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Abstract

Modern real-time systems are based on heterogeneous multicore plat-
forms, which help them productively meet the applications’ diverse
and high computational requirements. Managing the energy and tem-
perature of these computational platforms has become a topic of
inconceivable enthusiasm for researchers and specialists over recent
years. This paper presents a heuristic technique, named ETA-HP,
for energy and temperature efficient scheduling of a set of real-time
periodic tasks on a DVFS empowered heterogeneous multicore sys-
tem. The proposed strategy operates in four stages, namely Deadline
Partitioning, Task-to-Core Allocation, Temperature-Aware Scheduling,
and Energy-Aware Scheduling. Our empirical analysis shows that with
a variation in system workload from 50% to 100%, ETA-HP can
schedule more tasks (2.52% on an average) compared to the state-
of-the-art while achieving 7.29% average energy savings with 9.59 °C
reduction in the average temperature of our considered heterogeneous
chip-multiprocessor consisting 4 in-order and 4 out-of-order cores.
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1 Introduction

The logical notion of correctness, and the timely manner in which results
are produced, are the most crucial real-time system features. Based on the
approach of the schedulers deployed in such systems, they can be categorised as
either a partitioned or a global schedulers [1]. All partition-oriented schedulers
have a separate queue for each core, and when a task arrives into a system, it
is allotted to any one of such private queues. Such schedulers are constrained
that tasks cannot migrate to queues of other cores, but they also benefit from
the fact that there is no migration cost involved for such schedulers. Neverthe-
less, the partitioning process of a set of tasks into available cores is an NP-hard
problem [2]. On the contrary, all global schedulers have a single task queue
for all cores, allowing migrations. Such schedulers can provide higher utilisa-
tion than partition-oriented schedulers, but they often suffer from a very high
migration cost.

To overcome these two categories of schedulers’ shortcomings, the research
fraternity has started to focus on schedulers based on a hybrid approach. Such
schedulers are known as semi-partitioned schedulers, and they can be further
divided into two sub-categories. The schedulers from the first sub-category deal
with the systems where cores are divided into disjoint groups based on their
features. A task is allotted to a particular group of cores and is constrained
to have migrations among that group’s cores only. On the other hand, the
schedulers from the second sub-category break the timeline into intervals, often
called slices or frames. In each frame, they allow restricted migrations, and
the tasks are allowed to synchronise at every interval boundary. Schedulers
belonging to the latter sub-category [3, 4] offer high resource utilisation.

To meet the varying demands of modern applications, most of the current
real-time systems have started using heterogeneous multicore platforms [5]
such as ARM’s big.LITTLE, Nvidia Tegra, etc. Hence, to better utilise such
platforms, these systems need to adapt to them. On such a platform, the
same coding lines may need dissimilar time duration to execute over non-
identical cores, making scheduling on such a platform more challenging. As
an essential driving force of social development and world economic growth
in the 21st century, the ICT (information and communication technology)
industry consumes 10% of the global power consumption [6]. The majority of
the advanced gadgets are fundamentally founded on batteries, making effective
utilisation of energy in these gadgets vital. Consequently, energy management
has become a subject of incredible enthusiasm for researchers and specialists
in the recent past.

An uncontrolled ascent in temperature swells cooling costs as well as dimin-
ishes a system’s productivity. A study in [7] has found that the life expectancy
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of a chip can be diminished by up to half with a temperature surge of 10−15 °C
over conventional working temperature. Hence, thermal hotspots play a vital
role in the performance of modern-day gadgets. Further, a vast majority of
these gadgets are essentially founded on batteries, making the proficient utilisa-
tion of power in these gadgets vital. Therefore, analysts and practitioners have
started focusing on these aspects together in recent years. Unfortunately, all
the literary works have not focused adequately on proficient resource utilisation
alongside energy and temperature control in the gadgets. Achieving efficient
resource utilisation has always been a cherished aim for designers of these gad-
gets, which helps them to get proper cost-to-performance value. Therefore, we
present an energy and temperature-aware low-overhead scheduler based on a
semi-partitioned strategy that can provide efficient resource utilisation in these
devices. The major contributions of our work can be summarised as:

• Development of an efficient scheduling strategy which allots tasks on avail-
able cores of different types, so that not only tasks meet their deadlines, but
the migration overhead is also bounded.

• For each core, we modify the prepared task schedule such that temperatures
remain balanced for all cores.

• We apply the Dynamic Voltage/Frequency Scaling (DVFS) technique on
each core to reduce their dynamic energy consumption. DVFS reduces power
dissipation by scaling down the processor’s operation frequency along with
its supply voltage.

• Empirical analysis shows that our presented strategy not only outperforms
the state-of-the-art [8] technique in terms of resource utilisation but also
offers better energy and thermal management in the system.

As we would like to think, the proposed strategy fits precisely to the plat-
forms that have cores with different micro-architectures but have identical ISA,
like big.LITTLE® or the Helio X20®.

Paper Organisation

After presenting the relevant related research attempts in the next section
(Section 2), we discuss the specifications in Section 3 before detailing the
proposed mechanism, ETA-HP, in Section 4. We further analyse our proposed
algorithms in Section 5. The empirical studies are presented next in Section 6
together with the analytical discussions. Finally, before concluding the paper
in Section 8, we have further summarised the ETA-HP mechanism along with
its potential future research avenues in Section 7.

2 Related Works

Researchers have started focusing on the problem of energy management for
multicore heterogeneous platforms in recent years. In [9], the authors have
proposed a scheduler for cloud-based platforms which tries to reduce energy
consumption and minimise the makespan. To reduce the energy consumption,
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the authors have designed an effective model, where based on the character-
istics of the tasks, they are either allocated to GPUs or the CPUs. As the
work has considered platforms having only two types of cores, the proposed
strategy cannot be applied to platforms that have more core types. Another
scheduling strategy for platforms comprised of cores of two-types and having
continuous available frequency, has been proposed in [10]. The scheduler uses a
constant approximation technique along with the DVFS to achieve it’s objec-
tive. In another work [11], a scheduler for stochastic tasks has been proposed
for platforms having DVFS capability. The task’s stochastic processing dura-
tions have been derived from separate probability distributions. This work not
only tries to minimise makespan but energy consumption in the system as well.
In [12], the authors have suggested a scheduling strategy for platforms with
DVFS capability and having an arbitrary number of cores. The proposed algo-
rithm works in two phases. In the first phase, the clusters of cores are formed
based on their specifications and the tasks are allotted. In the second phase,
the per-core DVFS is applied to reduce the energy consumption.

