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Abstract
The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly 
transmissible across the people. In order to detect and track the suspected COVID-
19 infected people and consequently limit the pandemic spread, this paper entails 
a framework integrating the machine learning (ML), cloud, fog, and Internet of 
Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring 
and prognosis system. The proposal leverages the IoT devices that collect stream-
ing data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) 
and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed 
hybrid fog-cloud framework provides two kinds of federated ML as a service (feder-
ated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud envi-
ronment for a long-term decision-making, and (ii) the distributed stream MLaaS, 
which is installed into a hybrid fog-cloud environment for a short-term decision-
making. The stream MLaaS uses a shared federated prediction model stored into the 
cloud, whereas the real-time symptom data processing and COVID-19 prediction 
are done into the fog. The federated ML models are determined after evaluating a set 
of both batch and stream ML algorithms from the Python’s libraries. The evaluation 
considers both the quantitative (i.e., performance in terms of accuracy, precision, 
root mean squared error, and F1 score) and qualitative (i.e., quality of service in 
terms of server latency, response time, and network latency) metrics to assess these 
algorithms. This evaluation shows that the stream ML algorithms have the potential 
to be integrated into the COVID-19 prognosis allowing the early predictions of the 
suspected COVID-19 cases.

Keywords  COVID-19 pandemic · Machine learning · IoT devices · Batch/streaming 
data · Hybrid fog-cloud federation · Federated MLaaS · Real-time prediction · 
Decision-making · Quantitative and qualitative evaluation

 *	 Ameni Kallel 
	 kallel.ameni@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-7354-1276
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04166-9&domain=pdf


7079

1 3

Hybrid‑based framework for COVID‑19 prediction via federated…

1  Introduction

Healthcare is one of the important application fields that require real-time and accu-
rate results. Technologies including big data, Internet of Things (IoT), cloud and 
fog computing [1] have gained significance due to their available abilities to provide 
diverse services based on latency-sensitive or real-time applications [2–4]. Since 
the manual processing has not been effective, the use of the artificial intelligence 
(AI) in healthcare [5] has become prominent for monitoring, prognosis and diagno-
sis purposes [6–8]. Regarding the continuous COronaVIrus Disease 2019 (COVID-
19) [9] pandemic growth across the world, several researchers are attempting to find 
solutions for exploring accurately the infected persons and isolate them to reduce 
the pandemic spread. The machine learning (ML)-based systems can improve the 
decision-making for clinicians and consequently limit the spread of this pandemic. 
The literature survey focused on discussing the learning-based COVID-19 com-
bating proposals. In [10–12], the authors proposed learning-based approaches for 
detecting the facemask wearing state based on integrated monitoring cameras and 
ML techniques. Other works [13–17] dealt with the COVID-19 prediction and the 
early prognosis of this disease. They suggested COVID-19 medical image recog-
nition models based on clinical and chest radiological imaging such as computed 
tomography (CT) and X-ray. Some other studies [18–20] presented ML-based 
framework for predicting whether a suspected person is COVID-19 infected or not. 
Their frameworks adopted a set of IoT devices such as temperature, heartbeat, oxy-
gen saturation monitor, etc., which might collect health data and help to monitor 
the users in real time. However, such frameworks, were based on traditional batch 
ML models, treated only the historical existing data. Although our approach consid-
ers both the historical and streaming data collected from different medical devices 
like X-ray machine, lung ultrasound (LUS) machine, etc., as well as non-medical 
devices (e.g., drones, wearable devices like smartwatch, bracelet, etc.), in this work, 
we propose a new framework for a smart monitoring system detecting the suspected 
COVID-19 infected people as well as other critical diseases’ patients such as pneu-
mocystis, legionella, streptococcus, etc. As the data stream learning differs from the 
traditional batch learning (i.e., the environment settings are mainly different) [21], 
the proposed framework enables collaborative learning into a hybrid (i.e., fog/cloud) 
federation system, whereas we adopt three kinds of federated ML as a service (fed-
erated MLaaS). In fact, we provide (i) a batch MLaaS implemented on the cloud 
environment for the long-term decision making, (ii) a stream MLaaS installed on 
the fog environment for the short-term decision making, and (iii) the both ML types 
simultaneously based on their dependencies and their connections. Indeed, this 
paper is an extension of a previous publication [22]. It extends the original work in 
various points:

•	 The framework is adapted to be customized for the COVID-19 disease moni-
toring and prognosis. In fact, to customize the previous framework, we were 
based on the expert (i.e., physicians and medical staff) experiences through 
sharing a survey with them.
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•	 According to the survey’s results, the framework enables the data preprocessing 
and features selection in order to extract relevant indicators for the COVID-19 
disease classification. It is worth mentioning that the data are collected from the 
medical as well as the non-medical devices.

•	 The learning-based framework maintains an accurate decision-making model 
shared between the two federated stream MLs (i.e., the same learning model 
is adopted by the stream ML existing in the cloud layer as well as by the one 
installed on the fog layer). Moreover, the proposal ensures an accurate long-term 
decision-making using the federated batch ML, which is installed on cloud layer.

•	 The proposed framework is able to learn and train the collected data incremen-
tally over time as well as historical stored data. In the best of our knowledge, our 
proposal is the first one handling both batch and streaming data.

•	 The evaluation of the proposed framework demonstrates its performance in terms 
of accuracy, response time, precision, etc., for COVID-19 monitoring and prog-
nosis.

