reciprocal motif is under-
represented in the original networks. In Twitter-scrapped, the reciprocal motif is not 
considered as a motif.

3.2.3  Significance profile

The significance profile SP(GSi) [37] is defined as a vector of Z-scores of a particu-
lar set of sub-graphs, which is normalized to length of 1.

where i is the index of all possible sets of sub-graphs with the same size. It high-
lights the relative significance of sub-graphs, rather than the absolute significance 
when the Z-score value is higher in a large-scale network. The significance profile 
of a network is negative values, especially those close to −1 , are associated with 
under-represented sub-graphs, while positive ones, especially those close to 1, allow 
to recognize the motifs [16]. Table  4 shows the significance profile values of the 
proposed network motifs. In Facebook, Email, GPlus, GNU, and Wiki-vote, the sig-
nificance profile value of the broadcasting motif is positive and close to 1 that means 
the interaction pattern broadcasting is statistically significant than other motifs/inter-
action patterns like receiving, message passing, and reciprocal motifs. In Twitter-
scrapped, the significance profile value of the receiving interaction pattern is more 
significant as a motif rather than broadcasting and message passing.

3.3  Different centrality measures

3.3.1  In‑degree centrality

The in-degree centrality of a node is the in-degree of a node [8] in a directed graph 
G(V,E). It indicates the number of edges directed to the node u ∈ V .

3.3.2  Outdegree centrality

The outdegree centrality of a node is the outdegree of a node [8] in a directed graph 
G(V,E). It indicates the number of edges directed to others from the node u ∈ V .

(4)SP(GSi) =
Zscore(GSi)

�

∑

i Zscore(GSi)
2

(5)Ci = Indegree(u)
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3.3.3  Closeness centrality

The closeness centrality [18] [7] of a node u ∈ V  is the average of the shortest path 
length from the node to every other nodes in the network. It indicates the closeness 
of a node to all other nodes v ∈ V  in the network.

3.3.4  PageRank centrality

PageRank centrality is a ranking of the nodes in the graph G(V,E) based on the 
structure of the incoming links. The PageRank of node u is defined as following 
[28]:

where PageRank value for a node u is dependent on the PageRank values for each 
node v contained in the set Bu (the set containing all nodes linking to node u), 
divided by the number L(v) of outbound links from node v.

3.4  Information propagation model

3.4.1  Independent cascade model

The independent cascade (IC) [23] model explains the process of information dif-
fusion in a network. In this model, nodes participate in two states: active (A) and 
inactive (I). The node is in A state when it receives the information being circulated 
in the network. The I state node does not receive the information. In each time step, 
the A node attempts to influence its neighbours with a diffusion probability value.

3.4.2  Susceptible‑infected‑recovered model

Susceptible-infected-recovered (SIR) [23] model is a stochastic process model. In 
this model, nodes participate in three states: susceptible (S), infected (I), recovered 
(R). S is the number of susceptible nodes. These nodes are not infected but could 
become infected. I is the number of infected nodes. These nodes can transmit infor-
mation to the suspected nodes. R is the number of removed nodes. These nodes can-
not become infected and cannot transmit the information.

In this process, at first, all nodes from network G are susceptible nodes except for 
a set of nodes that are initially infected. In each discrete time-step t, infected nodes 

(6)Co = Outdegree(u)

(7)Cc =
1

∑

v∈G d(u, v)

(8)Cpr(u) =
∑

v∈Bu

Cpr(v)

L(v)
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try to infect their susceptible neighbours with probability p. These infected nodes 
can also be recovered with probability q. All recovered nodes cannot be infected 
again.

3.4.3  Forest fire model

Forest fire (FF) model is a mathematical model that has been utilized in information 
propagation as well [9, 22]. The model simulates the pattern in which a fire spreads 
in a forest. The fire starts from the seed nodes and is spread through neighbouring 
nodes with some probability. In the initial condition, all but the seed nodes (trees) 
can be considered to be not on fire. The neighbours of tree are burning if at least 
one neighbour tree is burning. The trees which are not adjacent to burning trees can 
catch fire with a probability p. An empty space is filled with trees with probability f. 
A burning tree at time instance t is not on fire and cannot catch fire starting at time 
instance t + 1 . The propagation continues as long as at least one tree is burning.