The problem of temperature management for multicore, heterogeneous
platforms is also getting a lot of attention in recent times. A temperature-aware
scheduling strategy has been presented in [13], which is an extension of a basic
scheduler, HETERO-FAIR [14]. However, the work is targeted towards plat-
forms having only two types of cores. Another strategy for similar platforms
was proposed [15], in which, at the beginning, the strategy profiles applica-
tions to extract their thermal characteristics, and then they assign these tasks
on the available cores based on the extracted thermal features of the tasks. In
another work [16], authors have presented a partition-oriented strategy. The
authors have used heterogeneous configurable cache systems to manage the
cores’ temperatures. In [17], the authors have presented a partition-oriented
scheduler that works in two phases. Initially, the strategy assigns tasks on the
available cores and then tries to schedule them under a specified temperature
constraint. Next, they try to reduce the makespan.

Few works have focused on the temperature and energy aspects of hetero-
geneous multicore platforms together as well. One such work was presented
in [18], where constant monitoring of the system workload is performed. When-
ever the workload gets below a threshold, the work focuses more on the energy
aspect, and when the workload is higher than the specified threshold, it focuses
more on the management of core temperatures. However, this strategy is based
on the first category of semi-partitioned schedulers discussed in the previous
section. Hence, it offers low utilisation because of the absence of migrations
across the core groups. A partition-oriented strategy has been presented in [19].
Initially, this strategy analysed the various task-to-core assignments’ energy
consumption and then choose the assignment that leads to minimum energy
consumption. Then the strategy applies a heuristic to reduce the cores’ temper-
atures. As there can be many possible task-to-core assignments, this strategy
is not suitable for real-time systems. Another partition-oriented strategy has
been presented in [20]. At first, the strategy considers the energy and thermal
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aspects while assigning tasks to cores. Then, a fluid scheduling mechanism [21]
is applied on each core to prepare task schedules. A strategy that works under
a specified thermal threshold has been presented in [22]. Here, the authors pro-
filed temperature characteristics of all the tasks offline and then categorised
the tasks based on their (thermal) profiling. At last, they have applied DVFS
at the individual cores.

Table 1: Comparison of Related Works

Related Resource Energy Temperature Platform
Work Efficient Aware Aware

[3] ✓ ✓ X Based on single-core type (Homogeneous)
[4] ✓ ✓ X Based on single-core type (Homogeneous)
[8] ✓ ✓ X Generic number of core types
[9] X ✓ X Based on two-type of cores
[10] X ✓ X Based on two-type of cores
[11] X ✓ X Generic number of core types
[12] ✓ ✓ X Generic number of core types
[13] X X ✓ Based on two-type of cores
[15] X X ✓ Based on two-type of cores
[16] X X ✓ Generic number of core types
[17] X X ✓ Generic number of core types
[18] X ✓ ✓ Generic number of core types
[19] X ✓ ✓ Generic number of core types
[20] X ✓ ✓ Generic number of core types
[22] X ✓ ✓ Generic number of core types

ETA-HP ✓ ✓ ✓ Generic number of core types

A summary of the comparisons of the related works has been provided
in Table 1. As stated earlier, resource utilisation along with energy and
temperature management have become major design criteria for the manufac-
turers of modern devices. Unfortunately, none of these prior research attempts
have focused adequately on the system’s utilisation aspect while performing
energy/thermal management, as it can be observed from Table 1.

3 Specifications

System Model: The system under consideration is composed of a set of
periodic tasks τ having | τ | tasks, i.e. τ = {τ1, τ2, ...}, and a heterogeneous
multicore platform Π = {Π1,Π2, ...} having | Π | cores. Each core may run on
a frequency which is chosen from the frequency set 𭟋 = {𭟋1,𭟋2, ...,𭟋max},
such that, 𭟋max represents normalised frequency of 1 and all other frequencies
lie between 0 and 1. Every task τi is related with a (2× | Π | +1) tuple

τi⟨ui,1, ui,2, . . . , ui,|Π|, pi,Γ
i,1
ss ,Γ

i,2
ss , . . . ,Γ

i,|Π|
ss ⟩, where,

• ui,j is the utilisation of τi on Πj ,
• pi is the fixed inter-arrival time (i.e., period) as well as the deadline of τi, and
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• Γi,j
ss is its steady state temperature on Πj . The steady state temperature of

a task represents the Πj ’s core temperature that is reached when the task
executes continuously on Πj for an adequately prolonged stretch of time,
possibly over multiple instances.

At any given instant, rpi denotes the remaining period of the current
instance of τi.

Symbol Description

τ Task set

τi ith task

pi Period of ith task
| τ | Number of tasks in τ
Π Core set

Πj jth core
| Π | Number of cores in Π
𭟋 Operating frequency set for cores
ui,j Utilisation of τi on Πj

Rk kth frame
shri,j,k Share of τi on Πj in Rk

Γi,j
ss Steady state temperature of τi on Πj

UF Utilisation Factor of a task set
LT1 List of all tasks in a frame
LT2 List of tasks requiring migration in a frame

Table 2: Important Terminologies

Power Model: The power model used in our work is based on a recent
prior work [4]. The dynamic power consumption P in a platform with DVFS
capacity is directly related to the level of operating frequency (say 𭟋k) and
the square of the supply voltage υk (i.e. P ∝ 𭟋kυ

2
k). The supply voltage is

again linearly proportional to the operating frequency. Hence, the expression
for power consumption may be represented as: P = c × 𭟋3

k, where, c is the
proportionality constant.

Temperature Model: The rate of change of temperature [23, 24] of a core
is modelled through the following equation:

dΓ(t)

dt
=

P (t)

C
− (Γ(t)− Γamb)

r × C
, (1)

where, Γ(t) and Γamb are the core’s temperature at time t and ambient tem-
perature, respectively. P (t) is the power consumption at time t, while r and
C are thermal resistance and thermal capacitance of the core, respectively.
Scaling Γ(t) such that Γamb is zero (i.e., by replacing Γ(t) - Γamb with Γ(t)),
Equation 1 gets transformed as:

dΓ(t)

dt
= aP (t)− bΓ(t), (2)
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where, a = 1/C and b = 1/rC.
For a core with multiple voltage/frequency levels, the gross power con-

sumption of a core when running at the kth voltage level, can be modelled
as [23]:

P (k) = (C0(k)× vk + C1(k) · Γ(t) · vk) + C2 × v3k (3)

where C2 is a constant and C0(k) and C1(k) are the constants dependent on
the voltage level vk. Accordingly, the rate of temperature variation can be
formulated from Equation 2 and Equation 3 as:

dΓ(t)

dt
= a[C0(k)× vk + C2 · v3k] + a · C1(k) · Γ(t) · vk − b · Γ(t)

