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Abstract
The indispensable collaboration of cloud computing in every digital service has 
raised its resource usage exponentially. The ever-growing demand of cloud resources 
evades service availability leading to critical challenges such as cloud outages, SLA 
violation, and excessive power consumption. Previous approaches have addressed 
this problem by utilizing multiple cloud platforms or running multiple replicas of a 
Virtual Machine (VM) resulting into high operational cost. This paper has addressed 
this alarming problem from a different perspective by proposing a novel �nline vir-
tual machine �ailure ℙrediction and �olerance �odel (OFP-TM) with high avail-
ability awareness embedded in physical machines as well as virtual machines. The 
failure-prone VMs are estimated in real-time based on their future resource usage by 
developing an ensemble approach-based resource predictor. These VMs are assigned 
to a failure tolerance unit comprising of a resource provision matrix and Selection 
Box (S-Box) mechanism which triggers the migration of failure-prone VMs and 
handle any outage beforehand while maintaining the desired level of availability for 
cloud users. The proposed model is evaluated and compared against existing related 
approaches by simulating cloud environment and executing several experiments 
using a real-world workload Google Cluster dataset. Consequently, it has been con-
cluded that OFP-TM improves availability and scales down the number of live VM 
migrations up to 33.5% and 83.3%, respectively, over without OFP-TM.
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1  Introduction

Commercial cloud services have strengthened the online and digital business enter-
prises with their surplus benefits including maximum computing at minimum capital 
investment, reliability, elasticity and scalability of resources [1–4]. The dependency 
of cloud users on third-party resources has increased manyfolds that will continue to 
grow in future [5–7]. Undoubtedly, supplying of high availability of cloud services 
is one of the biggest challenges for the Cloud Service Providers (CSPs) because of 
the enormously growing demand and dependability of every organization on the 
cloud infrastructure [8–11]. Though the CSP adheres to Service Layer Agreement 
(SLA) and take responsibility of cloud infrastructure and ensures service availabil-
ity and security by all means [12–14] cloud outage occurs, due to fluctuating and 
dynamic resource utilization [15–19].

A recent survey of COVID-19 pandemic depicted in Fig.  1 reveals that cloud 
outages have dominated the titans in the market, including Zoom, Microsoft Azure, 
and Google Cloud Platform, Amazon Web Services, Salesforce, IBM Cloud etc. 
[20]. For instance, Microsoft Azure faced six hours and around five hours out-
ages on 3rd and 24th March, 2020 respectively, due to failure of cooling system 
that caused a reduction in airflow, and the subsequent thermal spikes throughout 
the data center which have stave off the performance of network compute and stor-
age devices. The users of Google Cloud services and websites including YouTube, 
Gmail, Google Assistant, and Google Docs have faced downtime approximately 
for an hour on December 14, 2020, after being hit with a widespread cloud out-
age that had affected both commercial as well as personal services of Google. Also, 
the e-commerce giant’s cloud divisions such as Amazon Web Services (AWS) and 
Microsoft were down on November 26, 2020, and April 21, 2020 (for around five 
hours), respectively.

These cloud outages could increase in frequency and severity which have raised 
a critical question of reliability on services for cloud users because even the large 
swathes of internet apps, services, and websites are operating at the mercy of these 
technical organizations. Furthermore, it raises a biggest challenge for CSP, i.e. how 

Fig. 1   Cloud outage 2020
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to handle these cloud outages and ensure high availability while maintaining energy-
efficient load balancing constraints?

Generally, the average availability of services is quantified in terms of mean 
time between failures ( ����  ) and mean time to repair ( 𝕄𝕋𝕋ℝ ) [21, 22]. There-
fore, maximizing ����  and minimizing 𝕄𝕋𝕋ℝ by proactive detection of resource 
failures, analysing historical and current performance of the physical machines, 
and concurrent handling of any outage beforehand provides an efficient solution for 
improving the availability of cloud services. The existing works have resolved the 
cloud outages by using proactive as well as reactive methods [23–25]. The proac-
tive methods of failure handling depend on the prior knowledge of the failed VMs. 
Mostly, the VMs get fail due to over-utilization or limitation of sufficient resources, 
required softwares that are not installed properly, or execution time exceeding the 
deadline, physical machine running out of memory/disk space, and so on [26]. Con-
trary to this, the reactive methods are triggered at the occurrence of actual failure. 
These methods include checkpointing, replication, retry, application resubmission 
etc. [27] which delays the execution of user applications.

Our Contributions This paper proposes an �nline virtual machine �ailure ℙ
rediction and �olerance �odel (OFP-TM) which ingrains High Availability (HA) 
enhancing features in servers as well as VMs. The proposed approach integrates 
proactive VM failure prediction and failure tolerance to provide a comprehensive 
solution of the resource contention-based cloud services failure by developing and 
employing an ensemble resource predictor for a proactive estimation of any VM 
failure due to resource deficiency. The failure-prone VMs are assigned to a failure 
tolerance unit for handling of such cloud outage and maintain an expected level of 
cloud services availability for the cloud users.

