
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Hybrid parallelization of molecular dynamics
simulations to reduce load imbalance

Julian Morillo · Maxime Vassaux · Peter
V. Coveney · Marta Garcia-Gasulla

Received: date / Accepted: date

Abstract The most widely used technique to allow for parallel simulations in
molecular dynamics is spatial domain decomposition, where the physical ge-
ometry is divided into boxes, one per processor. This technique can inherently
produce computational load imbalance when either the spatial distribution of
particles or the computational cost per particle is not uniform. This paper
shows the benefits of using a hybrid MPI+OpenMP model to deal with this
load imbalance. We consider LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator), a prototypical molecular dynamics simulator that
provides its own balancing mechanism and an OpenMP implementation for
many of its modules, allowing for a hybrid setup. In this work, we extend the
current OpenMP implementation of LAMMPS and optimize it and evaluate
three different setups: MPI-only, MPI with the LAMMPS balance mechanism,
and hybrid setup using our improved OpenMP version. This comparison is
made using the five standard benchmarks included in the LAMMPS distribu-
tion plus two additional test cases. Results show that the hybrid approach can
deal with load balancing problems better and more effectively (50% improve-
ment versus MPI-only for a highly-imbalanced testcase) than the LAMMPS
balance mechanism (only 43% improvement) and improve simulations with
issues other than load imbalance.

Julian Morillo
Pl. Eusebi Güell, 1-3, 08034 Barcelona (Spain)
Tel.: (+34) 93 413 72 48
Fax: (+34) 93 413 77 21
E-mail: julian.morillo@bsc.es

Maxime Vassaux
E-mail: m.vassaux@ucl.ac.uk

Peter V. Coveney
E-mail: p.v.coveney@ucl.ac.uk

Marta Garcia-Gasulla
E-mail: marta.garcia@bsc.es

This is an accepted manuscript published in The Journal of Supercomputing,the published version can be found:
https://doi.org/10.1007/s11227-021-04214-4
© 2022 Springer Nature Switzerland AG. Part of Springer Nature.

2 Julian Morillo et al.

Keywords load balance · parallel computing · molecular dynamics · MPI ·
OpenMP · hybrid programming model

1 Introduction and Related Work

Molecular dynamics is ubiquitous for the theoretical investigation of all ranges
of materials from their structure to their properties. LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator, [47] [36]) is a classical molec-
ular dynamics code with a focus on materials modeling. It has potentials for
solid-state materials (metals, semiconductors) and soft matter (biomolecules,
polymers), and coarse-grained mesoscopic systems. It can be used to model
atoms or, more generically, as a parallel particle simulator at the atomic, meso,
and continuum scales. It is a prototypical molecular dynamics simulation en-
gine [36].

Molecular dynamics simulations of molecular systems beyond the microme-
ter and microsecond scales remain prohibitive even though parallelization and
high-performance computing resources are routinely employed. Parallelization
of molecular dynamics simulation can be achieved using MPI (Message Pass-
ing Interface) and a spatial decomposition of the simulation domain. The basic
idea of a spatial decomposition method is to divide the physical geometry of
the system under simulation into small boxes, one per processor. Each pro-
cessor will compute primarily on atoms within its box. This may induce load
imbalance in problems with non-uniform atom densities. The problem of load
imbalance in MPI programs is well known [24] and in particular, in molecular
dynamics simulations, it is widely recognized [23,38].

The challenge of the MPI load imbalance problem comes from the nature
of MPI programming, where each process has its own data that can only be
shared by explicit message passing. Simultaneously, the nature of load imbal-
ance is dynamic and affected by many factors, therefore difficult to predict.
Figure 1 presents a taxonomy of the different solutions proposed to cope with
load imbalance. Traditionally, such solutions can be divided into two groups:
the ones that are applied before execution and the ones applied during exe-
cution. In the first group, we can consider different mesh partitioners [50,32].
These solutions are static and cannot address load changes during the execu-
tion. Moreover, they need to be tuned for new architectures, algorithms, or
simulations.

The approaches applied during the execution can be classified as solutions
that “move” data and solutions that change computational resources. The
methods that redistribute data [29,42] usually execute a load balancing al-
gorithm with a given frequency. This algorithm determines if there is a load
imbalance problem, when necessary, computes a new partition, and finally re-
distributes the data as needed. These approaches are not able to deal with
very dynamic load imbalance. They also need to be able to measure load and
decide how frequently the load balancing algorithm is executed because the
cost of redistributing the data is not negligible. Usually, these solutions are

Hybrid parallelization of molecular dynamics simulations to reduce load... 3

Fig. 1: Taxonomy of solutions to load imbalance. This paper falls conceptually
into the box marked in green.

implemented within each application; LAMMPS provides its own balancing
mechanisms for both before [5] and during execution [7].

In the category of solutions applied during execution that change the com-
putational resources, we find different approaches. Adaptive MPI [30], for ex-
ample, relies on virtualized processes, and the runtime is in charge of schedul-
ing them to achieve a good load balance. They run on top of CHARM++ [18]
which implies a change in the programming language and model, so although
this might be an interesting comparison, the changes needed in the code [1]
leave it out of the scope of this work. Etinski et al. [25] propose to use the
Dynamic Voltage and Frequency Scaling (DVFS) reducing the frequency of
less loaded processes to save power. Also, in this category, we find the Dy-
namic Load Balancing library [27,28]; this library changes the computational
resources assigned to the different MPI processes to help balance their load.

We propose to use the hybrid programming model MPI+OpenMP [39,
41] to alleviate the load balance problem. Hybrid parallelization is a well-
studied area that has already shown its benefits when compared to other
approaches [22]. The idea of using an OpenMP/MPI hybrid approach for im-
proving the performance of molecular dynamics simulations has already been
explored in the past [33,31,34]. Kunaseth et al. [33], for example, take benefit
of the hybrid approach to propose and analyze two data-privatization thread
scheduling algorithms focusing on the memory footprint they pose. Jung et
al. [31] develop a scheme by combining a cell-wise version of the midpoint
method with pair-wise Verlet lists based on a hybrid approach. Its evaluation
is limited to long-range interactions, while we cover all short-range, mid-range,
and long-range interactions. Anirban et al. [34] discuss computational bottle-
necks and challenges in MD to present a hybrid scheme for systems with
short-range interatomic interactions.

The hybrid programming model approach offers the advantages of a hybrid
code: improves the load balance, and at the same time reduces the pressure
on the communication between MPI processes. In contrast with other ap-
proaches that need to be programmed adhoc for each input or architecture,
an OpenMP [14] parallelization can be exploited in many situations without
needing to tune the code specifically. Deng et al. [23], for example, describe

4 Julian Morillo et al.

an adaptive method for achieving load balance in parallel computations that
is tested on standard short-ranged parallel molecular dynamics calculations.
Our proposal, in contrast, is to use a hybrid (MPI+OpenMP) approach. We
argue that the use of OpenMP can help alleviate MPI scaling issues, especially
the ones related to load balance, and that this can be done straightforwardly
by leveraging on the OpenMP characteristics. Moreover, our evaluation is not
limited to short-ranged molecular dynamics calculations: mid-range and long-
range simulations are also considered, including all the benchmarks provided
by the LAMMPS distribution, together with two extra testcases with quite
different characteristics regarding load balance.

We use LAMMPS to demonstrate the benefits of hybrid parallelization (as
a generic parallelization paradigm), and therefore the results apply not only
to LAMMPS but to all MD simulation codes (NAMD [12], GROMACS [4],
etc.). Many LAMMPS modules have OpenMP versions for shared-memory
parallelism, allowing for hybrid setups in which MPI+OpenMP configurations
can be run. Although there are OpenMP versions of many LAMMPS mod-
ules, many of them lack an OpenMP implementation [6]. Other ones present
a parallelization pattern [16] that is not optimum for performance or pro-
grammability. This leaves MPI as the only parallel option for these parts of
the code. Nonetheless, the code is designed to be easily modified or extended
with new functionality. In this paper, we use such a feature to parallelize with
OpenMP some code regions that lack this parallelism and improve the orig-
inal OpenMP implementation in other sections of code. As it will be shown
in Section 4, the actual changes to the implementation are relatively simple,
pointing out another benefit of the hybrid programming when compared to
other approaches. A more comprehensive parallelization, i.e., eliminating all
the sequential parts when running with OpenMP is totally out of the scope of
this paper.