⇒ dΓ(t)

dt
= A(k)−B(k)Γ(t), (4)

where A(k) = a · (C0(k)× vk + C2 × v3k) and B(k) = b− a · C1(k) · vk.
For an interval [t0, te] in which τi is executing on Πj , if the core temperature

is Γ0 at time t0, the temperature Γe at the end of the interval at time te is
given by [25]:

Γe =
A(k)

B(k)
+ (Γ0 −

A(k)

B(k)
)e−B(k)(te−t0)

Γe = Γi,j
ss (k) + (Γ0 − Γi,j

ss (k))e
−B(k)(te−t0) (5)

where Γi,j
ss is the steady state temperature of task τi on core Πj and is depen-

dent on the overall power consumption of τi. The steady state temperature of a
task represents the core’s temperature that is reached when the task executes
continuously on the core for a sufficiently long time, possibly over multiple
instances.

Nowadays, many embedded systems are equipped with several levels of
operating frequencies for the cores. The running of cores at a reduced frequency
results in lower temperatures and leads to long execution times. Therefore, a
scheduler has to carefully select a group of frequencies for the cores in real-
time systems. We have obtained the execution requirements for two programs
from PARSEC [26] benchmark, namely, Bodytrack and Canneal, by executing
them in gem5 [27] for an Alpha21364 processor (32 nm technology) for vari-
ous operating frequencies. We further used McPAT [28] and HotSpot 6.0 [29]
simulators to get power traces and steady state temperatures, respectively,
for the individual tasks while executing them on a system having the same
configuration. The results are shown in Figure 1.

As the temperature of a core is dependent on the operating frequency of
the core and the task executing on it, running a core on a lower frequency
results in a lower core temperature. We used the following equation to relate
the operating frequency of the system with the steady state temperature of a
task:

Γi,j
ss (k) = β ×𭟋k × Γi,j

ss (𭟋max) (6)

where β is a constant, 𭟋k is the kth level of operating frequency and Γi,j
ss (k)

denotes the steady state temperature of τi on Πj at kth level of operating
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Fig. 1: Effect of Operating Frequency on Steady State Temperature

frequency. Table 2 lists some of the important terms which have been used in
this proposed work. The subsequent section presents a detailed description of
our proposed strategy, ETA-HP.

Periodic Task Set
 = {ꚍ ꚍ1, ꚍ2, ꚍ3, . . . }

Heterogeneous Multicore Platform
π = {π1, π2, π3, . . . }

Deadline Partitioning on
 to get next frameꚍ

Task-Partitioning for the cores based on
tasks’ requirements and core capacities

Schedule tasks on individual cores

Re-arrange Execution Sequence of tasks
on individual cores when possible
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and Adjust Task Schedule accordingly
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Fig. 2: Scheduling Strategy of ETA-HP
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4 Proposed Scheduling Scheme: ETA-HP

Our proposed scheduling strategy, ETA-HP (Algorithm 1), is a four-level hier-
archical scheduling strategy. Initially, the technique of deadline partitioning [4]
is used by the strategy to find frames, where an individual frame is a consec-
utive group of time-slots addressing a span between two sequential deadlines
corresponding to the set of ready tasks. Within a frame, each task is scheduled
for appropriate times (Algorithms: 2, 3, and 4) on available cores. It may be
noted that a task may be scheduled on multiple cores within a frame, but it is
not scheduled on more than one core at any individual time slot. Then ETA-
HP tries to rearrange the execution order of the tasks on the cores such that
the core temperatures remain balanced (Algorithm 5). At last, it finds a suit-
able operating frequency for every core based on the workload allotted in the
previous step (Algorithm 6). A summarised scheduling strategy of ETA-HP
has been presented in Figure 2.

4.1 ETA-HP (Algorithm 1)

The proposed algorithm, ETA-HP, progresses in the system frame by frame.
To do so, it proceeds by finding the size of the next frame by using Deadline
Partitioning [4], in which the frames are restricted by the periods of all ready
tasks. It is achieved by searching the task with the earliest period among all
task instances.

| Rk |= min{rp1, rp2, ..., rp|τ |} (7)

where Rk is the kth frame. Within Rk, all elements of the Basic Allocation

Algorithm 1 ETA-HP

Input: τ , Π, 𭟋
Output: Final Schedule

1 while true do
2 Using deadline-partitioning, compute next frame (say kth) Rk

3 Let BAMk be the Basic Allocation Matrix for Rk

4 Initialise all entries of the Basic Allocation Matrix BAMk to ∅
5 TENTATIVE-SCHEDULE (τ , Π, Rk, BAMk)
6 if scheduling of τ is feasible on Π then
7 TA-ALLOCATE (τ , Rk, BAMk)
8 EA-ALLOCATE (τ , Rk, BAMk, 𭟋)

9 return Final Schedule

Matrix (BAM), that maintains the order and length of the task execution
on the available cores, are initialised to ∅ (Line 4). Next, TENTATIVE-
SCHEDULE() is called to allocate tasks on cores and construct a tentative
schedule (Line 5). Suppose the function can build a workable schedule in
the previous step. In that case, it calls functions TA-ALLOCATE() (Line 7)
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and EA-ALLOCATE() (Line 8) to make the schedule temperature-aware and
energy-aware, respectively.

4.2 TENTATIVE-SCHEDULE (Algorithm 2)

Since every task may have different utilisation on different cores of a
heterogeneous platform, it is challenging to schedule them. Initially, the func-
tion TENTATIVE-SCHEDULE() finds the shares for each task on all cores in
the ensuing frame (Line 4 - Line 7) using the equation:

shri,j,k = ⌈ui,j× | Rk |⌉ (8)

Algorithm 2 TENTATIVE-SCHEDULE

Input: τ , Π, Rk, BAMk

Output: Basic Allocation Matrix BAMk

1 Let LT1 and LT2 be sorted lists of tasks based on their share values
2 Initialise LT1 = ∅ and LT2 = ∅
3 {Find task shares in Rk}
4 for i = 1 :| τ | do
5 for j = 1 :| Π | do
6 shri,j,k = ⌈ui,j × | Rk |⌉
7 LT1 = LT1 ∪ {⟨i, j, shri,j,k⟩}

8 ALLOCATE-FIXED (LT1, LT2, BAMk, Π)
9 ALLOCATE-MIGRATE (τ , LT2, BAMk, Π)

10 return BAMk

The share value of a task indicates its proportional demand in a frame to
it’s total requirement. These values are kept in the share matrix shr of size
| τ | × | Π |. Also, this function maintains a sorted list LT1 of non-decreasing
order based on the shared values. Each element of LT1 is having a format:
⟨i, j, shri,j,k⟩, where i is task ID, j is core ID and shri,j,k is the task’s share
value for the frame Rk. At last, function ALLOCATE-FIXED() (Line 8) and
function ALLOCATE-MIGRATE() (Line 9) are called to schedule tasks on
the available cores.