In this work, we propose twofold evaluation. The first focuses on selecting the 
best-performing algorithm/model for the batch ML among the Scikit-learn’s [23] 
widely used ones. For doing so, we adopt the two different data splitting strategies 
(i) K-fold cross-validation (KCV) and (ii) no-shuffle train/test split with a train/test 
split of 80/20. The experiment results demonstrate that the most accurate predic-
tions are those obtained while adopting no-shuffle train/test split strategy and MLP 
Classifier. In fact, this quantitatively outperforms other strategies and algorithms by 
providing the best values in terms of performance metrics such as accuracy, preci-
sion, root-mean-squared error (RMSE), and F1 score. The second evaluation deals 
with quantitative and qualitative assessment of the River’s [24] stream ML models 
to find the best algorithms in terms of performance and quality of services (QoS) 
parameters, respectively. According to [25], the QoS metrics includes the server 
latency, response time, and network latency. The results are given by the follow-
ing for both the multi- and binary classification. It is worthy mentioned that the 
multi-class classification might predict normal, COVID-19, and non-COVID-19 
pneumonia cases, while the binary classification might categorize the patients into 
COVID-19 vs. non-COVID-19 cases. The results demonstrate that by considering 
the multi-classification: (i) Hoeffding Adaptive Tree Classifier is the most perform-
ing in terms of accuracy, RMSE, precision, and response time with 90.12%, 38.39%, 
77.6%, 48 milliseconds, respectively and (ii) Logistic Regression algorithm is the 
best-performing algorithm in term of server latency with 0.055 milliseconds. While 
taking into account the binary classification, the best values of accuracy, RMSE, 
precision and training time are given as 28.79%, 77.75%, 91.71% and 36.5561 sec-
onds, respectively. The remainder of the paper is structured as follows: the next sec-
tion, on the first hand, defines the basic concepts related to the learning approach. 
On the second hand, it discusses some relevant works dealing with adopting the fog, 
cloud, IoT and deep learning in the battle against the COVID-19 pandemic. Sec-
tion  3 presents the survey, which we are based in order to propose a customized 
framework for COVID-19 monitoring and prognosis. The proposed framework is 
given in Sect. 4. The implementation of our framework and its evaluation are given 
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in Sect. 5. Finally, Sect. 6 concludes the paper and provides some perspectives for 
future work.

2 � Background and related work

2.1 � Background

Nowadays, the ML has acquired a favorable position within the healthcare arena. 
The ML is beneficial since its capability to detect patterns and run predictive analy-
sis. In data mining, data are divided into three sets of sequences [26], such as (i) 
training set for training the ML model by using one or more algorithm(s), (ii) valida-
tion set for predicting the ML model and finding the best one, and (iii) testing set for 
predicting final model performance. Indeed, each sequence contains ( xi,yi ), where xi 
= xi,1, xi,2,… xi,n and yi = yi,1, yi,2,… yi,n . In fact, the ML adoption serves to build a 
classifier for predicting a label ypred for a given x. In the literature, researchers have 
analyzed three ML approaches: traditional batch learning, incremental batch learn-
ing, and streaming learning [26]. 

1.	 Traditional batch learning: It is characterized by an offline phase of training the 
classifier/algorithm once the complete training set of data is used (see Fig. 1). 
Afterward, such model is deployed online. In the second phase, the online testing 
phase, the predictions are made while testing the set of data. Therefore, the tradi-
tional batch model is treated as a static object. In order to learn from new data, the 
model has to be retrained from scratch. Moreover, training the full dataset requires 
resources with high computing capabilities in terms of CPU, memory size, disk 
size, network I/O, etc. [27]. It is worth mentioning that adopting a traditional 
batch learning approach is not the best choice to do if the amount of data is huge 
(i.e., in the case of big data). In addition, the traditional batch algorithms cannot 
ensure a dynamic ML model adaptation (i.e., according to new data arrival).

2.	 Incremental batch learning: This approach is able to override above-mentioned 
cons. Thus, the ML algorithm loads a subset of the data forming a batch, and 
when the batch contains all the dataset, the algorithm loops over the batch in order 
to run the training step on that batch (see Fig. 2a). Consequently, the testing step 

Fig. 1   Traditional batch learning technique
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occurs between a set of batches [28]. However, it should define a parameter to 
specify the size of the batch for this learning approach; in fact, the inference is 
only possible after a batch has been completed [28] as well as the model cannot be 
learned from the arrival of the new data but until a new batch has been completed 
[21]. Moreover, trained models should be removed afterward to make space for 
new ones that may affect the ability of these algorithms to immediately learn from 
new data arrival.

3.	 Streaming learning: Here, the ML algorithm use the instance-incremental models 
[21]. In fact, the algorithms learn from each training stream upon the data arrival 
in order to quickly auto-adapt. In contrast with the traditional batch learning mod-
els, the streaming ones are appropriate for adopting when we have a huge dataset. 
Indeed, the ML does not access to dataset at once but the data is continuously 
loaded as a stream. Therefore, the ML must learn the flow stream one by one, and 
update the model each time a new stream arrives (see Fig. 2b). Moreover, this 
does not require important computing resources capabilities; since once the ML 
algorithm learns from the new stream, the ML deletes it and keeps free its associ-
ated space. Consequently, the streaming learning might optimize the resources 
utilization.