The main contributions of this paper are:

1. we present some enhancements to the LAMMPS OpenMP implementation;
2. we provide an extensive evaluation of this improved LAMMPS hybrid ver-

sion against the MPI-only version as a baseline case but also against the
LAMMPS balance mechanism mentioned previously;

3. we show how the hybrid approach can deal with imbalance issues better
than the balance mechanism and, furthermore, it can improve performance
in cases where load imbalance is not the main problem.

This paper is organized as follows. Section 2 presents a description of
LAMMPS and the benchmarks/testcases used for the evaluation together with
the performance analysis tools and efficiency metrics employed. In Section 3
we explain why MPI load imbalance is a problem, the difficulties to address it,
and why it is very common in molecular dynamics simulations, together with
the two compared approaches to solve it: the LAMMPS balancing mechanism
and the use of a hybrid model. Section 4 includes a description of our proposed
additions to the LAMMPS OpenMP implementation. Section 5 contains the
environment employed for the evaluation together with a characterization of

Hybrid parallelization of molecular dynamics simulations to reduce load... 5

the benchmarks/testcases used. Finally, a complete performance comparison
of the three evaluated scenarios is done for all the considered benchmarks/test-
cases. Section 6 concludes our study with comments and remarks.

2 Background

2.1 LAMMPS

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS,
[9,36]) is a highly parallelized code for the simulation of classical molecu-
lar dynamics. LAMMPS is widely used by the materials science community.
LAMMPS is intended for parallelism and runs as well on single processors as
in parallel using the Message-Passing Interface (MPI) and a spatial decompo-
sition of the simulation domain. Many LAMMPS modules provide accelerated
performance on CPUs, GPUs, and Intel Xeon Phis. LAMMPS is distributed
by Sandia National Laboratories as an open-source code under the terms of
the GPL.

LAMMPS is used to simulate the dynamics and the properties of a wide
range of systems including amorphous and crystalised materials, proteins, and
much more. The need for computational chemists to simulate larger systems for
longer periods of time has continuously pushed the improvement of LAMMPS
scalability. Besides, LAMMPS is now also frequently coupled with other tools
such as machine-learning or continuum model simulators for scale-bridging
purposes. As a result, large ensembles of molecular dynamics simulations can
be simulated simultaneously. LAMMPS has already been used to simulate the
dynamics of tens of billions of atoms. On what is referred to as the “Lenard-
Jones” benchmark, the highest throughput recorded was 4.34 TFlops in 2005
on a 40x109 atoms simulation. In a more recent study LAMMPS was shown
to reach 2.35x10−8 s/atom/timestep [13].

2.2 Benchmarks

For evaluation purposes, we consider in this paper a combination of LAMMPS
standard benchmarking scenarios and a couple of additional scenarios trigger-
ing more specifically load-balancing issues (Table 1). LAMMPS features a set
of five standard benchmarks representative of the diversity of systems that
can be simulated. We assume that parallel efficiency is highly impacted by the
range of interatomic potential interactions. We, therefore, can classify the five
scenarios into one of the following three classes of problems:

1. Short-range interacting systems: each particle interacting on average with
respectively 7 and 5 neighbours.

2. Mid-range interacting systems: each particle interacting on average with
respectively 45 and 55 neighbours.

6 Julian Morillo et al.

3. Long-range interacting system: the “Rhodopsin” scenario [17] integrates
long-range Coulomb interactions, resulting in each particle interacting on
average with 440 neighbours.

Each scenario simulates the dynamics of 32,000 atoms. The data required
for the simulation of these benchmarks is included in the distribution of
LAMMPS. Further details on the constraints applied during the simulation
of the scenarios can be found on the LAMMPS Benchmarks page website
(https://lammps.sandia.gov/bench.html).

Benchmarks

Short-range
Granular chute [3]: convective flow of falling particles
interacting via a frictional history potential
Polymer chain [15]: thermal fluctuations of hundred
monomers long chains

Mid-range
EAM [2]: thermodynamic fluctuations of a metallic cop-
per bulk solid which atoms interact via the embedded
atom method (EAM) potential
Lennard-Jones [10]: thermodynamics of an atomic fluid

Long-range Rhodopsin [17]: conformation changes of the rhodopsin
protein in a solvated lipid bilayer, the CHARMM force-
field is used to describe atoms pairwise and multi-body
interactions.

Additional scenarios
Epoxy: non-equilibrium dynamics of highly-crosslinked
epoxy polymer chains under applied stretching
CG-GO: coarse-grained (CG) graphene-oxide (GO) sheet
embedded in a polymer precursor

Table 1: Benchmarks.

In addition to LAMMPS standard benchmark scenarios, we introduce the
simulation of an epoxy resin [48] and the simulation of a graphene-based
nanocomposite [45] (Table 1). The epoxy resin is constrained with a fixed num-
ber of atoms and temperature. Meanwhile, the volume is controlled through-
out the simulation and varied at a fixed strain rate. In the second scenario,
the graphene-oxide (GO) sheet is a dense, two-dimensional packing of carbon
atoms, while polymer precursors consist in a disordered phase of poly(methyl
methacrylate) (PMMA) precursors. The “CG-GO” scenario simulates the dy-
namics of GO during annealing, the number of atoms and the volume of the
system are fixed and the temperature is increasing from 300K to 500K.

These two custom systems face specific computational efficiency issues
which justified the improvement of the current load balancing methods avail-
able in LAMMPS. We will perform efficiency measurements that highlight
existing bottlenecks and propose load balancing improvement based on the
analysis of the measurements.

Hybrid parallelization of molecular dynamics simulations to reduce load... 7

2.3 Performance Tools and Efficiency Metrics

In this paper, we go one step further and aim at gaining insight on the rea-
sons for the performance achieved in the different situations at study. For this,
we rely on performance analysis tools and the performance methodology pro-
moted by the Center of Excellence (CoE) for Performance Optimization and
Productivity (POP) 1.

The performance analysis tools used in this work are the following:

Extrae: To obtain traces of the different executions, it supports MPI and
OpenMP among other parallel programming models [20,43]. Extrae uses
PAPI [46] to collect information regarding performance hardware counters.

Paraver: To visualize the traces obtained with Extrae. It allows us to analyze
in detail the behaviour of the program and also to compute the performance
metrics [21,35].

The POP CoE has defined a systematic methodology for performance anal-
ysis. This methodology is independent of the tool being used for the analysis
and defines a set of performance metrics. These metrics are well defined, ac-
cepted by the community, and meaningful, pointing the analysts to the main
factors affecting the performance and scalability of the code [49,19]. In this
paper, we use some of these metrics as they allow us to compare the different
LAMMPS benchmarks using a common ground.

The POP metrics are hierarchical and multiplicative, meaning that the
parent metric can always be computed as the product of its child metrics.
Each metric can get values between 0 and 100, and the metric indicates how
well that indicator is performing. For example, a load balance of 70% indicates
that 30% of the CPU time used is lost due to load imbalance, and also that
by addressing the load imbalance problem we will be able to improve the
execution by at most 30%. Specifically, we are going to use 3 metrics from
the POP methodology: Parallel Efficiency, Load Balance, and Communication
efficiency.

These efficiency metrics are based on the simplification of a process into
two states: the state in which it is performing computation, which is called
Useful (blue), and the state in which it is not performing computation, e.g.,
communicating to other processes, which is called Not useful (red).

An example of this simplification can be seen in Figure 2 where we can
see two processes, named p1 and p2 running from left to right (horizontal axis
represents time). We can see how their execution changes between the two
states from Useful to Not useful and vice versa during their execution.

We call P = {p1, . . . , pn} the set of MPI processes, and n the number of
MPI processes. For each MPI process p, we define the set Up = {up

1, u
p
2, . . . , u

p
|U |}

of the time intervals where the application is performing useful computation
(the set of blue intervals). We define the sum of the durations of all useful
time intervals in a process p as shown in Equation 1, and we call it the useful
duration of a process.

1 https://pop-coe.eu/

8 Julian Morillo et al.

1
1

u
2
1

u

1
2

u
2
2

u

1
p

2
p

E

Fig. 2: State evolution of two processes

DUp
=

∑
Up

■ =

|Up|∑
j=1

up
j (1)

Similarly we can define Up and DUp
for the red intervals.

We also define the elapsed time E as E = maxn
p=1[DUp

+DUp
]. The elapsed

time is the total duration of the execution (as depicted in Figure 2).