3.5  Communication pattern initialization based on second‑order/two‑edges 
sub‑graphs

The OSN is a communication network where the structure of the network repre-
sents the significant pattern of the interactions between the users. All these inter-
action patterns can be visualized by the four second-order (two-edged) sub-graphs. 
The network motif represents the pattern of connection. The basic network motif 
is represented by the single edge with a pair of nodes. Similarly, the second-order 
network motif is represented by two-edges connecting distinct pairs of nodes [1]. 
There are four types of two-edges motifs: convergent, divergent, chain motifs, and 
reciprocal. In OSNs, some users actively participate to receive the message, some 
users participate to broadcast the message, some users involve with both message 
receiving and pass, and some users communicate reciprocally with other users. All 
these interaction patterns can be represented by the four second-order sub-graphs 
which are described as follows.

Message receiving pattern (convergent) Message receiving pattern is a triadic 
two edges sub-graph GS1 of graph G(V, E) if it consists of two directed edges (u, v) 
and (w, v) where (u, v), (w, v) ∈ E , this means that the interaction originates from u 
to v and w to v, where u, v,w ∈ V  . This means that node v receives the message from 
nodes u and w, which is shown Fig. 1a.

Fig. 1  a Convergent, b divergent, c chain motifs, d reciprocal [40]
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Message broadcasting pattern (divergent) Message broadcasting pattern is a tri-
adic two edges sub-graph GS2 of graph G(V, E) if it consists of two directed edges 
(v, u) and (v, w) where (v, u), (v,w) ∈ E , this means that the interaction originates 
from v to u and w where u, v,w ∈ V  . This means that node v broadcasts the message 
to nodes u and w, which is shown Fig. 1b.

Message passing pattern (chain) Message passing pattern is a triadic two edges 
sub-graph GS3 of graph G(V, E) if it consists of two directed edges (u, v) and (v, w) 
where (u, v), (v,w) ∈ E , this means that the message flow in the graph originates 
from node u, it is first transferred to v, and then from v to w where u, v,w ∈ V  . This 
means that u passes the message to v and then v passes the message to w, which is 
shown Fig. 1c.

Message reciprocal pattern (reciprocal) Message reciprocal pattern is a dyadic 
two edges sub-graph GS4 of graph G(V, E) if it consists of two directed edges (u, v) 
and (v, u) where (u, v), (v, u) ∈ E , this means that the message is flowing from u to v 
and v to u where u, v ∈ V  . This means that u and v are interacting as reciprocal man-
ner, which is shown Fig. 1d.

4  Problem statement and approach

4.1  Problem statement

Given a network G(V, E), a set of second-order/two-edged sub-graphs or network 
motifs, namely, message receiving pattern, message broadcasting pattern, mes-
sage passing pattern and message reciprocal pattern, represented by GSi , where 
i ∈ {1, 2, 3, 4} and a set of centrality measures C, the problem is to rank the nodes 
v ∈ V  based on C and GS, according to their suitability as sources for information 
propagation. The suitability is judged based on a set of metrics M and is verified 
using a set of information propagation methods IP.

Each node v ∈ V  has a score/value for each of the centrality measures c ∈ C and 
motif in GSi . The nodes can be ranked on this score/value, and the nodes with higher 
scores can be considered as good seeds.

4.2  Proposed approach

The proposed approach can be broadly broken down in the following steps -

– Count motif frequencies in original and random graphs
– Calculate statistical metrics for each motif for both the original as well as random 

graphs
– Use the statistical metrics as ranking mechanism for seed selection
– Use the seed nodes selected using network motif frequencies for information dif-

fusion
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– Compare the performance of these seed nodes with the seed nodes selected using 
popular centrality measures as ranking mechanism with respect to information 
diffusion.