4.3 ALLOCATE-FIXED (Algorithm 3)

Every task which can be completely designated on any single core is called a
fixed/non-migrating task. The function ALLOCATE-FIXED() tries to sched-
ule such non-migrating tasks. It uses a sorted list LT2 (in non-decreasing order)
based on the shared values of the tasks on cores to keep information about the
tasks that cannot be fully allocated on any single core. The format of elements
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of the list LT2 is similar to the list LT1. The function starts its operation by
iterating over the sorted list LT1 (Line 1 - Line 7). At start of every iteration,
it extricates an element ⟨i, j, shri,j,k⟩ from the front of LT1 (Line 2). Then it
verifies whether Πj can execute τi for shri,j,k in the ensuing frame. When pos-
sible, the function updates BAMk with beginning and end time for τi on Πj

(Line 4). A task can only start running on a core after the previously allocated
task on Πj concludes its execution. Next, the function deletes all nodes corre-
sponding to τi from LT1 (Line 5). In a scenario, when Πj is unable to run τi
for shri,j,k time-slots in the ensuing frame, ⟨i, j, shri,j,k⟩ is added to the list
of migrating tasks LT2 (Line 7). The function ALLOCATE-FIXED returns
BAMk and LT2 to the function TENTATIVE-SCHEDULE() (Line 8).

Algorithm 3 ALLOCATE-FIXED

Input: LT1, LT2, BAMk, Π
Output: BAMk (Basic Allocation Matrix with fixed tasks), LT2 (Sorted list

of migrating tasks)
1 while LT1 is not empty do
2 Get the first element of LT1: ⟨i, j, shri,j,k⟩
3 if shri,j,k can be fully allocated on Πj for shri,j,k then
4 Assign start and end times of τi on Πj , i.e., BAMk[i][j] =

⟨start time(τi), end time(τi)⟩
5 Remove all entries of τi from LT1 and LT2

6 else
7 LT2 = LT2 ∪ {⟨i, j, shri,j,k⟩}

8 return BAMk, LT2

4.4 ALLOCATE-MIGRATE (Algorithm 4)

The function ALLOCATE-MIGRATE considers each element of LT2 one by
one. During each pass, it extricates an element (say ⟨i, j, shri,j,k⟩) from front
of the list (Line 3) and moves all elements of τi from LT2 to LT3 (Line 4). As
the elements in LT2 were sorted in order, the entries in LT3 are also sorted
based on the shared values of τi on the available cores. Next, it iterates through
the list LT3, where each node of LT3 contains the execution requirement of
τi on a specific core-type. The list is sorted in non-decreasing order of the
execution requirements of the task, i.e. the degree of favouritism of τi to core-
types. In each iteration of the loop, it extracts the current element of LT3

(say ⟨i, j, shri,j,k⟩) and tries to schedule τi on Πj for a certain duration. Let
nsi,j represents the normalised unallocated share of τi on Πj and rcj be the
remaining capacity of Πj in Rk. When the algorithm tries to allocate τi on Πj ,
the following two situations may arise:
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Algorithm 4 ALLOCATE-MIGRATE

Input: τ , LT2, BAMk, Π
Output: BAMk Basic Allocation Matrix

1 while LT2 is not empty do
2 Let LT3 be an empty sorted list of tasks based on share values
3 Extract the entry ⟨i, j, shri,j,k⟩ from LT2

4 Move every element corresponding to τi from LT2 to LT3

5 Let nsij be the normalized unallocated share of τi on Πj

6 while LT3 is not empty do
7 Extract the first element of LT3: ⟨i, j, shri,j,k⟩
8 Let rcj be the remaining spare capacity of Πj

9 if Πj is the first core for allocation of τi then
10 nsi,j = shri,j,k

11 else
12 Let Πq be the latest core on which τi was scheduled
13 nsi,j = nsi,q × ui,j/ui,q

14 if nsi,j > rcj then
15 Update BAMk[i][j] to schedule τi on Πj for duration rcj
16 nsi,j = nsi,j − rcj

17 else
18 Update BAMk[i][j] to schedule τi on Πj for duration rcj − ⌈nsi,j⌉
19 break

20 if (nsi ̸= 0) or (τi is allocated on more than one core in parallel) then
21 τ cannot be scheduled on Π

22 return BAMk

• rcj < nsi,j : In such a scenario, the function partially allocates τi on Πj for
rcj time-slots and updates nsi,j .

• nsi,j ≤ rcj : In this scenario, the function fully allocates τi on Πj for nsi,j
time-slots and deletes the list LT3.

After allotting τi on different cores, the function tries to schedule them
on the allocated cores. For this purpose, ETA-HP uses the following heuristic
strategy, which helps it to prevent the execution of τi on more than one core
at the same time slot (Line 9 - Line 19). On the first core, where τi has been
partially allotted, the task is scheduled from the start of the Rk. On subsequent
cores, τi is scheduled at the time slot after it finishes its execution on the
last partially allotted core. The checkpoints indicating starting and ending of
execution on each core maintained in BAMk. If there is a lack of capacity in the
available multicore platform to schedule τi, the function concludes scheduling
of τ is not possible on Π. Otherwise, BAMk, which consists of a partially
constructed schedule for Rk, is returned.
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4.5 TA-ALLOCATE (Algorithm 5)

In literature [24], it has been found that executing hot and cold tasks alterna-
tively on cores can help us maintain a better temperature control at the cores.
Hence, ETA-HP uses this idea on each core within every frame. For each core,
Πj , TA-ALLOCATE() constructs the list LT4 containing non-migrating tasks
allocated on the core (Line 2). Then each task of LT4 is classified as either a
cool or a hot task by comparing its steady state temperature with the average
steady state temperature of the task set Γss

avg (Line 3). Next, it constructs the
list of tasks LT5 by alternatively extracting the hottest and coolest task from
LT4 (Line 4). After that, it extricates tasks one by one from LT5 and sched-
ules them in the time slots where a migrating task is not scheduled. At last,
BAMk is updated for the current frame Rk.

