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Abstract Hole detection is a crucial task for monitoring the status of wireless sen- 
sor networks (WSN) which often consist of low-capability sensors. Holes can form 
in WSNs due to the problems during placement of the sensors or power/hardware 
failure. In these situations, sensing or transmitting data could be effected and can 
interrupt the normal operation of the WSNs. It may also decrease the lifetime of 
the network and sensing coverage of the sensors. The problem of hole detection 
is especially challenging in WSNs since the exact location of the sensors are often 
unknown. In this paper, we propose a novel hole detection approach called FD- 
CNN which is based on Force-directed (FD) Algorithm and Convolutional Neural 
Network (CNN). In contrast to existing approaches, FD-CNN is a centralized ap- 
proach and is able to detect holes from WSNs without relying on the information 
related to the location of the sensors. The proposed approach also alleviates the 
problem of high computational complexity in distributed approaches. The pro- 
posed approach accepts the network topology of a WSN as an input and generates 
the identity of the nodes surrounding each detected hole in the network as the 
final output. In the proposed approach, a FD algorithm is used to generate the 
layout of the wireless sensor networks followed by the identification of the holes in 
the layouts using a trained CNN model. In order to prepare labeled datasets for 
training the CNN model, an unsupervised pre-processing method is also proposed 
in this paper. After the holes are detected by the CNN model, two algorithms are 
proposed to identify of the regions of the holes and corresponding nodes surround- 
ing the regions. Extensive experiments are conducted to evaluate the proposed 
approach based on different datasets. Experimental results show that FD-CNN 
can achieve 80% sensitivity and 93% specificity in less than 2 minutes. 
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1 Introduction 

 

Wireless sensor networks (WSN) have become one of the emerging technologies. 
They are applied to a wide range of application domains including environment 
and agricultural monitoring [6], object tracking and surveillance [32], traffic control 
[26], and disaster recovery [4] etc. A WSN often comprises of a number of tiny 
sensors (devices). The number of such sensors can vary from a few dozens to 
several thousands in which each sensor is capable of communicating with each 
other and they can perform limited data processing. 

Designing efficient routing protocols and prolonging the network lifetime are 
crucial for maintaining WSNs. That is because sensors can communicate only with 
their neighbors. Sensors are usually installed with non-rechargeable batteries with 
limited capacity for sensing, data transfer, and data processing [1]. Formation of 
holes is considered to be one of the fundamental problems in WSNs. Holes may 
exist in a WSN caused by the errors in the sensor placement step or due to un- 
available sensors caused by depleted or  malfunction  batteries  [38].  When  holes 
are formed, sensing or data transmission could be interrupted. The existence of 
holes in a WSN may reflect the network lifetime, sensing coverage, and energy 
consumption by the sensors [39]. 

Hole detection problem is one of the major interests in research community, es- 
pecially for its wide range of applications in disaster recovery [34], monitoring sce- 
narios [45], and underwater node coverage [27], etc. For example, the breakdown 
of a sensor area often indicates a critical event caused by an outbreak of a fire 
or destruction by an earthquake, etc. The problem of hole detection is especially 
challenging in WSNs which often contain low-capability sensors with unknown 
geographic location. 

In recent years, a number of different approaches were proposed by researchers 
to solve the hole detection problem in WSNs. These approaches include topologi- 
cal algorithms [18] [7] [36], centralized approach [36], distributed approaches [19] 
[21], and transfer learning based approach [24]. However, these approaches are af- 
fected by issues such as high computation and communication cost, requirement 
on manual labelling of datasets, and inability to detect all different shapes of holes. 

To this end,  this  paper  proposes  a  novel  approach  called  FD-CNN  which 
is based on Force-directed (FD)  Algorithm  and  Convolutional  Neural  Network 
(CNN) for detecting holes in location-free WSNs. The proposed approach takes 
advantage of  both  FD  algorithms’  capability  in  generating  layouts  from  topol- 
ogy information and CNN’s image recognition ability. By using state-of-the-art 
methods from information visualization and artificial intelligence domains, our 
approach can detect holes  from  WSNs  based  on  a  given  network  topology.  To 
the best of authors’ knowledge, the proposed approach is the first ever attempt 
to solve the hole detection problem in WSNs based on Force-directed Algorithms 
and Convolutional Neural Networks. 

The main advantage of the proposed approach is that it does not rely on any 
location information (e.g. positions obtained from using Global Positioning System 
(GPS)) and sensors can be deployed either in a random or in a predefined manner. 



An Image Classification Approach for Hole Detection in Wireless Sensor Networks 3 
 

 

In the proposed approach, a FD algorithm is used to generate potential layouts 
from the input network topology. Next, a trained CNN model is used to detect 
holes from these layouts. This process is iterated until the detection performance 
cannot be further improved. During the process of discovering a hole, our approach 
can also identify the identity (ID) of the sensors along the hole’s boundary. Such 
detection allows the sensors located on the boundary of a hole to be cached locally 
in that region, whereby providing a conduit to improve the network routing and 
packet forwarding schemes. 

Although CNNs are commonly used in object detection and face recognition 
tasks, they are rarely used for hole detection from graph layouts. In order to 
prepare labeled datasets for training CNN models, an unsupervised pre-process- 
ing method is also proposed in this paper. Extensive experiments are conducted to 
evaluate the proposed approach based on different datasets. Experimental results 
show that FD-CNN can achieve 80% sensitivity and 93% specificity in less than 2 
minutes in sparse and uniform WSNs. The main contributions of this paper can 
be summarized as follows: 

– A novel approach called FD-CNN which is based on FD Algorithm and CNN 
for hole detection in location-free WSNs is proposed in this paper. 

– FD-CNN is able to detect holes from WSNs without relying on the information 
related to the location of the sensors. 

– FD-CNN also alleviates the problem of high computational complexity which 
is often associated with distributed approaches. 

– In order to prepare labeled datasets for training the CNN model, an unsuper- 
vised pre-processing method is also proposed in this paper. 

– FD-CNN is evaluated by using 3 different FD algorithms when they are paired 
with a CNN for hole detection. Experimental results show that FD-CNN can 
achieve 80% sensitivity and 93% specificity in less than 2 minutes. 

This article is organized as follows. Related work is briefly reviewed in Section 2. 
The proposed approach (FD-CNN)  is  discussed  in  Section  3.  Experimental  results 
of the proposed approach are described in Section 4. The conclusions and future 
works of the article are given in Section 5. 

 

 
2 Related Work 

 

In a WSN, sensing coverage reflects the quality of monitoring area by a sen- 
sor [35, 42]. Sensing coverage and conserving energy consumption are essential for 
improving the performance on data transfer and prolonging the network lifetime. 
Minimizing the energy consumption could prolong the lifetime of the sensors in 
maintaining the coverage in the WSNs. A hole can be considered as a region in a 
WSN where nodes are unavailable. Holes can cause interruption to the operation of 
a WSN since certain nodes cannot participate in normal communication activities 
[12]. Sensors are often deployed in a predefined manner called determined network 
coverage. However, in random network coverage, there is no prior information 
available about the location and topological structure of sensors [11]. 