The diffusion process is a special type of communication [31] among members of 
a network. Therefore, different communication patterns diffuse the information in 
a different way, and the aim of this study is to compare and contrast the difference 
in diffusion behaviour based on different communication patterns. Section  4.2.1 
provides the algorithms utilized for counting the four different network motifs con-
sidered in this work. Section 4.2.2 provides the algorithms for generating random 
graphs with similar degree distribution as an input graph. The combination of all 
these algorithms provides the statistical metric-related empirical measures that 
allows relative ranking of nodes for suitability as seeds for information diffusion. 
Once the seed nodes have been identified, the top 1%, 2%, 3%, 4%, and 5% of the 
seed nodes are utilized to study the information diffusion in each of the real-life 
OSNs using three information propagation models, namely independent cascade, 
forest fire, and susceptible-infected-removed. Information diffusion is also stud-
ied by selection seed nodes based on centrality values, and the results are then 
compared.

4.2.1  Counting the frequencies of sub‑graphs

The network motif detection technique is based on the contrasting of the occurrences 
of each sub-graphs between in the original network and in the randomized network 
which has the same nodes and degree sequences [26]. In this step, the frequencies 
of two-edged sub-graphs such as message receiving pattern, message broadcasting 
pattern, message passing pattern, and reciprocal message pattern between the users 
have been computed by the following algorithms: 
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Algorithm  1 computes the frequency of message receiving sub-graphs 
for all nodes of the input graph G(V,  E). The value is stored in the variable 
recv_motif_no_total . The algorithm considers the in-degree of a vertex i ∈ V  at step 
6, and if the value is not zero, stores it in variable v1 at step 7. If the value of v1 is 
2, then the number of receiving motif is considered as 1 and the value of variables 
recv_motif_per_node[i] is set to 1 and recv_motif_no_total is increased by 1 accord-
ingly at step 10 to step 12. If the value of v1 is not 2, the algorithm computes the 
number as receiving motif using the formula v1 ∗ (v1 − 1)∕2 and updates the value 
of variables recv_motif_per_node[i] and recv_motif_no_total accordingly at step 14 
to step 16. The algorithm runs from step 5 to step 20 for all the vertex i ∈ V  and 
returns the frequency of message receiving sub-graphs for each vertex and the total 
message receiving sub-graphs of the input graph. 
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Algorithm  2 computes the frequency of message broadcasting sub-graphs 
for all nodes of the input graph G(V,  E). The value is stored in the variable 
broad_motif_no_total . The algorithm considers the out-degree of a vertex i ∈ V  at 
step 6, and if the value is not zero, stores it in variable v2 at step 7. If the value of v2 
is 2, then the number of broadcasting motif is considered as 1 and the value of vari-
ables broad_motif_per_node[i] is set to 1 and broad_motif_no_total is increased by 
1 accordingly at step 10 to step 12. If the value of v1 is not 2, the algorithm com-
putes the number as receiving motif using the formula v2 ∗ (v2 − 1)∕2 and updates 
the value of variables broad_motif_per_node[i] and broad_motif_no_total accord-
ingly at step 14 to step 16. The algorithm runs from step 5 to step 20 for all the ver-
tex i ∈ V  and returns the frequency of broadcasting sub-graphs for each vertex and 
the total message broadcasting sub-graphs of the input graph. 
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Algorithm  3 computes the frequency of message reciprocal sub-graphs 
for all nodes of the input graph G(V,  E). The value is stored in the variable 
reciprocal_motif_no_total . The algorithm considers the out-degree and in-
degree of a vertex i ∈ V  at step 5. If the values are not zero and if all successors 
of i get i as a successor, reciprocal_motif  is increased by 1 at step 9. The value 
of variables reciprocal_motif_per_node[i] is set to reciprocal_motif  at step 10. 
reciprocal_motif_no_total is increased by reciprocal_motif  accordingly at step 4 to 
step 14. At step 16 reciprocal_motif_no_total is divided by 2 to avoid the double-
counting and returns the frequency of reciprocal sub-graphs for each vertex and the 
total message reciprocal sub-graphs of the input graph. 
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 Algorithm  4 computes the frequency of message passing sub-graphs 
for all nodes of the input graph G(V,  E). The value is stored in the variable 
mesg_pass_motif_no_total . The algorithm considers the out-degree and in-degree 
of a vertex i ∈ V  at step 6, and the values are stored in v3 and v4. If the values 
are not zero, motif_mesg_pass is computed by v3 ∗ v4 at step 9 and stored in 
mesg_pass_motif_per_node[i] . At step 13 mesg_pass_motif_no_total is updated 
and returns the frequency of message passing sub-graphs for each vertex and the 
total message passing sub-graphs of the input graph.