Algorithm 5 TA-ALLOCATE

Input: τ , Rk, BAMk

Output: BAMk for Rk

1 for each core Πj ∈ Π do
2 Create LT4, a sorted list of non-migrating tasks which have been scheduled

on Πj based on their Γi,j
ss

3 Classify every task (say τi) in LT4 as either hot task if (Γi,j
ss ≥ Γss

avg; else
classify it as a cold task

4 Create LT5 by alternately extricating the hottest and the coolest task from
LT4

5 Extract tasks from LT5 one by one and schedule them on Πj for the time-
slots in which a migrating task is not scheduled

6 Update BAMk with the schedule for the core Πj

7 return BAMk

4.6 EA-ALLOCATE (Algorithm 6)

The function EA-ALLOCATE() considers cores of the platform one at a time.
It calculates the spare capacity of the core under consideration (say Πj). Then
the function finds the most suitable frequency that is needed to execute the
tasks allocated on the core. This may be calculated as:

𭟋opt =
Στiϵ|FIXED|shri,j,k

| Rk | −Στiϵ|MGR|shri,j,k
(9)

where | MGR | and | FIXED | are sets of migrating and fixed tasks which
have been allotted on the core. As the required frequency 𭟋opt may not be
always present in a core with discrete levels of frequency, the next higher level
available frequency is selected in such a case. Its execution length is adjusted
for each fixed task with respect to 𭟋opt of the core.
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Algorithm 6 EA-ALLOCATE

Input: τ , Rk, BAMk, 𭟋
Output: BAMk for Rk

1 for each core Πj ∈ Π do
2 Find remaining capacity of Πj : rcj
3 if rcj ̸= 0 then
4 Find the frequency fopt ∈ 𭟋 for Πj

5 Update BAMk for all non-migrating tasks allocated on Πj

6 return BAMk

5 Analysis of the algorithm

In this section, we will analyse each of the functions used in the algorithm one
by one:

• Function ALLOCATE-FIXED(): There are | τ | × | Π | elements in the
list LT1. We sequentially consider the elements. Getting an element from LT1

will haveO(| τ | · | Π | ×log (| τ | . | Π |)) time-complexity. The computation
of the time-slots for each task’s execution on a core has a complexity of O(1).
Adding a migrating task to L2 has O(1) complexity too. A 2D array may
be used to keep task-to-core allocations. This operation will also have O(1)
complexity for each task. Therefore, the time complexity of the function
ALLOCATE-FIXED() becomes O(| τ | · | Π | ×log (| τ | · | Π |)).

• Function ALLOCATE-MIGRATE(): It consists of | τ | × | Π | passes,
one each for a migrating task contained in LT2. In each pass, the function
may try to allocate a part of the task on the available cores. This operation
will have a complexity of O(| Π |). Therefore, the function ALLOCATE-
MIGRATE() has a complexity of O(| τ | · | Π |2).

• Function TENTATIVE-SCHEDULE(): The function has to compute
share values for all tasks for every core of the platform. This operation
will have a complexity of O(| τ | · | Π |). Next, adding an entry to LT1

will have O(| τ | · | Π | ×log (| τ | · | Π |)) complexity, of a priority
queue is used to implement LT1. Then functions ALLOCATE-FIXED() and
ALLOCATE-MIGRATE() are called for scheduling of the tasks on available
cores. Hence, time complexity of the function TENTATIVE-SCHEDULE()
becomes O(| τ | · | Π |2 + | τ | . | Π | ×log (| τ | · | Π |)).

• Function TA-ALLOCATE(): The construction of LT4 for every core may
be done in TENTATIVE-SCHEDULE() and this operation will have a com-
plexity of O(| τ |) for every core. Similarly, construction of LT5 will have a
time complexity of O(| τ |) for every core. Therefore, the complexity of the
function TA-ALLOCATE() becomes O(| τ | · | Π |).

• Function EA-ALLOCATE(): Based on the workload, the function needs
to calculate 𭟋opt. This operation can be carried out in a constant time.
After calculating the required frequency, each non-migrating task’s schedule
must be readjusted accordingly on every core, which will have a complexity
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of O(| τ |). Therefore, the function EA-ALLOCATE() will have a time
complexity of O(| τ | . | Π |).

• Function ETA-HP(): Calculating size of the subsequent frame will have
a complexity of O(| τ |), since it has considered the period of every ready
task. Then the functions TENTATIVE-SCHEDULE(), TA-ALLOCATE()
and EA-ALLOCATE() are called to carry out their operations. Therefore,
the function ETA-HP() will have a time-complexity of O(| τ | . | Π | ×(| Π |
+log (| τ | . | Π |))).

Assuming the number of tasks to be much higher than the number of cores
in a system, the overall complexity of ETA-HP becomes O(| τ | ×log (| τ |))
per frame.

It may be noted that TA-ALLOCATE (Algorithm 5) only rearranges the
execution of tasks on the available cores and EA-ALLOCATE (Algorithm 6)
extends task executions in frames by reducing the operating frequencies of the
cores. But the operating frequencies are lowered such that none of the tasks
misses their execution requirements in a frame. Hence, these two algorithms
do not hamper the feasibility of task allocation, which has been done by the
TENTATIVE-SCHEDULE (Algorithm 2).

Migration Overheads: In ETA-HP, a task is allotted to multiple cores in a
frame when it cannot be fully allotted on any single core. It is done to avoid
executing such a task on more than one core simultaneously in any time
slot. From the scheduling strategy which has been explained in the previous
section, we may infer that in a frame, a core belonging to a platform may
be allotted a group of fixed tasks along with either: i. zero migrating tasks,
ii. several migrating tasks who finish their execution of the frame on this core,
iii. a single migrating task which finishes its execution of the frame on some
other core, and iv. a single migrating task that finishes its execution of the
frame at some other core and several migrating tasks that finish their execu-
tion of the frame on this core. Hence, we may infer that the cores that have
been allotted non-migrating tasks and migrating tasks that finish at some
other cores do not incur any migration in the frame. When a migrating task
does not finish its execution of the frame on a specific core (say Πj) and is
allotted on that core, Πj will not have spare capacity to allot any more fixed
or migrating tasks. Therefore, the number of migrations on Πj with such a
migrating task is constrained to only one. At most, there can be | Π | −1 such
cores with such migrating tasks which do not finish their execution on the
cores. Hence, the number of migrations using such a scheduling mechanism is
bounded by | Π | −1 in a frame.