Data in WSNs normally traverse multiples hop to reach the destination due 
to the short-range communication nature of the sensors. In recent studies, several 
schemes were proposed for the routing in WSNs with holes such as perimeter 
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routing [44] and geographic routing [30]. In the perimeter routing, data packets 
are forwarded along the boundary of a hole. However, routing paths are enlarged 
and traffic is concentrated along sensors holes’ boundary. The idea of geographic 
routing is to create a region covering the hole in which all the packets stay away 
from these regions. However, packets in geographic routing may be stopped at the 
hole boundaries because packets are not allowed to be forwarded along sensors 
holes’ boundary [2]. In addition, a source node needs to know the location of the 
destination node in geographic routing, either by acquiring it from the Global 
Positioning System (GPS) or similar location services. 

Four types of holes are reported in recent studies. They are coverage hole, 
routing hole, sink/wormhole, and jamming hole  [29].  If  there  are  regions  in  a 
WSN which are not covered by any sensor, then coverage holes may  have  oc- 
curred. If a routing hole exists in the  deployed  WSN,  then  sensors  may  not  be 
able to communicate with each other. In the event of radio frequency is furnished 
with jammers, then jamming  holes  will  occur.  Sensors  cannot  send/receive  data 
in sink/wormholes due to  malefic  nodes  blocking  the  transmission  during  denial 
of service attacks. 

Several works have addressed the issue of coverage hole detection in WSNs. 
Fang et al. [16] proposed an approach for coverage holes detection based on the lo- 
cation of the sensors. The authors also proposed an algorithm which sweeps along 
hole boundaries in order to discover nodes along the boundary of holes by using 
the geographical location of sensors. 

An approach for coverage hole detection and sensor deployment based on a 
FD algorithm is proposed in [40]. In this approach, sensors located at an appro- 
priate distance from the hole are first detected. Then the location of the sensor is 
determined by the FD algorithm. 

Topological hole detection algorithms are based on the network topology of 
the WSNs in which only local connectivity information is available [18]. Bi et al. 
[7] proposed a converge hole detection algorithm which is based on an assumption 
that number of neighbors of a sensor locating on the boundary of a hole is less than 
others. In their approach, a sensor located on the boundary of a hole is classified 
by its degree and the average degree of its 2-hop neighbors. Each node determines 
whether it is on the boundary of a hole by comparing the difference of the average 
degree with its 1-hop and 2-hop neighbors. Specifically, the proposed method [7] 
counts the number of neighbors at each sensor and classify them when the number 
of neighbors is less than a threshold. However, the proposed algorithm involves 
a huge communication overhead [5]. Besides, their approach is also inefficient for 
detecting holes from a large WSN and not all nodes on the boundary of hole can 
be identified correctly [40]. 

In [36], Ramazani et al. proposed a centralized coverage hole detection algo- 
rithm to construct a coverage planar graph of a WSN in which location of the 
nodes are estimated using the received signal strength. A plane simplicial complex 
is built in the proposed algorithm to identify the sensors from holes’ boundaries 
of the coverage planar graph. The proposed FD-CNN approach is purely based 
on the information of the network topologies which is available when the sensor 
network is deployed at the very beginning and no communication is needed during 
the runtime to retrieve the topology information. Yan et al. also proposed an ap- 
proach for hole detection based on simplicial complex reduction algorithm [43] in 
which redundant sensors are deployed to achieve k-coverage of WSNs, where k is 
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the number of sensors that can cover a monitoring region. However, the approach 
proposed by [43] has high computational complexity because it needs to construct 
a complex structure of the network for hole detection. In the proposed FD-CNN 
approach, a FD algorithm is used to produce the layout of WSNs without rely on 
anchor and sink sensors. 

 
 

In recent years, increasing number of studies adopted CNNs for WSNs related 
applications. CNN is a class of  deep  neural  network  from  Artificial  Intelligence 
area. CNNs can detect and recognize general patterns found in the input images 
[33]. Recent studies also reported that CNNs can  be  useful  for  object  detection 
task such as localization of the objects from remote sensing images. In [25], the 
authors adopt CNNs to detect and locate the objects (e.g., aircrafts, oil tanks, 
vehicles, etc.) from aerial images. Tong et al. [41] also proposed a CNN based 
approach to improve the accuracy of event classification in homogeneous sensor 
networks. In [3], Ahn et al. proposed a post-processing approach in which a CNN 
was executed at the back-end server and a WSN was deployed for bird nest moni- 
toring. The objective of the proposed approach by Ahn et al. is to reduce the size 
of images to be transferred while monitoring the WSN. In their work, a CNN is 
used to maintain the classification accuracy of the birds from highly compressed 
sensor images. In [19], Hajjej et al. proposed a distributed reinforcement learning 
approach for WSNs where the nodes can recover from coverage constraints through 
local acquaintances, such as adjusting the sensing range and locations of sensors 
based on the detected holes. Khalifa et al. [21] also proposed a distributed hole 
detection and restoration of nodes which are previously positioned in the sensor 
network. Frequent communication and transmission will be needed for detecting 
the holes in distributed approaches. The proposed FD-CNN approach does  not 
involve any communication  and  data exchange when  hole detection  is performed 
in wireless sensor networks since only the network topology is used for calculation. 
Besides, Lai et al. [24] proposed a transfer learning approach for coverage hole 
detection. The main focus of the approach in [24] is to detect triangular coverage 
holes. However, the proposed approach by Lai et al. is a supervised approach and 
it requires labelling  of  the  dataset  manually.  The  proposed  FD-CNN  approach 
is an unsupervised approach which does not require manual labelling of training 
datasets. Our approach detects non-triangular shaped coverage holes. 

 

 
In our work, we focus on the detection of converge hole in location-free WSNs. 

The proposed approach assumes random network coverage in which sensors are 
randomly deployed in the target area. Besides, our approach is also applicable for 
determined network coverage and can be used to detect arbitrary shape of holes. 
In addition, the proposed FD-CNN is an unsupervised approach which does not 
require manual labelling of training datasets. Besides, FD-CNN is purely based on 
the information of the network topologies and it does not rely on local or global 
positioning systems. In the proposed approach, a FD algorithm is first used to 
produce the layout of WSNs. Next, a CNN is used to detect the holes from the 
generated layout. To better differentiate the proposed approach and the existing 
methods reviewed in this paper, a brief comparison of the features is given in 
Table 1. 
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Table 1: Comparison of the proposed approach and the existing methods reviewed 
in this paper. 

 

Methods Brief Summary 
 

 

 

 
Bi et al. [7] 

– It is assumed that number of neighbors of a sensor 
locating on the boundary of a hole is less than the 
number of neighbors of a normal sensor node. 

– High communication overhead may be involved for 
synchronizing the neighborhood information. 