Parallel Efficiency. The Parallel Efficiency (PE) indicates the amount of time
that is being lost due to the parallelization of the code. Or, equivalently, the ra-
tio between the time consumed on useful computation and the total consumed
CPU time. As we said the Parallel efficiency PE can be computed as the
product of its children, in this case the Load balance LB and Communication
efficiency CE and is defined as shown in Equation 2.

PE =
DUp

E ∗ n
;PE = LB ∗ CE (2)

Load Balance. Load balance measures the efficiency loss due to different loads
(useful computation) for each process. Its definition can be seen in Equation 3.

LB =

∑n
i=1 DUi

n ∗maxni=1DUi

(3)

Communication efficiency. Finally, the Communication efficiency is the effi-
ciency loss for communicating data; it can be divided into two child metrics
Serialization efficiency and Transfer efficiency. Serialization corresponds to
time lost due to synchronizations between different processes, i.e. when one
process needs to wait for another one. Transfer is the time lost in any kind
of MPI overhead, it includes different factors such as network bandwidth,
communication latency, or implementation overheads. The definition of Com-
munication efficiency can be found in Equation 4.

CE =
maxni=1DUi

E
(4)

Hybrid parallelization of molecular dynamics simulations to reduce load... 9

3 Challenges and Proposed Approaches to Load Imbalance

3.1 Imbalance in Molecular Dynamics Simulations

Molecular dynamics (MD) is a commonly used tool for simulation of the struc-
tural, thermodynamic, and transport properties of biological and polymeric
systems on the picosecond to nanosecond timescale. During a timestep of the
MD simulation, forces are computed on each atom due to its interaction with
other atoms, and atoms move by integrating simple Newtonian equations of
motion [38].

The parallel nature of MD simulations has long been recognized [38,26].
The overall calculation on P processors should scale as N/P , N being the
total number of atoms in the simulated system. For general molecular sys-
tems simulated on message-passing machines, most parallel implementations
have used the replicated− data technique [44] where a copy of all N atomic
positions is stored on each of P processors. This enables easy computation
and load-balancing. However, at each timestep the interprocessor communi-
cation needed to globally update a copy of the N -vector of atom positions
scales as N , independent of P . Thus replicated-data methods do not scale to
large numbers of processors. An alternative known as force− decomposition
scales as N/

√
P but is still sub-optimal [37]. For large N/P ratios, spatial-

decomposition methods are clearly the best algorithmic choice. By subdividing
the physical volume among processors, most computations become local and
communication is minimized so that optimal N/P scaling can be achieved.
Such a method is used by LAMMPS.

The basic idea of a spatial decomposition method for MD is to divide the
physical geometry into small boxes, one per processor. Each processor will
compute primarily on atoms within its box. This may induce load imbalance
in problems with non-uniform atom densities.

3.2 Balancing

To alleviate the balancing problem, LAMMPS provides the balance command
[5]. This command adjusts the size and shape of processor sub-domains within
the simulation box, to attempt to balance the number of atoms or particles and
thus indirectly the computational cost (load) more evenly across processors.
The load balancing is ”static” in the sense that this command performs the
balancing once, before, or between simulations. The processor sub-domains
will then remain static during the subsequent run. To perform ”dynamic”
balancing, LAMMPS provides the fix balance command, which can adjust
processor sub-domain sizes and shapes on the fly during a run.

Load-balancing is typically most useful if the particles in the simulation
box have a spatially-varying density distribution or when the computational
cost varies significantly between different particles. For example, a model of a
vapor/liquid interface, or a solid with an irregular geometry containing void

10 Julian Morillo et al.

regions. In these cases, LAMMPS default of dividing the simulation box vol-
ume into a regular-spaced grid of 3d bricks, with one equal-volume sub-domain
per processor, may assign numbers of particles per processor in a way that the
computational effort varies significantly. This can lead to poor performance
when the simulation is run in parallel ([5],[47]).

The balancing can be performed with or without per-particle weighting.
With no weighting, the balancing attempts to assign an equal number of par-
ticles to each processor. With weighting, the balancing attempts to assign
an equal aggregate computational weight to each processor, which typically
induces a different number of atoms assigned to each processor. The weight
assigned to a particle is defined a priori by the user based on his knowledge of
the particle, for example, the expected number of neighbours and interactions.

3.3 Hybridization

It is not a trivial task to determine the optimal model (pure MPI vs MPI
+ OpenMP) to use for some specific application. Although pure MPI can
sometimes outperform hybrid, it is not less true that lots of counterexamples
do exist and results tend to vary with input data, problem size, etc. even for
a given code. In order to get optimal scalability one should in any case try to
implement the following strategies:

– Reduce synchronization overhead
– Reduce load imbalance
– Reduce computational overhead and memory consumption
– Minimize MPI communication

Works like [40] pinpoint cases where hybrid programming model (MPI +
OpenMP) can indeed be the superior solution because of reduced commu-
nication needs and memory consumption, or improved load balance.

Hybridizing the code can help alleviate MPI scaling issues, especially the
ones related to load balance as the load balance within OpenMP is addressed
straightforwardly when using a dynamic schedule with work-sharing or the
tasking model (i.e. generating explicit tasks that will be dynamically executed
by threads when they become idle).

To perform the tests with the hybrid versions of the benchmarks we have
made use of OpenMP features already provided by the LAMMPS library.
Version lammps-20Nov19 [8] has been used. However, and guided by the Epoxy
testcase, some modifications have been added to the OpenMP implementation
that are described in the following section.

4 Improvements and extensions to the LAMMPS OpenMP
implementation

This section presents a comprehensive description of all the changes performed
within LAMMPS OpenMP implementation. As stated in Section 1, LAMMPS

Hybrid parallelization of molecular dynamics simulations to reduce load... 11

is a huge piece of code so a complete parallelization with OpenMP is totally
out of the scope of this paper: this section presents code modifications to
optimize the execution of just one of the testcases (in this case epoxy). Other
testcases/benchmarks may, or may not, use the affected LAMMPS modules.
Nonetheless, the applied analysis and solutions are sufficiently general so that
they could be spotted in other parts of LAMMPS, in other MD codes or in
any code in general.

The use of the performance tools described in Section 2.3 to trace and ana-
lyze the execution of the epoxy testcase allowed us to find a source of load im-
balance in void NPairHalfBinNewtonTri::build(NeighList *list) func-
tion (blue regions in Figure 3). The bottom part of Figure 3 shows a time-
line with the execution of two LAMMPS iterations for 48 OpenMP threads.
The upper timeline represents the execution with 48 MPI ranks (included for
reference, both timelines are at the same timescale). It can be seen that the
OpenMP parallelization of void NPairHalfBinNewtonTri::build(NeighList

*list) alleviates the load imbalance, i.e. the differences in the blue bars rep-
resenting the running time of each thread are reduced. Note, however, that
the MPI execution is almost two times faster than the OpenMP one due to
the sequential parts (i.e. the parts not parallelized by OpenMP) in the latter.

Fig. 3: MPI-only (top) vs OpenMP-only (bottom) execution: the load imbal-
ance is alleviated (blue region) but there are significant parts not OpenMP
parallelized. (Duration=151.41 ms)

4.1 OpenMP taskification

Given the timeline in Figure 3, our first work was to parallelize with OpenMP
the biggest sequential part (marked with a red 1 in the timeline). This part
corresponds to Neighbor::build topology() function.

This function consists of 4 calls to 4 different functions build (each one
from a different class). Each of these 4 functions have a very similar structure

12 Julian Morillo et al.

that consists in a computation phase that ends up with an MPI Allreduce

of an int calculated in this computation phase (among other things). The 4
functions work with different data structures, therefore they are independent
of each other and can be run in parallel.

The objective was to annotate these 4 calls to build functions with OpenMP
tasks in order to allow their execution in parallel by different threads. Besides,
the issue associated with the MPI Allreduce command remains at the end of
each function. The solution consists in moving these communications out of the
4 functions and putting them one level above in the Neighbor::build topology()

function. The idea, then, is to have at the end 4 tasks with the computation
of the 4 build functions and one final task with the 4 communications. In this
way, we delay MPI communications as much as possible, preventing unneces-
sary waiting times if there is imbalance between MPI ranks in some of the 4
computation phases.