2.2 � Related work

The COVID-19 pandemic becomes one of the biggest threats facing humanity. Since 
its emergence in December 2019, several research studies have addressed the ben-
efits, threats and challenges of new technologies such as fog, cloud, IoT and deep 
learning in the battle against the COVID-19 pandemic. Some researches focused on 
the identification of facemask wearing state. In this context, Loey et  al. [10] pro-
posed a facemask detection model based on integrated monitoring cameras. The 

Fig. 2   Incremental learning technique
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model detected the people who did not wear facemasks by applying a deep transfer 
learning. The authors defined three classical ML classifiers such as SVM, Decision 
Tree, and Ensemble. In [11], the authors utilized deep learning model for automatic 
facemask wearing detection based on three categories: correct facemask wear-
ing, incorrect facemask wearing, and no facemask wearing. The proposed model 
achieved 98.70% accuracy. Similarly, Chowdary et  al. [12] introduced a facemask 
detection model based on deep transfer and ML techniques. The model ensured an 
accuracy obtained by 99.9% in training and 100% during testing. Other research 
works proposed COVID-19 medical image recognition models. Nora El-Rashidy 
[13] suggested a neural network-based deep learning model. The proposed model 
classified the patients’ X-ray scan images to two classes, COVID-19 and normal 
classes. The model was trained on COVID-19 dataset, and the evaluation perfor-
mance carried out was 97.78% accuracy, 97.2% F1 score, 97.4% precision and 
97.5% recall. Similarly, Ozturk et al. [14] proposed a DarkNet model trained on 125 
chest X-ray. The proposed model provided predictions with 98.08% accuracy for a 
binary class classification (COVID-19 vs. No-Findings classes) and 87.02% for a 
multi-class classification (COVID-19 vs. No-Findings vs. Pneumonia). Along with 
chest X-rays, computerized tomography (CT) scans play a crucial role in effectively 
discriminating against COVID-19 [19, 29, 30]. In this context, several research stud-
ies [15, 16] proposed a deep learning model to classify COVID-19 cases by consid-
ering their chest CT images. In [15], the proposed model achieved 99.68% accuracy 
with tenfold cross-validation using a SVM classifier. Despite all the above proposals 
demonstrated optimal results regarding the combat against COVID-19 pandemic by 
training models applicable with clinical trials, they adopt the classical ML classi-
fiers (i.e., batch ML classifiers) having a set of drawbacks that we mentioned above 
(see previous subsection). To the best of our knowledge, our work is the first one 
that considers both the batch and stream ML classifiers. The batch one is for long-
term predictions and analytical dashboards, while the second ML is for short-term 
(i.e., real-time) predictions regarding COVID-19 prognosis. Besides, it is so impor-
tant to consider (i) the Internet of Medical Things (IoMT) allowing interconnection 
between medical devices (e.g., CT scans and/or X-ray imaging devices found in all 
hospitals), patients and medical systems [20], and (ii) the integration of fog/cloud 
environments to support the stream ML models for a real-time predictions in the 
hospitals. Other literature studies explored the relationship between the risk of to be 
COVID-19 infected and other factors, such as diabetic disease, smoking, respiratory/
lung disease, cardiovascular disease and hypertension. [31, 32]. Moreover, the high-
risk patients should be frequently monitored even if they are outside hospitals by 
checking their vital signs such as temperature and oxygen saturation. [13]. Several 
studies suggested IoT frameworks for determining suspected COVID-19 cases [18, 
19]. Thus, the end-users might use a set of sensors on the user’s body to collect the 
real-time symptom data such as temperature, heart rate and cough quality. Kumar 
et  al. [20] proposed an artificial intelligence-based framework, which enables the 
data collection not only from wearable sensors and drones. The proposed framework 
enables, in addition, the exchange between edge, fog, and cloud servers in order to 
share computing resources, data, and analytics. The authors integrated a drone-level 
federated learning for analyzing changing COVID-19 symptoms and strategies. This 
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algorithm consists of detecting the patient’s body temperature, making decision 
when critical value is detected, and sharing the training data with the edge, fog, or 
cloud computing environments. However, these works did not detail how the deci-
sion were made using the ML models, how the MLs were deployed in the three 
layers, how their frameworks supported the connectivity between the edge, fog and 
cloud computing, and how they evaluated their frameworks’ performances in terms 
of accuracy, precision, etc. To the best of our knowledge, all the existing studies 
focused on the batch learning approaches to predict if whether a person suspected 
COVID-19 infected or not. However, our approach is the first one that considers 
both the batch and streaming learning approaches for more accurate COVID-19 dis-
ease predictions.

3 � Survey

The IoT devices are the primary sources of collecting the real-time symptom data 
from COVID-19 suspected infected users. The collected data must be preprocessed 
to filter the relevant information that can help in COVID-19 monitoring and progno-
sis. In a previous work [22], the authors proposed an IoT-fog-cloud-based architec-
ture for smart systems supporting the distributed communication, real-time stream 
processing, and multi-application execution. In this work, we focus on customizing 
such architecture and proposing a framework tailored for COVID-19 monitoring and 
prognosis. For doing so, we conducted a survey of 19 questions in which 50 experts 
of the medical staff were engaged. The survey aims to find out the experts’ require-
ments and recommendations to combat the COVID-19 pandemic by limiting its 
spread. Thus, the first question is about whether they are interested by adopting an 
automatic system for detecting suspected COVID-19 cases. As shown in Fig. 3, 94% 
of the medical staff are interested by such system.