 
 

 

 
 

Ramazani et al. [36] 

– A centralized coverage hole detection algorithm is used 
to construct the coverage planar graph of WSNs. 

– Location of the nodes are estimated using received 
signal strength. 

 
 

 

 
Yan et al. [43] 

– Based on simplicial complex reduction algorithm. 
– A complex structure of simplicial complex is con- 

structed for hole detection. 

 
 

 

 
 

Hajjej et al. [19] 

– A distributed approach based on reinforcement learn- 
ing. 

– Communication overhead exists in sensors deployed in 
the WSN. 

 
 

 

 
Khalifa et al. [21] 

– A distributed self-healing algorithm for hole detection. 
– It utilizes the information of nodes previously posi- 

tioned in the sensor network. 

 
 

 

 

 
Lai et al. [24] 

– Based on force-directed algorithms and transfer learn- 
ing. 

– A supervised approach and detect triangular coverage 
holes. 

– Require manual labelling of the dataset. 

 
 

 

 
 
 

Our Approach 

– Based on force-directed algorithms and CNN. 
– Information on location of the sensors is not needed for 

computation and only requires the network topology 
of the WSN as an input. 

– Unsupervised approach and can detect non-triangular 
coverage holes. 

 
 

 

 
3 Hole Detection in WSN with FD and CNN 

 
The overview of using a FD Algorithm and a CNN for detecting coverage holes 
in location-free WSNs is described in this section. An example of holes in a WSN 
is depicted in Figure 1. In this example, the network contains 14 nodes and 21 
edges. The region of the holes are colored in purple. The nodes located on a hole 
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Fig. 1: An example of holes in a WSN. 

 
are shown in red color. In this example, there are two holes which are labeled as 
1 and 2. 

In our approach, we target the inner holes in a WSN for detection. As illus- 
trated in yellow lines in Figure 1, outer (outward) holes are not considered in this 
work because they are actually the boundary of WSNs. Before the overall design 
of the proposed FD-CNN approach is explained in detail, the characteristics of 
the sensors, connections, and the type of holes considered in our framework can 
be summarized as follows: 

– The connection range of sensors in the WSNs considered in our approach is 
homogeneous. 

– A hole must be a closed area and surrounded by nodes (sensors). 
– A hole is an irregular shape composed of nodes and edges. 
– A hole must be surrounded by at least 4 nodes. holes formed by 3 nodes are not 

considered since nodes which forms a triangular shape are able to communicate 
with each other due to their close proximity (connected each other in a 1-hop 
distance within a homogeneous connection range). Therefore, white regions in 
Figure 1 are not considered as holes in our work. 

 

 
3.1 Overview 

 

A high-level overview of the FD-CNN approach is illustrated in  Figure  2.  The 
input to the FD-CNN is a network topology of a WSN and the output is the 
identity (ID) of the nodes surrounding each detected hole in the network. The 
pseudo code for the proposed FD-CNN approach is given in Algorithm 1. First, a 
FD algorithm is used to generate the layout (image) of the WSN. Next, a CNN 
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Fig. 2: Overview of FD-CNN approach. 
 

 
model is used to detect converge holes from the layout. Once holes are detected by 
the CNN model, two algorithms are used to perform post recognition tasks which 
are described in Section 3.3.5. These tasks include identification of the regions of 
the holes from the layouts and recognition of nodes located along the boundary of 
the regions. 

 

 
ALGORITHM 1: (FD-CNN) Pseudo code of FD-CNN. 

 

Input: A text file dataset containing the network topology of WSN. 
Output: List of nodes along the holes’ boundaries 

// Initialize variables. 
initialize a layout container layout storing the layout information of WSN; 

// 1) Generate a new layout of WSN by the FD algorithm. 
layout = fd(layout); 

// 2) Detect holes with CNN. 
boxes = YOLOv3-Darknet(layout); 

// 3) Identify holes’ boundaries given in Algorithm 2. 
holes = HoleIdentify(boxes); 

// 4) Identify nodes along the holes’ boundaries given in Algorithm 3. 
bnodes = SensorIdentify(holes); 
return bnodes; 
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Fig. 3: The input and output of FD algorithms. 

 

 
3.2 Force-Directed Algorithm 

 
A Force-directed (FD) Algorithm is a kind of graph drawing algorithm which can 
be used to generate the visualization of the graphs by using the information con- 
tained in the network topology. There are several models of FD algorithms, such as 
accumulated force model, energy function minimization model, and combinatorial 
optimization model [10]. A simplified illustration of a FD algorithm is depicted in 
Figure 3. 

The input to a FD algorithm is a set of nodes and the edges connecting these 
nodes. The set of nodes and edges represent the network topology of a WSN. The 
output of a FD algorithm is the layout of the network topology. A layout can 
be considered as a possible snapshot of the WSN. Due to the variation in force 
calculation, for a given input (topology), different layouts will be generated by 
each FD algorithm at a specific point in time. Moreover, in majority of the FD 
algorithms, the layouts generated from the input topology can be exported into 
an image or a text format file for post-processing. This option is illustrated in 
Figure 3. 

In the textual output, the projected x and y coordinates of each node is 
recorded in the file. In our work, three FD algorithms were adopted for evalua- 
tion. They are Davidson Harel (DH) algorithm [13], ForceAtlas2 (FA2) algorithm 
[20], and Kamada Kawai with Multiple Node Selection and Decaying Stiffness (KK-
MS-DS) algorithm [8]. Moreover, the force models, characteristics, and time 
complexity of these FD algorithms are summarized in Table 2. 

 
 

Davidson-Harel algorithm: Davidson Harel (DH) algorithm [13] uses the simu- 
lated annealing to minimize edge crossings. The DH algorithm also prevents nodes 
from moving too close to non-adjacent edges. Simulated annealing is inspired by 
the physical cooling process of the molten material. If the molten steel cools too 
quickly, it will burst and form bubbles, making it brittle. Therefore, in order to 
obtain better results, the steel must be cooled uniformly in a process called an- 
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× 

× 

Table 2: Comparison of adopted FD algorithms for evaluation. 
 

 

FD 
algorithm 

 
FA2 

 
 

 
KK-MS-DS 

 
 

 
DH 

Force Model  
Time 

Complexity 
 

Accumulated Force O(V 2 + E) 
Model 

 
 

Energy Function O(n    (V +v2)) 
Minimization Model 

 
 

Combinatorial O(V 2 E) 
Optimization Model 

Characteristics 
 

Repulsive and attractive 
forces are used in the 

accumulated force models. 

Attractive and repulsive forces 
are not considered separately, 
but rather used in conjunction 

to minimize the energy 
function. 

Simulated annealing technique 
is used to find local minima of 

the energy function. 
 

 

 
nealing in metallurgy [22]. For the detailed formulation of DH algorithm, pleaser 
refer to Appendix A and Appendix B. 

