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Abstract

Twitter is a popular social network for people to share views or opinions on various
topics. Many people search for health topics through Twitter; thus, obtaining a vast
amount of social health data from Twitter is possible. Topic models are widely used
for social health-care data clustering. These models require prior knowledge about
the clustering tendency. Determining the number of clusters of given social health
data is known as the health cluster tendency. Visual techniques, including visual
assessment of the cluster tendency, cosine-based, and multiviewpoint-based cosine
similarity features VAT (MVCS-VAT), are used to identify social health cluster ten-
dencies. The recent MVCS-VAT technique is superior to others; however, it is the
most expensive technique for big social health data cluster assessment. Thus, this
paper aims to enhance the work of the MVCS-VAT using a sampling technique to
address the big social health data assessment problem. Experimental is conducted
on different health datasets for demonstrating an efficiency of proposed work. Accu-
racy of social health data clustering is improved at a rate of 5 to 10% in the proposed
S-MVCS-VAT when compared to MVCS-VAT. From obtained results, it also proved
that the proposed S-MVCS-VAT is a faster and memory efficient for discovering
social health data clusters.
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1 Introdcution

Twitter is one of the platforms commonly used by social users to share opin-
ions or trusts across the world. People can share experiences or opinions through
tweets. Health care data are an emerging need for society, and it is necessary to
automate tweet health data to identify major health problems in society. Usu-
ally, health-care tweet data are extensive, and tweet data need to be assessed to
find knowledge about significant health problems (or health clusters). This is
the crucial motivation for addressing the health cluster tendency problem. Vis-
ual techniques, such as VAT [1], cVAT [2], and MVCS-VAT [3], can be used to
access information about several clusters of tweet health data (or social health
data). Popular topic models, including nonmatrix factorization (NMF) [4], latent
semantic indexing (LSI) [5], probabilistic LSI (PLSI) [6], and latent Dirichlet
allocation (LDA) [7], are used to extract the topic features of tweet data. The
topic-tweet document matrix is created using the topic models for the set of tweet
documents. TF-IDF is another alternative matrix for describing tweet document
features based on term analysis, and the matrix usually known as the TF-IDF
matrix [8]. Tweet document analysis using topics is more practical than using the
TF-IDF matrix because data sparsity occurs in the TF-IDF matrix.

The topic-document matrix (TDM) is the most recommended approach in
text clustering applications [9] [25]. Dissimilarity features are derived using a
Euclidean distance measurement in a VAT. In a cVAT, the dissimilarity features
are derived using the cosine distance metric. In the majority of text clustering
applications [10] [23][26], the authors proved that cosine-based cluster assess-
ment is more informative than a standard Euclidean distance formula. In a cVAT,
the cosine-based similarity is measured using a single reference viewpoint, i.e.,
the origin. An extended version of the cVAT is the MVCS-VAT [3]. In MVCS-
VAT, the cosine-based similarity values are derived using multiple viewpoints.
Deriving the similarity using multiple viewpoints is a more accurate mechanism
than a single viewpoint approach in the cVAT. Justifying the cluster assessment
using the multiviewpoint cosine-based similarity values is more appropriate than
the justification of a single viewpoint. The recent MVCS-VAT methods conducts
the cluster assessment of health data in an excellent manner [27][31]. Each clus-
ter represents a health cluster, which clusters the tweets; and those tweets belong
to the same health topic are discussed. The tweets are categorized into health
clusters based on the similarities among tweet documents. The problem of the
MVCS-VAT is that it takes more computational time and memory space due to
the assessment of health clusters using multiple viewpoints. For example, finding
the similarity between two tweets documents t1 and t2 among the n documents
is performed using n-2 viewpoints. Every tweet among the n tweets is taken as a
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viewpoint except t1 and t2; hence, there are ‘n-2’ viewpoints. The cosine similar-
ity is computed between two tweet documents for n-2 viewpoints. Finally, simi-
larity computation is applied for n(n-1)/2 cases concerning n-2 viewpoints. Thus,
the total computation time is n(n-1)(n-2)/2. Therefore, the MVCS-VAT is a more
expensive cluster assessment model for a large number of tweet documents. The
proposed work uses an effective sampling procedure to further extend the MVCS-
VATI[28]. The existing study proposes using a constant number of sample view-
points instead of taking the n-2 multiple viewpoints in the proposed sampling-
based MVCS-VAT (S-MVCS-VAT) algorithm. The algorithm and experimental
details are demonstrated in the next sections.
The key contributions of the paper are summarized as follows:

1. Health clusters from big social data are assessed.
A sampling-based visual technique for determining the health clusters in a visual
form is proposed.

3. Crisp partitions are derived from the visual images from the proposed S-MVCS-
VAT.

4. Significant social health data cluster results are derived.

5. The performance of visual techniques for social and benchmark health data is
empirically demonstrated.

The remaining sections are summarized as follows: Sect. 2 presents the litera-
ture on visual techniques for precluster assessment; Sect. 3 introduces the proposed
sampling-based MVCS-VAT; Sect. 4 illustrates the experimental study; and, finally,
Sect. 5 provides the conclusion and future scope of the work.

2 Literature of visual techniques for precluster assessment

Top clustering methods, such as k-means [11] and hierarchical clustering, are widely
used in clustering-related applications [12]. The data clustering process depends
on two crucial steps: finding the knowledge about the number of clusters and mak-
ing a data partition of the data. Determining the number of clusters is known as
the cluster tendency problem. Social health data are the opinions or views of social
users on Twitter. Social health data are tweeted health data. Finding the categories
of clusters of social health data based on health topics is known as finding the health
cluster tendency [29]. The preassessment of several health topics in social data is a
challenging problem. With this motivation, many visual techniques are surveyed for
the precluster assessment of social health data. Bezdek et al. [1] proposed a basic
model, namely the visual assessment of (cluster) tendency (VAT), for determining
the number of clusters of numerical data. It works for numerical data. Its algorith-
mic is shown in the following.
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Algorithm: Visual Assessment of Tendency [1]
Input: ObjdissM[][]

Output : Number of clusters (or cluster tendency k)

Step 1:
Obj_order= { };
Obj_int_order={0,1,....n-1}
Determine max of ObjdissM[ ] [ ], and its index value is stored into (i,j)
OrderP(0)=i;
Obj_order ={i};
Obj_int_order = Obj_int_order -{ Obj_order;

Step 2:
for (s=1;s<n;s++)
Find(i,j) from min {ObjdissM[i][j], where
€1V, je{JV}}
Obj_order = { Obj_order } U{j};
Obj_int_order={Obj_int order}-{ Obj order};
OrderP(s)=j;
}
Step 3:

/*Reordered Dissimilarity Matrix Computation*®/
for(i=0;i<n;i++)
for(j=0;j<n;j++)
RDM=0bjdissM(OrderP[i],OrderP[j]);

Step 4:
Display Image (RDM)

