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Abstract

Cloud computing allows enterprises (o incorporate applications and computational
resources as services, and thus, enterprises can concentrate on their business pro-
cesses, without conceming the development, configuration and maintenance of these
applications and resources. Integration platforms are one of these services that allow
enterprises to integrate applications in order to reduce the maintenance costs and
operations of the integration of on-premises platforms. However, high performance
on resources offered by the cloud, demands improvement in task scheduling of inte-
gration platforms. Our literature review has identified a lack of studies in the field
of enterprise application integration, focusing on specificities and vulnerabilities of
the task scheduling of integration processes. This is a pioneer work regarding the
characterisation of the scheduling of tasks of integration processes. We propose a
ranking according to their conceptual models and apply this ranking to five integra-
tion processes. Then, we have statistically analysed the influence of each component
of their conceptual models on the perfformance of the execution of these integra-
tion processes. We characterise the task scheduling of integration processes and pre-
sented a mathematical equation for the makespan as a function of the components
of this characterisation. This study can guide software engineers in the optimal task
scheduling for integration processes, which can improve the performance runtime
systems regarding using the computational resources and result in minimisation of
costs of companies.



1 Introduction

Contemporary business processes are involved in environments that deal with
large, fast and varied amounts of data from several different sources and types
of devices [73]. These processes are supported by a set of on-premise applica-
tions and cloud services that compose the software ecosystem of enterprises [60].
Cloud computing services, such as Software-as-a-Service (SaaS) and Infrastruc-
ture-as-a-Service (laaS), have brought up several advantages for enterprises.
SaaS allows the incorporation of applications, and laaS enables the expansion
of computational power, reducing the efforts of enterprises with development,
deploy ment, maintenance of applications and computational resources Lo execute
these applications. Besides, in cloud computing. billing is frequently based on
the pay-as-you-go model. which allows enterprises to pay only for the services
that they consume [15]. Internet-of-Things (1oT) is another contemporary advan-
tage. loT improves overall business possibilities, but it implies in dealing with a
large amount of business data to obtain exact information on business assets and
to analyse business requirements [82]. In this context. it is a challenge to make
these on-premise applications and cloud services interoperate to exchange data
and share functionalities.

Enterprise application integration (EAI) is the field of research that enables
applications and services to exchange data and share functionality to respond to
demands of the business processes efficiently. EAI provides methodologies, tech-
niques and tools for the integration of applications. The integration platform is
a crucial tool to develop integration processes. Integration platforms are tradi-
tionally deployed on-premise. but recently, they have become of interest to be
deployed and provided on the cloud as Integration-Platform-as-a-Service (iPaaS).
iPaaS represents a suitable solution, especially for small- and medium-sized
enterprises because it reduces the maintenance costs and operations of the inte-
gration platforms when compared to deploying integration platforms on-premise
[13]. The integration platforms enable software engineers to design. run and
monitor integration processes. An integration process implements a work flow
composed by distinct atomic tasks that process messages that flow into it. Many
of the open-source integration platforms have been supporting a set of concep-
tual integration patterns documented by Hohpe and Woolf [44], as well as fol-
lowing the Pipes-and-Filters architectural style [1]. Some of these open-source
itegration platforms are ServiceMix [49], Petals [84], Jitterbit [78] and Guar-
and [30, 31]. Pipes represent message channels and filters represent atomic tasks
that implement a particular integration pattern to process information wrapped in
messages. The runtime system is the component of the platform that is responsi-
ble for the execution of integration processes [30]. and it plays a central role in
task scheduling [39, 42].

Task scheduling concerns the time of task execution and the computational
resources that perform the task. A runtime system has threads, usually grouped
into a thread pool that represent the computational resources available to exe-
cute the integration process. The need for efficient scheduling has increased to



minimise costs when executing an integration process in an integration platform
deployed on the cloud [35]. Besides, it is necessary (o optimise the use of com-
putational resources because processing a large amount of data from loT requires
more allocation of resources [25, 82]. In situations of high input rate, the sched-
uling of tasks at the workflow tends to focus on tasks in the beginning of the
workflow, since the most common scheduling heuristic used in integration plat-
forms execution engines is FIFO. This focus on initial tasks causes the threads
to execute them more frequently, in detriment of the other tasks. This behaviour
impacts negatively on the performance of the integration process. To measure the
performance. we adopt the makespan, a known metric, defined as the total execu-
tion time of the integration process for a given message [16, 19].

Messages coming from the cloud and mobile applications, common in contem-
porary environments, combined with messages coming from traditional enterprise
environments, have to be integrated and processed while guaranteeing high through-
put [74]. The current integration platforms present design challenges for providing
near-real-time responsiveness. These platforms manage petabyte-scale data, distrib-
uting inlegralion processes across contemporary environments ranging from tradi-
tional on-premise servers to cloud systems and mobile devices [52, 89]. Enterprises
also face the challenge to suit and integrate their applications, together with the opti-
misation of resource usage Lo save costs [37, 39, 41]. A recent study in EAI identi-
fied research directions regarding fair execution of tasks of integration processes by
optimising the task scheduling and the resource allocation of the runtime systems of
the integration platforms [32].

There are many studies and proposals of algonithms [14, 39, 46, 59, 63, 67, 72,
76, 83, 86, 89. 90, 93, 95] regarding task scheduling, but none of them deals sin-
gularly with scheduling integration, such as tasks and computational resources are
unknown, unpredictable paths to message processing, the task processing time vari-
able. The scheduling of integration processes has quite specific charactenistics, such
as unknown message arrival rate, variable task processing time, unpredictable path
at the workflow traced by messages, elastic resource provisioning. Building fair
scheduling while increasing performance is a significant concern of enterprises,
which submit an integration process for concurrent execution in different resources.
Without re-engineering the integration platforms, it is not possible to ensure their
suitability when dealing with contemporary environments. Besides, it is not pos-
sible to ensure that the enterprises will take advantage of the scalability provided
by cloud computing or optimise computational resource usage. The cloud scalabil-
ity can increase their productivity, and the optimisation of computational resource
usage can reduce their costs [56]. In the cloud context, the efficiency of runtime
systems is fundamental because the performance of the execution of integration
processes directly impacts the financial costs of enterprises. This relation between
efficiency and cost occurs due to the pay-as-you-go model adopted by the cloud.
The re-engineering of the runtime systems points o the need for improvement in
task scheduling of integration processes since this is a critical activity in runtime
systems.

In “Survey on the run-time systems of enterprise application integration plat-
forms focusing on performance™ [32], we provided a comparison framework for



integration platforms and then used it to evaluate nine open-source integration
platforms. Besides, we pointed open research directions regarding the perfor-
mance of integration platforms to the context of cloud computing, amongst them,
task scheduling.

This article is the first step towards dynamic scheduling for the execution of
integration processes. Our goal is to contribute to a better understanding of task
scheduling of integration processes by researchers and software engineers, to the
platforms to be endorsed with functionality to deal with the new challenges of
the cloud computing environment, as well as to take more advantage of the com-
putational power of this environment. As far as we know., this is the first work
that deals with the characterisation of the scheduling of tasks of integration pro-
cesses. This characterisation allows abstract the complexity and diversity of the
workflows.

We reviewed the current approaches regarding task scheduling by analysing
their models, classification, problems and methods used. Based on this review,
we have characterised the task scheduling of integration processes carried out by
runtime systems. Our first contribution was the adaptation of the representation
of integration processes found in literature [75]. We have posed a representation
that typifies the tasks of integration processes according to their type of logic
operation. Then, we have applied this representation to five integration processes.
The second contribution was a classification of the most common types of distur-
bance of events related to integration models, messages, computational resources,
the tasks and queues. The third contribution is a mathematical model for the
makespan as a function of the elements from this characterisation, obtained by
step-wise multiple linear regression statistic technique.

Based on the findings of this article, we propose a new task scheduling heu-
ristic for the execution of integration processes under high workloads in another
article entitled “Queue-priority optimised algorithm: a novel task scheduling for
run-time systems of application integration platforms™ [35].