The second question is what about connecting an equipped object through sen-
sors (e.g., smartwatch, bracelet) that the suspected infected person may wear? 
Figure 4 depicts that the doctors find that this idea is more effective than sharing 
a questionnaire with the COVID-19 suspected infected people. Moreover, they 
suggest integrating (i) a Global Positioning System (GPS) device to locate indi-
viduals who may be contaminated by transmission and (ii) a set of sensors help-
ing to detect whether the disease symptoms appear at the individuals. As shown 

Fig. 3   Experts feedback regard-
ing adopting a COVID-19 auto-
matic monitoring and detecting 
system
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in Fig. 4, about 48% of the experts go to integrate a temperature sensor, 38% of 
them desire to use a saturation sensor, 5% require to utilize an electrocardiogram 
(ECG) sensor, and 9% of them propose other types of sensors such as respiratory 
rate, lung scanner and cough sensor.

In addition, physicians recommend remotely monitoring the health state of 
their registered patients through an alert system that may send, in the case of 
COVID-19 symptom detection, a real-time notification either to them or to the 
COVID-19 pandemic center. As well, they require that the system can enable to 
launch a call to the connected person through their bracelet in order to assign with 
him/her an appointment to do a rapid test. As shown in Fig. 5, about 81.3% of the 
medical staff recommend the alert system and suggest that it should be configur-
able and customized according to the patient’s health state (i.e., if the patient has 
one or more chronic disease(s) such as diabetic, renal failure, heart, etc.).

Fig. 4   Experts feedback regarding integrating sensors to detect COVID-19 symptoms

Fig. 5   Experts feedback regarding adopting a customized monitoring system based on the patient’s 
health state
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Obviously, the survey results help us in the data preprocessing phase, whereas we 
take into consideration the different sensor values as well as the health state of the 
patient, whether the patient was traveling or not, and the people who have been in 
contact with the suspected infected person.

4 � Customized framework for COVID‑19 monitoring and prognosis

As mentioned above, we adopt the previous architecture [22] in order to propose 
a customized framework for COVID-19 monitoring and prognosis. In fact, we 
define a hybrid framework dealing with several hardware and software components 
described as follows.

4.1 � Hardware components

The hardware components include the IoT devices, end-user devices, fog broker, fog 
node, and cloud datacenters. 

1.	 IoT device: The IoT device may be either a medical or a non-medical device (see 
Fig. 6). A medical device such as (i) a real-time polymerase chain reaction (RT-
PCR) machine that detects the COVID-19 virus in upper and lower respiratory 

Fig. 6   Customized learning-based framework for COVID-19 monitoring and prognosis
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specimens, or (ii) X-ray machine like a CT scan, or (iii) LUS machine, which pro-
vides X-ray images depicting a possible aspect of COVID-19 disease. It is worth 
mentioning that the medical devices are currently widely used by researchers 
since they achieve accurate results of COVID-19 prediction [13–16]. Therefore, 
we adopted the medical devices as key sources of training data. The non-medical 
device like a bracelet, smartwatch, drone, etc., may be connected by several sen-
sors and equipped with a rechargeable battery. Indeed, the non-medical devices 
help a COVID-19 suspected person in storing the sensor values and transferring 
them to the fog layer for real-time data processing and decision making. Hence, 
an AI module classify whether these values are normal or require more treatment 
(i.e., It shall send a notification to the connected person to do a rapid test). It is 
worth mentioning that multiple sensors can be integrated into a non-medical 
device such as (i) temperature sensor, (ii) passive GPS location tracking, (iii) 
microphone may be used to facilitate the communication between the person and 
the medical staff, (iv) ring-type pulse oximeter sensor might monitor both heart 
rate and oxygen saturation in the body, (v) cough sensor to detect the nature, 
duration and time of the cough, (vi) blood pressure sensor might track changes in 
blood pressure, and (vii) respiratory rate sensor enables breathing rate monitoring. 
All of these devices expose their services and data over the standard REST and/
or Pub/Sub Application Programming Interfaces (APIs) and this complies with 
the Web of Things (WoT) architecture.

2.	 Fog broker: The fog broker represents a gateway between the IoT devices, fog, 
and cloud computing environments (see Fig. 6). Its main role is (i) collect real-
time streams from connected IoT devices, (ii) choose the appropriate node for the 
real-time and/or batch processing, and (iii) stream data to the appropriate node 
(usually to the fog node if the streams contain testing data while to the cloud node 
whether the streams move training data).

3.	 Fog node: It is a worker or a computer node, which performs the tasks received 
from the fog broker. As shown in Fig. 6, it serves for running the stream MLaaS 
for the real-time decision-making. It should mention that the federated stream ML 
wherever it is installed at the fog or cloud environment, it behaves as follows:

•	 If the streams move training data (i.e., the data collected from the medical 
devices or staff), the stream ML updates the prediction model, which is stored 
in the cloud.

•	 If the streams transmit testing data (i.e., the data collected from the non-med-
ical devices), the stream ML applies the last generated prediction model on 
such data for real-time diagnosis and prognosis.

•	 The stream ML transfers the training and/or testing data to the cloud in order 
to store it for a later usage by the batch ML.

4.	 Cloud: As shown in Fig. 6, the cloud system provides for the end users as on 
demand services; a stream ML having the same functionalities as one exists in 
the fog, a batch ML, and both. The batch MLaaS reacts with the historical dataset 
for a long-term decision making (e.g., inferring the importance of COVID-19 
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symptoms, determining the most infected regions, etc.). In addition, the cloud 
stores all predictive models generated by these MLs.

5.	 End-user devices: It might be a personal computer, mobile phone, tablet, etc. used 
by the patient, the medical staff, the emergency medical aid service, COVID-19 
rapid test center, etc. Such devices facilitate the interaction between the end-users 
and our system (e.g., display in real-time the analytic dashboards, send SMS/
Email notifications, etc.). In this context, it should be noted that the end-users may 
enter new training data through their devices, which will be taken into account 
by stream ML and/or update existing data processed by batch ML (see Fig. 6).