In order to allow the MPI communications to be executed at the end of
the 4 build computations we need to move them outside of each function. To
do that, a change in the signature of the functions is needed: we need them to
return an int (the value shared in the MPI Allreduce) instead of void. Then,
in each of the build functions, the calculated int in the computation phase
is returned by the function instead of being directly shared with other MPI
ranks through the MPI Allreduce call. These returned values are then used in
the new MPI Allreduce calls located in void Neighbor::build topology()

function. As future work, it could be considered to overlap computation and
communication through the use of MPI Iallreduce. However, enough paral-
lelism has already been extracted in this code region (see Figure 4). Section 4.4
presents an example of how to overlap computation and communication.

Listing 1 presents a skeleton of the final implementation of
Neighbor::build topology() function. As it can be seen, 4 new local
variables are declared: the variables will be used to store the values returned
by each of the build functions and, in turn, to honor the dependencies
between the 4 computation tasks and the communications task.

void Neighbor :: build_topology ()

{

int nmissing_bond , nmissing_angle , nmissing_dihedral ,

nmissing_improper , all;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out:nmissing_bond)

if (force ->bond) {

nmissing_bond = neigh_bond ->build ();

...

}

#pragma omp task depend(out:nmissing_angle)

if (force ->angle) {

nmissing_angle = neigh_angle ->build ();

...

}

#pragma omp task depend(out: nmissing_dihedral)

Hybrid parallelization of molecular dynamics simulations to reduce load... 13

if (force ->dihedral) {

nmissing_dihedral = neigh_dihedral ->build();

...

}

#pragma omp task depend(out: nmissing_improper)

if (force ->improper) {

nmissing_improper = neigh_improper ->build();

...

}

#pragma omp task depend(in:nmissing_bond ,nmissing_angle ,

nmissing_dihedral ,nmissing_improper)

{

MPI_Allreduce () x 4

...

} //end task

#pragma omp taskwait

} //end single and parallel

}

Listing 1: Modified void Neighbor::build topology() code including
OpenMP taskification

The present modifications significantly reduce the execution time of the
biggest sequential part and work efficiently for a small number of threads. Note,
however, that we are generating only 5 OpenMP tasks and only 4 of them can
run in parallel as the communications one needs to wait for the execution of the
others. So, when moving to the extreme case of using 48 threads (the number
of cores on the target machine), more parallelism is needed. To accomplish
that, the loops that make the calculations inside each of the 4 build functions
have also been taskified: this allows the generation of sufficient tasks to feed
all threads.

The results of these modifications can be appreciated in Figure 4 where
the red lines mark explicitly the region of code affected by these changes
and the reduction in execution time (upper part of the figure corresponds
to the original LAMMPS OpenMP implementation and the bottom timeline
corresponds to our improved OpenMP version). Note that quantifying how
much potential benefit is expected from each code modification before applying
it is a difficult job as it depends on many factors like the executed benchmark,
the input used, or even the machine where it is being executed. So we rather
prefer to show these benefits through the use of traces of real executions before
and after applying the changes, as in Figure 4. This does not imply a lack of
methodology: code changes are applied in the order in which more benefits are
expected. As an example, note how the first region to be parallelized is the
biggest one (i.e. the most time-consuming, marked with a red 1 in Figure 3).

4.2 Use of OpenMP dynamic scheduler

The second code modification has been done in the previous mentioned func-
tion NPairHalfBinNewtonTri::build(NeighList *list). It has been shown

14 Julian Morillo et al.

Fig. 4: Improved version (bottom timeline) compared to the LAMMPS original
OpenMP implementation (upper timeline): red squares mark the region of code
affected by the parallelization. (Duration=151.41 ms)

how by simply using the LAMMPS OpenMP implementation the detected im-
balance was alleviated. A close look at the source code shows, however, that
the LAMMPS OpenMP implementation does a static partition of the work-
load (like MPI does) so there is still some room for improvement in this part
of the code. This static partition of the workload is done through the use of
3 macros defined in npair omp.h These 3 macros are widely used along all
the LAMMPS OpenMP code so the same code refactoring done in this section
could be done in many other parts of the code.

The macro actually performing the workload partition is
NPAIR OMP SETUP(num). It does so by dividing num among the number
of available threads (i.e. in a loop of num iterations, defines the starting and
end iteration that must be executed by each thread by setting ifrom and ito

variables).
Once it is understood how these macros work, it is quite straightforward to

implement the proposed approach. As it can be seen in Listing 2 the proposed
change simply consists in substituting the original for that uses ifrom and
ito variables by another one that, instead, starts at 0 and ends at nlocal (i.e.
the value used in NPAIR OMP SETUP in this case). Of course, the new for is
surrounded by a #pragma omp for schedule(dynamic) to do the workshar-
ing (note that a #pragma omp parallel is not needed as it is already present
at the beginning of the function in the original code, see Listing 2).

void NPairHalfBinNewtonTriOmp :: build(NeighList *list)

{

...

NPAIR_OMP_INIT;

#if defined(_OPENMP)

#pragma omp parallel default(none) shared(list)

#endif

NPAIR_OMP_SETUP(nlocal);

...

#pragma omp for schedule(dynamic ,50)

Hybrid parallelization of molecular dynamics simulations to reduce load... 15

for (i = 0; i < nlocal; i++) {

// for (i = ifrom; i < ito; i++) {

... (Computation)

}

NPAIR_OMP_CLOSE;

}

Listing 2: Sketch of NPairHalfBinNewtonTriOmp::build(NeighList *list)

code including the dynamic OpenMP schedule

For our guiding testcase, we found out (just by trying different values) that
a chunk size of 50 (as shown in Listing 2) gave us a good trade-off between load
balance and overhead. So it does not pretend to be the optimum value. Note,
in any case, that the specific optimum value would depend on many factors
like the testcase, the input set, the number of threads being used on a given
execution, or the level of load imbalance between iterations. The important
take-away from this subsection is to let the OpenMP runtime manage any
potential load balancing issue instead of distributing statically the work.

4.3 Enabling more OpenMP parallelism

Looking into the generated traces showed that there was a relatively large
portion of code not OpenMP parallelized just before the execution of void

NPairHalfBinNewtonTriOmp::build(NeighList *list). This is shown in
Figures 4 and 5 marked with a red 4. The bottom timeline of Figure 5 repre-
sents (at the same timescale) the same part of the execution after parallelizing
some functions in this region of code. The red lines going from one timeline to
the other show the reduction in execution time achieved when using the newly
implemented parallel regions. Three different functions have been parallelized
in this section of code but let us focus on the most important in terms of
execution time: void NBinStandard::bin atoms() (see Listing 3).

void NBinStandard :: bin_atoms ()

{

...

#if defined(_OPENMP)

#pragma omp parallel for

#endif

for (i = 0; i < mbins; i++) binhead[i] = -1;

...

if (includegroup) {

int bitmask = group ->bitmask[includegroup];

for (i = nall -1; i >= nlocal; i--) {

if (mask[i] & bitmask) {

...

}

}

for (i = atom ->nfirst -1; i >= 0; i--) {

16 Julian Morillo et al.

Fig. 5: Influence of the newly implemented parallel regions: a comparison be-
fore (top) and after (bottom) parallelization; the compute time associated with
region 4 (red) is reduced by a 70% factor as shown by the red lines. (Duration
= 2.02 ms)

...

}

} else {

#if defined(_OPENMP)

#pragma omp parallel for private(ibin)

#endif

for (i = nall -1; i >= 0; i--) {

ibin = coord2bin(x[i]);

atom2bin[i] = ibin;

bins[i] = binhead[ibin];

binhead[ibin] = i;

}

}

}

Listing 3: Sketch of void NBinStandard::bin atoms() code including the
new added parallelization

Two parallel for worksharing constructs have been defined: the first one
is not very relevant in terms of execution time and it corresponds to the red
area in the bottom timeline in Figure 5. The important one is located at the
bottom of the Listing 3 which corresponds to the green region (marked with
a red 5). As it can be seen it is a very simple parallel for that just needs
to privatize ibin to work correctly.

Another important region of code candidate for enabling more OpenMP
parallelism is the one marked with a purple 3 in Figure 4. This area corresponds
to the execution of PPPM::poisson ik triclinic() method.

The method consists in three differentiated parts (one for each x, y and z

direction) with identical structure: an initial loop, a call to fft2->compute()

Hybrid parallelization of molecular dynamics simulations to reduce load... 17

and, last, three nested loops. Unfortunately, the use of a variable (n) prevents
a direct parallelization of both the initial and the three nested loops.