The rest of this article is organised as follows: Sect. 2 provides background
information on task scheduling and its challenges and guidelines; Sect. 3 dis-
cusses the work related to task scheduling: Sect. 4 presents the problem for-
mulation; Sect. 5 applies the proposed representation for tasks of integration
processes; Sect. 6 presents an experiment to define a mathematical model for
makespan; and Sect. 7 presents our conclusions and future work.

2 Background

In this section, we introduce the main concepts, classifications, methods and
approaches regarding task scheduling. First, we define the concept of schedul-
ing and outline the dynamic scheduling, which is usually found in real-world
problems [18]. After. we approach the challenges and guidelines to improve task
scheduling. Lastly, we introduce the main concepts concerning information of
application integration.
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2.1 Scheduling definition

Scheduling is the decision-making process, in which it is necessary to answer «what
» , «when » and «where » o perform a job [65]. «What » refers to the decision
about the set of tasks that must be carried out to complete a job. «When » refers
the decision about the set of ime intervals associated with tasks that must be carned
out. «Where » refers to the decision about the set of resources used to perform the
tasks.

Scheduling covers two problems: «resource allocation » and «task sequencing
and timing » . The former precedes the latter. Resource allocation addresses the
decision about which resources perform which tasks, and according to Pinedo [68]
and Blazewicz et al. [10]. it can be described as follows:

IfT = {t.1,...1,} is a set of tasks, where t € T, and R = {r|.ry...r,,} is a set of
resources that executes tasks, where r € R, how must the resources of R be allocated
to perform the tasks of T in order to maximise performance ?

Task sequencing and timing addresses the decision about how to distribute the
execution of the tasks over time. Sequencing addresses the order in which tasks
must be executed, whereas iming addresses the initial tme that each task must be
executed at. According to Baker and Trietsch [6]. task sequencing and timing can be
described as follows:

If T = {t,.1,, .1, } is a set of tasks, wheret € T; S = {5,.5,...5, } is a set of task
segments, where s € S; and [t,,,. 1, | is a time interval, how must the tasks of T be
sequenced in S and distributed in|t,,. 1, | in order to maximise performance?

It is possible to find optimal solutions to resource allocation problems through
mathematical models; however. the combinatorial nature of task sequencing and
timing problems makes them complicated, and consequently, they are not efficiently
solved through mathematical models [6, 10, 68].

2.2 Scheduling approaches

In most real-world environments, the schedule needs to fit the presence of a vari-
ety of unexpected factors, such as workload oscillations, task delays and resource
overload. The use of static scheduling-based approaches becomes unfeasible and the
near-optimal schedules based on approximated data, antiquate for practical use [85].
The «proactive » and «reactive » scheduling approaches are more appropriated
to deal with environmental uncertainties [2, 22, 61]. Chaari et al. [18] classify the
dynamic scheduling as «proactive » , «reactive » and «hybrid » | cf. Fig. 1.
«Proactive » scheduling deals with uncertainties in design time. It produces
one or more scheduling endowed with flexibility that becomes responsive o



uncertainties. Thus, this approach is also called robust scheduling [55]. «Reactive
» scheduling is used in highly disturbed environments where uncertainties are both
frequent and abundant; thus, decisions are quickly made during runtime. «Hybrid »
scheduling can be «proactive-reactive » or «predictive-reactive » . The «proactive-
reactive » approach produces a set of static schedules and adopts one of them during
runtime. Then, the decision-making is not made during runtime, but the schedul-
ing can change to a previously defined scheduling capable of managing the current
disturbance. The «predictive-reactive » approach has a deterministic schedule and
adaptive scheduling. While the former produces schedules in design time, the latter
makes decisions during runtime, reacting to disturbances.

2.3 Challenges and guidelines

Parunak [65] outlines the main challenges in scheduling: desirability. stochastic-
ity. tractability. chaos and decidability. Desirability means finding a schedule that
provides results that are closer to the ones expected by the company. Mathematical
and dynamic programming [57] and evaluation [50] are the most used approaches
to address this challenge. Mathematical and dynamic programming seeks optimal
scheduling using interacting constraints; however, in complex environments, this
can demand excessive computational resources. Evaluation techniques experiment
and evaluate several solutions by simulations or by simplification of the behaviour
of the environment. However, in complex environments, the exhaustive search of the
set of solutions to evaluate can demand excessive time.

Stochasticity concerns the deviation of the real parameters defined in the com-
putational model that is used for scheduling. Such deviation arises from unexpected
events, such as breakdowns, overload, bottlenecks., variation in processing times, and
interference. Simulation techniques can efficiently provide mechanisms to describe
pseudo-random samples from a variety of standard statistical distributions, but the
number of required simulations to encompass a statistically significant number of
events can become prohibitive. Rescheduling [7]. deferred commitment [92] and
tweaking [38] are the standard techniques for this challenge. Rescheduling monitors
the deviation, changing the schedule when this deviation exceeds a given constraint;
however. this technique is only feasible when the time required to schedule is short
enough to accompany changes in the environment. Deferred commitment schedul-
ing designs high-level decisions and during runtime, refines these decisions based
on the current status of the environment. Tweaking analyses the deviation of a math-
ematical model of the scheduling within certain limits to decide when to reschedule.

Tractability concerns the computational difficulty to analyse complex environ-
ments behaviours in reasonable time and cost. Usually, heuristic techniques are used
to find a near-optimal solution, such as dispatching rules [4], constraint propagation
[91], stochastic search [64] and predictive performance modelling [87]. Dispatch-
ing rules select the next task o be executed at a resource, obeying predefined rules.
Constraint propagation deals directly with predefined constraints, identifying inter-
actions and performing changes to reduce disparity amongst them. The stochastic
search uses metaheuristics that allow the search in a wider solution space from an



initial set of random solutions. Predictive performance modelling extrapolates his-
torical observations to predictions of future situations without requiring detailed
information about the workload.

Chaos concerns an environment where the conditions never repeat themselves
and small differences in the initial conditions can result in exponential divergences
in the environment during runtime, so it is not possible to predict its behaviour. The
techniques suggested are bidding interval [23], information uncertainty [17] and
structure of chaos [45]. Bidding interval seeks a threshold below which the envi-
ronment is not chaotic. Usually, this value is determined by simulation. Information
uncertainty inserts noise to the environment o block chaotic behaviour. Although
this strategy conflicts with the problem of stochasticity, it can be used as a compo-
nent in a compromised solution. Structure of chaos identifies configurations of the
environment favourable to chaos in order to avoid them.

Decidability concerns the capacity of analysing environmental behaviour in order
to identify undecidable problems, i.e. problems for which there is no computation-
ally feasible solution in a reasonable time. A strategy used in such problems is the
participatory scheduling, which involves job processing as a partner in the schedul-
ing process. Techniques, as neural models [24], allow the computational adaptation
or learning, adjusting the model to the characteristics of the problem domain. Partic-
ipatory scheduling also addresses other challenges, and it deals with the complexity
through heuristic search, the stochasticity through real-time distributed computation
and the desirability through adaptive behaviour.

2.4 Integration definitions

An integration process is a workflow composed by segments of tasks connected
through communication channels. These segments can be of sequential or parallel
tasks. or both. Messages flow through tasks to their entire processing. A message
wrappers data of user requests and has a header and a body. The header contains
custom properties, and the body has the payload data. A message can be split into
one or more messages in the workflow, as well as two or more messages can be
merged into a unique message. A path is a specific segment connecting starting
tasks to ending tasks, in which a message is entirely processed in an integration pro-
cess. There is a dependence order for tasks at a path in which they must be executed,
so that a message can only be processed by a task after this message has been pro-
cessed by every predecessor task. However, parallel segments contain tasks that can
be executed in parallel. A task implements an integration pattern, which represents
an atomic operation, such as transforming. filtering, splitting, joining or routing. An
outbound message of a task is written to the communication channel that connects
this task with the next successor task at the workflow path.