 
ForceAtlas2 algorithm: The objective of ForceAtlas2 (FA2) algorithm [20] is to 
meet the speed and accuracy requirements of network visualization. The FA2 algo- 
rithm extends LinLog [31] and FR algorithm [17]. Jacomy et al. [20] also proposed 
a revised attractiveness based on the LinLog model. For the detailed formulation 
of FA2 algorithm, please refer to Appendix A and Appendix B. 

 
KK-MS-DS algorithm: KK-MS-DS algorithm [8] is designed to push the  nodes 
which are located along the outer boundary away from the inner nodes. In KK-MS- 
DS algorithm, nodes are tagged with a decaying stiffness. The higher the decaying 
stiffness value of the node, the farther the distance of the node can be moved. For 
the detailed formulation of KK-MS-DS algorithm, please refer to Appendix A and 
Appendix B. 

 
 

3.3 Convolutional Neural Network (CNN) 
 

CNNs are widely used for analyzing images. A typical CNN composes of convo- 
lutional and dense layers [28]. The dense layer learns global patterns from input 
images, while the convolutional layer extracts the general pattern found in small 
windows of the input image. Object detection aims at simulating the human visual 
system for detecting pixels or regions of holes. 

 
3.3.1 CNN Models 

 

Since CNN models have never been used for detecting holes from the images of 
layouts representing WSNs, there are currently no datasets available in public 
domains. In order to prepare the labeled datasets for training CNN models, a un- 
supervised pre-processing method is proposed in this paper. The general overview 
of the proposed pre-processing method is illustrated in Figure 4. In this method, 
the layout of WSN which is generated by a FD algorithm from the previous step 
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Fig. 4: The overview of the proposed pre-processing method for preparing the 
training datasets for CNN. 

 
 

is first converted into a bitmap image. Next, the region (rectangle area) of holes 
are labeled automatically in the bitmap image. Next, the centroid of labeled holes 
is calculated. Finally, the region (rectangle area) and centroid of labeled holes are 
stored as a Hole Detection Training Object which will be used for the training of 
the CNN model. Specifically, the objective of the pre-processing method is to cre- 
ate images that include holes for recognitions. These labeled holes conform to the 
relevant definition of a hole stated at the beginning of section 3. The proposed pre- 
processing method includes three steps: (1) Graph Segmentation; (2) Redundant 
Edge Reduction, and (3) K-node Hole. 

 
 

3.3.2 Graph Segmentation 

 
In this step, holes are cut out in pieces from the layout (bitmap image) of a 
WSN generated by the FD algorithm. Holes are then segmented from the cutouts 
as illustrated in Figure 5(a). Next, each extracted image is saved into a bitmap 
image in the training dataset. 

 
 

3.3.3 Redundant Edge Reduction 

 
Existence of redundant edges is a major weakness for Graph Segmentation step 
because holes are cut out from an image directly. Too much irrelevant edges in 
the cutouts can increase noise in extracted features. In this paper, an approach 
called Redundant Edge Reduction is proposed to remove redundant edges outside 
the region of the holes. It can be achieved by parsing the formatted text output of 
the layout of WSNs instead of using the bitmap outputs. Specifically, the position 
of the nodes which are located on the boundary of the holes can be parsed using 
the textual outputs of the layouts generated by FD the algorithms1. Bitmap im- 
ages of holes are then recreated from scratch based on the positions (coordinates) 
information without redundant edges. The resolution and color of the nodes and 
edges are also modified in the process of Redundant Edge Reduction. 

 

1 FD algorithms can generate both textual and graphical outputs from a given input topol- 
ogy. Textual output contains the coordinates of the nodes in the projected layouts. 
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(a) (b) 

 

Fig. 5: (a) Extracted images by using Graph Segmentation. (b) Result of Redun- 
dant Edge Reduction step. 

 

 

3.3.4 K-node Hole 
 

Features extracted from Graph Segmentation and Redundant Edge Reduction 
steps do not contain the information of nodes located on the boundary of holes, 
which can be a valuable source of information for classification. To improve this 
situation, a step called K-node Hole was introduced in this paper. The aim of the 
proposed step is to categorize holes from labeled images that are encircled with 
the number of boundary nodes. For example, holes with 4 boundary nodes are 
defined as 4-node Hole, holes with 5 boundary nodes are defined as 5-node Hole, 
and so on. In addition, holes with 7 or more boundary nodes can enclose different 
shapes forming polygons. Therefore, in this paper, k-node Hole for holes with 7 or 
more boundary nodes is defined as illustrated in right-bottom corner of Figure 6. 

Once the training datasets are prepared by the proposed pre-processing method, 
these data sets are used for the training of the CNN models. The training process 
of the CNN model is executed iteratively and the accuracy and average loss are 
calculated at each iteration. The training terminates when the average loss is less 
than a predefined threshold. Finally, the trained model of CNN is stored for hole 
detection. 

 

3.3.5 Hole Detection with CNN 
 

After a CNN model is trained with the labeled data sets, it can be applied for 
detecting holes from the layouts generated by the FD algorithm. The overview of 
hole detection by the trained CNN model is illustrated in Figure 7. In the hole 
detection process, the layout of the WSN is first generated by using a FD algo- 
rithm. Next, the trained CNN model is used to detect the holes from the layout 
of WSN. In our work, YOLOv3 [37] was adopted for constructing the CNN mod- 
els. YOLOv3 proposed by Joseph Redmon [37] is an object detection algorithm 
based on CNN. YOLOv3 is able to achieve high accuracy without the need of 
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Fig. 6: Classification of holes by K-node Hole. 

 

Fig. 7: The overview of hole detection in Wireless Sensor Networks based on Force- 
directed (FD) Algorithm and Convolutional Neural Network (CNN) 

 

 
high performance computing hardware. The architecture of YOLOv3 is depicted 
in Figure 8. YOLOv3 uses a Darknet variant called Darknet-53 [37] which has 
53 convolution layers trained on Imagenet [15, 23]. In YOLOv3, 53 layers were 
stacked on top of Darknet-53, thus providing 106 layers of fully convolutional 
underlying architecture. This is the reason why YOLOv3 greatly improves the 
detection accuracy compared to YOLOv2. 

After the holes are detected by the CNN model, two algorithms are used to 
perform post recognition tasks. Specifically, these tasks include identification of the 
region of the holes from the layouts and recognition of the node IDs located on the 
boundary. The psuedocode for identifying the nodes along the holes’ boundaries is 
given in Algorithm 2. The algorithm fills the regions of detected holes with green 
color. In this algorithm, a flood fill method is applied at the centroid of holes to 
identify the regions. In this example, the regions of predicted holes are filled with 
green color. The input of proposed algorithm contains the network topology of 
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Fig. 8: The architecture of YOLOv3. 
 
 

WSN (G) and the centroid of the detected holes (c). The algorithm has five major 
steps: 

1. A bitmap image of filled holes is initialized. 
2. Draw nodes on the bitmap image. 
3. Draw edges on the bitmap image. 
4. Fill the region of holes starting from the centroid of the detected hole. 
5. Return the bitmap image of filled holes. 