Thus, social data are initially preprocessed into the topic-document matrix using various
topic models [13]. This is a better representation of social data than the TF-IDF matrix.
Four topic models, latent Dirichlet allocation, latent semantic indexing (LSI), probabilis-
tic latent semantic indexing (PLSI), and nonnegative matrix factorization (NMF), are the
recommended topic models in text clustering-related applications. These models are used
to convert the social data into a numeric topic-document matrix. With this matrix, social
health data are denoted in the form of a numeric representation. In a VAT [14], the social
health topic-document matrix is used to find the dissimilarity features using the Euclidean
distance matrix. The reordered dissimilarity matrix (RDM) [15] is derived according to
the given steps of the VAT and then displays the image of the RDM. The number of health
clusters (or health cluster tendency) is derived from the count of the number of square-
shaped dark colored blocks in the RDM image (also known as the VAT image). A cosine
metric uses vectors’ magnitude and distance to find the similarity features between two
data objects whereas a Euclidean distance metric only uses the distance. Therefore, in a
text clustering application, cosine-based cluster assessment succeeds more than Euclidean
distance assessment. Following a cosine metric, another visual technique, i.e., the cosine-
based VAT (cVAT), was developed in [12] for the precluster assessment problem.
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In the cVAT, the similarity (or dissimilarity) features between two data objects
are derived using a single viewpoint, i.e., the origin. Computing similarity fea-
tures using a single viewpoint cannot provide a more informative assessment.
Thus, multiple viewpoints are used in the later development of visual techniques,
such as the multiviewpoint-based cosine similarity features VAT (MVCS-VAT)
[3]. The MVCS-VAT is the most recommended visual technique to acquire accu-
rate similarity features using a multiple viewpoint strategy instead of just a single
viewpoint. For n tweet documents, as per the MVCS-VAT, n-2 viewpoint com-
putations are needed to find the cosine-based similarity features among any two
tweet documents. Finally, average n-2 similarity features concerning n-2 view-
points are taken as the similarity features between the two tweet documents.
This method is most accurate for visualizing the number of clusters for the set
of n tweet documents [30]. The approach for the similarity feature computation
between any two documents for the set of five tweet documents is shown in Fig. 1.

The key limitation of the MVCS-VAT is that it demands more computational time and
memory allocation for finding the social data clustering results from a large set of tweet
documents. The proposed methods present the best sampling-based MVCS-VAT for the
scalable computation of social data health clustering results.

Further work must find the similarity features between the tweet documents for
sample viewpoints instead of n-2 viewpoints. Social data are enormous big data;
thus, this proposed base sampling idea optimizes the time and memory require-
ments in finding health cluster tendencies. This optimized approach to find the
health cluster tendency from social data is derived in the next section.

3 Proposed sampling-based Mvcs-Vat (S-Mvcs-Vat)

The clustering of social data (tweet health data) depends on the similarity features
of data objects. The cosine-based similarity features are very successful in text data
clustering applications. The similarity features concerning a single origin or a sin-
gle reference viewpoint are derived. The MVCS-VAT uses multiple viewpoints to
find accurate similarity features among the tweet documents compared to a single

Fig. 1 Sampling viewpoints
using cosine similarity
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reference viewpoint. Due to the expensiveness of the MVCS-VAT, our proposed
work takes the sample viewpoints to determine the quality of social health data clus-
tering results. Algorithm 1 illustrates the procedural steps of the proposed work.

Algorithm 1: S-MVCS-VAT
Input: ‘N’ - Number of health documents
s- Sample size in percentage
Output: ‘k’ - Health cluster tendency
‘C’ — Health clusters
Method:
Step 1: Extract the features of health tweets.

Use topic models to model the health tweets in order to extract the features of health tweets
{TF,,TFs,...TFx}.

Step 2: Find the initial centroid for the starting cluster.

Randomly select any tweet document numbered ‘r’ among {1, 2, ..., N}. Compute the distances TF; to
{TF1, TF,...TFx}, save the distances Dist_Start and save the index regarding the maximum distance-
maintained tweet document number with respect to the selected tweet document number ‘r’. The index and
maximum distance are computed as follows:

index = argmax 1e (1,2, N} { distance(TF;, TF1)}
Dist_Start=distance(TF:, TFr))
Step 3: Determine other approximated centroids.

//Update the distance value
Fori=1toN
Dist=min(Dist_Start,distance(TFmaxindex, TF1))

//Form the remaining centroids
The next centroid index is determined as follows:

index=argmax 1 (1.2..ny {Disti}.

Update the index and Dist_Start as per Step 2. Repeat Step 3 until the expected centroids are obtained.
Step 4: Find the clusters of tweets with the nearest centroids {Ci, Cz..Cy}.