Arrivals and Departures of Dynamic Tasks: In a dynamic system, a
periodic task may arrive or depart at any time instant. When a new task (let
us say τi) arrives, ETA-HP first verifies the arrived task’s deadline. If there is
sufficient time to complete its execution by beginning it after the next frame,
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this task’s scheduling is then delayed till the beginning of the subsequent
frame. If not, then the system stops its work from the current time slot and
recalculates the set of new frames by considering the newly arrived task’s
deadline. Next, it constructs a new schedule for the tasks. When an executing
task finishes its execution and leaves the platform, its entry is removed from
the list of ready tasks and is not considered for scheduling from the following
frames. The proposed scheduler, ETA-HP, may be modified easily for sporadic
tasks as well. In such a case, only the deadlines of current instances of execut-
ing tasks in the system should be considered for deadline partitioning, and
the deadlines of subsequent instances will not be used to find the successive
frames unless they start their execution in the system.

Assuring Task Deadlines: In ETA-HP, the execution of tasks in the sys-
tem progresses frame by frame. Each core is allotted a maximum normalised
workload of one within each frame, i.e., the sum of the task shares allocated to
a core in a frame should be less than or equal to the core’s processing capac-
ity in a frame. The scheduler follows a two-phase task-core allocation rule.
In the first phase, the allocation is carried out for all those tasks which can
be fully allocated on a single core. In the second phase, all those tasks which
need migrations across available cores of the platform are allocated on multiple
cores, but the scheduler ensures that they are not executed in parallel on mul-
tiple cores in any time slot. When it cannot allot any task on available cores
without violating the core capacity or parallel execution constraints, that task
is rejected from execution in the system. Hence, the boundary of frames acts as
pseudo-deadlines for the tasks. If all tasks meet their execution requirements
within each frame, they are guaranteed to meet their actual deadlines. By
breaking the execution of tasks into multiple frames, the scheduler can divide
task scheduling into multiple sub-problems, where each sub-problem is solved
by preparing a task schedule for a frame. Hence, using such a mechanism,
ETA-HP ensures that all tasks meet their deadlines.

6 Experimental Set Up and Results

We have compared the performance of ETA-HP against three strategies,
namely, i. TARTS [24], ii. HEARS [8], and iii. TA-SS [20]. TARTS is a
semi-partitioned approach-based temperature-aware scheduler for homoge-
neous platforms. It performs scheduling based on the heuristic of the hottest
task on the coolest core, but it is oblivious to the system’s dynamic energy
consumption. HEARS is a DVFS based energy-aware heuristic scheduler for
heterogeneous platforms having a variable number of core types. It exam-
ines the present levels of the cores’ operating frequencies while performing
task-to-core allotment to minimise energy consumption in the system. On the
other hand, TA-SS is an energy and temperature-aware scheduler for heteroge-
neous multicore platforms. All the energy/temperature efficient schedulers for
heterogeneous platforms follow either global or partitioned strategies. Hence,



Springer Nature 2021 LATEX template

ETA-HP 17

they offer low resource utilisation and are inappropriate for comparison. As a
salient feature of ETA-HP is resource utilisation along with energy and thermal
efficiency, the performance of our algorithm has been compared against the fol-
lowing algorithms: i. TARTS, which is only a temperature-aware scheduler, so
we applied the DVFS technique to make it energy-aware, ii. HEARS, which is
an energy-aware semi-partition oriented scheduler but is temperature-ignorant
and, iii. TA-SS, which is an energy and temperature-aware partition-oriented
scheduler, so we applied the deadline partitioning technique over it to make it
semi-partitioned.

Frequency Frequency Frequency Frequency
(in MHz) (Normalised) (in MHz) (Normalised)

900 0.3 2100 0.7
1200 0.4 2400 0.8
1500 0.5 2700 0.9
1800 0.6 3000 1.0

Table 3: Available Frequency

6.1 Experimental Set Up

All simulation instances for the concerned algorithms have been executed for
100000 time-slots with task sets having specific utilisation factors. Utilisa-
tion Factor (UF) is characterised as the proportion between the summation
over the average utilisation of tasks and the number of available cores, i.e.

UF =
∑|τ|

i=1 avg
|Π|
j=1(ui,j)

|Π| . The randomly generated utilization values have been

scaled fittingly for creating task sets with a specific UF value. The ambient
temperature for the simulations has been set at 25◦C. We simulated 50 sepa-
rate test cases for each set of input parameters, and then the average of these
cases has been taken as the final result. We conducted two sets of experiments
to evaluate and compare the algorithms’ results. Benchmark programs have
been used in the first set to analyse the algorithms’ performance in real-life
situations. In contrast, detailed simulation-based experiments using synthetic
task sets have been carried out in the second set to validate the algorithms’ effi-
ciency over varying situations that may be encountered. We varied the steady
state temperatures of each task τi on different cores at random in the range of
Γi
ss ± α, where the value of α lies in the range of 0% to 10% of Γi

ss. Table 3
lists the operating frequencies that we used in our experiments. The β value
has been chosen randomly from the range of −0.05 to 0.0 and sets arbitrarily
for each task to calculate Γi,j

ss (k).
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Execution Steady-State
Program Requirement Peak Temperature

(in ms) (in ◦C)

Bodytrack 3824 85
Canneal 1007 80
Dedup 6455 91

Fluidanimate 4090 81
Freqmine 11082 84

Streamcluster 6156 68
Swaptions 4535 76

x264 1203 85

Table 4: Task Specifications for Benchmark Programs.

Framework for Benchmarks: The PARSEC [26] benchmark suite (with a
large input set) has been used to substantiate efficiencies of the algorithms
over different real-life scenarios that may arise. Other than Swaptions (com-
pute intensive) and Streamcluser (memory intensive), all of these considered
benchmark applications are mixed workloads, i.e. both memory and compute
intensive, and have different executional requirements in terms of computa-
tion and working sizes at the caches. In [30], a thorough discussion of the
procedure for calculating each program’s execution specifications as well as
it’s steady state temperature is presented, and the results have been listed in
Table 41. We received periodic performance traces from Gem5 [27] simulator
for an 8-core based heterogeneous chip-multiprocessor (considering 32nm
CMOS technology), where each of the faster 4 Out-of-Order cores can operate
at a maximum frequency of 3.0GHz, and each of the 4 smaller In-Order cores
can have a maximum frequency of 1.8GHz. The normalised frequencies avail-
able for faster cores range from 0.6 to 1.0, while the normalised frequencies
available for slower cores range from 0.3 to 0.6 (ref. Table 3). Note that, for
each of our cores (both in-order and out-of-order), we have considered Alpha
21364 ISA.