The runtime system is the element of the integration platforms responsible for
the execution of the integration processes. Usually, runtime systems have a sched-
uler and a thread pool. The scheduler orchestrates the activities and computational
resources required for the accomplishment of the message processing. Thus, it is
the central element of the runtime system. Threads are computational resources that



execute the tasks and are usually grouped in a thread pool. A thread is the smallest
sequence of a computational program that can be managed by the runtime system.
The execution model of runtime systems establishes how they must execute tasks
and allocate threads during the processing of messages in an integralion process
[33]. Regarding execution of integration processes, there are two models in the lit-
erature: process-based and task-based [3, 11, 12, 29]. In the process-based model.
a thread executes every task of the workflow over an inbound message that flow
throughout the process. The thread is released when it finishes the execution of
every task in the workflow. In the task-based model, a thread executes the task over
the inbound message that is being processed by task. When the task finishes, an
outbound message is wrilten to the channel; this channel connects the current task
to the next one in the workflow and the thread is released. The execution of the mes-
sage in the next task now depends on a new assignment of an available thread to the
referred task. In this article, we address the task-based execution model, in which
the scheduling of tasks of the integration process follows a first-in-first-out (FIFO)
policy.

3 Related work

This section provides a literature review of the recent tasks scheduling approaches
that deal with dynamic environments. Most of the related works are included in two
primary goals. One of them manages the applications in multi-tenant cloud com-
puting, and another deals with machine breakdowns and energy consumption in
manufacturing systems. The goal of this research has a distinet purpose: the charac-
terisation of task scheduling to application integration on the cloud. The integration-
Platform-as-a-Service became imperative to handle the current amount of data and
to save computational resource use. In 2017, two-thirds of application integration
projects were projected by Cloud integration [66], being iPaaS the favourite deploy-
ment for the integration platform. According to “Magic quadrant for enterprise
itegration platform as a service 20177, the annual yield for iPaaS increases higher
than the implementation of on-premise integration [40, 81]. The same task schedul-
ing can be used by both on-premise and cloud implementations. However. in on-
premise integration, the cost by computational resources consumption does not vary,
whereas, on the cloud, this cost is proportional to using time. So, it was the cloud
environment that justified the new approach of task scheduling.

We have structured this review, classifying the articles by research field, schedul-
ing type and the method used to address the scheduling problem. We have discussed
cach article separately and summarised them in Table 1.

Huang and Siier [46] aimed to handle conflicts amongst different performance
measures in a manufacturing system. Their strategy was to identify the combinations
of dispatching rules that lead to scheduling that more accurately meet the expecta-
tions of the decision makers of the company. They adopt the predictive scheduling
approach and proposed a dispatching rule-based genetic algorithm (GA) with fuzzy
satisfaction levels. The performance metrics used were makespan, average flow
time, maximum tardiness and total tardiness. Guo et al. [39] focused on the mapping
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of tasks to resources of precedence constrained workflow applications in cloud com-
puting environments. They adopt the predictive scheduling approach for task map-
ping and proposed an algorithm based on the fuzzy clustering of resources. The goal
was o minimise the makespan of workflow applications.

Nouiri et al. [63] aimed to minimise the effect of machine breakdowns in the
schedule in manufacturing environments. They adopted a predefined schedule
and proposed an algorithm, based on particle swarm optimisation (PSO) meta-
heuristic, to solve the flexible job-shop scheduling problem under uncertainty. As
the goal function, they used the minimisation of the makespan, i.e. the minimisa-
tion of the completion tme of the last job [71]. Rimal and Maier [72] addressed
resource management in the context of compute-intensive workflow applications in
multi-tenant cloud computing environments. They adopted the reactive scheduling
approach for resource provisioning and scheduling strategy by a dynamic heuristic-
based algorithm. The goal was to minimise the makespan, the cost of execution of
the workflow and the tardiness while maximising the resource utilisation within a
given deadline. The authors defined makespan as a measure of the throughput of the
system and tardiness as a measure of the completion time, exceeding the expected
time. Zhou et al. [95] investigated the broadcast scheduling problem for dissemi-
nating data to periodic continuous queries. They adopted the predictive scheduling
approach and proposed a variant of the standard EDF scheduling algorithm that uses
dynamic priority for preemptive real-time broadeast to design scheduling algorithms
to use in data broadcast environments. The performance metrics used were: comple-
tion ratio and bandwidth consumption.

Wang et al. [86] aimed to solve the problem of poor performance and ineffi-
ciency feature selection methods in robotic cells of manufacturing systems. Their
strategy was to train the scheduler and switch scheduling strategies in real time.
They adopted the reactive scheduling approach and proposed a pattern classifica-
tion algorithm, based on a hybrid PSO. The performance index used was the makes-
pan. Additionally, the total robot utilisation rate was measured to reflect the average
busyness of the robot. Zaourar et al. [93] aimed to increase the performance con-
cerning energy consumption in the heterogencous computing systems. They adopted
a reactive approach and proposed an algorithm based on an exact solving method
and on a local search optimisation technique, which takes into account the hetero-
geneity both on the computing and communication sides. As the objective function,
they sought to minimise the makespan and energy consumption. Manasrah and Ali
[59] aimed the efficient allocation of tasks to the resources workflow applications
in cloud computing environments. They adopted the predictive scheduling approach
and proposed a hybrid algorithm based on PSO and GA meta-heuristics. The goal
was o reduce the makespan and balance the load over virtual machines (VM) with a
minimum total monetary cost.

Yahouni et al. [90] aimed to prevent disturbances in the execution of a manufac-
turing schedule previously planned. Their strategy was to use “groups of permutable
operations” methods that proposed a family of schedules instead of only one. They
adopted the predictive scheduling approach and a decision-aid algorithm, based on
a greedy heuristic, to select the schedule that fits best the real state of the shop. The
performance metric used was the maximum tardiness. Rodriguez and Buyya [76]



addressed resource utilisation inefficiencies on a Workflow as a Service environ-
ment. They adopted the reactive scheduling approach for resource provisioning and
scheduling strategy by a dynamic heuristic-based algorithm. The goal was to mini-
mise the overall cost of leasing the infrastructure resources without compromising
the deadline of workflows. The performance metrics used were: costs, percentages
of deadlines. the total number of virtual machines leased and their average utilisa-
tion, and the average makespan. Anwar and Deng [5] aimed to find a map schedul-
ing that optimises costs under an user-defined approach as a Mixed Integer Program-
ming (MIP) problem and proposed an algorithm based on the Bag of Tasks (Bdl's)
technique. which groups the workflow into bags of tasks by the criterion of data
dependency and priority constraints. After, the algorithm optimises the allocation
of elastic, heterogencous and dynamically provisioned cloud resources. The authors
defined a Normalised deadline, an Improvement rate. which are metrics related o
makespan and cosL

Sun et al. [83] aimed at a flexible online scheduling framework for big data
streaming applications (E-Stream). They adopted an online scheduling strategy
based on priority-based earliest finish time (EFT) first and schedule multiple graphs
by a max-min fairness strategy. After, the algorithm optimises the allocation of
clastic, heterogencous and dynamically provisioned cloud resources. The perfor-
mance metrics were the makespan and the fairness degree. The latter refers to the
resource utilisation rate. Buddala and Mahapatra [14] aimed to minimise the effect
of machine breakdowns in the scheduling in manufacturing environments. They
adopted a reactive approach and proposed an optimisation algorithm based on teach-
ing-learning to solve the flexible job-shop scheduling problem under uncertainty. As
an objective function, they sought to minimise the makespan. Ghafourt et al. [37]
tackled resource management in the context of workflow applications in cloud com-
puting environments. They adopted the reactive scheduling approach for resource
provisioning and proposed an algorithm based on back-tracking heunistic combined
with the scheduling of critical and non-critical tasks. The goal was to minimise the
makespan and the execution cost of workflow applications. Xie et al. [89] aimed at
the efficient allocation of tasks to the different resources for meeting the real-time
requirement of the cloud and edge computing environments. In these environments,
the application data is transmission-intensive in business workflows. They adopted
the predictive scheduling approach and proposed an algorithm based on PSO that
employs nonlinear inertia weight with selection and mutation operations by a direc-
tional search process. The goal was to reduce makespan and cost. Pietri et al. [67]
addressed the problem of scheduling multiple dataflows on heterogencous clouds.
They adopted the predictive scheduling approach and proposed an algorithm that
seeks to identify Pareto-optimal trade-off's between overall execution time, monetary
cost and fairness, efficiently exploring the solution space. The goal was (o minimise
the makespan, cost and unfairness of workflow applications executions.