The key contributions of the proposed framework include:

–	 An ensemble method-based failure predictor is developed to forecast the multiple 
resource-based contention respective to each VM for estimation of its failure sta-
tus proactively.

–	 A Failure Tolerance Unit is deployed to trigger the necessary failure elimination 
actions and decide an appropriate allocation for the predicted failure-prone VMs.

–	 The performance evaluation of OFP-TM by using real benchmark Google Cluster 
dataset reveals that it outperforms the state-of-art approaches in terms of various 
performance metrics, like Service availability, VM failure reduction, server over-
load prediction, resource utilization, reduction of power consumption and VM 
migration cost.

Organization: The paper is organized as follows: Sect. 2 presents a recent related 
work. Section  3 entails a comprehensive description of proposed framework. 
Online failure prediction by developing Ensemble approach-based Resource Predic-
tor (ERP) is discussed in Sect. 4. The description of Failure Tolerance is given in 
Sect. 5. The operational design and complexity of OFP-TM is entailed in Sect. 6. 
The performance evaluation and comparison of OFP-TM with state-of-the-arts is 
presented in Sect.  7. Finally, the paper is concluded with conclusive remarks and 
future scope of the proposed work in Sect. 8.
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2 � Recent related work

A Deep Neural Network (DNN)-based failure predictor is trained and utilized to 
classify the upcoming workload on VMs (i.e. arriving tasks) into ’failure-prone 
tasks’ and ’non-failure-prone tasks’ in [28]. Two separate task scheduling algo-
rithms are proposed to allocate both types of tasks to the most suitable server. Three 
consecutive failure-prone tasks are taken and each task is replicated into three cop-
ies which are scheduled by constructing a super task vector on most suitable energy-
efficient server. It allows the execution of different copies of the tasks on different 
servers, thus resisting overlapping and redundant execution. The performance of the 
work is investigated using Internet and Euler datasets which improves fault tolerance 
and energy efficiency as well.

A failure aware and energy-efficient (FAEE) VM placement scheme is proposed 
in [29] which predicts VM failure using an exponential smoothing-based forecasting 
technique. Accordingly, two fault tolerance methods including VM migration and 
VM checkpointing are triggered to handle any failure and ensure service availability. 
A simulation-based evaluation of this work was conducted using Grid5000 Failure 
Traffic Analysis (FTA) dataset. Furthermore, this work concludes that a significant 
improvement in terms of energy efficiency and reliability can be obtained by consid-
ering the failure characteristics of physical resources.

Bui et  al. proposed an early fault detection method in [30], which engaged a 
fuzzy logic algorithm and Gaussian process prediction technique. This method was 
based on a rigorous analysis on the characteristics or nature of failures. The method 
entailed an improved performance in terms of failure prediction accuracy and reac-
tion rate, which subsequently enhanced the reliability of the entire cloud system. 
Later, Nguyen et al. [31] proposed a dynamic resource allocation scheme to tackle 
the problem of energy-efficient distribution of load on available hosts. To achieve 
the objective, an OpenStack-based cloud platform was set up to implement the pro-
posed method with live VM migration. The power distribution and correspond-
ing energy consumption was monitored which revealed that the proposed method 
proficiently distributes the VM resources and minimizes the energy consumption 
simultaneously.

A fault prediction system is developed for distributed computing Hadoop clus-
ters using trained Support Vector Machine (SVM) model in [32]. This fault predic-
tor is trained with a non-anomalous dataset during different operation patterns like 
boot-up, shutdown, idle, task allocation, resource distribution etc. so that the it can 
adapt its parameters to detect and classify between normal and abnormal situation. 
Xu et al. proposed a disk failure prediction approach in [33] using Multiple Addi-
tive Regression Trees gradient boosting (MART-GB) algorithm. It ranks all disks 
according to the degree of error-proneness and enable live migration of existing 
VMs and allocation of new VMs to the healthy disks, thus improving service avail-
ability. This work is evaluated using real-world cloud data which shows its superior 
performance over Random Forest and SVM-based prediction models.

Wang et al. proposed a fault-tolerant elastic scheduling algorithms for real-time 
tasks (FESTAL) in cloud environment [34]. This work provided a fault-tolerant 
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VM scheduling algorithms which accommodated virtualization technology and 
an appropriate VM migration strategy along with battery back-up features. The 
experiment-based performance evaluation and comparison of FESTAL using syn-
thetic and Google data traces reveals its efficiency in terms of improved perfor-
mance of cloud services.

Another work based on battery back-up scheduling schemes for fault-tolerant 
execution of scientific workflows by incorporating task allocation and message 
transmission features, is presented in [35]. It proposed a dynamic fault-tolerant 
scheduling algorithm that employed a backward shifting approach to use idle 
physical resources consciously by inducing task overlapping and VM migration 
features. Additionally, vertical and horizontal VM scaling-up techniques are uti-
lized to deal with fluctuations and changes of dynamic workflows demands in 
real-time. This work enhanced the resource utilization and scalability even in the 
presence of physical node failures.