Sample VP={}

Fori=1to N
Forj=1toN

//Apply simple random sampling without replacement (SRSWR) for the selected sample viewpoints
Form=1tok
If ((TFi is not in Cyy) or (TFj is not in Cyy))
Use SRSWR] ] to select of the sample viewpoint from Cr, and save in 'Sample.'
Sample VP= Sample VP u {Sample}
LS=size(Sample_VP)
S_MVCS = = Tupesampte vp 05 (TFL, TF))

Dissimilarity Matrix(DM(i,j)) = 1-S_MVCS
NormS=(Normalize(S_MVCS(TF1,TF2),0,1)

Step 7: Find the reordered dissimilarity matrix for NormS using the VAT [1].

Step 8: Visualize the RDM image and count the detected square-shaped dark colored blocks. The count value
defines the clustering tendency of health datasets.

Step 9: Determine the aligned crisp partitions based on the square-shaped dark colored blocks that appear. The
crisp partitions given the predicted cluster labels for the health tweet documents are used to discover the
health data clusters.
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The proposed algorithm uses topic models, such as LDA, LSI, PLSI, and NMF,
to extract the features of health tweets in topic-document matrix form. The proposed
algorithm reduces the sparsity problem of tweet data. The topic-document matrix
was then converted into a bag-of-features representation of tweet data. The features
of tweets are denoted in the vector representation {TF,,TF,,... TFy}.

Randomly select the " tweet document feature, find the distances between TF,
and {TF,TF,,... TFy} and save the distances into ‘Dist_Start.” The maximum dis-
tance-maintained tweet data object is determined using the argmax function, and the
corresponding tweet document number is saved into the variable ‘index.” These are
in Step 1 and Step 2. Next, the distance array Dist; is updated according to explored
tweet documents, and this is in Step 3. Again, the tweet document with the largest
deviation is selected by applying the argmax function to Dist; The corresponding
index found by the argmax is another centroid of tweet datasets. The same proce-
dural steps are repeated to find the remaining expected number of centroids of the
clusters. After selecting the centroids, the remaining tweet documents are moved
into the nearest centroids based on the distances measured in Step 4. The distances
are measured using the cosine distance metric of the sample viewpoints. The size
of the sample viewpoints is measured based on a percentage of s. The mentioned
percentage of samples is equally sampled from every cluster (except clusters TF1
and TF2). These steps are clearly illustrated, similarity features concerning the sam-
ple viewpoints are computed, and the C_MVCS computational statement is shown.
Dissimilarity values are stored in DM, and normalized matrix values are stored in
NormS.

The reordered dissimilarity matrix is computed by applying the visual assessment
tendency (VAT) to NormS, as shown in Step 7. The RDM image is visualized to
assess the number of visual clusters by counting the squared shaped dark colored
blocks that appear along the diagonal. The crisp partitions of the RDM image show
the predicted cluster labels of health tweets, which discover the health data cluster-
ing results; and these steps are clearly illustrated in Step 8 and Step 9.

For the proposed algorithm, the similarity features for the pair of tweet docu-
ments are derived using every viewpoint; and finally, the average of the obtained
similarity values is used in the computation of tweet document similarity features.
The similarity feature computation is less expensive due to taking sample view-
points instead of a large number of all viewpoints. This provides a considerable
improvement for finding the social data clustering results compared to the state-of-
the-art visual topic models.

In the recent MVCS-VAT technique, effective social health data clustering results
are derived using all given viewpoints. For small datasets, the MVCS-VAT is very
impressive at determining the clustering tendency and individual social data cluster-
ing results. However, the amount of social data is massive; therefore, the MVCS-
VAT uses many viewpoints to find the social health data clustering results. Ulti-
mately, the method demands large computational and spatial costs. The MVCS-VAT
is always suitable for finding social data clustering results, and it is expensive for big
social data. Our proposed S-MVSC-VAT uses the sampling schema to perform scal-
able computations for big social data clustering. The experimental demonstrations
are presented in the following section.
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4 Experimental study

Tweet data [2] are collected on different health topics to assess health data clus-
tering results. Each subset of data is created with specific health topics. Table 1
presents the details of the social health data in terms of a number of health topics
[18], names of health diseases, and the size of the datasets.