We proposed a task scheduling characterisation that takes into account the spe-
cific features of the integration processes execution. The approach to this kind of
task scheduling is predictive, preferably those that use low complexity heuristic ©
deal with dynamic environments and make quick decisions based on the current
environment status without increasing the response time of the integration processes.
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Fig. 2 Integration process conceptual model

We proposed a task scheduling characterisation that takes into account the specific
features of the integration processes execution. The approach to this kind of task
scheduling is predictive, preferably those that use low complexity heuristic to deal
with dynamic environments and make quick decisions based on the current environ-
ment status without increasing the response time of the integration processes.

4 Problem formulation

In this section, we first describe the terminology and then formulate the problem.
The terminology of the task scheduling problem in integration processes is based
on the classic real-ime scheduling theory and general-purpose parallel systems. We
characterise three integration processes, according (o this terminology. In the math-
ematical formulation, we introduce the problem definition and objective function.
The former is the modelling and codification of the problem and the latter measures
the adequacy of the heuristic in order to maximise the number of messages pro-
cessed and to minimise the makespan.

4.1 Terminology

A conceptual model of an integration process is a workflow and is a set of segments,
which in turn are composed of tasks uncoupled and connected by communication
channels. An example of an integration process is depicted in Fig. 2. in which the
larger rectangle represents the integration process. Small rectangles inside it repre-
sent tasks and arrows connecting tasks represent communication channels. Rectan-
gles outside the integration process represent applications that are being integrated.
The highlighted segment represents a possible path for a message in the workflow.
We use the following terminology:



Task is a computational code that implements an atomic operation.
Communication channel is the means whereby messages pass from a task ©
another.

e Workflow is a set of atomic chained tasks by communication channels inside an
integralion process.

e Segment is a piece of a workflow that can be composed of tasks arranged
sequentially, in parallel, or both.

e Path refers to a specific set of tasks, by which a message is entirely processed in
an integration process.

A task can have one or more inputs, and one or more outputs, depending on the
implemented operation. This operation can be to transform, filter. split, join or route
messages. The tasks have an order of dependence in which they must be executed,
such that a task can only process a message after every predecessor tasks have pro-
cessed this message. After a message is processed by a task, it is written to the com-
munication channel that connects this task with the next successor task in the path.
There may be parts of the integration process that contain tasks that can be executed
in parallel.

The accomplishment of a job corresponds to receiving of one or more messages
from one or more source applications, the processing of these messages by tasks of
a path of an integration process, up to sending of one or more messages 0 one or
more deliver applications. Generally, several jobs are processed at a particular point
in time; that is, many service requests are fulfilled at a particular point in time. The
execution model of runtime systems establishes how they must execute tasks of an
integration process and allocate threads during the processing of messages [34]. The
task scheduling of integration processes can be represented as a set of tasks on com-
putational resources of the same capability, consisting of m threads.

4.2 Directed acyclicgraph

The directed acyclic graph (DAG) represents task models for real-time scheduling,
allowing the description of constraints on tasks execution [79]. In the DAG model.
an integration process is described as a workflow W composed of & tasks, being an
extension of the DAGs with weighted vertices (E.T,). where T, = {1, .15, .1, }
is the set of vertices and E is the set of edges. Every vertex in the graph represents
a task of the process, and each edge represents a communication channel between
tasks. as well as it indicates precedence constraints between tasks. Every edge has a
weight, which represents the waiting ime of the task in the queue.

Ritter et al. [75] represented the integration process as a directed graph,
called Integration Pattern Typed Graph (IPTG). IPTG was defined as a set of
nodes T and a set of edges E C T x T added to the function nype : T — F, where
F = {start. end. message processor. fork, join, condition, merge. external call}. For
anodereT, = {r’ eT|it'-ne E} for the set of direct predecessors of 1, and
t-= {1" € T|(t-1") € E} for the set of direct successors of 1.



The function fype records what type of task each node represents. The first cor-
rectness condition claims that an integration pattern has at least one input and one
output; the second condition indicates the cardinality of the tasks involved, i.e. the
in-degrees and out-degrees of a node. The last condition states, «the graph (T, E) is
connected and acyclic » | indicating that a graph represents only a task and its rela-
tion with its predecessor and successor tasks and that messages do not loop back
to previous tasks. From the IPTG representation, we adopt the condition of verifi-
cation, the classification by task cardinality and some terminologies, such as fype
start, end, join, message processor, and external call. However, as we have taken
into consideration the logic operation of the task. we add and, or. and or* function
types. We named our representation as Integration Operation Typed Graph (10TG).

An 10TG (T, E. rype) is correct if the following conditions are applied:

31,1, € T withnype (1, ) = start and type (1) = end;
if type (1) € {and } then |-t| = 1 and |t-| = n and must produce messages to all n
outputs;

e iftype(t) € {or}then|-t] = land |7-| = n and produce message in at least one of
iLs outputs;

e if rype (1) € {or } then |-t| = 1 and |t-| = n and produce message in by only one

of its outputs;

if type (1) € {join}then || = nand |t-| = I

if type (1) € {message processor} then |-t = land |t-| = 1

if type (1) € {external call} then |-t] = land |t-| = 2;

the graph (T, E) is connected and acyclic.

4.3 Integration environment

In real-world problems. many events disturb the environment and degrade the per-
formance of the execution of integration processes. We grouped the most common
types of disturbance into five groups of events related to the integration model, ©
the messages. to the computational resources, to the tasks and to the queues, cf.
Table 2. These events are also divided into internal and external. The former refers
to events caused by internal elements that can be managed or monitored by the
runtime system. The latter is caused by external elements, such as application, user
requirements or data source.

Model-related events are caused by factors related to the integration process
design. Some internal events are bottlenecks and dynamic routing. Regarding the
bottenecks, there are task arrangement patterns in integration process models,
which, subject to certain conditions, indicate obstruction or delay the message pro-
cessing [77]. The dynamic routing refers to the unpredictability of the path in which
a message is processed. Usually, the integration process includes tasks that filter
or route some specific messages; thus, the tasks in which a message will be pro-
cessed are uncertain. Also, there are external events such as /O delay and constraint
change. 1/O delay refers to the interruptions or delays caused by applications, data-
base or any other component in which the message is processed. Constraint change



Table 2 Common disturbances

L . . Group Event
in integration environment
Intemal External
Model-related Bottleneck VO delay
Dynamic routing Constraint change
Message-related - Priarity change
Workload peak

Random arrival rate

Resource-related  Unavailability Constraint change
Idleness
Deadlock

Task-related Starvation -
Random processing time

Queue-related Overload Constraint change

refers to adjustments o meet new business requirements, such as a change in the
MESSAge Processing maximum Lme Or message processing minimum rate.

Message-related events are caused by unexpected external events, such as change
of priorities, workload peak and the random arrival rate. Priority change refers to a
change in the order of message processing or task execution. Scheduling based on
the priority of task specifies a decision criterion o select the task to be executed
first, for example, the earliest finish time [20, 94]. Peak load refers to the simultane-
ous arrival of a large number of messages. Random arrival rate refers to the unpre-
dictability of the arnving message number per unit of time.

Resource-related events are caused by factors related to threads managed by the
runtime system. Some internal events are unavailability, idleness and deadlock. Una-
vailability refers to the lack of the number of threads for task execution, causing
inefficient message processing. Contrarily, idleness refers to the oversizing number
of threads, leading to financial costs for the enterprise that has under-utilised com-
putational resources. Deadlock is directly linked to bottlenecks and occurs when a
thread long-executes a task and cannot be released. In this case, constraint change
refers to events, such as adjustments in computational infrastructure that reduce the
execution capability and machine-fault.