 

 
ALGORITHM 2: (HoleIdentify) Algorithm for identification of holes’ boundaries. 

 

Input: Network topology of WSN (G), and centroid of the detected hole (c). 
Output: a bitmap image of filled holes (b). 

let H and W be the height and width of the bitmap image; 
let V be the set of nodes in G; 
let E be the set of edges in G; 
initialize a bitmap b storing the layout of filled holes. 

let colort be the color to be replaced; 
let colorr be the color of the filled region of holes; 
let Q be the queue containing position to be checked in bitmap image b; 
colort = white; 
colorr = green; 
Q c ; 
repeat 

n = dequeue(Q); 

if the color of the position m to the north, sourth, east or west of n is colort then 
Fill the color of bitmap image b at position m to colorr ; 
Q ← {m}; 

end 

until Q is empty; 

return b. 
 

 
 

Once the region of holes are determined, a contour tracing algorithm is used 
to identify the nodes located on the boundary of holes. The psuedo code for iden- 
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tifying the nodes along the holes’ boundaries is given in Algorithm 3. The input of 
the algorithm contains the network topology of WSN (G) and the bitmap of filled 
image (b) which are produced from Algorithm 2. The Algorithm 3 has 4 steps: 

1. Find contours from the bitmap of filled image. 
2. Test if intersection exists in the node and contours. 
3. Save nodes along the holes’ boundaries. 
4. Return the list of nodes from the holes’ boundaries. 

 

ALGORITHM 3: (SensorIdentify) Algorithm for identification of nodes along the holes’ 
boundaries.  

Input: Bitmap of filled image (b), and network topology of WSN (G). 
Output: Nodes along the holes’ boundaries (bnodes). 

let V be the set of nodes in G; 
let colorr be the color of the filled region of holes; 
colorr = green; 
bnodes = {}; 

let contours be the list of contours found from the bitmap of filled image.; 

for each contour c in contours do 
for each node v in V do 

if pointPolygonTest(v, contour) = TRUE then 

bnodes ← {v}; 

end 

end 

end 

return bnodes.  

The process of hole detection terminates once the execution time exceeds Ts 
seconds or the node IDs located on the boundary of holes remain unchanged up 
to Ti iterations. The detection output of the proposed CNN model contains the 
centroid and the area of predicted holes. 

 

 
4 Experiments 

 

4.1 Experiment settings 
 

In this experiments, the total number of nodes n is set to 1, 000, 2, 000 and 3, 000. 
The average degrees of nodes d is set to 6, 8 and 10 for generating topologies 
for the datasets. We evaluate the proposed approach on two types of datasets 
which includes sparse and uniform networks. In total, 18 WSNs were generated 
for the experiments based on all possible combinations of n and d. Moreover, the 
generation of datasets were based on [8] and they were generated by using CNCAH 
Network Generator [9]. 

In the proposed FD-CNN, FD algorithms are used to produce the layouts (im- 
ages) of the WSNs from input topologies. For a given input topology, the quality 
of the layout generated by different FD algorithm could vary significantly. An 
example of such situation is illustrated in Figure 9(a) and Figure 9(b). In these 
figures, both layouts are generated by using two different FD algorithms with the 
same input topology.   

Therefore, three FD algorithms (DH, FA2, and KK-MS-DS) were selected for 
evaluation in our experiments. To obtain a fair comparison in our experiments, 
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(a) (b) 
 

Fig. 9: Two example layouts generated by two different force-directed algorithms 
for the same topology. The detected holes are marked in pink color and the re- 
gion of a hole is filled  in  green  color.  (a)  The  generated  layout  in  which  nodes 
are stacked on each other, (b) The generated layout in which nodes are placed 
uniformly. 

 
 

each FD algorithm is implemented to stop the execution either when the maximum 
execution time exceeds Ts = 600 seconds or the node IDs located on the boundary 
of holes remain unchanged up to Ti = 10 iterations. For example, if the node 
IDs located on the boundary of holes from the FD algorithm remain unchanged 
since 100th iteration, then the FD algorithm terminates at the 110th iteration. 
Therefore, the layout of WSN generated at 100th iteration will be considered as 
the final layout. 

Since the numbers of true positive HoleN and true  negative  HoleP in  our 
datasets vary greatly, accuracy cannot reflect the real performance of algorithms 
when they are evaluated for hole detection. To alleviate this problem, sensitivity 
and specificity value were used as performance evaluation criteria. 

 

 
4.2 Experiment results for sparse WSNs 

 

The sensitivity and specificity of FD-CNN in sparse WSNs from the layout gener- 
ated by KK-MS-DS, FA2 and DH algorithms were analyzed in this section. 

 
4.2.1 Dataset with 1,000 nodes 

 

Sensitivity of FD-CNN for different average degree is depicted in Figure 10. In 
this experiment, the total number of nodes was set to 1, 000 and networks with 
average degree 6, 8 and 10 were tested. The experimental results reveal that the 
proposed algorithm achieves highest sensitivity when KK-MS-DS algorithm was 
used. Specifically, sensitivity is above 80% when the average degree d = 8 and 
d = 10 were used in the testing (see Figure 10(b) and Figure 10(c)). The highest 
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sensitivity is around 50% when FA2 algorithm was used (see Figure 10(b)). The 
proposed algorithm achieves lowest sensitivity when DH algorithm was used that 
the sensitivity is lower than 10%. 

 
 

(a) (b) 
 

(c) 
 

Fig. 10: Sensitivity when n = 1, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in WSNs. 

 
 

Specificity of FD-CNN for different average degree is depicted in Figure 11. 
In this experiment, average degree 6, 8 and 10 are tested. The experimental re- 
sults reveal that the proposed algorithm achieved the highest specificity (approx. 
90%) when the average degree d = 10 is used in KK-MS-DS algorithm (see Fig- 
ure 11(c)). However, the proposed algorithm produced relatively poor specificity 
when the average degree is low (i.e. when d = 6 and d = 8, see Figure 11(a) and 
Figure 11(b)). 

The highest specificity of the proposed algorithm is approximately 80% when 
FA2 algorithm was used. The process of hole detection for DH algorithm was 
terminated at around 480th second because node IDs located on the boundary of 
holes remain unchanged up to 10 detections. This situation can be observed from 
Figure 11(c). 

 

4.2.2 Dataset with 2,000 nodes 
 

Sensitivity of FD-CNN for different average  degree  is  depicted  in  Figure  12.  In 
this experiment, average degree 6, 8 and 10 are tested. For the layouts generated 
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(c) 
 

Fig. 11: Specificity when n = 1, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in WSNs. 
 

 
by the KK-MS-DS algorithm, the results showed that the proposed algorithm 
achieved the highest sensitivity despite the differences in the average degree. The 
sensitivity was higher than 50% when the execution time exceed 250 seconds (see 
Figure 12(b)). The proposed algorithm produced similar sensitivity for the layouts 
generated by the FA2 and DH algorithms. 