Sivagami et  al. [36] presented an Assured Virtual Cloud Data Center frame-
work for fault tolerance and availability of cloud data centers. A load monitoring 
and balancing algorithm is proposed to estimate the load on virtual links and dis-
tribute the available physical resources concisely among the VMs. In case of VM 
failure, it selects supporting VM considering network topology, load distribution, 
and availability of physical resources. The simulation and experimentation of this 
work entailed that the proposed method outperformed the state-of-the-art tech-
niques by increasing the cloud survivability with reduced complexity.

Vinay et  al. [37] have proposed a fault-tolerant scheduling algorithm with a 
bidding strategy for scientific workflows. This work focused on minimizing the 
volatility and cost of resource provisioning for scientific workflows. The algo-
rithm used spot and blockspot instances as hybrid instances as compared to on-
demand instances to minimize the cost of execution and number of faults while 
following the deadline constraints. The achieved evaluations demonstrated via 
experimental simulation reveal that this algorithm has potential and shows robust-
ness under short deadlines with minimal makespan.

Ghoreyshi et  al. [38] proposed a VM migration method to mitigate fault 
problem while satisfying Service Level Agreement (SLA) violation and energy 
consumption constraints. The VM migration was based on the ratio of least 
increasing energy consumption and the minimal deadline missed. This work has 
depicted that an increase in energy consumption and increase in failure rate have 
an exponential relationship. Its performance evaluation reveals that by adopting 
this method for VM migration the number of SLA violations would minimize.

Li et al. [39] presented an energy-efficient and fault-tolerant VM replica man-
agement policy while meeting the deadline and budget constraints in the edge-
cloud environment. This work proposed energy-aware VM cluster scaling strat-
egy for reduction of power consumption and achievement of energy efficiency by 
activating and deactivating up the data nodes according to the load status of the 
system. Also, a node recovery method based on availability metrics is employed 
to handle the node failures. The experimental evaluation and comparison of this 
proposed method shows its superior performance over existing approaches.
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Table 1 compares OFP-TM with the aforementioned state-of-the-art works with 
respect to different performance metrics.

In the light of above discussion, it can be concluded that existing works have 
attempted to solve the challenge of VM failures by predicting the resource failures. 
Others have used reactive and proactive migration of VMs on the occurrence of 
resource contention disregarding VM availability and SLA features during predic-
tive resource management. In contrast, the proposed OFP-TM provides a compre-
hensive solution by accurately predicting the VM failures and automatic triggering 
of VM replication and migration to mitigate its effect proactively. Also, the predic-
tion of resource utilization of VMs assists in alleviating server over/under-load, 
reducing resource and power wastage as well.

Table  2 shows the list of symbols with their explanatory terms that have been 
used throughout the paper.

3 � Proposed framework

Consider a datacenter containing P physical machines or servers { S1 , S2,..., SP}⊆ � 
hosts Q VMs such that { VS1

1
 , VS1

2
,..., VS1

x  } hosted on S1 , { VS2
1

 , VS2
2

,..., VS2
x  } and { VSP

1
 , VSP

2

,..., VSP
x  } are deployed on servers S2 and SP , respectively. These VMs are employed for 

execution of different job requests of M users { U1 , U2,..., UM } ⊆ � as demonstrated 
in Fig. 2. Each server consists of a VM Hypervisor layer that enables deployment of 
different VMs by creating a layer of virtual isolation among them. Below hypervisor, 

Table 1   Comparison of performance metrics: OFP-TM model v/s state-of-the-arts

Approach Failure prediction Failure 
toler-
ance

MTBF, 
MTTR​

Availability Resource 
utilization

Power 
consump-
tion

VM migration

[28] DNN ✓ × × ✓ ✓ ×

[29] Exponential 
smoothing

✓ ✓ × × ✓ ×

[30] Fuzzy logic & 
Guassian process

× × × ✓ × ×

[31] ESNemble time-
series

× × × ✓ ✓ ✓

[32] SVM × × × × × ×

[33] MART-GB × × × × × ×

[34] × ✓ × × ✓ × ×

[35] × ✓ × × ✓ × ×

[36] × ✓ × × ✓ ✓ ×

[37] × ✓ × × × × ×

[38] × ✓ × × × ✓ ✓

[39] × ✓ × × ✓ ✓ ×

OFP-TM Ensemble predic-
tion

✓ ✓ ✓ ✓ ✓ ✓
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server comprises of a pool of resources for computation, storage, and networking. The 
power consumption analyser ( PA ), and resource analyser ( RA ) are also accomodated 
within each server to measure the consumption of power and utilization of resources by 
the respective server.

The power consumption analyser ( PA ) analyses the rate of electrical power con-
sumption ( PW ) of a server over. The power consumption for i th server (i.e. PWi ) 
is estimated using Eq. (1), where PWi

max , PWi
min and PWi

idle are maximum, mini-
mum and idle state power consumption of i th server and RU is CPU utilization of the 
respective server. The total power consumption of entire datacenter ( PWdc ) over time-
interval { t1 , t2 } is estimated using Eq. (2).