4.2 � Software components

The proposed framework includes a set of interrelated software components 
ensuring the (i) WoT-based interaction between the IoT devices, the fog and 
cloud layers that serves to solve the interoperability issues (see Fig.  7), (ii) 
resources management for running the federated MLs as a Service (MLaaS). 
Indeed, the computational tasks are distributed on the compute instances (i.e., 
virtual machine or docker container), (iii) orchestration service according to the 
load balancing, and (iv) reliability and security constraints. In the following, we 
detail the set of software components, which is offered as cloud and fog services. 

Fig. 7   Software components view of the proposed framework
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Obviously, each service has its own API permitting the end users managing and 
adopting the service according to their requirements. 

1.	 Security service: To improve the security level, we adopt the transport layer 
security (TLS) to encrypt the streams moving from the IoT devices to upstream 
servers running the ML. In fact, encryption is an effective technique for protecting 
both the training and testing data as it moves the public and/or private networks. 
Indeed, our framework consists of establishing a secured tunnel between the hard-
ware components via a virtual private network (VPN) protocol like internet pro-
tocol security (IPSec) or a secure general purpose protocol like hypertext transfer 
protocol secure (HTTPS) or secure shell (SSH). In this regard, we think for creat-
ing a tunnel over SSH for the message queuing telemetry transport (MQTT). First, 
we carried out an IoT device agent and an SSH daemon on the remote device. 
Next, we configure the remote device with the MQTT topic subscription and the 
authentication by using public/private key pair in order to connect to the MQTT 
server via SSH without asking for a password. This ensures unique use of the 
keys in order to minimize additional server-side checks and also maximize the 
security level.

2.	 Distributed database service: Its main role is to store the two catalogs: resource 
catalog and service or application catalog. The resource catalog is maintained at 
the orchestration service, and it represents the holistic and abstracted view of the 
computing resources [22], while the service catalog illustrates information about 
our framework provided services and/or applications like their operations, their 
requirements and dependencies. The main services of the proposed framework 
are the stream MLaaS and batch MLaaS. Here, it should be mentioned that our 
work is the first one that aims at offering to the end-users a distributed stream ML, 
a distributed batch ML or both at the same time by basing on their dependencies 
and their connections, respectively. These federated MLaaS services include, 
obviously, a set of services such as predictive analytics, data mining, data visu-
alization, APIs, etc. That’s why, the end-users can get started with an ML-based 
system without having to install any software, or develop algorithms. (They can 
select one or more classification algorithm(s) according to the chosen ML type.) 
In addition, they may choose the most appropriate configuration fitting their 
requirements.

3.	 Identity service: It enables end-users to remain connected to several applications 
while ensuring the single sign-on (SSO) between the applications. That’s why, the 
identity server federates identities between multiple heterogeneous and distributed 
systems (at the edge, fog and cloud computing layers). Such component allows 
the user authentication before accessing to any on demand provided service. For 
instance, users can use identity as a service (IDaaS) [33] by specifying connection 
with SQL database (e.g., Mysql), NoSQL database (e.g., Cassandra), lightweight 
directory access protocol (LDAP) or active directory (AD) user stores. Addition-
ally, they can use MLaaS and link it with IDaaS in order to analyze user activity, 
assign risk to each access request, and create policies to be triggered when an 
abnormal behavior is detected.
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4.	 Container orchestration service: It allows the management of the application 
services across multiple containers, the automation of the containers deployment 
within clusters, scaling the containers, and the real-time management of the end-
user health thanks to the provided federated MLaaS. In the following, we detail 
further the federated MLaaS services:

•	 Batch MLaaS: It is based on the micro-services architecture, and it is 
deployed in a Pod. The micro-services are deployed in containers; the first 
container includes a NoSQL database representing the dataset treated by the 
batch ML. In fact, the batch ML is deployed in a second container that can 
access to the dataset for the model generation enabling the pre-processing, 
clustering, classifying and building analytical dashboards.

•	 Stream MLaaS: Similarly, it adopts a micro-services architecture. It is 
deployed by using two Pods into a hybrid fog/cloud environment. Each Pod 
contains a micro-service involving the message broker that receives real-time 
streams from distributed data-sources and then sends them to another micro-
service representing by stream ML. The stream ML allows to receive training 
streams for updating the model in order to (i) apply the latest predictive model 
in real time to testing streams and (ii) display the real time analytics. The two 
Pods use a shared federated prediction model, which is stored into the cloud, 
whereas the real-time symptom data processing and COVID-19 prediction are 
done into the fog.

	    The end-user is able to (i) deploy the stream MLaaS into a fog/cloud hybrid 
environment and the batch MLaaS into a public, private or hybrid cloud and (ii) 
define the interaction between them; so that the testing and training data gener-
ated by stream MLaaS should be stored in the database offered by batch MLaaS. 
The provided federated MLaaS are scalable services ensuring a high-performance 
level for building/updating batch/real-time predictive models. In this context, it 
should be noted that the container orchestration service mainly serves to (i) scale 
up/down the active fog/cloud nodes number according to the system requirements, 
(ii) improve the portability of workloads (i.e., services/applications), and (iii) 
efficiently balance between the workloads.