Specificity of FD-CNN for different average degree is depicted in Figure 13. 
In this experiment, average degree 6, 8 and 10 are evaluated. The experimental 
results revealed that the proposed algorithm achieved the highest specificity with 
the average degree d = 8 and d = 10 as depicted in Figure 13(b) and Figure 13(c). 
Furthermore, the proposed algorithm produced similar specificity from the layout 
generated by the FA2 and DH algorithms regardless of the average degree. Ac- 
cording to the experimental results depicted in Figure 13(a) and Figure 13(c), the 
specificity of proposed algorithm with a high average degree (d = 10) was better 
than a low average degree (d = 6). 

 

 
4.2.3 Dataset with 3,000 nodes 

 

Sensitivity of FD-CNN for different average degree is depicted in Figure 14. In 
this experiment, average degree 6, 8 and 10 are tested. Figure 14(b) showed that 
the proposed algorithm achieved the best sensitivity result for KK-MS-DS when 
the average degree d = 8 in used in WSNs. The proposed algorithm produced low 
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(a) (b) 
 

(c) 
 

Fig. 12: Sensitivity when n = 2, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in WSNs. 
 

 
sensitivity (i.e., lower than 10%) from the layout generated by the FA2 and DH 
algorithms. 

Specificity of FD-CNN for different average degree is depicted in Figure 15. In 
this experiment, average degree 6, 8 and 10 are tested. From the results, we found 
that KK-MS-DS achieved the best specificity among three algorithms. 

 
 

4.2.4 Summary 
 

All in all, according to the experimental results, FD-CNN achieves the highest sen- 
sitivity and specificity from the layouts generated from the KK-MS-DS algorithm. 
When average degree is set to 6, sensitivity of FD-CNN is above 80%. In addition, 
the sensitivity and specificity of FD-CNN from the layout generated from FA2 
algorithm is superior than DH algorithm especially when n = 1000. We also found 
that the performance of FD-CNN is unstable from the layouts generated by the 
DH algorithm. It achieves lowest sensitivity and specificity in the experiments. 

 
 

4.3 Experiment results for uniform WSNs 
 

The sensitivity and specificity of FD-CNN for uniform WSNs were evaluated in 
this section.   
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Fig. 13: Specificity when n = 2, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in WSNs. 
 
 
 

 
4.3.1 Dataset with 1,000 nodes 

 
 

Sensitivity of FD-CNN for different average degree is depicted in Figure 16. In this 
experiment, the total number of nodes is set to 1, 000 and average degree 6, 8 and 10 
are tested. The experimental results revealed that the proposed algorithm achieved 
the highest sensitivity with average degree d = 8 in uniform sensor networks 
for KK-MS-DS (see Figure 16(b)). The detection for FA2, KK-MS-DS and DH 
algorithms stops before time limit (i.e. 600 seconds) since the node IDs located on 
the boundary of holes was unchanged for more than 10 iterations as illustrated in 
Figure 16(c). 

 

Specificity of FD-CNN for different average degree is depicted in Figure 17. In 
this experiment, the total number of nodes is 1, 000 and average degree 6, 8 and 10 
are tested. The highest and lowest specificity of proposed algorithm were obtained 
from the layouts generated from KK-MS-DS and  DH  algorithms  regardless  of 
the average degree. The highest specificity was around 94% when KK-MS-DS 
algorithm was used. The results also showed that the proposed algorithm achieved 
the highest specificity when the average degree was high (see Figure 17(b) and 
Figure 17(c)). 
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(c) 
 

Fig. 14: Sensitivity of hole detection of FD algorithms with n = 3, 000 and (a) 
d = 6, (b) d = 8, (c) d = 10 in WSNs. 

 
 

4.3.2 Dataset with 2,000 nodes 
 

Sensitivity of FD-CNN for different average degree is depicted in Figure 18. In this 
experiment, the total number of nodes is 2, 000 and average degree 6, 8 and 10 are 
tested. The experimental results revealed that the proposed algorithm achieved 
the highest sensitivity when average degree d = 10 is used (see Figure 18(c)) for 
KK-MS-DS algorithm. 

Specificity of FD-CNN for different average degree is depicted in Figure 19. In 
this experiment, the total number of nodes is set to 2, 000 and average degree 6, 8 
and 10 are tested. The proposed algorithm produced approximately 90% specificity 
when the average degree was high (i.e. d = 8 and d = 10, see Figure 19(b) and 
Figure 19(c)). the KK-MS-DS algorithm achieved the best result among three 
algorithms. 

 
4.3.3 Dataset with 3,000 nodes 

 

Sensitivity of FD-CNN for different average degree is depicted in Figure 20. In this 
experiment, the total number of nodes is set to 3, 000 and average degree 6, 8 and 
10 are tested. The experimental results revealed that sensitivity of the proposed 
algorithm algorithm was low (less than 20%) regardless  of  the  average  degree. 
From the experiment results, we found that when high average degree was used in 
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Fig. 15: Specificity of hole detection of FD algorithms with n = 3, 000 and (a) 
d = 6, (b) d = 8, (c) d = 10 in WSNs. 

 
 

dataset with 3, 000 nodes, the generated layout from FD algorithms contain too 
many edge crossings 

Specificity of FD-CNN for different average degree is depicted in Figure 21. 
In this experiment for uniform WSNs, the total number of nodes is set to 3, 000 
and average degree 6, 8 and 10 are tested. The proposed algorithm produced high 
specificity (approximately 87%) when the average degree was high (i.e. d = 8 and 
d = 10, see Figure 21(b) and Figure 21(c)). 

 
 
 

4.3.4 Summary 
 

According to the experimental results, the detection for KK-MS-DS and DH al- 
gorithms stops before time limit (i.e. 600 seconds) when n = 1000 since the node 
IDs located on the boundary of holes was unchanged for more than 10 iterations 
as illustrated in Figure 16. The experimental results revealed that the proposed 
FD-CNN achieved high specificity when d = 10. From the experiment results, we 
also found that the sensitivity of the FD-CNN from the layout generated by KK- 
MS-DS, FA2 and DH algorithms in uniform sensor networks are low regardless of 
the average degree and the total number of nodes. 
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Fig. 16: Sensitivity when n = 1, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in uniform 
sensor networks. 

 

 
4.4 Visualization of experiment results 

 

Experimental results reveal that the performance of FD-CNN can vary significantly 
for different types of WSNs even with the same node count and average degree 
were used. To better understand the effect of FD algorithms in hole detection, we 
select some of the layouts produced by FD algorithms from the experiment results 
for visualization. 

 

Case 1: Visualization of a layout which results high sensitivity during the experi- 
ments is shown in Figure 22. In this visualization, we can observe that the layout 
shown in Figure 22(b) which was generated by KK-MS-DS algorithm is similar to 
the ground truth shown in Figure 22(a). In this particular case, FD-CNN algorithm 
achieved approximately 80% sensitivity from the layout produced by KK-MS-DS 
algorithm. Moreover, we can also observe that the layout produced by the FA2 al- 
gorithm is twisted (see Figure 22(c)). DH algorithm also produced a layout which 
is also not similar to the ground truth and thus resulting a low sensitivity. 