(1)PWi = [PWi
max

− PWi
min

] ×RU + PWi
idle

(2)PWdc =

P∑
i=1

PWi

Table 2   Notations Symbols Explanation terms

S Server
V Virtual machine
VF Failure-prone VM
U User
P, Q, M Number of servers, VMs, users
� Mapping between server and VM
�i Status of i th server
RU Resource utilization
PW Power consumption
y Resource index
d Data samples
BP Base predictor
zactual Actual output
zpredicted Predicted output
m Number of data samples
ℝ Resources
� Normalized data
D∗ Historical data
N Number of failure-prone VMs
n Total number of base predictors
� Number of active resources
UT, DT Uptime, Downtime
�rmse Root mean squared error
C, Mem CPU, Memory
BW Bandwidth
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The resource analyser ( RA ) is employed to forecast the resource usage of each 
VM on a server and aggregate the expected resource utlilization for estimation of 
the resource contention i.e. overload status of a server before its actual occurrence. 
The VMs hosted on overloaded server may fail in future due to resource deficiency 
and thus becomes ‘failure prone’. The detailed description of resource capacity utili-
zation-based failure prediction is provided in Sect. 4. The resource utilization ( RU ) 
of datacenter can be obtained using Eqs. (3) and (4), where �i represents status of i 
th server (i.e. �i = 0 for an inactive server while �i = 1 for an active server), � is the 
number of resources. Though in formulation, only CPU (C), bandwidth (BW), and 
memory (Mem) are considered, this equation is extendable to accomodate any num-
ber of resources.

The resources utilization of all the VMs hosted on each server are periodically esti-
mated and monitored to determine the probability of any VM failure proactively. 

(3)RUdc =

t2

∫
t1

� ∑𝕏

y=1
RU

ℝ

y

�𝕏� ×∑P

i=1
�i

�
dt ℝ ∈ C,Mem,BW

(4)RU
ℝ

y
=

P�
i=1

∑Q

j=1
�ji × vℝ

j

Sℝ
i

ℝ ∈ C,Mem,BW

Power
analysor

Resource
estimator

Resource pool

VM Hypervisor

Power
analysor

Resource
estimator

Resource pool

VM Hypervisor

Resource
estimator

Resource pool

VM Hypervisor

Power
analysor

Proactive Failure
Estimation

Failure prone
VMs

Normal
VMs

Failure
Tolerance Unit

Normal VM
Allocation Unit

VM migration

VMs continue to host on source physical machine until termination

Fig. 2   Online failure prediction and tolerance model
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Accordingly, the respective set of VMs is categorized into two subsets including 
Failure-prone VMs and Normal VMs. The operation and allocation of all the fail-
ure-prone VMs are decided by the Failure Tolerance Unit (FTU) which executes 
operations such as VM replication, recovery and migration to prevent the respective 
VM failure beforehand. On the contrary, the Normal VMs continue to operate at the 
same server until it is terminated by the user. The current status of all the failure-
prone VMs is replicated into new VM instances to be hosted on the other suitable 
physical machine. The essential constraints that must be satisfied before each VM 
placement and migration are stated in Eq. (5), where Vℝ

i
 denotes resource usage of 

i th VM; ℝ represents resources viz., CPU (C), memory (M) and bandwidth (BW), 
respectively, for assignment of i th VM ( Vi ) at k th server ( Sk).

Furthermore, the information collected from PA and RA assists in analysing the 
status of failure for each physical machine over consecutive time-intervals { t1 , t2 }. If 
physical machine status predictor anticipates any failure due to resource contention 
such as hard disk (memory), networking device (network), and CPU (compute) fail-
ure, all the failure-prone VMs are migrated from the respective to selected energy-
efficient physical machines (PMs).

4 � Online failure prediction

The proactive failure of users’ VMs is estimated according to the predicted resource 
requirement of different VMs hosted on a server. An Ensemble Prediction Model 
(EPM) is developed for the prediction of resource requirement of VMs for users’ 
requests execution in future. Figure 3 portrays an ensemble of multiple base predictors-
based Failure Prediction Unit (FPU) comprising of three key operations namely Data 
preparation, Prediction, and Output generation.

Data preparation Initially, the data are prepared from the historical resource usage 
information of different resources { ℝ1 , ℝ2,...,ℝy } ∈ ℝ , gathered from the respective 
users’ VMs deployed on different servers, where {1, 2,… , y} ∈ � is the number of 
resources. The data preparation comprises three consecutive operations viz., Attribute 
selection from the historical resource usage samples such as CPU and memory utiliza-
tion, Aggregation of usage values of selected resources per unit time {t1, t2} , and Nor-
malization of aggregated values in the range [0, 1] by applying Eq. (6).

where D∗

min
 and D∗

max
 are the minimum and maximum values, respectively, of the 

input data set ( D∗ : { d∗
1
 , d∗

2
,...,d∗

l
}). The normalized vector � is a set of normalized 

data values of utilization of a particular resource such that {d1, d2,… , dl} ∈ �.

(5)
Q∑
i=1

Vℝ

i
× �ik ≤ Sℝ

k
; ∀k ∈ {1, 2,… ,P},ℝ ∈ {C,Mem,BW}

(6)� =

D∗

i
− D∗

min

D∗

max
− D∗

min
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Let l + 1th utilization of j th resource ( ℝj ) depends on the previous l utilization of 
the respective resource such that 𝔻ℝj : { dℝj

1
, d

ℝj

2
,… , d

ℝj

l
 } which is arranged in two 

dimensional input ( 𝔻ℝj

input
 ) and output ( �R

output
 ) matrix as shown in Eq. (7), where Ri 

represents capacity utilization of i th resource.