4.2.2  Generating randomized networks

This section focuses on generating sufficiently large N number of randomized net-
works and counting frequencies of initialized sub-graphs.

Algorithm  5 generates a random graph, which in-degree and out-degree 
sequences of nodes are similar with original graph and here, the input is the in-
degree sequence degin[] and the out-degree sequence degout[] of the original graph 
G(V, E). The two random vertices v1 and v2 are selected by Algorithm 6 from 
degin[] and degout[] sequences and returns random vertices v1 and v2 at Algo-
rithm 5. If v1 and v2 are different then adding an edge between v1 and v2, the val-
ues of degin[] and degout[] are deducted by 1 by step 11 and step 12 accordingly. If 
v1 or v2 are not in degin[] and degout[] then removing v1 and v2 by step 13 to step 
18. Then this algorithm returns the random graph Grand(V ,E) . Then, the frequen-
cies F_rand(GSi) , where i = {1, 2, 3, 4} of the sub-graphs for each randomized 
directed graph of input graph G(V, E) has been computed using Algorithm 1 − 4.
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Algorithm  6 selects the two random vertices from degin[] and degout[] sequences 
of the original graph and stores at v1 and v2 at step 3 and step 4 accordingly. Then it 
checks the value of v1 and v2 at step 5. If they are not equal, then v1 and v2 are returned 
to Algorithm 5. 
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4.2.3  Computation of mean and standard deviation of random networks’ 
sub‑graphs

Standard deviation refers to the amount of variability of the sub-graphs within 
a data set. The mean is the average number of sub-graphs in the data set. The 
Z-score indicates the number of standard deviations of a given data point lies 
above or below the mean [37]. In this step, the mean and standard deviation of 
the frequency of sub-graph of each type which has been generated from random 
networks are computed. The value of mean and standard deviation has been used 
in the next step to compute the Z-score of each sub-graph. Here 100 random 
networks and the frequencies of four types of sub-graphs have been considered 
which are defined in Sect. 3.5.

4.2.4  Computation of concentration, Z‑score, and significance profile (SP) & finding 
the significant interaction pattern

In this section, the value of concentration, Z-score, and SP of each sub-graphs 
has been calculated using the Eqs. (1), (2) and (3). The result has been shown in 
Tables 3 and 4. The high concentration, Z-score, and SP value refer to the signifi-
cant interaction pattern (network motif) which are considered as a building block 
of an original network. After that, finding the frequencies of sub-graphs or net-
work motifs—message receiving pattern, message broadcasting pattern, message 
passing pattern, and message reciprocal pattern for each node to identify their 
individual involvement in the interaction network. Then the traditional ranking 
mechanism that is the highest valued node gets the highest rank has been used to 
measure the influences of the nodes in the mentioned interaction patterns. Then, 
1%, 2%, 3%, 4%, and 5% highest ranking nodes are selected sequentially as the 
initial activated or seed nodes to examine how information propagates throughout 
the network using three popular information propagation algorithms-independent 
cascade, susceptible-infected-removed, and forest fire models. For comparison 
study, the closeness centrality, in-degree centrality, out-degree centrality, PageR-
ank centrality have been measured for each node and similar ranking methods 
have been applied to select the initial seed nodes to apply in mentioned informa-
tion propagation algorithms.

5  Result and analysis

5.1  Data set description

For this paper, six online social network data sets have been considered. The 
source of the data sets is described in Table 2. Most data sets considered for the 
purpose of this work are open-source and free-to-use data sets. The non-open 
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source data can be made available on request. The networks have been considered 
as directed unweighted graphs. The graphs are modelled as edge lists, and there 
are no self-loops or multiple parallel edges in any of the graphs.