Task-related refers to events related to the integration tasks that compose an inte-
gration process. Some internal events are starvation, random processing time and
high processing time. Starvation refers to tasks that wait for a long time to be exe-
cuted; for example, when a task has low priority and threads are always busy with
high priority tasks. Random processing time refers to environments that deal with
Big Data or Internet of Things [70]. in which data vary in volume, variety. velocity
and vanability causing vanation in the processing time of the tasks, which becomes
unpredictable.

Queue-related refers to events related to queues where tasks look forward to avail-
able threads to execute them. An internal event is an overload that occurs when there
is a high-accumulation of tasks due to high message arrival rate or to unavailability



of threads. Constraint change refers to events, such as adjustments in computational
infrastructure that reduce the capability of storing tasks.

5 Study cases

In this section, we review five integration processes in the literature, in order to dis-
cuss their conceptual models, describe their integration logic and characterise their
tasks according to function types of Integration Operation Typed Graph. We selected
conceptual models designed in a single language in order to standardise the way the
integration pattern was implemented. Initially, the models were designed using the
Guarani domain-specific language [28].

For the five integration processes, a starting task is represented byt and means
that this task does not have predecessor tasks in the order of dependence. An ending
task is represented by 1,,;, and means that this task does not have successor tasks.
It is possible to have one or more starting tasks and one or more ending task. A
task that exchanges messages with applications during runtime is represented by 1,
and an intermediate task is represented by r. There are several possible paths for the
processing of a message. which were defined during design time. However, the path
through which a message will flow depends on the integration process logic., so this
path is only acknowledged during runtime. In DAGs, an edge between (1. 1)) repre-
sents a dependence between 1, and 1, in which 7, is the predecessor node of 1 and 1, is
the successor node of 1.

These studies of the case are distinguished by types of tasks, types of segments
and the number of tasks and communication channels. The studies of cases 1 and
5 have the same type of task (start, and. or, join, message processor, extemnal call
and end), but the first has only one start task and one end task. whereas the fifth has
three start tasks and two end tasks. The studies of cases 2 and 3 have the same type
of task (start, and. or*, join, message processor, external call and end), but the first
has only one start task, whereas the third has two start tasks. The fourth study case
has the only task of the types: start and join, message processor, external call, and
end, but it is the single case that has three end tasks.

The primary benefit of enabling task logic modelling using logic operators is o
abstract the complexity and variety of the computational operation of tasks such as
transforming. filtering, splitting. joining. routing. This abstraction allows processes
integration as directed acyclic graph to develop a mathematical model to predict
performance metrics. The mathematical model is the function of a feature of every
process integration, namely the number of every type of task and the number of
sequential and parallel.

5.1 Study of case 1 (5C1): coffee shop integration process

The Coffee Shop problem is a benchmark of an integration process, introduced
by Hohpe [43]. whose conceptual model is depicted in Fig. 3. This process is an
example of an integration process with three different paths for messages, where
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Fig.3 Coffee shop conceptual model

the following types of tasks can be found: start. and. or, join, message processor,
external call and end.

In the SC1 tegration process, the integrated applications are: «Orders » |
«Barista Cold Drinks » . «Bansta Hot Drinks » and «Waiter » . «Orders » represents
the source application that delivers the data from the customer orders to the integra-
tion process. The data from the customer orders are wrapped inside messages. An
order may include either hot or cold drinks or both. Different baristas prepare cold
and hot drinks, which represent two applications that exchange messages with the
integration process: «Barista Cold Drinks » and «Barista Hot Drinks » . The orders
are delivered to the «Waiter » when all drinks corresponding to the same order have
been prepared. The «Waiter » application represents a final data sink. The process-
ing of one customer order corresponds to one job instance. It is possible to process
one or more orders, which means that one or more instances of the job can be pro-
cessed simultaneously. The number of instances of the job corresponds to the num-
ber of customer orders that are being processed. If there are several instances of the
job at a given time, then there are several instances of the same task and each task
instance is associated with a job instance.

There is one input task represented byt and one output task represented by
t,,q- Tasks that exchange messages with applications during runtime are repre-
sented by 1, and t,. Intermediary tasks are represented by 1, where i ranges from
1 to 12. In the integration logic of this conceptual model. there may be customer
orders containing only cold drinks, hot drinks or orders containing both cold
and hot drinks. For each one of these types of customer orders. there is a path



Fig. 4 Coffee shop represented in a DAG task model

Table 3 Coffee shop path chamcterisation
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through which messages are processed. The possible paths were defined during
design time by the SC1 model. However, it is during runtime that the exact path
for a given message is known, according to the type of customer order. There is
a path for customer order containing only cold drinks; another path for only hot
drinks; and another path for both cold and hot drinks. Examples of tasks that can
be executed in parallel at the Coffee Shop integration process are [t5. 4] . [t4.116] .
[t-ta] - [ts.11,]- [tg- 112]- The Coffee Shop integration process is represented by a
DAG in Fig. 4.

In 5C1 Integration Operation Typed Graph, there are 16 nodes, which rep-
resent the tasks, and there are 18 edges. which represent the channels. Node
1, 18 @ starting node that represents a task of the type start. The nodes 1y and
ty represent tasks of the type and. The t, represents a task of the type or. The
nodes 15, t;. and 1, represent tasks of the type join: nodes t,, t,, .. tg. t,,. and
t,, represent tasks of the type message processor; the nodes ¢t | and ¢, represent
tasks that send and receive information to/from applications and are tasks of the
type external call; and, node 1, , is an ending node that represents a task of the
type end. The possible paths of the conceptual model SC1 and their segments of
tasks are shown in Table 3.
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5.2 Studyofcase2 (5C2) : processing order integration process

The Processing Order problem is another benchmark of an integration process, intro-
duced by Hohpe [43], whose conceptual model is depicted in Fig. 5. This process is
an example of an integration process with three different paths for messages, where
the following types of tasks can be found: start, and. or*, join, message processor,
external call and end. The S5C2 has a different integration logic from the SC1 and.
besides. in SC2 there are two ending tasks and one task of the type or®.

In the SC2 integration process, the integrated applications are: «Ordering System
» ., «Widgel Inventory » , «Gadget Inventory » , «Invalid Items Log » and «Inventory
System » . «Ordering System » represents the source application that delivers the
data of the new orders to the integration process. The data of the orders are wrapped
inside messages. Every message with a new order is split into individual messages,
cach of which containing only one item. A message is routed 0 «Widget Inventory
» or «Gadget Inventory » depending on their contents. Messages with items that
do not belong to any of these inventories are routed to «Invalid Items Log » . The
«Inventory System » application represents a final data sink that responds consider-
ing the availability of items. The processing of one order corresponds to one job
istance.

There is one input task represented by 1,,,,, and two output tasks represented by
1y And 1, . The tasks that exchange messages with applications during runtime
are represented by and 1,. The intermediary tasks are represented by . where
i ranges from 1 to 12. In the integration logic of this conceptual model. an order
contains several items. An order is split into unitary items, which can belong exclu-
sively to one of the inventories, «Widget Inventory » and «Gadget Inventory » | or
to none. There is a path for a unitary item that belongs to «Widget Inventory » ;



Fig. 6 Processing order represented in a DAG task model

Table 4 Processing order path charmcterisation

Path Segment
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another path for a unitary item that belongs to «Gadget Inventory » ; and another
path for a unitary item that does not belong to any inventory. Examples of tasks that
can be executed in parallel in the SC2 integration process are [ts. 1] [t4. £10] . [t 1.2
.If_q. 1 ,].Irb.ru]. The S5C2 integration process is represented by a DAG in Fig. 6.

In the 5C2 Integration Operation Typed Graph, there are 17 nodes. which rep-
resent the tasks, and there are 19 edges. which represent the channels. Node 1,
is a starting node that represents a task of the type start. The nodes 15 and #, repre-
sent tasks of the type and. The t, represents a task of the type or*. The nodes 1. t,,
and 1y, represent tasks of the type join; nodes 1), ty, tq. tg. 1. and t,, represent tasks
of the type message processor; the nodes t,; and t,, represent tasks that send and
receive information to/from applications and are tasks of the type external call; and
nodes 1y, and 1,,,, are ending nodes that represent tasks of the type end. The pos-
sible paths of the conceptual model 5C2 and their segments of tasks are shown in
Table 4.