The solution for the first loop is to incorporate the management of vari-
able n (initialization and increment) to the control structure of the loop (see
Listing 4). Once this is done, a simple pragma omp parallel for suffices.

void PPPM:: poisson_ik_triclinic ()

{

int i,j,k,n;

// x direction gradient

#pragma omp parallel for

for (i = 0, n = 0; i < nfft; i++, n = n+2) {

work2[n] = fkx[i]*work1[n+1];

work2[n+1] = -fkx[i]*work1[n];

}

fft2 ->compute(work2 ,work2 ,-1);

int BS = (nyhi_in - nylo_in + 1) * (nxhi_in - nxlo_in + 1) * 2;

#pragma omp parallel

{

#pragma omp for private(n,j,i) nowait

for (k = nzlo_in; k <= nzhi_in; k++) {

n = (k - nzlo_in) * BS;

for (j = nylo_in; j <= nyhi_in; j++) {

for (i = nxlo_in; i <= nxhi_in; i++) {

vdx_brick[k][j][i] = work2[n];

n += 2;

} //i

} //j

} //k

// y direction gradient

#pragma omp for

for (i = 0, n = 0; i < nfft; i++, n=n+2) {

work2[n] = fky[i]*work1[n+1];

work2[n+1] = -fky[i]*work1[n];

}

} // parallel

... //(rest of code omitted)

}

Listing 4: Sketch of parallelized version of void

PPPM::poisson ik triclinic() method

The solution for the second case (the three nested loops) is trickier: we
need to privatize variable n and to do that we need to manually calculate
the initial value for n at each iteration of the outer-most loop. This is easilly
done through the use of the added variable BS that stores the increments of the
variable n in the two inner-most loops. Once all of these is done (see Listing 4),
the outer-most loop can be parallelized by simply privatizing n, j and i.

18 Julian Morillo et al.

As a last comment, the parallel region opened for the nested loops of x
direction is used for the first loop of y direction as depicted in Listing 4. The
same is done between y direction and z direction (not shown in the Listing).

4.4 Overlapping computation and communication

Last, but not least, we show here how to effectively overlap computation with
MPI communication. More precisely, we have worked in remap 3d function,
which is called several times in the same region of code mentioned in the last
part of the previous subsection. The function consists of 4 differentiated parts:

1. A sequence of MPI Irecv calls to receive data from other processes.
2. A sequence of (pack, MPI Send) calls that packs and sends data to other

processes.
3. A call to pack and unpack to manage the data of the calling process.
4. A sequence of (MPI Waitany, unpack) to wait for the corresponding

MPI Irecv to get the data and put it in the required memory location.

The changes done in the code to allow computation and communication
overlapping can be seen in Listing 5 and are summarized in the following items:

1. All code is wrapped by a parallel and a single constructs to create the
parallel OpenMP region and allow only one thread to enter the code to
create tasks.

2. The loop corresponding to point number 2 of the original code has been
split into two loops: one loop doing all the packs and the other doing all the
MPI Send. The loop doing the packs has been moved to the very beginning
of the function and each pack has been defined as a task.

3. To allow the previous taskification, plan->sendbuf has been redefined (not
shown) and now is a buffer of buffers indexed by isend: this allows for all
pack tasks to be independent.

4. As it is independent of the rest of the communications, the self-data man-
agement of point 3 of the original code has been moved next and taskified.

5. A taskwait is needed just after the loop with MPI Irecv because the
following MPI Send needs the tasks with packs defined in point 2 to be
finished.

6. Finally, the unpacks of the last loop have been defined as tasks: in this way,
the following MPI Waitany does not need to wait for the previous unpack
to finish.

void remap_3d(FFT_SCALAR *in , FFT_SCALAR *out , FFT_SCALAR *buf ,

struct remap_plan_3d *plan)

{

... // (omitted code)

#pragma omp parallel

#pragma omp single

Hybrid parallelization of molecular dynamics simulations to reduce load... 19

{

for (isend = 0; isend < plan ->nsend; isend ++) {

#pragma omp task firstprivate(isend)

plan ->pack(&in[plan ->send_offset[isend]],

&plan ->sendbuf[isend*plan ->sendbuf_size],&plan ->

packplan[isend]);

}

// copy in -> scratch -> out for self data

if (plan ->self) {

isend = plan ->nsend;

irecv = plan ->nrecv;

#pragma omp task firstprivate(isend ,irecv)

{

plan ->pack(&in[plan ->send_offset[isend]],

&scratch[plan ->recv_bufloc[irecv]],

&plan ->packplan[isend]);

plan ->unpack (& scratch[plan ->recv_bufloc[irecv]],

&out[plan ->recv_offset[irecv]],&plan ->

unpackplan[irecv]);

}

}

// post all recvs into scratch space

for (irecv = 0; irecv < plan ->nrecv; irecv ++) {

MPI_Irecv (& scratch[plan ->recv_bufloc[irecv]],plan ->recv_size

[irecv],

MPI_FFT_SCALAR ,plan ->recv_proc[irecv],0,

plan ->comm ,&plan ->request[irecv]);

}

#pragma omp taskwait

// send all messages to other procs

for (isend = 0; isend < plan ->nsend; isend ++) {

MPI_Send (&plan ->sendbuf[isend*plan ->sendbuf_size],plan ->

send_size[isend],MPI_FFT_SCALAR ,

plan ->send_proc[isend],0,plan ->comm);

}

// unpack all messages from scratch -> out

for (i = 0; i < plan ->nrecv; i++) {

MPI_Waitany(plan ->nrecv ,plan ->request ,&irecv ,

MPI_STATUS_IGNORE);

#pragma omp task firstprivate(irecv)

plan ->unpack (& scratch[plan ->recv_bufloc[irecv]],

&out[plan ->recv_offset[irecv]],&plan ->

unpackplan[irecv]);

}

} // parallel and single

... // (omitted code)

}

Listing 5: Sketch of the modified code in remap 3d() method, including the
code reordering and the taskification of packs and unpacks

Figure 6 shows how computation and communication have been effectively
overlapped. The timelines correspond to a trace of a run with 8 MPI processes

20 Julian Morillo et al.

with 6 OpenMP threads each. The upper timeline represents the MPI calls
(being pink → MPI Irecv, blue→ MPI Send, and green → MPI Waitany) and
the bottom timeline represents task execution. Figure 6 is a zoom of just
one invocation of remap 3d method for the first 2 processes (12 threads in
total) used in the execution. In this case, isend = irecv = 3 so each process
executes 3 pack tasks + the pack/unpack task corresponding to the self data
(the tasks on the left part), and 3 unpack tasks (on the right). It can be seen
how the packs are now overlapped with the MPI Irecv calls at the beginning
and how the MPI Waitanys at the end do not need to wait for the execution
of the previous unpack.

Fig. 6: Overlapping computation and communication in the remap 3d method.
MPI calls (top timeline) and task execution (bottom timeline) are overlapped
during 40% of communication time. (Duration =103 µs)

5 Evaluation

5.1 Environment

The experiments have been performed on MareNostrum4 [11]. This supercom-
puter is based on Intel Xeon Platinum processors from the Skylake generation.
It is a Lenovo system composed of SD530 Compute Racks, an Intel Omni-Path
high-performance network interconnect, and running SuSE Linux Enterprise
Server as the operating system. Compute nodes are equipped with:

– 2 sockets Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz
for a total of 48 cores per node.

– L1d 32K; L1i 32K; L2 cache 1024K; L3 cache 33729K.
– 96 GB of main memory 1.88 GB/core.
– 100 Gbit/s Intel Omni-Path HFI Silicon 100 series PCI-E adapter.
– 10 Gbit Ethernet.

Hybrid parallelization of molecular dynamics simulations to reduce load... 21

Table 2: Efficiency metrics of all testcases and benchmarks using 48 MPI ranks.
Colors in both this table and Table 3 represent a gradient scale going from
dark green (1, perfect efficiency) to dark red (poor efficiency).

– 200 GB local SSD available as temporal storage during jobs.
– The processors support well-known vectorization instructions such as SSE,

AVX up to AVX-512.