5.	 Load Balancing (LB): The adoption of the micro-services architecture requires 
an effective infrastructure services management in order to ensure the resource 
availability and scalability, and consequently to meet the end-users requirements. 
Precisely, when the containers are deployed on a cluster, the role of the LB is to 
balance the workload (especially, in the case if there are multiple containers on a 
single node being accessed on the same port), monitor the cluster and its contain-
ers, and continuously upgrade the micro-services inside the containers without 
services disruption.

6.	 Monitoring service: We should monitor the model generation and its performance 
in term of predictions. So, monitoring as a service should be a key service offered 
to the end users into the hybrid fog/cloud environment. That’s why, our frame-
work allows the end users to (i) ensure that the data is trust to be used in training, 
(ii) track the accuracy of their predictions at run time, and (iii) adjust the model 
and the input data while updating, adding, or removing features and/or metrics. 
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For example, the end-users, in particularly the medical staff, can specify that the 
predictive model shall use temperature, O2 saturation, and cough level features as 
the sensors detected COVID-19 symptoms. Over time, new COVID-19 symptoms 
may be discovered and old symptoms that may affect model performance deg-
radation may be ignored. Therefore, in addition to the monitoring service, users 
can identify a new set of metrics and key performance indicators (KPIs) that are 
more directly correlated to the overall performance.

5 � Proposed COVID‑19 monitoring and prognosis system

5.1 � Dataset preparation

Based on the above presented framework, we propose a COVID-19 monitoring and 
prognosis prototype. The first phase consists in collecting real-time symptom data. 
Therefore, we adopt the open COVID-19 dataset.1 The dataset addresses COVID-
19 and other respiratory viruses. It covers symptoms data, after a RT-PCR test, and 
classifies the prediction result as a binary 0 in case of normal case, 1 in case of 
COVID-19 case, or 2 in case of non-COVID-19 pneumonia case. In the given data-
set, we select eight binary features such as sex, age, known contact with an infected 
individual, cough, fever, sore throat, shortness of breath, and headache. After the 
feature selection, we do the data preprocessing while encoding and normalization 
to specific range [0, 1] using min–max normalization. The preproceeded data-
set includes 108,549 records of confirmed COVID-19 cases and 940,026 records 
of non-confirmed cases (i.e., it contains 922,017 normal patient and 18009 non-
COVID-19 pneumonia patient).

5.2 � Learning algorithms application for data classification

In this phase, we implement an algorithm written in Python language that will be 
running in the Raspberry Pi simulator in order to convert the dataset into event 
streams transmitted to the broker node (see Listing 1). 

1  https://​github.​com/​nshom​ron/​covid​pred.

https://github.com/nshomron/covidpred
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Then, the fog broker receives the collected event streams and transfers them to 
the appropriate node (i.e., fog or cloud node) through MQTT protocol. For doing so, 
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we install Docker on ubuntu 18.04 with Intel Core i5 3210M@2.50 GHz processor 
and 6.00 GB RAM and then instantiate a container for running Mosquitto as MQTT 
broker.

As illustrated in Listing 1, the experiments are implemented using ML algorithms 
of python’s libraries, whereas the first stream ML, deployed in a fog node, is running 
on other Docker container, while the second one and the batch ML, deployed on 
OpenStack private cloud, is running on ubuntu 18.04 Docker machine with 6.00GB 
RAM. At the first time, we evaluate divers classifiers of Python’s Scikit-learn library 
in order to choose the best performing for our batch ML aiming at a long-term 
decision making. The existing ML algorithms might be classified into three major 
classes: (i) Conventional machine learners including Adaptive Boosting (AdaBoost) 
Classifier [34], Linear Support Vector Classification (LinearSVC) [35], Decision 
Tree Classifier[36], Random Forest Classifier[37], Gaussian Naive Bayes[38] and 
Gradient Boosting Classifier [39]], (ii) Simple neural network learners (i.e., Single 
layer), which is a Multi-Layer Perceptrons (MLP) Classifier[40] with a single layer 
of training, and (iii) Deep learning with multiple layers, which is an MLP-based 
algorithm with multiple layers. In fact, we should select the algorithm displaying an 
analytic dashboard for the medical staff in order to help them in determining the crit-
ical symptom to detect a COVID-19 infected case. Moreover, the algorithm should 
allow our system to exclude the irrelevant indicators that may decrease the model 
accuracy as well as to find out new symptoms, which may be relevant and useful for 
our model retraining. Obviously for each new streaming event, the stream ML model 
is updated and makes a real-time prediction. Such new data is then transmitted to 
the cloud environment for the batch processing. At the second time, we evaluate 
the Python’s river library including several stream ML classifiers, such as Logistic 
Regression, Adaptive Random Forest Classifier, Hoeffding Adaptive Tree Classifier, 
Extremely Fast Decision Tree Classifier, Gaussian Naive Bayes, and MLP Classifier. 
It is worth mentioning that all these algorithms might be used to build a stream ML 
model for a real-time COVID-19 prediction.

5.3 � Federated MLs performance analysis

5.3.1 � Performance metrics

To evaluate the performance of each federated ML model, four performance met-
rics were carried out: accuracy, root-mean-square error, precision and F1 score. 
These metrics can be further detailed through the confusion matrix concept [41]. 
In fact, the confusion matrix is a table that illustrates the relations between the 
real and predicted values within a classification problem (see Table 1). There are: 
(i) True Positive (TP) quarter representing the number of instances correctly 
identified, while the prediction indicates COVID-19 disease and it is true, (ii) 
True Negative (TN) quarter indicating the number of instances correctly iden-
tified, while the prediction indicates non-COVID-19 disease and it is true, (iii) 
False Positive (FP) quarter, which is the number of incorrect instances, while 
the COVID-19 prognosis is negative and it is false, and (iv) False Negative 
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(FN) quarter illustrating the number of the opposite error where the prediction 
instances are incorrect (i.e., fail to indicate the presence of a COVID-19 disease 
when it is present). Obviously, the four performance metrics are computed as 
follows: 

(a)	 The accuracy is computed as the number of correctly classified instances (i.e., 
true and false positive) to the total number of instances (see Equation (1)). 