Benchmarked health datasets are retrieved based on the health keywords pro-
vided by TREC [16] [17], which are mentioned in the same table.

After extracting the tweet features in the form of a bag-of-features, various
big social data visual clustering methods are tested in the experimental study.
Three traditional visual methods, the VAT, cVAT, MVS-VAT, and the proposed
S-MVCS-VAT are applied to the provided big social data. Visual images with
excellent clarity are provided by both the S-MVCS-VAT and MVCS-VAT com-
pared to other visual methods. The notable improvement of the proposed method
is that it can derive faster health data clustering results than the MVCS-VAT.

The crisp partitions are derived based on the diagonal and nondiagonal pixel
intensity values. The cluster labels of data objects are derived based on these
cluster partitions, and the results are shown in Fig. 5b for three data topics.

Tweet document features are extracted through the four different topic models:
LDA, LSI, PLSI, and NMF. Figure 2, Fig. 3, Fig. 4, and Fig. 5a show the results
of visual health data clustering for these topic models. From the illustration of the
visual health data clustering results, S-MVCS-VAT shows the visual clusters.

in the form of diagonal square-shaped dark colored blocks with outstanding
clarity under all four topic models.

The clarity of the proposed work with sampling viewpoints is the best. With
sampling viewpoints and without sampling approaches showed almost the same
clarity of visual clusters.

Crisp partitions and consequent quality clustering results depend on the clarity
of visual image clusters. The S-MVCS-VAT has the ability to obtain social health
data clustering results with optimized time and space values. All four proposed
variants are developed with the four specified topic models. These are the LDA-S-
MVCS-VAT, LSI-S-MVCS-VAT, PLSI-S-MVCS-VAT, and NMF-S-MVCS-VAT.
All the comparative analyses of time values (taking the speed parameter) of four
variants of existing and proposed models are shown in Figs. 6, 7 and 8. These fig-
ures compare the same models using the memory space parameter and time com-
parison parameter. Empirical analysis of the speed, memory, and time and space
costs shows that the proposed S-MVCS-VAT is a more scalable visual health data
clustering model in speed and memory efficiency. This leads to the S-MVCS-VAT
being faster and more memory efficient than other visual health data clustering
models.

The performance or quality of the visual data clustering models is evalu-
ated using four parameters: the cluster accuracy (CA) [19], normalized mutual
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9628 K. Narasimhulu et al.

information (NMI) [20], precision [21], and recall [21]. These values are given in
Tables 2, 3,4, and 5, respectively.

From the crisp partitions, the data object labels are predicted, and the perfor-
mance of visual health cluster models is evaluated based on the matching the

predicted cluster labels and ground truth labels using CA, NMI, precision, and
recall.

NMF LDA

VAT cVAT VAT

cVAT

MVCS-VAT S-MVCS-VAT MVCS-VAT S-MVCS-VAT
| .
LSI PLSI
VAT cVAT VAT cVAT
MVCS-VAT S-MVCS-VAT MVCS-VAT S-MVCS-VAT

Fig.2 Visual health data clustering results for big social health data (2 Topics)
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NMF LDA
VAT cVAT

S-MVCSVAT

S-MVCSVAT

LSI PLSI
VAT cVAT VAT cVAT

Fig.3 Visual health data clustering results for big social health data (5 Topics)

4.1 Critical observations

The proposed method used the sample viewpoints only to assess the cluster ten-
dency and data clustering results. Thus, the proposed method is faster method
than the MCS-VAT. Crisp partition images with the best clarity and goodness-
of-fit occur when using the proposed method. The proposed work is able to dis-
cover the quality of large social health data clustering results.