The software environment used is as follows:

– LAMMPS 20Nov19
– Intel 17.0.4 20170411 compiler

5.2 Benchmark Characterization

Table 2 shows efficiency metrics for all the testcases and benchmarks studied
in this work. These performance metrics correspond to MPI-only executions
and using 48 MPI ranks in all cases. Most of them present such a poor parallel
efficiency at this core count, that considering using more ranks does not make
much sense, and for this reason, we conducted our experiments on a single
node. Particularly bad are the cases of short-range interactions benchmarks
and the CG-GO testcase. The reasons for poor parallel efficiency are diverse.
While the main problem arising in short-range interactions benchmarks is
communication efficiency, the most limiting factor of the CG-GO benchmark
is Load Balance with an extremely low value (in contrast with the rest of
the benchmarks). Mid-range interactions benchmarks have very similar char-
acteristics: although with slightly different weights on the two components,
they both have the same parallel efficiency value. Finally, “rhodopsin” is the
best performing benchmark. Note that, the “epoxy” testcase presents quite
different characteristics when compared with CG-GO as discussed later.

So with all these benchmarks, we cover very different scenarios both in
terms of the type of simulation and in terms of performance metrics charac-
teristics.

As a reference, we also include the same metrics for hybrid setups in Ta-
ble 3. A direct comparison between both tables is impossible since the load bal-
ance metric in the case of hybrid setups is biased by non-exhaustive OpenMP
parallelization (i.e., implicitly increasing the load imbalance, as previously dis-
cussed). This also explains the fact that the best hybrid setup is (24x2) in most
cases. Nonetheless, it is worth noting the 50% improvement in load balance in
the CG-GO testcase (i.e., the one where the load balance is really the most

22 Julian Morillo et al.

Table 3: Efficiency metrics of all testcases and benchmarks for the best per-
forming hybrid setups (the actual setup, i.e., number of MPI processes and
OpenMP threads is indicated in parenthesis in each column).

limiting factor), or the improvement in terms of communication efficiency in
the short-range benchmarks. A more comprehensive study in terms of perfor-
mance is done in the following section.

5.3 Execution Time

In this section, we present the wall time execution of all testcases and bench-
marks for different setups including the so-called Vanilla (i.e. the regular MPI-
only execution), Balance (i.e. MPI-only execution but including the balancing
mechanisms provided by the LAMMPS implementation) and different hybrid
configurations. So, no OpenMP features are being used in the Vanilla nor in
the Balance experiments. 48 cores are used in all cases and, for the hybrid
configurations, only configurations up to the point where using more OpenMP
threads translates into worse performance than the MPI-only case are shown.
In all benchmarks, the number of timesteps has been increased to have an
execution wall time of at least 1 minute for the Vanilla case in order to better
appreciate execution time differences (i.e. the wall times reported are the ones
provided by LAMMPS and they only have a precision of seconds). Results are
averaged over 5 different runs in each case, although variability was less than
5% in all cases.

5.3.1 Testcases

Let us start with the CG-GO testcase as it is the one that shows the greatest
load imbalance. Figure 7 (left part) presents the execution times for different
setups of this benchmark. The bars represent the maximum time spent by an
MPI rank on a given code section as reported by LAMMPS in its performance
execution report while the blue line that traverses the figure represents the
total wall time of the different executions. So the difference between both
heights gives an idea of the load imbalance that affects a given configuration.
As it can be seen, this is huge for the Vanilla case. The Balance version reduces
this difference a lot (mainly by reducing the ”Comm” maximum execution
time). Note, however, how a wide range of hybrid configurations (from 24 to
8 MPI processes) do this better, achieving also lower wall execution times.

Figure 8 represent 10 timesteps of the executions using the Vanilla, Balance
and Hybrid versions at the same timescale. As it can be seen, the Vanilla

Hybrid parallelization of molecular dynamics simulations to reduce load... 23

0

10

20

30

40

50

w
a
ll

 t
im

e
 [

s]

Pair Bond Neigh Comm

Output Modify Other Wall time

(a) CG-GO performance results

0

20

40

60

80

100

w
a
ll

 t
im

e
 [

s]

Pair Bond Kspace

Neigh Comm Output

Modify Other Wall time

(b) Epoxy performance results

Fig. 7: Performance results for test cases inputs

Fig. 8: Useful duration timelines for the CG-GO testcase (upper: Vanilla,
middle: Balance, lower:Hybrid). (Duration = 242.50 ms)

version presents a heavy load imbalance: this allows the Balance version to
achieve a 43% improvement in execution time (timeline in the middle). But,
more interestingly, the Hybrid version (bottom timeline) is 12% faster than
the Balance version and it achieves a 50% improvement when compared with
the Vanilla version.

Figure 9 shows the parallel functions executed by the Hybrid version. The
time spent in OpenMP parallel regions, in this case, is 80,6% of the total
execution time.

24 Julian Morillo et al.

Fig. 9: Parallel functions timeline for the CG-GO testcase (Hybrid version).
(Duration = 242.50 ms)

A very different scenario is shown in the right plot of Figure 7, which
presents the execution time of the Epoxy resin testcase. Note the different
characteristics of this testcase when compared with the CG-GO. First, the
imbalance is not so relevant for the Vanilla scenario. In fact, it can be seen
how the use of the balance mechanisms provided by LAMMPS actually makes
the execution slower (i.e. it adds overhead without any improvement). Hybrid
configurations from 24 to 8 MPI ranks perform better in terms of both load
balance and execution time, mainly due to the better performance of the pair-
ing (”Pair”, orange in Figure 7) of the hybrid cases, meaning that the OpenMP
parallelization is more efficient than the MPI one. This testcase clearly shows
how the Hybrid version is able to improve the Vanilla even when the Balance
version is not, demonstrating that hybridization provides other benefits than
just load balance.

5.3.2 Short-range interactions benchmarks

Figure 10 presents the results for the short-range interactions benchmarks.
For both benchmarks the analysis is actually the same: neither the Balance
mechanism nor the Hybrid solution are able to improve the Vanilla setup.

(a) Granular chute flow performance results (b) Polymer chain melt performance results

Fig. 10: Short-range interactions benchmarks results

Hybrid parallelization of molecular dynamics simulations to reduce load... 25

For the Balance mechanism, the explanation is clear: the problem of the
Vanilla setup, if any, is not load imbalance. For the Hybrid configuration, we
will take the Polymer chain benchmark as a representative but a similar anal-
ysis could be done for the Granular chute. Figure 11 represents 10 timesteps of
the Polymer chain benchmark. The timelines, of course at the same timescale,
show two main reasons that explain why these short-range interactions cases
do not benefit from the use of a Hybrid implementation:

1. The most computationally intensive part (dark blue) is not OpenMP par-
allelized so the execution time is increased.

2. Only very small parts of the less computational intensive part (light green)
are parallelized with OpenMP, leading also to an increased execution time.
This can be perfectly seen in Figure 12 where the OpenMP parallel regions
are depicted (meaning light blue no parallel region at all, i.e. sequential
execution). Actually, the percentage of time of the whole execution spent
in OpenMP parallel regions is only 23%. This suggests that there is a
lot of room for improvement by parallelizing other parts of the code used
by this benchmark in similar ways as explained in Subsections 4.1 and 4.3.
One would expect a similar level of opportunities and difficulties (including
data dependencies) to parallelize these other parts like the ones depicted
in Subsections 4.1 and 4.3.

Fig. 11: Useful duration timelines for the Polymer chain melt benchmark (Up-
per part: Vanilla execution, lower part: Hybrid version). (Duration = 5.69 ms)

5.3.3 Mid-range interactions benchmarks

Figure 13 (left) presents the execution times of the EAM benchmark for dif-
ferent configurations. In this case, all the versions perform quite similar. It
is noticeable, however, that the best performing version is Hybrid for the
24MPIx2omp case: 70 seconds in contrast with the 76 seconds of the Vanilla

26 Julian Morillo et al.

Fig. 12: Parallel functions timeline for the Polymer chain melt benchmark
(Hybrid version). (Duration = 5.69 ms)

or the 75 seconds of the Balance version. A similar analysis can be done for the
Lennard-Jones benchmark (Figure 13 (right)): the only noticeable difference
is that in this case Balance is a bit worse than Vanilla (just one second) while
the 24MPIx2omp Hybrid configuration is still able to improve by 4 seconds
the Vanilla case.

(a) EAM metallic solid performance results (b) Lennard-Jones liquid performance results

Fig. 13: Mid-range interactions benchmarks results

5.3.4 Long-range interactions benchmarks

Figure 14 presents the execution time of the Rhodopsin benchmark for differ-
ent configurations. The three Hybrid configurations on the right are able to
outperform both Vanilla and Balance versions. The pairing process (orange
bar) is much faster in the Hybrid configurations.