Simulation Setup: The periodic performance traces from Gem5 is fed to
McPAT [28] for power traces. These derived power traces are now provided to
HotSpot 6.0 [29] along with the floorplan of the heterogeneous chip to get the
transient as well as steady state temperatures for the individual tasks (Γi

ss).
Note that the floorplan for the entire chip is generated by the Hotfloorplan
module of Hotspot 6.0 at the beginning of the simulation by obtaining area
details from the McPAT. Each task set consists of 20 tasks, whose instances
have been selected randomly from the 8 benchmark applications (repeated to
prepare the task set) listed in Table 4.

Framework for Synthetic Tasks: The simulation framework utilised in this
work considers randomly created task sets with sizes (n) ranging from 20 to
100. A standard distribution of σe = 100 and µe = 20 were used to produce

1Based on the execution requirements of individual tasks, we simulate PARSEC application
(continuous execution in RoI) accordingly (by specifying the execution span in Gem5 simulator)
and obtain the respective execution requirements.
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the task execution specifications. For the tasks, steady state temperatures were
chosen randomly from a uniform distribution ranging from 40 °C to 120 °C.
We have varied the number of cores in the platforms from 2 to 10, and the
considered systems have a high UF value of 0.9.
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Fig. 3: Benchmark Program Results
(Effect of variation in UF values)

6.2 Experimental Results

We have considered the following four metrics to analyse the performance of
the algorithms:
i. Average Temperature Of Cores (ATOC ) denotes the ratio of the summation
of the average temperatures of the cores measured at the end of all frames to
the total number of frames.
ii. Success Ratio (SRat) denotes the percentage of tasks that have been suc-
cessfully scheduled, and therefore, it also gives a measure of the task feasibility
analysis of the algorithms.
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iii. Normalised Energy Consumption (NEC ) denotes the normalised energy
consumption in the system. It is the ratio of the actual energy consumption
of the cores operating at the computed operating frequency 𭟋opt to the max-
imum possible energy consumption of the cores, i.e. operating at 𭟋max.
iv. Context-Switch Overhead (CSO) gives a measure of the context-switch
overheads incurred by the algorithms.

6.2.1 Benchmark Program Results

We have studied the effect of variation in Utilisation Factor (UF ) on Average
Temperature Of Cores (ATOC), Success Ratio (SRat), Normalised Energy
Consumption (NEC) and Context-Switch Overhead (CSO) for the algo-
rithms on platforms having 8 cores.

Effect on SRat: In this experiment, we observed the variation in SRat val-
ues with the increase in workload. As stated before, the metric SRat helps us
evaluate the algorithms’ efficiency in terms of the ratio of the number of tasks
they were able to schedule to the total number of tasks that they were sup-
posed to schedule. We may observe from Figure 3a, the SRat values decrease
with an increase in UF values for all the algorithms. This phenomenon may
be attributed to increased workload, resulting in a higher probability of tasks
requiring migration within the frames. Although TARTS is a semi-partitioned
temperature-aware scheduler, it primarily targets homogeneous multicore
platforms. Hence, it is oblivious towards task-core affinity, which leads to inef-
ficient usage of computing resources as a task may be scheduled on a core with
a higher execution requirement than other cores. Further, at higher utilisation
values, it may require task migrations which needs to be handled carefully
on heterogeneous multicore platforms. Therefore, TARTS gradually fails to
schedule the task sets when the system workload increases. TA-SS is based
on partition oriented scheduling approach, and hence, it inherits the disad-
vantage of low resource utilisation of the partitioned approach. We employed
the deadline partitioning concept to make it semi-partitioned. Still, it only
allows migration at the frame boundaries, which leads to lower SRat values
than other semi-partitioned algorithms based on heterogeneous platforms. On
the other hand, HEARS and ETA-HP allow migrations within frames and
are based on the semi-partitioned approach. Still, they might fail to schedule
all the tasks at the higher workloads when tasks may require executions on
more than one core simultaneously, which is not allowed. The task set is
rejected from further scheduling in such a scenario, resulting in reduced SRat
values for HEARS and ETA-HP. Also, HEARS performs task-to-core alloca-
tion based on the minimum increase in energy consumption for every step.
In contrast, ETA-HP performs task-to-core allocation based on task-to-core
affinities, which helps ETA-HP to achieve better SRat values than HEARS.
From Figure 3a, we may observe that the SRat values decrease from 78% to
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28%, 98% to 41%, 100% to 84% and 100% to 88% with the utilisation varia-
tion from 0.5 to 1.0, for TARTS, TA-SS, HEARS and ETA-HP, respectively.

Effect on ATOC: We also analyse the effect of variation in UF on the aver-
age temperature of the cores. The UF values have been varied from 0.5 to 1.0.
As we can observe from the Figure 3b, the ATOC values rise in the system
for all the algorithms with a rise in UF values. This is due to the fact that
with an increase in the system workload, there are fewer idle slots in a frame.
So, the cores get lesser time to cool down. Also, at a lesser workload, all the
algorithms use DVFS to scale down the operating frequencies of the cores,
which leads to further reduction of the core temperatures. The heuristic used
in HEARS is only focused on energy management and is not temperature-
aware. So, the temperature of the cores is highest when they execute the
HEARS algorithm. TA-SS is only focused on managing core temperatures in
a heterogeneous platform and does not care about other performance criteria.
So, it performs better than HEARS and ETA-HP. The TARTS algorithm is
primarily focused on managing core temperatures in a homogeneous multi-
core platform. Hence, TARTS and TA-SS are able to better manage the core
temperatures than HEARS and ETA-HP. But as stated in the results of the
last experiment, the SRat values for TARTS and TA-SS algorithms are very
low at a higher workload. Hence, they schedule fewer tasks in the system and
get more idle time-slots, which they use to lower the core temperatures fur-
ther. Therefore, TARTS and TA-SS are able to achieve lower ATOC values,
although at the cost of lower SRat values. Still, ETA-HP is able to better
manage the temperatures of the cores with its heuristic temperature-aware
scheduling strategy than HEARS and fetch slightly inferior results than
TARTS and TA-SS. From Figure 3b, we can observe that the ATOC values
increase from 37.09 °C to 48.17 °C, 33.07 °C to 53.11 °C, 42.27 °C to 62.03 °C
and 38.91 °C to 59.63 °C with the utilisation variation from 0.5 to 1.0, for
TARTS, TA-SS, HEARS and ETA-HP, respectively.