 

Case 2: The visualization of the layouts which result low sensitivity in the exper- 
iments is shown in Figure 23. From these visualizations, we can observe that the 
layout produced by three FD algorithms are both twisted and folded. 
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Fig. 17: Specificity when n = 1, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in uniform 
sensor networks. 

 

 
Case 3: From the experimental results, we found that layouts in uniform WSNs 
achieved poor results. To better understand the underlying problems, we capture 
some of the layouts from the experiments and they are shown in Figure 24. From 
Figure 24(d), we can observe that KK-MS-DS algorithm can produce the most 
similar layout when it is compared to the ground truth (see Figure 24(a)). However, 
sensitivity result of this case is low since nodes are uniformly distributed and CNN 
cannot accurately recognize all the regions surrounded by the nodes. 

 

 
5 Conclusion 

 

In this paper, we propose a novel hole detection approach called FD-CNN for 
WSNs. The proposed approach takes advantage of the capability of Force-directed 
(FD) algorithms in generating potential layouts of the network and image/object 
detection ability of Convolutional Neural Networks (CNN). One of the main advan- 
tages of the proposed approach is its ability in detecting holes from WSNs without 
relying on any position information (i.e. x and y coordinates) of the nodes or lo- 
cation services such as GPS. The proposed approach is also able to identify the 
regions and nodes located on the boundary of the detected holes. 

In our approach, a FD algorithm was deployed to produce the potential layouts 
from the topology of the WSN. The layout is then fed into the CNN model for 
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Fig. 18: Sensitivity when n = 2, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in uniform 
sensor networks. 

 

 
hole detection. The detection process is iteratively executed until a predefined 
stopping criteria is satisfied. To generate labeled datasets for training CNN models, 
a pre-processing method was proposed.  The  proposed  method  includes  3  steps 
for preparing the labeled holes. The resulting labeled datasets are then used for 
training the CNN model. 

In the experiment section, we evaluate the FD-CNN by using the layouts gen- 
erated from three FD algorithms. Experimental results show that FD-CNN can 
achieve 80% sensitivity and 93% specificity in less than 2 minutes. Experimental 
results also reveal that the performance of FD-CNN algorithm in WSNs are highly 
correlated to the quality of layouts generated by the FD algorithms. Average sen- 
sitivity of FD-CNN algorithm from the layout generated by KK-MS-DS algorithm 
is about 2.6 to 8 times higher than the layout generated by the FA2 and DH 
algorithms in WSNs. 

However, performance of FD-CNN could be affected by several factors. First, 
in the proposed approach, a layout of the WSN is generated by using a FD algo- 
rithm. Therefore, positions of the sensors and distance among them in the layout 
are just the estimations projected by the FD algorithm and they could be different 
from the actual situation. Since, estimated layouts are used for hole detection, the 
sensitivity and specificity could be highly related to the performance of the FD 
algorithm used for estimation. Second, because the estimated payout of the WSN 
is converted into a bitmap image for processing, the scaling of the image can be 
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Fig. 19: Specificity when n = 2, 000 and (a) d = 6, (b) d = 8, (c) d = 10 in uniform 
sensor networks. 

 

 

complex, especially for large WSNs. Besides, the performance of hole detection by 
using the CNN models could be affected if there are large number of edge crossings 
in the bitmap image. 

As for the future work, we are planning to adopt force directed models to 
estimate the geographical locations of coverage holes and sensors in WSNs. To es- 
timate the locations, FD algorithms could be combined with various metaheuristic 
algorithms. Moreover, we are also planning to develop a flexible scaling method 
to generate the datasets. Such scaling can be helpful in handling large WSNs. By 
using the datasets from flexible scaling method, we could minimize the complexity 
in training CNN models. In other words, re-training of the models from scratch 
could be avoided when the dimension and scale of bitmaps image is changed. 
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Fig. 20: Sensitivity of hole detection of FD algorithms with n = 3, 000 and (a) 
d = 6, (b) d = 8, (c) d = 10 in uniform sensor networks. 

 
 

Appendix A - Force-directed Algorithms 
 

Davidson-Harel algorithm The energy value E used in the simulated annealing 
defined in the DH algorithm is the sum of attractive force (fa) and repulsive force 
(fr), which can be calculated as follows: 

n−1 

E = fa(ǁui − ujǁ) + fr(ǁui − ujǁ)) (1) 
i=1 j=i+1 

 

During initialization, a node u is randomly selected from the network. Next, the 
DH algorithm creates a temporary node v. The DH algorithm then assigns the 
location to the node v based on the location of the node u. The position of the 
node v and other nodes in the network can be used to calculate the new energy 

value  E
' 

,  which  is  defined  as  follows: 
 

 

E
'  

= 

u∈

Σ

V,v∈/V 

 
fa(ǁu − vǁ) + fr(ǁu − vǁ) (2) 

In addition, when the liquid cools slowly, the DH algorithm obeys the Boltzmann 

distribution  rule  [14].  If  E
'  

− E  ≤ 0,  then  use  E
'   

as  the  energy  of  the  next  itera- 

tion, because E
'  

has a lower energy value. If E
'  

− E  > 0, the probability equation 
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Fig. 21: Specificity of hole detection of FD algorithms with n = 3, 000 and (a) 
d = 6, (b) d = 8, (c) d = 10 in uniform sensor networks. 

 

(a) (b) (c) (d) 
 

Fig. 22: Layouts of sparse WSN with n = 1, 000 and d = 8. (a) ground truth, (b) 
layout generated by the DH algorithm, (c) layout generated by the FA2 algorithm, 
and (d) layout generated by the KK-MS-DS algorithm. 

 

is used to  determine whether  to  use the new energy  E
'   

in  the next iteration. The 
probability equation is defined as follows: 

 

 
E
' 
−E 

k×T (3) 
 

where T is the temperature variable and k is the Boltzmann constant. If the prob- 

ability  p  is  less  than  the  threshold  ε,  the  new  energy  E
'   

is  accepted;  otherwise, 
the old energy E will be used in the next iteration. The time complexity of DH 

p = e− 
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Fig. 23: Layouts of sparse WSN with n = 3, 000 and d = 6. (a) ground truth, (b) 
layout generated by the DH algorithm, (c) layout generated by the FA2 algorithm, 
and (d) layout generated by the KK-MS-DS algorithm. 

 

(a) (b) (c) (d) 
 

Fig. 24: Layouts of uniform WSN with n = 1, 000 and d = 8. (a) ground truth, (b) 
layout generated by the DH algorithm, (c) layout generated by the FA2 algorithm 
and (d) layout generated by the KK-MS-DS algorithm. 