Table 6 presents the goodness-of-fit of the existing and proposed visual
images and shows that S-MVCS-VAT scored higher than the other methods
underlying the four topic models.
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NMF LDA

LSI PLSI

VAT cVAT VAT

S-MVCS-VAT

Fig.4 Visual health data clustering results for big social health data. (10 Topics)
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(a)

NMF LDA

VAT cVAT

MVCS-VAT S-MVCS-VAT

s

-

LSI PLSI

Crisp partitions of S-MVCS-VAT image

Fig.5 a Visual health data clustering results for big social health data. (15 Topics) b Crisp partitions for
three data topics
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Fig.6 Speed parameter analysis of visual social health data clustering models compared with the MVCS-
VAT

The overall experimental analysis shows that the accuracy was improved at a
rate of 5 to 10% in the proposed S-MVCS-VAT method underlying the four topic
models NMF, LDA, LSI, and PLSI for big social health data.

5 Conclusion and future scope

Health data assessment is an emerging need in society. Twitter is one of the enriched
social sources for people to exchange views or opinions on any topic. Big social
data are extracted through Twitter using lakhs of tweets. For the lakhs of tweets, it
is most expensive to find social health data clusters. The recent visual technique,
the MVCS-VAT, effectively conducts social health data cluster assessment with n-2
multiple viewpoints. The proposed work uses an efficient sampling strategy and four
topic models to enhance the MVCS-VAT. Experimental is carried out on 18 different
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NMF-S-MVCS-VAT Vs NMF-MVCS-VAT 250 LDA-S-MVCS-VAT Vs LDA-MVCS-VAT
2501 —— NMF-MVCS-VAT " | =~ Loa-Mvcs_vaT
—#— NMF-S-MVCS-VAT 22.5{ —*— LDA-S-MVCS-VAT
225
© 200
L 200 >é
< c 115
g 175 S
2 2 150
S 150 2
I i 125
> 125 g
g E 100
£ 100 s
= 75
7.5
- 5.0
504 .
2T 3T 4T ST 6T 77 8T 9T 10T 11T 12T 13T 14T 15T
2T 3T 4T ST 6T NLTmbaeTr ;Trml)?cTsln 12T 13T 14T 15T Number of Topics
LSI-S-MVCS-VAT Vs LSI-MVCS-VAT PLSI-S-MVCS-VAT Vs PLSI-MVCS-VAT
35
351 —— LSI-MVCS-VAT —— PLSI-MVCS_VAT
—#— LSI-S-MVCS-VAT +— PLSI-5-MVCS_VAT
0 30
2 ¢
£ 55 £ 25
s ]
= =1
] S 20
g 20 g
ES 2
<
fl 215
815 s
£ £
3 @
s Z 10
10
5
5

2T 3T 4T ST 6T 7T 8T 9T 10T 11T 12T 13T 14T 1ST

2T 3T 4T ST 6T 7T 8T 9T 10T 11T 12T 13T 14T 15T Number of Topics

Number of Topics

Fig.7 Memory space analysis of visual social health data clustering models (S-MVCS-VAT vs. MVCS-
VAT)

case studies, i.e., 18 different subsets of health datasets. Overall observation of these
experimental states that proposed S-MVCS-VAT improves the quality of social
health data clusters with significant rate of 5 to 10%. Goodness-of-fit images for
the visual clusters are much improved in S-MVCS-VAT for all these datasets. Two
scalable parameters, i.e., computational time and memory, are calculated for the pro-
posed S-MVSC-VAT and existing MVCS-VAT underlying with different topic mod-
els for all 18 case studies (i.e., 2 topics to 15 topics; 2 topics to 5 topics in TREC
2018) carried in the experimental work. It proved that the proposed S-MVCS-VAT
is more scalable with respect to computational time and memory allocation. Future
work can be extended to develop scalable ailment visual techniques for health analy-
sis and socially recommended solutions.
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