Figure 15 represents two timelines of 10 timesteps of the Rhodopsin bench-
mark execution at the same timescale. As it can be visually noted, the ex-
ecution of the Hybrid case is significantly faster. This gain in performance
comes mainly from the pairing phase (blue sections in the timelines) done in
the compute function in the PairLJCharmmCoulLongOMP module of LAMMPS
which is faster for the Hybrid case.

Hybrid parallelization of molecular dynamics simulations to reduce load... 27

Fig. 14: Rhodopsin protein benchmark results.

Fig. 15: Useful duration timelines for the Rhodopsin protein benchmark (top:
Vanilla, bottom: Hybrid). (Duration = 147.92 ms)

As it can be seen on the red parts of Figure 16, this function is fully
OpenMP parallelized. Note, however, that there are still other parts of the
code not parallelized with OpenMP (light blue in Figure 16 and black in
bottom timeline of Figure 15), making the execution of the green areas in Fig-
ure 15 being slightly faster for the Vanilla case. But even so, the improvement
achieved by the OpenMP implementation of compute subroutine is able to
compensate by far this loss in performance.

All in all, the ratio of time in parallel regions with respect to the whole
execution time is pretty high: 76,6%. We can now compare short-range with
long-range interactions benchmarks and explain why Hybrid implementation
is able to improve the performance of the latter but not of the formers. Com-
paring Figures 12 and 16 one can see how the percentage of time outside any
parallel OpenMP region (light blue areas) for both benchmarks is drastically
different. Actually, the percentage of time inside OpenMP parallel regions of
the Polymer chain benchmark is only 23,7%. This is exacerbated if we focus
on the pairing phases: while in the case of “rhodopsin” benchmark this corre-

28 Julian Morillo et al.

Fig. 16: Parallel functions timeline for the Rhodopsin protein benchmark (Hy-
brid version). (Duration = 147.92 ms)

sponds to the red parts in Figure 16, so it represents a high percentage of the
whole execution, this is not the case for the Polymer chain benchmark where
the pairing (light brown in Figure 12) corresponds to a very residual part of
the whole execution (in this benchmark, subroutine compute of PairLJCutOMP
module).

So, in the end, the reason that ultimately explains the different behaviour
of the two kinds of benchmarks is that the weight of the pairing process (which
is the most important part parallelized with OpenMP in all benchmarks) in
the whole execution is very high for the long-range interactions benchmarks
(45,6% in the Rhodopsin benchmark) while it is insignificant for the short-
range interactions benchmarks (8,4% for the Polymer chain benchmark).

6 Conclusions

This paper has shown the potential of the proposed hybrid MPI+OpenMP
approach to effectively alleviate performance problems such as load imbalance
in LAMMPS simulations. Although we have used LAMMPS to demonstrate
the benefits of hybrid parallelization, the same approach could be applied to
any MD simulation code such as NAMD or GROMACS.

LAMMPS provides a ready-to-use balancing mechanism to partially solve
load balancing problems in molecular dynamics simulations with non-uniform
atom densities. The LAMMPS balancing mechanism shows high efficiency
compared to MPI-only simulation in case of high load imbalance (CG-GO
testcase). We have introduced the use of an MPI+OpenMP hybrid implemen-
tation of LAMMPS as a third option. Furthermore, we have complemented
the current partial OpenMP implementation of LAMMPS with additions and
modifications, driven by epoxy testcase.

Our proposed modified version of LAMMPS has been extensively com-
pared against the baseline MPI case and against the use of the LAMMPS
balance mechanism. Five benchmarks present in the LAMMPS distribution
with varying ranges of interaction (short, mid, and long-range) together with
two testcases with very different characteristics were used for the comparison.

For the short-range interactions benchmarks, the regular MPI-only version
was the best performing. As long as they do not present a load imbalance
problem, the balancing mechanism does not provide any benefit in this case.

Hybrid parallelization of molecular dynamics simulations to reduce load... 29

The problem with the hybrid setup in this case is that only a small fraction of
the simulations (∼20%) runs in OpenMP parallel regions. This suggests that
more additions similar to the ones proposed in Section 3.3 could be done to
the OpenMP LAMMPS implementation.

For the mid-range interactions benchmarks, the hybrid option was the best
in all cases. The balance mechanism only improves a bit the EAM simulation
while it is the worst option for the Lennard-Jones benchmark. These results in-
dicate that the hybrid implementation is able to improve performance metrics
other than load balance, such as communication efficiency.

In the “rhodopsin” benchmark (long-range interactions) the execution time
is mainly dominated by the LAMMPS pairing process. The obtained results
show that the OpenMP parallelization of the pairing is much faster than the
MPI one, making the hybrid approach the best option also for this benchmark.

Regarding the highly-imbalanced testcase (CG-GO), the balancing mecha-
nism shows its potential by achieving a 43% improvement with respect to the
regular MPI simulation. Interestingly, the hybrid version is able to improve
even further, up to 50%.

In the case of the “epoxy” resin testcase (the one that motivated the imple-
mentations explained in Section 3.3), the use of the balance mechanism only
adds overhead (the execution is slower than for the regular MPI version). The
hybrid implementation, on the contrary, is the best option again showing that
it is able to improve simulations where load balance is not the main problem.

So, the overall conclusion is that LAMMPS hybrid setups are able to handle
scenarios with very high load imbalance at least as well (if not better) as the
LAMMPS balance mechanism while also providing benefits in other scenarios
where load balance is not the main performance bottleneck.

Our suggestion to LAMMPS developers, and MD in general, is to put effort
into hybridizing the code with an MPI+OpenMP strategy instead of imple-
menting ad hoc balancing methods. This is because the hybrid code not only
can address more dynamic load imbalance but also improve parallel efficiency
by reducing communication.

Acknowledgements This work is partially supported by the Spanish Government through
Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Tech-
nology (TIN2015-65316-P), by the Generalitat de Catalunya (2017-SGR-1414), and by
the European POP CoE (GA n. 824080). This work is also funded as part of the Euro-
pean Union Horizon 2020 research and innovation programme under grant agreement nos.
800925 (VECMA project; www.vecma.eu) and 823712 (CompBioMed2 Centre of Excellence;
www.compbiomed.eu), as well as the UK EPSRC for the UK High-End Computing Consor-
tium (grant no. EP/R029598/1).

References

1. Adaptive MPI - Using Existing MPI Codes with AMPI.
https://charm.readthedocs.io/en/latest/ampi/03-using.html. [Online; accessed
04-November-2021]

2. EAM metallic solid benchmark. https://www.lammps.org/bench.html#eam. [Online;
accessed 08-November-2021]

30 Julian Morillo et al.

3. Granular chute flow benchmark. https://www.lammps.org/bench.html#chute. [Online;
accessed 08-November-2021]

4. GROMACS. https://www.gromacs.org/. [Online; accessed 04-November-2021]
5. LAMMPS balance command. https://docs.lammps.org/balance.html. [Online; accessed

03-November-2021]
6. LAMMPS documentation, OpenMP section. https://docs.lammps.org/Speed omp.html.

[Online; accessed 04-October-2021]
7. LAMMPS fix balance command. https://docs.lammps.org/fix balance.html. [Online;

accessed 03-November-2021]
8. LAMMPS release 20 Nov 2019. https://github.com/lammps/lammps/releases/tag/patch 20Nov2019.