5.3 Studyofcase3 (5C3) : Huelva’s County council integration process

The Huelva's County Council problem is a real-world integration process [30] that
consists on the automatisation of the user registration into a central repository. Its
conceptual model is depicted in Fig. 7. This process is an example of an integration
process with four different paths for messages. where the following types of tasks
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can be found: start, and, or®, join, message processor, external call and end. The
5C3 has a different integration logic from the SC1 and the SC2 and. besides, in the
5C 3 there are two starting tasks and four possible paths.

In the SC3 integration process, the integrated applications are: «Local Users »
. «Portal Users » . «LDAP » ., «Human Resources System » . «Digital Certificate
Platform » and «Mail Server » . The «Local Users » represents one of the source
applications that manage the data of the users of the county council information
systems. The «Portal Users » represents the web portal used to manage the users
and is another source application. The «Human Resources System » represents the
application that provides personal information about the employees, information like
name and e-mail are required to compose notification e-mails. The «Digital Certifi-
cate Platform » represents the application that manages digital certificates. Finally,
the «Mail Server » represents the application that runs the e-mail service and is used
exclusively for notification purposes.

There are two input tasks represented by ty,,,, and t,,,,,. and two output tasks
represented by 1, and and t,, . The tasks that exchange messages with applica-
tions during runtime are represented by 7y and 7,. The intermediary tasks are repre-
sented by t,. where i ranges from 1 to 13. In the integration logic of the SC3, the data
of users that arrive from ¢, and t, - are replicated and one copy flows towards
«Human Resources System » to search for mformation about the employee who
owns a user record. Further, on t,, the message is replicated, and one copy flows
towards «LDAP » ., and another flows towards «Digital Certificate Platform » .
«Digital Certificate Platform » is queried using the email address included in the
message. The sending of the certificate and its notification to the employee about
the inclusion in the «LDAP » is made by «Mail Server » . There is a path for a local



Fig. 8 Huelva's County council represented in a DAG task model

user that has an e-mail address; another path for a local user that does not have an
e-mail address; another path for a web user that has an e-mail address; and another
path for a web user that does not have an e-mail address. Examples of tasks that can
be executed in parallel in the SC 3 integration process are [13. r—,] . If().flo]. [r—,. r,,,]. The
Huelva’s County Council integration process is represented by a DAG in Fig. 8.

In the SC3 Integration Operation Typed Graph, there are 19 nodes. which rep-
resent the tasks, and there are 20 edges, which represent the channels. Nodes 1,
and t,,,,,, are starting nodes that represent tasks of the type start. The nodes 1, and 1y
represent tasks of the type and. The 1, represents a task of the type or®. The nodes 1,
ty, and 1}, represent tasks of the type join: nodes ty, ts. 17, tg, ). 1},. and f;3 represent
tasks of the type message processor; the nodes 1) and 1, represent tasks that send
and receive information to/from applications and are tasks of the type external call;
and nodes t,,, and t,,,, are ending nodes that represent tasks of the type end. The
possible paths of the conceptual model SC3 and their segments of tasks are shown
in Table 5.

5.4 Studyof case4 (5C4) : Unijui University integration process

The Unijui University problem is a real-world integration process [30] that con-
sists on the automatisation of the charging of personal phone calls from phone lines
belonging to the university. Its conceptual model is depicted in Fig. 9. This process
is an example of an integration process with single path for messages, where the fol-
lowing types of tasks can be found: start. and, join. message processor, external call
and end. The 5C4 has a different integration logic from the previous cases, and
besides, in SC4, there are three ending tasks and one single possible path.
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Fig. 9 Unijui University conceptual model

In the SC4 integration process, the integrated applications are: «Call Centre »
. «Human Resources » . «Payroll System » . «Mail Server » and «SMS Notifier »
. The «Call Centre » records every call that every employee makes from a phone
line belonged to the university. The code is also used to correlate phone calls with
the information in «Human Resources » and «Payroll System » . The «Human
Resources » supplies personal data concerning employees, and the «Payroll System
» computes their wages. The «Mail Server » and the «SMS Notifier » notify employ-
ees about their charges. The former provides e-mail service and the later offers short
message system services.

There is an input task represented by ¢ and three output tasks represented by
tyonads B> and 15, . The task that exchanges messages with another application dur-
ing runtime is represented by 1. The intermediary tasks are represented by r,, where
i ranges from 1 to 11. In the integration logic of the SC4, the data of users that
arrive from ¢, - are replicated and one copy flows towards «Human Resources Sys-
tem » to search for information about the employee. Further on 1, the message is
replicated and one copy flows towards «Payroll System » . another flows towards
«Mail Server » . and another, towards «SMS Notifier » . The sending of the notifica-
tions to the employees about the charge is made by «Mail Server » and «SMS Noti-
fier » . Examples of tasks that can be executed in parallel in the SC4 integration pro-
cess are [t;.14. 10| . [tg.1,, | The Unijui University integration process is represented
by a DAG in Fig. 10.

In the 5C4 Integration Operation Typed Graph, there are 16 nodes, which rep-
resent the tasks, and there are 20 edges, which represent the channels. Node ¢ | is
a starting node that represents a task of the type start. The nodes 1, and 1, represent
tasks of the type and: The node 1, represents a task of the type join: nodes ¢, 15, t5.
1y I 1y, 1y and. f ) represent tasks of the type message processor: The node t, repre-
sents a task that sends and receives information to/from applications, and is a task of
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Fig. 10 Unijui University represented in a DAG task model

Table 6 Unijui University path characterisation
Path Segment

Sequential Parallel
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the type external call; and nodes t,, ;. t,,, .. and t;,, , are ending nodes that represent
tasks of the type end. The possible paths of the conceptual model 5C4 and their seg-
ments of tasks are shown in Table 6.

5.5 Studyofcase5 (5C5) :real estate integration process

The Real State problem is a real-world integration process [33] that consists on the
automatisation of the real estate tax management system used in Ljui City, Brazil. Its
conceptual model is depicted in Fig. 11. This process is an example of an integra-
tion process with three paths for messages, where the following types of tasks can be
found: start. and, or, join, message processor. external call and end. The 5C5 has
a different integration logic from the previous cases and, besides, in SC5, there are
three starting tasks and two ending tasks and six possible paths.

In the SC5 integration process, there are three input tasks represented by 1.
e and £y and two output tasks represented by r,, . andt,, ,. The tasks that
exchanges messages with another application during runtime are represented by ¢,
and 1,,. The intermediary tasks are represented by 1, where i ranges from 1 to 10. In
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the integration logic of the SC5. the requests of users that arrive from £, . 0.
and 1,3 flow towards «Real Estate Registration » to search for information about
the citizens and their real estate. Further, on 1. the message is enriched with infor-
mation and flows towards «Tax Calculator » to calculate tax payment If the citizen
has and e-mail address, the message flows towards «Mail Server » and in all cases
towards «Print Server » to further sending to the address of the citizen. There is a
path for a «Service Desk » user that has an e-mail address; another path for a «Ser-
vice Desk » user that does not have an e-mail address; another path for a «Citizen
Website » user that has an e-mail address; another path for a «Citizen Website » user
that does not have an e-mail address; another path for a message from the «Tax Gen-
erator » where the user has an e-mail address: and another path for a message from
the «Tax Generator » where the user does not have an e-mail address. Examples of
tasks that can be executed in parallel in the SC5 integration process are [#;. £,4]. The
Real Estate integration process is represented by a DAG in Fig. 12.