(b)	 The RMSE, as shown in Equation (2), it is computed as the square root of the 
average of squared differences between the predicted and actual values. 

 Where Yi is the real value and Y ′
i
 is the predicted value.

(c)	 The precision is the fraction of relevant instances to the retrieved instances (see 
Equation (3)). 

(d)	 The F1 score, as illustrated by Equation (4), is computed by multiplying 2 by 
the precision and recall measures and then dividing the result by the sum of the 
precision and recall measures. 

 where 

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)RMSE =

√

√

√

√

(

1

n

)

n
∑

i=1

(Yi − Y �
i
)2

(3)Precision =
TP

TP + FP

(4)F1score = 2 ×
Precision × Recall

Precision + Recall

(5)Recall =
TP

TP + FN

Table 1   Confusion matrix-based performance metrics

Non-COVID COVID

Non-COVID True Negative (TN) False Positive (FP) Specificity TN/(TN + FP)
COVID False Negative (FN) True Positive (TP) Recall TP/(TP + FN)

Negative Predictive Value 
TN/(TN + FN)

Precision TP/(TP + FP) Accuracy (TP + TN)/
(TP + TN + FP + FN)
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For stream ML model evaluation, we consider the training time metric in addi-
tion to the four above-mentioned ones. Obviously, the response time is a key met-
ric for the real-time predictions.

5.3.2 � Batch ML model evaluation

The batch ML model evaluation aims at selecting the best performing algorithm 
for our multi-class classification problem (i.e., classify the collected symptoms 
data as normal, COVID-19, or non-COVID-19 pneumonia patient). This second 
evaluation is two-goal. The first one is to compare the different ML classifiers 
based on two different data splitting strategies: 

(a)	 The no-shuffle train/test split strategy consisting of splitting without shuffling 
the dataset into two parts as 80% of the dataset for training and 20% for testing 
the performance of the batch ML algorithm deployed into the cloud.

(b)	 The KCV strategy splits the dataset into k number of subsets; some of them are 
randomly selected to be used to learn the model, while the rest are used to assess 
the model performance [6, 42]. Thanks to such strategy, one can test the entire 
dataset. In this work, we adopt threefold cross-validation to split our dataset to 
train and test the used models.

The obtained results are given in Table 2. We analyze these experiment results 
in order to select the best strategy, algorithms, and parameters. In fact, we remark 
that: 

(i)	 The most accurate result for the majority of classifiers belongs to no-shuffle train/
test split strategy.

(ii)	 Decision Tree, Random Forest, Gradient Boosting and the Simple Neural Net-
works with 5, 10, 50 or 100 neurons might achieve the higher accuracy while 
adopting no-shuffle train/test split. Thus, they outperform other algorithms by 
providing prediction obtained up with 87.54% precision, 90.14% accuracy, 
14.52% RMSE, and 87.9% F1 Score (see the bold values in Table 2).

(iii)	 Decision Tree Classifier achieves the higher training time with 0.53 seconds by 
using no-shuffle train/test split, and 2.06 seconds while adopting KVC strategy 
with k = 3 (see the italic values in Table 2).

(iv)	 MLP classifier outperforms other algorithms by always providing the best values 
in terms of accuracy, precision, RMSE and F1 score regardless of the adopted 
strategy. Therefore, we suggest to use the MLP in order to ensure better perfor-
mance for our proposed batch ML model (see the underlined values in Table 2).

(v)	 On average, the MLP is the best classifier with outstanding performance. The 
number of neurons on the singleton hidden layer seems to have some light 
impacts on accuracy. For instance, an MLP model with only one hidden layer 
and three neurons achieved 90% accuracy, whereas whenever we increase the 
number of neurons to 5 and 10, the accuracy grow to be 90.04% and 90.06%, 
respectively. Consequently, the augmentation of the neurons number per layer 
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causes an additional computational cost and a slight improvement in accuracy 
simultaneously. Accordingly, the question is whether a more complex model 
deserves to be considered or a simpler model with slightly lower accuracy would 
be sufficient for prediction.

Figure  8 depicts the experiments in details, including parameters values selected 
for each model (i.e., number of layers used in each ML model and the number of 
hidden layer neurons in artificial neural networks (ANN)). It is worth mentioning 
that we used the MLP with adam activation function like ANN type. Indeed, Fig. 8 
shows that (i) by using no-shuffle train/test split, a simple deep learning model (e.g., 
MLP(5)) might give similar values such a more deeper and larger classifier (e.g., 
MLP(100,100,100,100)), and (ii) while using threefold CV, a simple deep learning 
(e.g., MLP(3) with accuracy of 90%) could perform a closer similar value from a 
larger classifier (e.g., MLP(3,3,3,3) with accuracy of 90.06%). Hence, the choice 
of the both hidden layers and neurons numbers depends on the appropriate level of 
accuracy.

Furthermore, we are interested in evaluating the features’ importance to extract 
those that significantly help determine the predictive capability of the COVID-19 
symptoms within the large dataset. In this context, we evaluate AdaBoost, Decision 
Tree, Random Forest, and Gradient Boosting Classifiers. Figure  9 shows that the 
head ache, fever, cough, and sore throat are the key features that may mainly con-
tribute in COVID-19 predictions and consequently improve our federated model.