5.2  Experimental set‑up

Section 4.2 provides the proposed approach, along with the algorithms used to generate 
random graphs and count the frequency of motifs, which are used for the purpose of 
this work. The stepwise breakdown of the experimental set-up is described as below -

– Generating the random graph with similar in-degree and out-degree sequences of 
the original graph using Algorithm 5 and Algorithm 6. An original graph is con-
structed using the edge lists of each of the six real-life OSNs considered. Hundred 
random graphs are generated for each input original graph in-degree and out-degree 
distribution.

– Count the frequency of each of the proposed network motifs for each of the original 
graphs using Algorithm 1 through 4.

– Count the frequency of each of the proposed network motifs for the random graphs 
corresponding to each of the original graphs using Algorithm  1 through 4. The 
mean and standard division of these frequencies are then calculated.

– The network motifs are validated using the validation parameters discussed in 
Sect. 3.1.3.

– Concentration, Z-score, and significance profile for each of the proposed network 
motifs for each of the original graphs are calculated to measure of their statistical 
significance as network motifs for a particular graph/network.

– The nodes in the original graph are ranked in descending order of the frequencies of 
the proposed network motifs for each of the original graphs.

– The top 1%, 2%, 3%, 4%, and 5% of the ranked nodes are considered as seed nodes 
for information propagation in original graphs using independent cascade, suscepti-
ble-infected-removed, and forest fire models.

– The propagation results are compared with the propagation depth of some of the 
baseline models for seed selection, namely, closeness centrality, in-degree central-
ity, out-degree centrality, and PageRank.

Since the information diffusion models considered are of probabilistic nature, and the 
same seed nodes in the same network can give varied results for the same diffusion 
model, all reported results are taken as an average of multiple runs. The experiments 
are conducted using on Anaconda Python 3.6 interpreter, with 8 GB RAM, Intel i5 8th 
Generation processor with frequency of 4 GHz. The experimental results are tabulated 
and represented as figures in the following section.

5.3  Result

The proposed approach has been mentioned in the previous section and applied 
in several OSNs. The statistical measurements regarding network motifs are 
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given in Tables 3 and 4. Here, six OSN data sets Table 2 have been examined. 
The mean and standard deviation of the frequencies of each sub-graphs of 
fifty random networks and Z-score of mentioned sub-graphs are represented in 
Table 3. Table 4 represents the values of concentration and SP of each type of 

Fig. 2  Information propagation on Facebook graph

Fig. 3  Information propagation on Twitter-scrapped graph
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sub-graphs. The result of information propagation based on forest-fire model, 
information cascading model, and SIR model is shown in Figs.  2, 3, 4, 5, 6, 
and 7. For each data set, the initial seed nodes have been selected based on 
highest rank values of the closeness centrality, in-degree centrality, out-degree 

Fig. 4  Information propagation on Email graph

Fig. 5  Information propagation on GNU graph
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centrality, PageRank centrality, message receiving pattern, message broadcast-
ing pattern, message passing pattern and message reciprocal pattern which are 
mentioned in output. In the output, it is shown that 1%, 2%, 3%, 4%, and 5% of 

Fig. 6  Information propagation on GPlus graph

Fig. 7  Information propagation on Wiki-vote graph
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highest nodes have been chosen sequentially to examine and analyse the impact 
of how the information propagates using the basic communication patterns and 
centrality measurements.

Table 2  Data set description Data set name No of nodes No of edges Source/references

Facebook 4039 88234 Open source [2]
Twitter-scrapped 4716 5000 Not open source
Email 23326 158726 Open source [3]
GPlus 23628 39242 Open source [4, 11]
GNU 10876 39994 Open source [5]
Wiki-vote 7115 103689 [6]

Table 3  Values of mean and standard deviation of sub-graphs in random networks and z-score of corre-
sponding sub-graphs in original network

Dataset Interaction pattern Mean Standard deviation Z-score

Facebook Receiving 2337039.16 7168.71 43.57
Broadcasting 1963597.76 5087.281 395.47
Message passing 2401185.64 4785.13 60.36
Reciprocal 451.54 20.41 −22.12

Twitter-scrapped Receiving 245.28 2.31 45354.41
Broadcasting 5.18 2.36 1733.14
Message passing 25.6 7.94 116.68
Reciprocal 0.0 0.0 inf