Prediction The ensemble approach utilizes different base predictors or learners to 
estimate single prediction, i.e. the predicted output of n different base predictors 
( BP1 , BP2,...,BPn ) are considered before generation of final output. In the proposed 
FPU, three base predictors are involved: (i) Feed-forward Neural Network (FNN), 
(ii) Support Vector Machine (SVM), and (iii) Linear Regression (LR) for estimation 
of the future resource usage RU of a VM.

–	 FNN A three-layered feed-forward neural network consisting of 1 input layer 
with 7 nodes, 1 hidden layer with 10 nodes, and 1 output layer with 1 node. 
The neural network connection weights are randomly generated in the range 
of [0, 1]. It receives historical resource usage data samples from the host VM 
which are normalized in the range [0, 1] to feed normalized 7 values into the 
input layer. This FNN is optimized using an evolutionary algorithm named 

(7)𝔻
ℝj

input
=

⎡⎢⎢⎢⎢⎢⎣

d
ℝj

1
d
ℝj

2
.... d

ℝj

l

d
ℝj

2
d
ℝj

3
.... d

ℝj

l+1

. . .... .

. . .... .

d
ℝj

m d
ℝj

m+1
.... d

ℝj

l+m−1

⎤⎥⎥⎥⎥⎥⎦

𝔻
ℝj

output =

⎡⎢⎢⎢⎢⎢⎣

d
ℝj

l+1

d
ℝj

l+2

.

.

d
ℝj

l+m

⎤⎥⎥⎥⎥⎥⎦

Voting
engine

Attribute selection

Values aggregation 

Normalization

predicted
output # 1

predicted
output # 2

predicted
output # 3

 resource usage
information

Failure estimation
Directed to Failure

Tolerance Unit

Base Predictor (BP1) 

Base Predictor (BP2)

Base Predictor (BPn) 

Final predicted
output

 Cluster of servers
at cloud platform

Data preparation Prediction Output

Fa
ilu

re
 to

le
ra

nc
e 

m
an
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em

en
t

Fig. 3   Failure prediction unit
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‘Differential Evolutionary Algorithm’, though any optimization algorithm 
could be used for training the neural network.

–	 SVM The SVM-based prediction model considered the points lying within 
the decision boundary lines, where the best fit line is the hyperplane having 
a maximum number of points. Let Eq. (8) represents a hyperplane (Y) and 
Eqs. (9) and (10) enumerate +a and −a which are the distances of upper and 
lower decision boundaries from hyperplane, respectively. Accordingly, any 
hyperplane that satisfied Eq. (11) builds a satisfactory SVM-based prediction 
model. 

 SVM is a supervised learning algorithm that acknowledges the presence of non-
linearity in the data samples and establishes a proficient prediction model.

–	 LR A linear prediction model is represented by an equation Y = a + bX + e , 
where a is intercept, b is the slope of the line and e is the error term. This equa-
tion is used to forecast the value of a target variable based on the given training 
input prediction variables.

The proposed ensemble approach then aggregates the prediction of each base pre-
diction models and results in a single prediction model for the unseen data. It allows 
to reduce the generalized prediction error. Since the above discussed base predic-
tion models are diverse and independent, the prediction error of the final prediction 
model is decreased using the ensemble approach.

Output generation The final outcome of the ensemble predictor is estimated by 
combining the outcomes of all the base learners using a voting engine. The final 
predicted output is potentially more accurate because this ensemble model selects 
predicted output with least error as the final predicted output everytime. Also, the 
predictions of base learners in the ensemble model are updated to historical data for 
future evaluation of the base learners. This approach improves the accuracy of the 
resource utilization-based failure prediction. The performance and accuracy of each 
base predictor is evaluated and compared by applying the Root of Mean Squared 
Error score ( �rmse ) given in Eq. (12):

where m is the number of training samples, Zactual and Zpredicted are actual and pre-
dicted outputs, respectively. The predicted outcome with least fitness value is gener-
ated as final predicted output.

(8)Y = wx + b

(9)wx + b = +a

(10)wx + b = −a

(11)− a ≤ Y − (wx + b) ≤ +a

(12)�rmse =

√√√√ 1

m

m∑
i=1

(Zactual − Zpredicted)
2
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5 � Failure tolerance

Failure Tolerance Unit (FTU) is portrayed in Fig. 4, where the failure-prone VMs 
{ VF

1
 , VF

2
,...,VF

N
 } ∈ �

F (where N is number of failure-prone VMs) and their future 
resource requirements are arranged into Resource Provisioning Matrix.