5.3.3 � Stream ML model evaluation

The second goal of the evaluation is to find the best algorithms for our stream ML 
models in terms of (i) performance parameters such as accuracy, RMSE, precision, 

Fig. 8   Result of layer variation (1–4)
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and F1 score (shown in Fig.  10) and (ii) QoS parameters such as server latency, 
response time, and network latency (shown in Fig. 11). 

(a)	 Quantitative evaluation for multi-class classification: Figure 10 depicts per-
formance-based comparisons between the different stream ML algorithms in 
terms of accuracy, RMSE, precision and F1 score while considering a multi-class 
problem (i.e., the problem of classifying instances into one of three classes, nor-
mal, COVID-19, non-COVID-19 pneumonia). Indeed, Hoeffding Adaptive Tree 
Classifier outperforms other algorithms in providing prediction obtained up with 

Fig. 9   Feature evaluation for COVID-19 disease classification

Fig. 10   Performance parameters evaluation results
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77.6% precision, 90.12% accuracy and 38.39% RMSE. Moreover, as shown in 
Fig. 10, the MLP with a simple layer having a limited number of neurons (i.e., 3) 
is the most performing in terms of accuracy, RMSE, precision and F1 score with 
90.14%, 14.52%, 87.54%, 87.9%, respectively. By either increasing the number 
of neurons or the number of layers, MLP exceeds the maximum time (i.e., 48 
hours) without providing a prediction result.

(b)	 Qualitative evaluation for multi-class classification: Our proposed framework 
is also assessed using three QoS parameters including server latency, response 
time, and network latency. In fact, the minimum, maximum, and average values 
of these parameters are calculated after sending all data (i.e., 1048575 records 
of data) continuously as JSON objects. Figure 11a, b shows the QoS evaluation 
results between the different stream ML algorithms while receiving 10, 102 , 
103 , 104 , 105 and 106 records, respectively. The experiment results demonstrate 

Fig. 11   QoS parameters evaluation results
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that both (i) Hoeffding Adaptive Tree Classifier and Logistic Regression provide 
the best performance average, whereas the Hoeffding Adaptive Tree Classifier 
achieves the best response time with 48 milliseconds, Logistic Regression spends 
the minimum server latency with 0.055 milliseconds, (ii) Whatever the number 
of received records, Hoeffding Adaptive and Logistic Regression remain the best 
algorithms that always offer the best results, (iii) Adaptive Random Forest and 
MLP Classifier are the worst QoS parameters in the evaluation (i.e., they are very 
slow while continuously processing streaming data), and (vi) the average of the 
network latency per transferred record across the network is 58 ms.

It should be noted that all the above-mentioned performance results correspond 
to a multi-class problem while both considering the stream and batch ML mod-
els evaluation. In the following, we will present a binary class (i.e., COVID vs. 
non-COVID classes) performance evaluation. The suitable stream ML model is 
chosen according to the confusion matrices shown in Fig.  13 as well as on the 

Fig. 12   Stream ML model evaluation for binary class classification
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accuracy, precision, RMSE, and training time metrics shown in Fig. 12a, b. The 
evaluation results demonstrate that whether considering binary classification: (i) 
Extremely Fast Decision Tree Classifier algorithm outperforms other algorithms 
by providing predictions obtained up with 77.75% precision, 91.71% accuracy 
and 28.79% RMSE, and (ii) Logistic Regression is the best-performing algorithm 

Fig. 13   Confusion matrix-based performance metrics for a binary classification by using a Logistic 
Regression, b Adaptive Random Forest, c Hoeffding Adaptive Tree, d Extremely Fast Decision Tree, e 
Gaussian NB, f MLP
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in term of the training time, which is a key metric for real-time predictions. More-
over, it should notice that by adopting some ML algorithms, the binary classifi-
cation is more performing than the multi-classification to predict the COVID-19 
prognosis. In contrast, as shown in Fig. 12a, b, we obtain worse values by using a 
binary-classification when adopting certain other algorithms.

According to these results, we conclude that the stream ML algorithms have the 
potential to be integrated into the COVID-19 prognosis best practices since they 
allow the early predictions of the suspected COVID-19 cases.

6 � Conclusion

The proposed work presented a COVID-19 monitoring and prognosis system. The 
system followed a hybrid framework integrating the IoT, fog, and cloud technolo-
gies. Our framework enabled the data collection from medical and non-medical 
devices, preprocessing, classification models, and training using a set of federated 
MLs (i.e., batch and stream MLs) provided as services. The batch MLaaS was 
implemented on the cloud environment for a long-term decision making, and the 
stream MLaaS was installed into a hybrid fog/cloud environment for a short-term 
decision making. The proposed federated batch and stream models were determined 
after a series of quantitative and qualitative evaluation based on Python’s libraries 
algorithms and the widely used IEEE COVID-19 dataset. Both the performance and 
QoS metrics of the federated MLs evaluation demonstrated that the proposed frame-
work promise efficient results for the detection of COVID-19 disease. In the future 
work, we plan to involve other deep learning algorithms to improve the prediction of 
COVID-19 cases as well as the determination of the key features impacting the pre-
dictions. In addition, we intend to make our federated models more robust and accu-
rate by testing and training more real data (i.e., consider COVID-19 cases as much 
as possible). Finally, we aim at providing the proposed federated MLaaS services on 
the large scale demand. 
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