In the SC5 Integration Operation Typed Graph, there are 17 nodes. which rep-
resent the tasks, and there are 18 edges. which represent the channels. Nodes 1.
g and fy,,, are starting nodes that represent tasks of the type start. Nodes t; and
ts represent tasks of the type and. Node t, represents a task of the type or. Nodes
1y, 4. and 1, represent tasks of the type join. Nodes t,, ty, tg. and, t,, represent tasks
of the type message processor. Nodes 1, . t, represent tasks that send and receive
information to/from applications and are tasks of the type external call; and nodes
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Table 8 Conceptual model chamcterisation

ID  No. of tasks-per type of function No. of channels  No. of segments’
Start And Or o Join Message External call End Sequential  Paral lel
processor
sc1 1 2 1 0 3 6 2 1 I8 2 3
scz 1 2 0o 1 3 6 2 2 19 2 1
sC3 2 2 o1 3 7 2 2 3 2
sCa 1 2 0 o0 1 8 1 3 16 4 1
sCs 3 2 | S 4 2 2 I8 3 7

Considering the longest path

o Dronge and 1y, , are ending nodes that represent tasks of the type end. The pos-
sible paths of the conceptual model SC5 and their segments of tasks are shown in
Table 7.

5.6 Summary of the characterisation

It is possible to extract information not just from the conceptual models of integra-
tion processes [9. 51, 77], but also from the logic semantics of the task. Processes
that have more than one task of the type start, benefit from the adoption of the task-
based execution model because it is not necessary to have messages in all the inputs
of the process in order to begin processing. Similarly, processes that have several
tasks of the type external call also benefit from the task-based model because while
a thread can be blocked waiting for a response of an external application, the other
threads can execute the tasks of the integration process. Integration processes that
have more than one task of the type and, would benefit from the use of parallel pro-
cessing. Processes that have several tasks of the type join, may have a delay, mainly



when these given tasks are involved in the correlation of messages. Processes with
several communication channels demand more memory to store messages. The
characterisation of the integration processes, concerning tasks, channels and paths,
is shown in Table 8.

Usually, the message arrival is random and can be batch, periodic or in real time.
The size and format of a message can also vary, from byles to petabytes, structured
or unstructured. This variety of messages causes a variation in the execution time
of tasks. Regarding the total number of threads, although it is not limited, it is more
realistic to assume that there is some constraint Lo it.

Parallel task processing is only possible when there are multiple physical cores in
a machine where the integration process is executed. The number of cores directly
impacts the execution of the threads created by the runtime system [58], and thus, it
influences the performance of the execution of the integration process. The number
of threads is configurable and, theoretically, unlimited. However, a high number of
threads can degrade the performance of the execution because more time needs o
be spent on managing these threads and shared resources, such as cache capacity
or memory bandwidth, and tend to quickly saturate [53]. There are several possible
configurations of thread pool that a runtime system can implement, such as (i) a
thread pool with predefined and fixed number of threads, (i1) a thread pool with an
unlimited number of threads that increases according to demand; (iii) a thread pool
that distributes the workload amongst the available cores.

6 Experiment

In this section, we present an experiment to evaluate the makespan resulted in the
current task scheduling of runtime systems of integration platforms, which use FIFO
policy. We followed a protocol based on edlitschka and Pfahl [47]. Wohlin et al.
[88], and Basili et al. [8]. with procedures for controlled experiments in the field of
software engineering.

6.1 Research questions and hypotheses
This experiment aims to answer the following research questions:

RQI: Isit possible to identify the variables more statistically significant to the
makespan of integration processes?

RQ2:  Isit possible to build a mathematical model to predict the makespan as a
function of types of segments and tasks and the number of channels of integration
processes?

Our hypotheses to these research questions are:

H1:Statistic techniques can identify the variables more statistically significant to the
makespan of integration processes.



H2:The statistic technique of linear regression can build a mathematical model for
the makespan of integration processes as a function of the workload, elements of
the conceptual model and integration logic.

6.2 Variables
The independent variables controlled in the execution of the algorithm are:

Workload (w). The number of input tasks, or workload, when the algorithm
starts to perform the integration process. The values tested for this variable were:
100, 500,000, 1,000,000 and 1.500,000.

Integration process. The conceptual model of the integration process.
The values tested for this variable were: SC1, 5C2, 5C3, 5C4 and 5C5. Every
conceptual model varies in:

X;: number of tasks of type start.

Xy: number of tasks of type and.

X;: number of tasks of type or.

X, number of tasks of type or”.

Xs: number of tasks of type join.

X, number of tasks of type message processor.
X,z number of tasks of type external call.
Xg: number of tasks of type end.

Xg: number of channels.

X, number of sequential segments.

Xyy: number of parallel segments.

® & & & & o 0 0 0 00
-

The dependent variable measured in the execution of the algorithm is:

Makespan. This varnable corresponds to the average processing time of the job
mstances accomplished during the time interval of the experiment.

6.3 Environmentand supporting tools

The experiments were carried out on a machine equipped with 16 processors Intel
Xeon CPU E5-4610 V4, 1.8 GHz, 32GB of RAM, and Windows Server 2016
Datacenter 64-bits operating system. The programming language Java, version 8.0
update 152, was used to implement and execute the algorithms. The MATLAB [54]
software, version R2018, was used to process the statistic analysis. The source code,
data set and script of functions statistics used in this experiment are publicly avail-
able for download '.



6.4 Execution and data collection

The experiments were conducted using a simulator built on Java, which simulates
the execution of the integration processes using the FIFO policy. The simulation
started with a probability distribution of these random messages is a continuous
uniform distribution in [0.100] of random input messages and received an average
of 100 new random input messages in a random time interval. The term “random™
means that the time that a task spent to process a message varied within an interval,
in microseconds. We assumed that tasks of types start, end, message processor and
external call ranged 1-2 ms; and. or, or® ranged 2-3 ms; and join ranged 3-4 ms.
We configured the simulation time to 60 seconds, so, after this time, the simulator
interrupted the current task executions. Then, the simulator collected the makespan
and stored it in a text file. Afterwards, we handled and analysed the data and then
applied statistic tests.

Usually. the results are statistically analysed by the method of the executions, in
which 20-30 executions are sufficient to obtain an average population using the dis-
tribution with more extreme values than a normal distribution [80]; our experiments
were repeated 25 times. For each integration process, we repeated the execution
25 times every four workloads, resulting in 500 different observations, which were
summarised below:

Heuristics FIFO 1
Warkloads 100, 500,000, 1,000,000, and 1,500,000 4
Integration Processes 8C1, 8C2, 5C3,5C4, and SC5 5
Elapsed time 60 seconds 1
Rate of task input 100 1
Repetitions 1.25 25
Number of observations Ix4x5x1Ix1x25 500

6.5 Results and discussion

We present the results of the metrics collected in the simulation in tables and charts
for each integration process. The statistical theory was indicated to analyse data
from experiments on performance [36], because it deals with non-determinism in
computational systems, such as runtime systems of integration platforms [27]. We
used the stepwise statistical method to build the mathematical model.

Regression analysis is a method to estimate the relation amongst the dependent
variable makespan and the independent variable workload. In regression analysis,
the correlation coefficient (R?) is a parameter that determines the degree of linear
correlation of variables and is defined by R* =1 — SE where SSE is the sum of
squared error and SST is the sum of squared total [48]. Thus, R* tends to 1 when
the sum of squared error is too small when compared to the sum of the squared
total. The t-statistic is used for making inferences about the regression coefficients.



Table 9 Estimated coefficients of the lincar regression constant model

Estimate Standard error 1-Statistic p Value
(Constant term) 0.0015759 0.0023158 0.68052 04965
w 82271 x 107 2.4645 x 107 3.3382 0000007 14
Xy —0.00017883 0.0001079 - 16574 0098067
N 0.00047377 0.00019455 24352 0015239
Xy, 0.0062507 0.00019563 31.951 42878 x 1071
WX -5.786 x10°1° 1.1503 x 1071° -5029 68907 x 1077
WX Xy 1.4763 % 10~ 20393 % 10°1° 7.2393 17461 x 1012
o —0.00070712 23798 % 10 -29.714 72238 x 10122

i

Number of observations: 500, Error degrees of freedom: 492

Root Mean Squared Error: 0.00158

R*: 0.769, Adjusted R*0.766 F-statistic versus constant model: 234, p Value = 4 88 cdor10°'%

The hypothesis test on coefficient x; tests the null hypothesis that it is equal o zero
against the alternate hypothesis that the coefficient is different from zero. The null
hypothesis that equals to zero means that the corresponding term is not significant.
The p value, probability value, is another common metric used to determine the sig-
nificance of the model results when applying hypothesis testing. The result is con-
sidered statistically significant when p value is small, i.e. p value < 0.05 [62].