Email Receiving 10792220.62 24417.39 −217.43
Broadcasting 2428672.04 6386.59 2927.21
Message passing 8892559.12 24647.33 410.09
Reciprocal 3661.26 5 1.68 792.56

GPlus Receiving 10799406.26 36317.56 −296.24
Broadcasting 9060.05 92.70 157008.54
Message passing 48480.31 10664.07 13.80
Reciprocal 1.84 1.22 37.67

GNU Receiving 175955.94 348.24 −64.91
Broadcasting 140042.62 301.37 149.55
Message passing 176648.72 149.12 24.01
Reciprocal 10.2 2.77 −3.68

Wiki-vote Receiving 3622650.18 13073.79 50.67
Broadcasting 780579.74 1621.52 3874.29
Message passing 1651593.4 10999.78 262.84
Reciprocal 451.72 19.57 126.51
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5.4  Analysis

It can be seen that the concentration and significance profile (SP) values are differ-
ent for each of the online social networks from Table 4. Reciprocal pattern has both 
low concentration and SP for all the networks. Thus, it is safe to say that relatively 
very few nodes take part in reciprocal interaction in the network. Broadcasting pat-
tern is dominant in Facebook, GPlus, and Wiki-vote networks. Receiving pattern 
is highly dominant in the Twitter-scrapped network. For the Enron Email network, 
both broadcasting and message passing patterns are prominent and for GNU net-
work all but reciprocal patterns are equally represented. The high concentration and 
SP of an interaction pattern imply that a high number of nodes take part in that pat-
tern in the network. High broadcasting pattern signifies that the participating nodes 
pass out information to other nodes in the network. Thus, the senders work as source 
of information and they actively participate in generating and propagating informa-
tion. Similarly, the receiving pattern signifies that the participating nodes accumu-
late information from other nodes in the network. Thus the receivers work as sinks 
of information. They do not actively propagate information, but they participate in 

Table 4  Values of concentration 
and significance profile (SP) of 
sub-graphs

Data set Interaction pattern Concentration SP

Facebook Receiving 28.44% 0.1081
Broadcasting 42.69% 0.9813
Message passing 28.88% 0.1498
Reciprocal 0.0% −0.0549

Twitter-scrapped Receiving 95.40% 0.9993
Broadcasting 3.72% 0.0382
Message passing 0.86% 0.0026
Reciprocal 0.01% NaN

Email Receiving 12.01% −0.0709
Broadcasting 46.27% 0.9541
Message passing 41.62% 0.1337
Reciprocal 0.097% 0.2583

GPlus Receiving 0.27% −0.0019
Broadcasting 98.40% 0.9999
Message passing 1.32% 8.7862e-05
Reciprocal 0.000324% 0.0002

GNU Receiving 29.56% −0.3938
Broadcasting 35.69% 0.9073
Message passing 34.75% 0.1457
Reciprocal 0.0% −0.0223

Wiki-vote Receiving 26.96% 0.0130
Broadcasting 44.44% 0.9971
Message passing 28.58% 0.0676
Reciprocal 0.02% 0.0326
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the flow. Message passing pattern signifies that the participating nodes neither act as 
source nor sink in the information flow, but work as facilitators, passing on received 
information. Reciprocal pattern signifies that the participating nodes act as both 
source and sink.

From Table 3, the Z-scores can be seen along with the mean and standard devi-
ations of each of the interaction patterns for each of the networks. The Z-score 
implies how many standard deviations away from the mean is a value. Thus a 
very high positive or negative Z-score implies outliers or values which are over-
represented where a low to moderate Z-score, both positive and negative, implies 
a closer to average value.

Combining the results from these two tables, it can be said that Facebook, 
GPlus, and Wiki-vote have nodes which can be used as seed nodes as they 
actively spread information. However, the reach of these broadcasting nodes 
might be limited as two-edge motifs have a reach of distance 1. For Twitter-
scrapped network, most nodes play a passive role, where they receive information 
but do not propagate it forward. For GNU and Email network, all the interactions 
are evenly distributed.