[Online; accessed 08-November-2021]
9. LAMMPS website. https://www.lammps.org/. [Online; accessed 08-November-2021]

10. Lennard-Jones liquid benchmark. https://www.lammps.org/bench.html#lj. [Online;
accessed 08-November-2021]

11. Marenostrum4. https://www.bsc.es/marenostrum/marenostrum. [Online; accessed 03-
November-2021]

12. NAMD Scalable Molecular Dynamics. https://www.ks.uiuc.edu/Research/namd/. [On-
line; accessed 04-November-2021]

13. Official LAMMPS website, benchmark section: Billion-atom LJ benchmarks.
https://www.lammps.org/bench.html#billionl. [Online; accessed 29-September-2021]

14. OpenMP. https://www.openmp.org/. [Online; accessed 03-November-2021]
15. Polymer chain melt benchmark. https://www.lammps.org/bench.html#chain. [Online;

accessed 08-November-2021]
16. POP (Performance Optimisation and Productivity, A Centre of Excellence in

HPC. Patterns, Loop iterations manually distributed. https://co-design.pop-
coe.eu/patterns/loop-manual-distribution.html. [Online; accessed 04-October-2021]

17. Rhodopsin protein benchmark. https://www.lammps.org/bench.html#rhodo. [Online;
accessed 08-November-2021]

18. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Robson, M.,
Sun, Y., Totoni, E., et al.: Parallel programming with migratable objects: Charm++ in
practice. In: SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 647–658. IEEE (2014)

19. Banchelli, F., Peiro, K., Querol, A., Ramirez-Gargallo, G., Ramirez-Miranda, G.,
Vinyals, J., Vizcaino, P., Garcia-Gasulla, M., Mantovani, F.: Performance study of
hpc applications on an arm-based cluster using a generic efficiency model. In: 2020
28th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pp. 167–174. IEEE (2020)

20. Barcelona Supercomputing Center: Extrae. https://tools.bsc.es/extrae. [Online; ac-
cessed 03-November-2021]

21. Barcelona Supercomputing Center: Paraver. https://tools.bsc.es/paraver. [Online; ac-
cessed 03-November-2021]

22. Berger, R., Kloss, C., Kohlmeyer, A., Pirker, S.: Hybrid parallelization
of the LIGGGHTS open-source DEM code. Powder Technology 278,
234–247 (2015). DOI https://doi.org/10.1016/j.powtec.2015.03.019. URL
https://www.sciencedirect.com/science/article/pii/S0032591015002144

23. Deng, Y., Peierls, R.F., Rivera, C.: An Adaptive Load Balancing Method for
Parallel Molecular Dynamics Simulations. Journal of Computational Physics
161(1), 250 – 263 (2000). DOI https://doi.org/10.1006/jcph.2000.6501. URL
http://www.sciencedirect.com/science/article/pii/S002199910096501X

24. Devine, K.D., Boman, E.G., Heaphy, R.T., Hendrickson, B.A., Teresco, J.D., Faik, J.,
Flaherty, J.E., Gervasio, L.G.: New challenges in dynamic load balancing. Applied
Numerical Mathematics 52(2-3), 133–152 (2005)

25. Etinski, M., Corbalan, J., Labarta, J., Valero, M., Veidenbaum, A.: Power-aware load
balancing of large scale mpi applications. In: 2009 IEEE International Symposium on
Parallel & Distributed Processing, pp. 1–8. IEEE (2009)

26. Fincham, D.: Parallel computers and molecular simulation. Molecular
Simulation 1(1-2), 1–45 (1987). DOI 10.1080/08927028708080929. URL
https://doi.org/10.1080/08927028708080929

Hybrid parallelization of molecular dynamics simulations to reduce load... 31

27. Garcia, M., Corbalan, J., Labarta, J.: LeWI: A Runtime Balancing Algorithm for Nested
Parallelism. In: Proceedings of the International Conference on Parallel Processing
(ICPP09) (2009)

28. Garcia-Gasulla, M., Mantovani, F., Josep-Fabrego, M., Eguzkitza, B., Houzeaux, G.:
Runtime mechanisms to survive new hpc architectures: a use case in human respiratory
simulations. The International Journal of High Performance Computing Applications
34(1), 42–56 (2020)

29. Harlacher, D.F., Klimach, H., Roller, S., Siebert, C., Wolf, F.: Dynamic load balancing
for unstructured meshes on space-filling curves. In: 2012 IEEE 26th International Par-
allel and Distributed Processing Symposium Workshops & PhD Forum, pp. 1661–1669.
IEEE (2012)

30. Huang, C., Lawlor, O., Kale, L.V.: Adaptive mpi. In: International workshop on lan-
guages and compilers for parallel computing, pp. 306–322. Springer (2003)

31. Jung, J., Mori, T., Sugita, Y.: Midpoint cell method for hybrid (mpi+openmp) par-
allelization of molecular dynamics simulations. Journal of Computational Chem-
istry 35(14), 1064–1072 (2014). DOI https://doi.org/10.1002/jcc.23591. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23591

32. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific Computing 20(1), 359–392 (1998)

33. Kunaseth, M., Richards, D., Glosli, J., Kalia, R., Nakano, A., Vashishta, P.: Analysis of
scalable data-privatization threading algorithms for hybrid mpi/openmp parallelization
of molecular dynamics. The Journal of Supercomputing 66, 406–430 (2013). DOI
10.1007/s11227-013-0915-x

34. Pal, A., Agarwala, A., Raha, S., Bhattacharya, B.: Performance metrics
in a hybrid mpi–openmp based molecular dynamics simulation with short-
range interactions. Journal of Parallel and Distributed Computing 74(3),
2203–2214 (2014). DOI https://doi.org/10.1016/j.jpdc.2013.12.008. URL
https://www.sciencedirect.com/science/article/pii/S0743731513002505

35. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and analyze
parallel code. In: Proceedings of WoTUG-18: transputer and occam developments,
vol. 44, pp. 17–31 (1995)

36. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Journal of
computational physics 117(1), 1–19 (1995)

37. Plimpton, S., Hendrickson, B.: A new parallel method for molecular dynamics sim-
ulation of macromolecular systems. Journal of Computational Chemistry 17(3),
326–337 (1996). DOI https://doi.org/10.1002/(SICI)1096-987X(199602)17:3¡326::AID-
JCC7¿3.0.CO;2-X

38. Plimpton, S., Pollock, R., Stevens, M.: Particle-mesh ewald and rrespa for parallel molec-
ular dynamics simulations. Proc. 8th SIAM Conf. on Parallel Processing for Scientific
Computing (2000)

39. Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming on
clusters of multi-core smp nodes. In: 2009 17th Euromicro international conference on
parallel, distributed and network-based processing, pp. 427–436. IEEE (2009)

40. Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming on
clusters of multi-core smp nodes. In: 2009 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pp. 427–436 (2009). DOI
10.1109/PDP.2009.43

41. Rabenseifner, R., Wellein, G.: Communication and optimization aspects of parallel pro-
gramming models on hybrid architectures. The International Journal of High Perfor-
mance Computing Applications 17(1), 49–62 (2003)

42. Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing adaptive
scientific simulations. In: SC’00: Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing, pp. 59–59. IEEE (2000)

43. Servat, H., et al.: Framework for a productive performance optimization. Parallel Com-
puting 39(8), 336–353 (2013)

44. Smith, W.: Molecular dynamics on hypercube parallel comput-
ers. Computer Physics Communications 62(2), 229 – 248
(1991). DOI https://doi.org/10.1016/0010-4655(91)90097-5. URL
http://www.sciencedirect.com/science/article/pii/0010465591900975

32 Julian Morillo et al.

45. Suter, J.L., Sinclair, R.C., Coveney, P.V.: Principles governing control of aggregation
and dispersion of graphene and graphene oxide in polymer melts. Advanced Mate-
rials 32(36), 2003213 (2020). DOI https://doi.org/10.1002/adma.202003213. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003213

46. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with papi-
c. In: M.S. Müller, M.M. Resch, A. Schulz, W.E. Nagel (eds.) Tools for High Performance
Computing 2009, pp. 157–173. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

47. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Michael Brown,
W., Crozier, P.S., in ’t Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen,
T.D., Shan, R., Stevens, M., Tranchida, J., Trott, C., Plimpton, S.J.: Lammps
- a flexible simulation tool for particle-based materials modeling at the
atomic, meso, and continuum scales. Computer Physics Communications
p. 108171 (2021). DOI https://doi.org/10.1016/j.cpc.2021.108171. URL
https://www.sciencedirect.com/science/article/pii/S0010465521002836

48. Vassaux, M., Sinclair, R.C., Richardson, R.A., Suter, J.L., Coveney,
P.V.: The role of graphene in enhancing the material properties of
thermosetting polymers. Advanced Theory and Simulations 2(5),
1800168 (2019). DOI https://doi.org/10.1002/adts.201800168. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.201800168

49. Wagner, M., Mohr, S., Giménez, J., Labarta, J.: A structured approach to performance
analysis. In: International Workshop on Parallel Tools for High Performance Computing,
pp. 1–15. Springer (2017)

50. Walshaw, C., Cross, M.: Mesh partitioning: a multilevel balancing and refinement algo-
rithm. SIAM Journal on Scientific Computing 22(1), 63–80 (2000)