Stepwise regression is an iterative method for adding and removing terms from a
multilinear model based on their statistical significance in a regression. The method
starts with an initial model and then compares the explanatory power of incremen-
tally larger and smaller models. At each iteration, the p value of an F-statistic is
calculated to test models with and without a potential term. The method finishes
when no single step improves the model. We select an upper bounding model that
has linear terms, interaction terms and squared terms. Then, we generate a quadratic
model described by Eq. 1.

l»nakcspan ~l+w- Xy + w- X0 +X“ + .\'“2 (1)

The coefficients of Eq. 1 are indicated by the Estimate column in Table 9. The t-sta-
tistic column is calculated by the division of Estimate column and Standard Error
column, i.e. r-statistic = % The square root of the mean squared error esti-
mates the sldnddxd deviation of the error distribution. The degrees of freedom for
error are defined as the number of observations minus the number of coefficients
in the model. including the constant term. “F-statistic versus constant model™ tests
whether the model fits significantly better than a degenerate model consisting of
only a constant term.

There are eight coefficients and only the constant term , w. xy, x, and x,, terms
are significant at a 5% significance level. These terms correspond, respectively, ©
these vanables: workload. number of channels, number of sequential segments and
number of parallel segments. The correlation coefficient, R*, was 0.769, and the



interval of deviations of the residuals varied from a minimum value of — 0.003 to a
maximum value of 0.0208. The F-statistic of the linear fit versus the constant model
is 234, with a p value of 4.88 x 107152, The model is significant at a 5% significance
level. The R* 0.769 means that the model explains about 77% of the variability in the
response.

Regarding the research questions and hypotheses:

e RQI: The workload, the number of channels, the number of sequential segments
and the number of parallel segments are the variables that most influence the
makespan of integration processes using the FIFO policy for their task schedul-
ing.

e RQ2: A stepwise multiple linear regression with a high correlation coefficient,
found a quadratic function to the makespan. Thus, this function can predict the
makespan as a function of the workload, the number of channels and the number
of sequential and parallel segments.

From the experiment, we confirmed our hypotheses for each of the research ques-
tions, respectively:

e HI: It is possible to identify the variables more statistically significant to the
makespan of integration processes.

e H2: It is possible to build a mathematical model to predict the makespan as a
function of their more statistically significant variables.

6.6 Threats to validity

In this section, we evaluate the threats that could influence the results of the experi-
ment and how we tried to mitigate them, taking into consideration that threats o
validity are present in any empirical research [21].

6.6.1 Construct validity

Construct validity discusses whether the planning and execution of the study are
adequate to answer the research questions. We planned the experiment according
to procedures from empirical software engineering [8. 47, 88]. Firstly, we defined
our research question, formulated our hypotheses and defined the independent and
dependent variables. After that, we provided information about the execution envi-
ronment, supporting tools, execution and data collection. Then, we performed our
simulation in two hundred different scenarios and used statistical techniques to eval-
uate the results.

6.6.2 Conclusion validity

As reported by Wohlin et al. [88], conclusion validity “are concerned with issues
that affect the ability to draw the correct conclusion about relations between the



treatment and the outcome of an experiment”. We used statistical techniques ©
assure that the actual outcome observed in our experiment is related to the heuristics
used and that there was a significant difference amongst them.

6.6.3 Internal validity

Internal validity aims to ensure that the treatment caused the outcome, mitigating
effects of other uncertain or not measured factors [26]. Instrumentation and source
of noise are possible threats. We experimented the same machine, which was on
security mode, with minimal features and disconnected from the Internet during the
executions, in order to minimise interference in the execution time of the algorithm.
We built our algorithm in Java, usually. the first executions of codes were slower,
and it is advisable to let the virtual machine eventually perform code optimisation
[69]. Then, we, firstly, executed the algorithm once only 0 warm the Java virtual
machine up. Additionally, the researchers accurately inspected the procedures and
used statistical tests to validate the measures.

In the simulation, we used a sleep() function call to simulate workloads
going through the paths in the IOTG. then measuring the wall clock time difference
between the start and end of the process and considered the operation time of the
tasks varying between from 1 to 4 milliseconds. However, this time is on the same
magnitude as the Operational System scheduling time slice; then, the sleep ()
function may not be precise. In future experiments, we will add profiler results ©
get a time more precisely to sleep functions and to ensure the thread sleep calls are
functioning as intended.

6.6.4 External validity

External validity focuses on the generalisation of the results outside the scope of our
study [26]. This study is generalised for integration platforms that adopt the integra-
tion patterns by Hohpe and Woolf [44]. the style Pipes-and-Filters and task-based
model. We reported this study following an empirical guideline [88] that exact repe-
titon would be possible, according to scientific methods. The experiment is valid ©
test other parameters, such as integration processes, message arrival rate, simulation
duration. There is no guarantee, whatsoever, that a different initial model or a differ-
ent sequence of steps would not lead to a better fit. In this sense, step-wise models
are locally optimal, but may not be globally optimal.

7 Condusion

Integration-Platform-as-a-Service (1PaaS) is a cloud service that allows the develop-
ment of integration processes for applications to exchange data and functionalities.
Many of the open-source integration platforms have been adopting the integration
patterns documented by Hohpe and Woolf [44] and the Pipes-and-Filters architec-
tural style [1]. In this architectural style, the pipes represent message channels, and
the filters represent atomic tasks that implement a concrete integration pattern o



treatment and the outcome of an experiment”. We used statistical techniques ©
assure that the actual outcome observed in our experiment is related to the heuristics
used and that there was a significant difference amongst them.

6.6.3 Internal validity

Internal validity aims to ensure that the treatment caused the outcome, mitigating
effects of other uncertain or not measured factors [26]. Instrumentation and source
of noise are possible threats. We experimented the same machine, which was on
security mode, with minimal features and disconnected from the Internet during the
executions, in order to minimise interference in the execution time of the algorithm.
We built our algorithm in Java, usually. the first executions of codes were slower,
and it is advisable to let the virtual machine eventually perform code optimisation
[69]. Then, we, firstly, executed the algorithm once only 0 warm the Java virtual
machine up. Additionally, the researchers accurately inspected the procedures and
used statistical tests to validate the measures.

In the simulation, we used a sleep() function call to simulate workloads
going through the paths in the IOTG. then measuring the wall clock time difference
between the start and end of the process and considered the operation time of the
tasks varying between from 1 to 4 milliseconds. However, this time is on the same
magnitude as the Operational System scheduling time slice; then, the sleep ()
function may not be precise. In future experiments, we will add profiler results ©
get a time more precisely to sleep functions and to ensure the thread sleep calls are
functioning as intended.

6.6.4 External validity

External validity focuses on the generalisation of the results outside the scope of our
study [26]. This study is generalised for integration platforms that adopt the integra-
tion patterns by Hohpe and Woolf [44]. the style Pipes-and-Filters and task-based
model. We reported this study following an empirical guideline [88] that exact repe-
titon would be possible, according to scientific methods. The experiment is valid ©
test other parameters, such as integration processes, message arrival rate, simulation
duration. There is no guarantee, whatsoever, that a different initial model or a differ-
ent sequence of steps would not lead to a better fit. In this sense, step-wise models
are locally optimal, but may not be globally optimal.

7 Condusion

Integration-Platform-as-a-Service (1PaaS) is a cloud service that allows the develop-
ment of integration processes for applications to exchange data and functionalities.
Many of the open-source integration platforms have been adopting the integration
patterns documented by Hohpe and Woolf [44] and the Pipes-and-Filters architec-
tural style [1]. In this architectural style, the pipes represent message channels, and
the filters represent atomic tasks that implement a concrete integration pattern o



As future work, we intend to experiment with an extensive data set in order
to evaluate the generalisation of the results: to improve the time measures of the
simulations; to investigate an architectural strategy similar to that used at the
hardware level to scale tasks to speed up the runtime of integration processes.
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