Effect on NEC: We further observed the variation in NEC values with the
increase in workload, depicted in Figure 3c. According to this figure, the
NEC values increase with an increase in UF values for all the algorithms.
This phenomenon may be attributed to the fact that all the algorithms can
run the cores at lower operating frequencies at a lower workload. But as the
UF values increase in the system, the algorithms have to choose a higher fre-
quency to run the required workload, resulting in higher energy consumption
in the system. As discussed earlier, the SRat values of TARTS and TA-SS
are lower than ETA-HP and HEARS, which means that TARTS and TA-SS
cannot run all the input tasks at a higher workload. So, they consume lesser
energy even at a high prescribed system workload. HEARS checks the cur-
rent levels of operating frequencies of the cores while performing task-to-core
allotment. In some cases, it leads to higher energy consumption for tasks
that are allotted later because previous tasks were allotted by only checking
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the local minimum. However, ETA-HP performs task-to-core allocation first
based on the execution requirement of the tasks and then applies the DVFS
technique on individual cores to reduce energy consumption, which leads to
better energy efficiency in the system. From Figure 3c, we may observe that
the NEC values increase from 0.31 to 0.67, 0.31 to 0.75, 0.28 to 1.0 and 0.24
to 1.0 with utilisation variation from 0.5 to 1.0, for TARTS, TA-SS, HEARS
and ETA-HP, respectively.

Effect on CSO: We assumed that the timing delay for each context-switch
corresponds to 5.24 µs [31], which represents the average value of a context-
switch on a multicore system under typical workloads. To find the total delay
caused by the context-switches in our experiment, we computed the number
of context-switches for each run and then multiplied it with the delay due to a
single context-switch (5.24µs [31]). Then we computed the average overheads
for context-switches per time slot (in µs) for all the algorithms. Figure 3d
illustrates the context-switch/migration overhead increases for all algorithms
with an increase in the UF values. However, the rising curves are less steep
for TARTS and TA-SS algorithms, as they schedule a lesser number of tasks,
which is not desirable in a system. Also, TA-SS is based on the partitioned
oriented scheduling approach. Although we applied deadline partitioning to
make it semi-partitioned, it only allows migration at frame boundaries and not
within frames. This leads to very low CSO values for TA-SS. It may be noted
that although ETA-HP can schedule a higher number of tasks than the rest of
the algorithms, it is still able to achieve CSO values on par with TARTS and
HEARS, because the number of migrations within each frame is bounded.
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6.2.2 Synthetic Task Set Results

We have measured the variation in the number of cores (| Π |) and the num-
ber of tasks (| τ |) on the SRat of the algorithms on systems having a high
utilisation factor of 0.9.

Effects on the number of cores (| Π |): We varied the number of cores
from 2 to 10 towards analysing the effects. As discussed before, TARTS is tar-
geted for the homogeneous platforms, TA-SS only allows migrations at frame
boundaries, whereas HEARS and ETA-HP do not allow simultaneous execu-
tions of the same task on multiple cores within a frame. As the number of cores
increase while the utilisation value and the number of tasks remain constant,
it signifies that the tasks will have longer execution duration within frames. It
will lead to a situation where there will be more need for migrations and the
algorithms have to carefully schedule migrating tasks to avoid simultaneous
execution on more than one core. As it is not always possible, the SRat values
decrease. Hence, at a high workload of 0.9, the SRat values for all algorithms
decrease with an increase in | Π | values, which can be observed in Figure 4a.
However, with a better heuristic, ETA-HP is able to perform better than other
algorithms. In particular, the SRat value decreases from 78% to 26%, 86% to
46%, 100% to 81% and 100% to 86% with an increase in | Π | values from 2
to 10, for TARTS, TA-SS, HEARS and ETA-HP, respectively.
Effect of the number of tasks (| τ |): We further varied the number of
tasks from 20 to 100 on a system having a fixed set of 8 cores and shows the
results in Figure 4b. We can observe from Figure 4b that SRat values increase
progressively for all algorithms while increasing the number of tasks. This
phenomenon may be attributed to the fact that an increase in the number of
tasks while having a constant number of cores and fixed workload, leads to a
decrease in the average execution requirements of the individual tasks, that
further results in a decrease in the number of migrations for the strategies.
Hence, all the strategies are able to have better SRat values with an increase
in | τ | values. In particular, the SRat value increases from 35% to 55%, 53%
to 69%, 87% to 98% and 90% to 100% with an increase in | τ | values from 20
to 100, for TARTS, TA-SS, HEARS and ETA-HP, respectively.

7 Discussion

A critical factor affecting the performance of ETA-HP is the size of frames,
which may vary over a wide range. We have used a dynamic deadline partition-
ing oriented approach, based on the nearest deadline among a set of active tasks
at any given time, to determine the frames. A potential disadvantage of such
an approach is that the size of a frame could be very small (large) if consecu-
tive deadlines are very close to (far apart from) each other in time. If a frame is
too small, the process for deciding which task should execute in the frame, as
well as what share values should the included task receive, becomes consider-
ably more involved. Additionally, as the major overhead incurred by ETA-HP



Springer Nature 2021 LATEX template

24 ETA-HP

is involved with the generation of the next frame’s schedule at each frame
boundary, the overall scheduling overhead associated with ETA-HP increases
significantly when the average frame sizes are very small (making the number
of frames large). On the other hand, as the admission control for a new task
can only occur at frame boundaries, handling dynamic tasks become consider-
ably more challenging when frame sizes are very large. This is because a new
task may potentially arrive at any time in the middle of a frame and is only
considered for admission at the end of the frame, which may be considerably
later than its actual arrival time.

Due to the nature of the ETA-HP algorithm, a lower bound on frame sizes
will lead to an obvious reduction in scheduling overheads. However, as frames
are defined by all deadlines in the system, a natural tradeoff with such a lower
bound is that the system now has to cope with bounded deadline violations.
An upper bound on frame sizes, on the other hand, will lead to improvement
in handling of dynamic task arrivals. However, a consequent tradeoff here is
the increase in scheduling overhead. Detailed experimental analysis on the
performance, timing and overheads associated with ETA-HP when frame sizes
can vary within a fixed range of values, has not been performed as part of the
current work, and will be taken up as future work.

8 Conclusion

With the technological advancement in modern embedded systems, the design-
ers of the schedulers for these systems are faced with several challenges like
performance, cost etc. In this work, we have presented a semi-partitioned
heuristic scheduling strategy, ETA-HP, that performs energy and temperature-
aware task scheduling on heterogeneous multicore platforms while providing
an efficient utilisation of the resources. The overall working of the proposed
scheduler is divided into the following four phases: task-partitioning, schedul-
ing, temperature management, and energy management. Our experimental
analysis shows that ETA-HP is not only able to improve success ratios for the
task sets compared to HEARS [8] (2.52% on an average) but also improves
average energy (7.29%) and reduces the average temperature of the underlying
multicore by 9.59 °C.
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