The resource provisioning matrix is N ×� matrix composed of the pre-
dicted resource usage for � different resources ( ℝ1 , ℝ2,...,ℝy ) of N VMs, where 
y ∈ {1, 2,… ,�} . The maximum value out of each resource capacity is selected 
to decide the effective capacity of � resources in the Selection-Box (S-Box). The 
distinct selection boxes are estimated pertaining to predicted usage of � resources 
of all failure-prone VMs. Thereafter, the replicas of failure-prone VMs are 
assigned to the selected energy-efficient servers according to the resource capaci-
ties reserved by the S-Boxes for the respective VMs. For instance, the resource 
provisioning matrix in Fig. 4 reveals the requirement of � resources for each VM.

From resource provisioning matrix, the capacity requirement of R1 resource are 
{21, 17,...,26} and it is assumed that 26 is the highest demand for the resource 
R1 . On the same lines, the set of values {43, 24,...,23} and {14, 18,...,41} shows 
the capacity requirement of resources R2 and Ry , respectively, for failure prone 
VMs { VF

1
 , VF

2
,...,VF

N
 }. S-Box is composed of highest resource capacities associ-

ated to respective resource in resource provisioning matrix. The failure-prone 
VMs are safely allocated by mapping � number of S-Boxes to energy-efficient 
physical machines. The corresponding VMs allocation is performed by applying 
a Greedy approach such that the VMs are intentionally assigned to already active 
servers first while satisfying the resource capacity constraints so as to minimize 
the power consumption. The inactive physical machines are turned to active mode 
only if the currently active physical machines have insufficient resource capacity 
to fulfill the requirement of target VM.

$-Box

$-Box $-Box 

$-Box 

$-Box 

$-Box 

$-Box $-Box 

$-Box 

$-Box 

$-Box $-Box 

Selection Box (S-Box) 

Resource Provisioning Matrix 

Allocation of S-Box

Failure prone virtual machines

Physical machine 1 Physical machine 2 Physical machine P

Fig. 4   Failure tolerance unit
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6 � Operational design and complexity

OFP-TM initializes list of VMs ( List
�
 ) and list of servers ( List

�
 ) as per the pre-

defined configuration. The ensemble resource predictor is trained with previous 
samples of VM resource (viz., CPU and memory) usage. The predictor is trained 
and re-trained periodically for improved prediction accuracy of future resource 
usage estimation in real-time. The predicted resource usage outputs of each VM 
hosted on a server are aggregated to estimate the physical resource requirement of 
the respective server in next time-interval. This estimation helps to determine any 
over-/under-load condition on the respective server. The same procedure is followed 
for each server in the cluster. Accordingly, the VMs are categorized into failure-
prone and non-failure-prone VMs.

Algorithm 1 presents the operational summary of OFP-TM. 

Step 1 intitializes all the required parameters including List
�
 and List

�
 has com-

plexity of O(P) and O(Q), respectively. Steps 2–24 iterate for {t: {t1, t2} } time-inter-
vals with O(t) complexity. Steps 3–21 and steps 4–11 repeat for P and z = len(�ji))
consume time-complexity of O(Pz). Step 5 calls prediction method where the com-
plexity of ensemble predictor is assumed to be O(CEPM ). Steps 6–9 differentiate fail-
ure and non-failure-prone VMs have complexity of O(1). Steps 12 and 13 aggregate 
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the resource usage information for a server have complexity of O(1). Steps 14–18 
determine overload condition on a server have complexity of O(1). Steps 19 pre-
pare a resource provisioning matrix of size N ×� shows a complexity of O(N� ) 
equivalent to O(Q� ) because N << Q . Step 20 computes the size of S-Box con-
sumes complexity of O(1). Steps 22 and 23 deal with allocation of S-Box followed 
by assignment of VMs consume complexity of O(1). Hence, the total complexity is 
O(PQztCEPM

�).

7 � Performance evaluation

7.1 � Experimental setup

The simulation experiments are executed on a server machine assembled with two 
IntelⓇ XeonⓇ Silver 4114 CPU with 40 core processor and 2.20 GHz clock speed. 
The computation machine is deployed with 64-bit Ubuntu 16.04 LTS, having main 
memory of 128 GB. The data center environment was set up with three different 
types of server and four types of VMs configuration shown in Tables  3 and 4 in 
Python version-3. The resource features like power consumption ( Pmax,Pmin ), MIPS, 
RAM and memory are taken from real server IBM [40] and Dell [41] configuration 
where S1 is‘ProLiantM110G5XEON3075’, S2 is ‘IBMX3250Xeonx3480’ and S3 is 
‘IBM3550Xeonx5675’. The VMs configuration is inspired from the VM instances 
of Amazon website [42].