Figure  2 presents the extent of information propagation on Facebook user 
interaction graph using forest fire, susceptible-infected-removed, and independ-
ent cascade models. The X-axis represents the number of seed nodes selected, 
and the Y-axis represents the number of infected nodes at the end of propagation. 
Figures 3, 4, 5, 6, and 7 are an equivalent representation on Twitter interaction 
graph, Enron Email graph, GNU graph, GPlus interaction graph and Wiki-vote 
graph, respectively.

In Figs. 2, 3, 4, 5, 6, and 7 it can be seen that the FF model is not spreading 
information more when low percentages like (1%, 2%, 3%) of seed nodes have 
been selected initially. The reciprocal pattern is also working significantly when 
(4%, 5%) of seed nodes have been selected through the reciprocal pattern has less 
Z-score value on Facebook. It can be also noticed that in the IC model and SIR 
model, the reciprocal motif is not propagating the information on Facebook and 
GNU networks. For each network, the total infected count is very high for the 
FF model. In Email and GPlus networks, the activated nodes are low for IC and 
SIR models. It can be observed that the FF model predicts very low spreaders 
count initially but later on, the count increases when the seed nodes’ percent-
age is increased. In FF model, centrality measures and network motif patterns 
are spreading the information almost similar count, but in the IC model and SIR 
model, the centrality measures are spreading more than the different network 
motif patterns.

6  Applications

The basic human–interaction pattern analysis is very important in OSNs to find the 
influential nodes and to analyse the human activity patterns and information propa-
gation, customer management in e-commerce, etc.
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6.1  Influential nodes identification

The influential node identification is a hot topic in the social network. In social 
media, different interaction patterns can be observed for different groups of users, 
so using this basic interaction motif patterns the particular group of users can be cat-
egorized or identified. Generally, the nodes which are more involved with the broad-
casting pattern, those nodes can be targeted nodes to publish a new product or brand 
or services in e-marketing. Hence, these are the influential nodes.

6.2  Human activity patterns and information propagation analysis

The OSN is a crucial platform for information propagation and viral marketing to 
political purposes. From the information propagation point of view, few nodes act as 
the good receiver and few nodes are good information spreader which can be iden-
tified by this methodology. The good information spreader nodes can be criminal 
for rumour spreading. From interaction patterns, users behaviours or activity pat-
terns can be analysed by their profiles, which can be used to improve business and 
resource management in OSN. Even for rumour controlling and opinion monitoring, 
these interaction patterns can be used to analyse how particular users are propagat-
ing information.

6.3  Customer management in E‑commerce site

E-commerce is a platform through which customers can electronically buy and sell 
products on online services or the Internet. The customers’ activity can be ana-
lysed from the historical customer and product network. Using the interaction pat-
tern analysis, the business organization can focus on the target nodes/customers for 
acquiring and retaining customers. This method can be applied to find profitable 
customers and popular product/services.

7  Conclusion

Earlier studies have mainly focused on network properties like degree distribution, 
clustering, density, shortest path, transitivity, and so on, and their effect on infor-
mation propagation. Many studies have been conducted in evaluating the network 
behaviour as a whole from a structural perspective. In this approach, the focus is on 
the basic communication/ interaction patterns in OSN. The article focuses on find-
ing the frequency of the second-order network motifs in real-life OSNs and random 
graphs with degree distribution similar to the real-life OSNs. The focus is also on 
comparing the performance of network motifs with some popular centrality meas-
ures with respect to information propagation, tested using three standard information 
propagation techniques: forest fire, independent cascade, and susceptible-infected-
removed. The experimental results show that the performance of network motifs is 
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comparable to, but not out-performing, that of popular centrality measures in seed 
selection for information propagation. The experimental results also highlight that 
different network motifs are dominant for different OSNs, as well as for different 
propagation methods in the same OSN.

Future scope of research in related domains can include investigating the commu-
nity detection in OSN based on these basic interaction patterns. Whether the nodes’ 
basic interactions are affected by other factors such as a social event, age, gender, 
hometown, and profession can also be analysed. A lot of open problems such as 
how the basic interaction patterns affect the human behaviours, how the basic inter-
actions patterns affect the velocity of information propagation, and other complex 
interaction motifs analysis can be studied in future as well.
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