 

algorithm is O(V 2 × E), where V is the number of nodes in the network topology, 
E is the number of edges in the network topology. 

 
 

ForceAtlas2 algorithm Jacomy et al. [20] proposed a revised attractiveness based 
on the LinLog model, which is defined as follows: 

 
Fa (u, v) = log (1 + d(u, v)) (4) 

 

where d is the distance between nodes u and v. In addition, a degree-dependent 
repulsion model is proposed in the FA2 algorithm to reduce the repulsive force. 
This repulsion model increases the chance that nodes with lower than average 
degrees are connected to nodes with higher than average degrees. The repulsion 
model of FA2 algorithm is defined as follows: 

 

F  (u, v) = k 
(deg(u) + 1) × (deg(v) + 1) 

d(u, v) 

 

(5) 

 

where k is the ideal pairwise distance constant, as used in FR algorithm. d is the 
distance between nodes u and v, and deg(n) is the number of associated edges 
Node n, including the edge of in-out degree. The time complexity of FA2 algo- 
rithm is O(V 2 + E) where V is the number of nodes in the network topology, E 
is the number of edges in the network topology. 
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i 

Li − d 

 

KK-MS-DS algorithm The goal of the KK-MS-DS algorithm [8] is  to  push  the 
nodes in the outer boundary away from the inner nodes. Nodes tag with a de- 
caying stiffness (m). The higher the decaying stiffness value of the node (m), the 
farther the distance of the node can be moved. The value of m of the node decreases 
with the execution time, which is defined as follows: 

m
'  

= m − zpt (6) 

where t is the number of times that the selected node is updated. p is the decay 
rate, and z is the remaining energy possessed by the node. The KK-MS-DS algo- 
rithm terminates, when the stable state (r) remains unchanged until a predefined 
iteration or r is less than the threshold ε. The stable state (r) means that a coarse 
visualization of the graph has been constructed, but the final stage of the entire 
graph has not yet been reached. The ratio of the stable state r is defined as follows: 

1  Σd    .  ' . 

 r = s 
d 

i=1   
.Li − Li. 
 

 

 

 

(7) 

Σd 
' 1   

Σd 
'
 

 

 

where  d  is  the  total  number  of  edges  in  the  graph,  L
'   

is  the  edge  length  from  the 
graph generated by the KK-MS-DS algorithm, and Li is the edge length of the 
input graph. The time complexity of KK-MS-DS algorithm is O(n × (V + v2)), 
where n is the number of iteration, V is the number of nodes in the given graph, 
and v is the number of nodes in the ordered queue. 

 

 

Appendix B - Pseudocode of Force-directed Algorithms 
 

The pseudocode for DH algorithm, FA2 algorithm and KK-MS-DS algorithm are 
given in Algorithm 4, Algorithm 5 and Algorithm 6 respectively. 
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∈ 

∈ ∈ 

ALGORITHM 4: Pseudocode of DH algorithm. 

Input: Network topology G = (V, E). 
Output: A layout of network topology of G. 
initialize radius 

r  = max( RADIUS−WEIGHT −CONSTANT  ,  max(v.x)−min(v.x),max(v.y)−min(v.y) )  for 
5 5 

v V ; 
initialize iteration it; 
// Initialize Energy E 
for u, v ∈ V, u /= v do 

E = E + 1 
ǁu−vǁ 

+ ǁu − vǁ; 

end 
while it > 0 do 

// Compute Candidate Layout 

initialize a network topology G′ = (V 
' 
, E

' 
); 

G′ = G; 
while t > є do 

select a temporary node v from G′; 

// The positioin of node v V 
' 

is based on the position of r V 
Select a node r from V randomly; 
v.x = r.x + rand(0, r); 
v.y = r.x + rand(0, r); 

// Assign random angle to node v 
v.x = Math.cos(rand(0, 2 ∗ PI)) ∗ r; 
v.y =  Math.sin(rand(0, 2 ∗ PI)) ∗ r; 
t = t − 1; 

end 

// Compute Candidate  Energ  E
'  

and  Test  the  Energy  of  Candidate  Layout  G′ 

for u, v ∈ V 
' 
, u /= v do 

E
' 

= E
' 

+ 1 ; 
 

E
' 

end 
= E

'
 

ǁu−vǁ 

+ ǁu − vǁ; 

if E
' 
< E then 

G = G
' 
; 

end 

// Update iteration 
r = r × SHRINK − CONSTANT ; 
it = it − 1; 

end 
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ALGORITHM 5: Pseudocode of FA2 algorithm. 

Input: Network topology G = (V, E). 
Output: A layout of network topology of G. 
initialize vmass = 0 for v V ; 
initialize iteration it; 
while it > 0 do 

// Compute Repulsion Force 
for u, v VW T , u = v do 

r = R   umass×vmass ; 
ǁu−vǁ2 

udx = udx + ǁu − vǁ × r; udy = udy + ǁu − vǁ × r; 
vdx = vdx − ǁu − vǁ × r; udy = udy − ǁu − vǁ × r; 

end 

// Compute Graviation Force 
for u V  do 

g = S umass×G ; 
ǁu−vǁ2 

udx = udx + ǁu − vǁ × g; udy = udy + ǁu − vǁ × g; 
end 

// Compute Attraction Force 
for e ∈ E and u, v are start and end nodes of the e do 

a = −S × A; 
udx = udx + ǁu − vǁ × a; udy = udy + ǁu − vǁ × a; 
vdx = vdx − ǁu − vǁ × a; udy = udy − ǁu − vǁ × a; 

end 

// Compute Swinging and Target Speed for v in V 
// Apply forces to nodes 
for u ∈ V do 

f = 
1+
√ S ; 

targetspeed+swinging 

ux = udx + ǁu − vǁ × f ; uy = udy + ǁu − vǁ × f ; 

end 

// Update iteration 
it = it − 1; 

end 
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ALGORITHM 6: Pseudocode of KK-MS-DS algorithm. 

Input: Network topology G = (V, E). 
Output: A layout of network topology of G. 
initialize the start area WT = (WW T , EW T ) that WT T ; 
initialize the iteration count it = 0; 
initialize the starting node s which has a maximum average degree in G; 
// Step 1. 
add node s into VW T ; 
for v ∈ V do 

initialize vm and add node v into VW T where hopcount(VW T , v) = 2; 
end 

// Step 2 & 3. 
while WT = T do 

if r < є then 
for  v ∈/  VW T , v ∈ V   do 

add node v into VW T where hopcount(VW T , v) = 2; 

Vm =  K ; 
i,j 

end 
for u, v ∈ VW T , u /= v do 

i 

end 
end 
else 

G = KK − MS(WT, 5%); 

update L
' 

for node v in VW T ; 

end 

end 

// Step 4. 
clear VW T and EW T in WT ; 
for v ∈ V do 

add node v into VW T ; 

vm =  K ; 
i,j 

end 
compute r for the WT ; 
while r є do 

G = KK MS(WT, 5%); 
end 
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