7.2 � Dataset and simulation configuration

The performance of proposed work is evaluated using two realworld benchmark 
workloads including Google Cluster Data (GCD), which has resources CPU, mem-
ory, disk I/O request and usage information of 672,300 jobs executed on 12,500 

Table 3   Server configuration

Server PE MIPS RAM(GB) Memory(GB) PWmax PWmin/PWidle

S1 2 2660 4 160 135 93.7
S2 4 3067 8 250 113 42.3
S3 12 3067 16 500 222 58.4

Table 4   VM configuration VM type PE MIPS RAM(GB) Memory(GB)

Vsmall 1 500 0.5 40

Vmedium 2 1000 1 60

V large 3 1500 2 80

VXlarge 4 2000 3 100
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servers for the period of 29 days [43]. The CPU and memory utilization percentage 
of VMs are obtained from the given CPU and memory usage percentage for each 
task in every five minute over period of twenty-four hours. The multiple resource 
utilization percentage of VMs are obtained from the CPU, network, and memory 
usage percentage for each job in every five minute over period of twenty-four hours. 
The experiments are executed with varying size of datacenter such as 200, 400, 600, 
800, and 1000 VMs such that the ratio of VMs:servers is 2:1, where VMs can be 
allocated dynamically as per demand of users with online prediction interval of ‘five 
minutes’. The number of users are not mentioned in the original dataset, therefore, 
we have created set of user equals to 60% of the number of VMs, requested varying 
number and type of VMs over time. Each user can hold VMs in the range between 0 
and 10 with a constraint that at any instance, the total number of VM requests must 
not exceed total number of available VMs at the datacenter. In real computing envi-
ronment, the cloud outages occur in cloud burst situations, massive failure of physi-
cal servers, and peak of hours every day causing overloads and resource contention. 
Accordingly, we consider a sudden peak of aggregated load (or resource demand) of 
all VMs hosted on a server, which is greater than available resource capacity of the 
respective server, as a cloud outage. Such outages are predicted periodically, in an 
online service environment.

7.3 � Results

The ����  and 𝕄𝕋𝕋ℝ can be computed by applying Eqs. (13) and (14), respec-
tively. Accordingly, the average availability can be calculated using Eq. (15), where 
nf is total number of failures, 

∑M

i=1
UTi and 

∑M

i=1
DTi represent total uptime and 

downtime, respectively, experienced by M users over time-interval { t1 , t2}.

Table 5 reports the performance metrics: 𝕄𝕋𝕋ℝ , ����  , average availability ( Aavg ), 
accuracy of failure prediction ( AccP ), number of predicted failures ( FailP ), and 
number of live VM migration ( Mig# ) achieved for GCD workload for varying size 
of datacenter (200 VMs to 1000 VMs) over period of 400 minutes.

The prediction accuracy of multiple resources using ensemble predictor governs 
the performance of all other metrics. The average of failure prediction accuracy 

(13)���� =

t2

∫
t1

�∑M

i=1
UTi

nf

�
dt

(14)𝕄𝕋𝕋ℝ =

t2

∫
t1

�∑M

i=1
DTi

nf

�
dt

(15)Aavg =
𝕄𝕋𝔹𝔽

𝕄𝕋𝔹𝔽 +𝕄𝕋𝕋ℝ
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varies from 86 to 99.3% for GCD. The FailP and Mig# vary directly but non-uni-
formly depending upon the size of datacenter and errors in failure prediction.

Furthermore, to be observed that the obtained values of both ����  and 𝕄𝕋𝕋ℝ 
depend on the number of failures (nf) as depicted in Eqs. (13) and (14). The val-
ues of UT are obtained by computing product of number of successfully deployed 
VMs and time-interval over period { t1 , t2 }. The 𝕄𝕋𝕋ℝ value associated to a VM is 
0.21 minutes which is utilized from [44, 45]. Accordingly, the values of 𝕄𝕋𝕋ℝ are 
computed for different number of VM migrations which varies with the number of 
unpredicted failures. The resultant availability values are computed by applying Eq. 
(15) and utilizing ����  and 𝕄𝕋𝕋ℝ values recorded during respective time-interval 
{ t1 , t2}.

7.4 � Comparison

OFP-TM is compared to three state-of-the art works which predicts failure to provide 
high availability: Prediction-based Energy-aware Fault-tolerant Scheduling scheme 
(PEFS) [28], Hadoop Distributed Computing Clusters for Fault Prediction (HDCC) 
[32], and Cloud Disk Error Forecasting (CDEF) [33]. Further, the comparison 

Table 5   Performance metrics for GCD workloads

aAv.avg.: Average Availability, bAccP:Failure prediction accuracy, cFailP : Number of predicted failures, 
dMig# : Number of VM migrations

VM# T(min.) 𝕄𝕋𝕋ℝ ���� Aa
avg AccPb FailPc Mig#d

200 100 1.47 2757.14 99.94 95.5 75 7
200 1.68 2400.00 99.93 95.0 86 8
300 1.47 2757.14 99.94 95.5 72 7
400 1.26 3233.33 99.96 99.3 96 6

400 100 4.41 1804.76 99.76 94.8 119 21
200 3.57 2252.94 99.84 95.8 395 17
300 3.78 2122.22 99.83 95.5 262 18
400 3.15 2566.67 99.88 96.3 140 15

600 100 4.83 2508.70.89 99.81 96.1 583 23
200 3.99 3057.90 99.90 96.8 411 19
300 3.99 3057.90 99.90 96.8 544 19
400 5.88 2042.86 99.71 95.3 536 28

800 100 6.09 2658.62 99.25 96.38 733 29
200 4.41 3709.52 99.88 97.38 725 21
300 5.25 3100.00 99.83 96.88 696 25
400 3.78 4344.44 99.91 97.75 713 18

1000 100 6.93 3233.33 99.79 96.7 906 33
200 7.77 2602.70 99.70 96.3 607 37
300 7.14 2841.18 99.75 96.6 999 34
400 5.88 3471.43 99.83 97.2 972 28
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among OFP-TM, OFP-TM without S-Box, and Without OFP-TM is presented for 
the evaluation of various performance metrics. OFP-TM specifies proposed frame-
work including VM Failure Ensemble prediction and failure-tolerance unit which 
is a combination of Resource Provision Matrix and Selection Box (S-Box) mecha-
nism. The S-Box enables safer allocation of VMs alleviating maximum chances of 
failure. While OFP-TM without S-Box (where S-Box lies within Failure Tolerance 
Unit) specifies VM Failure Ensemble prediction and resource provisioning only. It 
means VMs failure is predicted but failure tolerance mechanism is not applied and 
VMs are provisioned as per the VM placement constraints mentioned in Eq. (5) in 
the manuscript. Without OFP-TM specifies neither failure prediction nor tolerance 
mechanisms are applied.

7.4.1 � Failure prediction

Figure  5 compares the accuracy of failure prediction of ensemble predictor and 
the three comparative methods. On average, the prediction accuracy of ensem-
ble approach varies from 93 to 97.8%, while the average accuracy of DNN [28], 
MART-GB [33], and SVM [32] ranges from 86 to 94%, 81 to 92%, and 76 to 84%, 
respectively.

7.4.2 � Failure tolerance

Figure  6 compares the failure tolerance with respect to average number of VM 
migrations which is least for OFP-TM, consecutively followed by OFP-TM without 
S-Box (i.e. with ERP prediction) and without OFP-TM approaches. The achieved 
results depict that the number of VM migration increases non-uniformly with the 
size of the datacenter. The average number of VM migration using OFP-TM varies 
from 3 to 6% of the size of the datacenter. However, OFP-TM significantly reduces 
live VM migrations up to 72.6% and 83.3% over OFP-TM without S-Box and with-
out OFP-TM, respectively for GCD workload. It can be observed from Fig. 6 that 
the values of average number of VM migration for data center of size 1000 VMs 

(a) (b)

Fig. 5   Failure prediction accuracy for GCD workload
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with respect to OFP-TM, OFP-TM without S-Box, and Without OFP-TM are 49, 
180, and 294, respectively. By applying percentage improvement (which is a reduc-
tion of the number of VM migrations) formula using Eq. (16).

In case of OFP-TM without S-Box, Reduction = (180 − 49)/180 × 100 = 72.6%. 
Similarly, in case of Without OFP-TM, Reduction =(294 − 49)/294 × 100 = 83.3%.

7.4.3 � Availability

The availability varies with the values of ����  and 𝕄𝕋𝕋ℝ , obtained during online 
processing over time-interval { t1 , t2 }. The variations observed (during experimen-
tal simulation) in the values of ����  and 𝕄𝕋𝕋ℝ are shown in Fig. (7). It is to be 
noticed that 𝕄𝕋𝕋ℝ decreases when ����  increases, which specifies a inverse rela-
tion between them.

The ����  values decrease while the 𝕄𝕋𝕋ℝ increases with growing size of the 
datacenter because of the slight decrease in the percentage of accuracy during pre-
diction of failures (Table 5). The ����  decreases and 𝕄𝕋𝕋ℝ increases with fol-
lowing the trend: OFP-TM < OFP-TM without S-Box < OFP-TM without ERP. Fig-
ure 8 entails the availability for GCD where OFP-TM outperforms OFP-TM without 
S-Box and without OFP-TM by 17.2% and 33.5%, respectively, for GCD online 
workload distribution.

8 � Conclusions and future work

A novel online failure prediction and tolerance model is proposed which inculcates 
high availability in VMs as well as servers by predicting any failure proactively 
and triggering necessary failure tolerance actions. An ensemble failure predic-
tor is utilized to predict multiple resource usage of VMs concurrently and periodi-
cally to estimate their failure status. The operational status of physical machines is 

(16)Reduction =
(old_value − new_value)

(old_value)
× 100

Fig. 6   Average number of VM 
migration for GCD workload
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monitored by analysing their resource usage and power consumption periodically to 
detect any failure in advance. The model employs a failure tolerance unit to decide 
an appropriate allocation of failure-prone VMs and migrate them to selected server 
using clustering-based S-Box. The performance evaluation of the proposed model 
reveals that it maximizes service availability and minimizes performance degrada-
tion due to overloads, cloud outages, SLA violations and excess power consump-
tion. All the results are supported by the simulation and experiments executed on 

Fig. 7   MTTR and MTBF of GCD workload

Fig. 8   Average availability
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benchmark real workload traces. The comparison with state-of-the-art approaches 
states that the OFP-TM can significantly improve the availability and optimize 
resource management cost of cloud datacenter.

Currently, the proposed model includes proactive failure tolerance only which can 
be extended in future with reactive failure tolerance strategies including N-Version 
programming, Parallel Execution etc. The combination of both reactive and proac-
tive failure tolerance approach will build a more robust resource management model 
achieving high availability for cloud environments.
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