
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:11138–11155
https://doi.org/10.1007/s11227-022-04328-3

1 3

A queuing theory model for fog computing

Lluís Mas1   · Jordi Vilaplana1 · Jordi Mateo1 · Francesc Solsona1

Accepted: 18 January 2022 / Published online: 7 February 2022 
© The Author(s) 2022

Abstract
Under many scenarios where resources may be scarce or a good Quality of Ser-
vice is a requirement, appropriately sizing components and devices is one of the 
main challenges. New scenarios, such as IoT, mobile cloud computing, mobile edge 
computing or fog computing, have emerged recently. The ability to design, model 
and simulate those infrastructures is critical to dimension them correctly. Queuing 
theory models provide a good approach to understanding how a given architecture 
would behave for a given set of parameters, thus helping to detect possible bottle-
necks and performance issues in advance. This work presents a fog-computing mod-
elling framework based on queuing theory. The proposed framework was used to 
simulate a given scenario allowing the possibility of adjusting the system by means 
of user-defined parameters. The results show that the proposed model is a good tool 
for designing optimal fog architectures regarding QoS requirements. It can also be 
used to fine-tune the designs to detect possible bottlenecks or improve the perfor-
mance parameters of the overall environment.

Keywords  Fog computing · Cloud computing · Simulation · Modelling · Queuing 
theory

 *	 Lluís Mas 
	 lluis.mas@udl.cat

	 Jordi Vilaplana 
	 jordi.vilaplana@udl.cat

	 Jordi Mateo 
	 jordi.mateo@udl.cat

	 Francesc Solsona 
	 francesc.solsona@udl.cat

1	 Department of Computer Science, University of Lleida, Jaume II, 69, Lleida 25001, Spain

http://orcid.org/0000-0002-9163-5364
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04328-3&domain=pdf


11139

1 3

A queuing theory model for fog computing﻿	

1  Introduction

As the Internet of Things (IoT) is rapidly becoming relevant, more and more 
smart devices can be potentially used to enhance computing power and interac-
tivity in a wide range of scenarios. For example, smart-cities [1], eHealth [2], 
e-Learning [3], among others.

IoT devices are responsible for 11.5 Zettabytes of all the data generated and 
this is growing exponentially [4]. These devices have severe computing and stor-
age limitations and they are not able to handle the workload of processing the data 
they generate. Integrating them to the Cloud fixes that issue but it is not optimal. 
The recent adoption of Fog and Edge paradigms dramatically improves the whole 
system’s performance by reducing the amount of data that needs to be transmitted 
to and processed by the Cloud. However, the application requirements should be 
considered before designing the architecture to achieve the best performance. The 
system architecture combines IoT sensors, fog devices and cloud infrastructures. All 
of these need to be considered to obtain the best availability and performance [5].

Mobile cloud computing (MCC) supplies new services and facilities to ena-
ble mobile users (MUs) to take full advantage of cloud computing [6]. However, 
the cloud is usually located far from the MUs, which results in a high network 
latency. This inevitably reduces the quality of user service (QoS). To solve the 
network latency issue, a new paradigm called mobile edge computing (MEC) has 
been proposed [7]. MEC has become a key technology for the Internet of Things 
and 5G [8]. It can be regarded as a special example of MCC. A cloudlet is a type 
of edge server that provides various services to users in close proximity to mobile 
devices (MDs) [9]. That means it can reduce the latency and energy consumption 
by offloading workflow applications (WAs) to a set of cloudlets.

Mobile Edge Computing or Fog computing refers to offloading computationally 
intensive algorithms from a mobile device to the cloud or an intermediate cloud in 
order to save resources, e.g., time and battery in the mobile device [10]. Thus, fog 
computing and fog architectures can improve the Quality of Service (QoS) of a sys-
tem, in other words, low latency and delays, offering several performance improve-
ments when dealing with applications that rely on several devices [11]. By stream-
ing data from the mobile devices to the fog layer in real time to pre-process the data, 
latency and network usage can be reduced, thus providing a higher QoS.

Research in the fog computing field is just starting and it is expected to become 
a unifying platform, rich enough to deliver this new breed of emerging services and 
enable the development of new applications [12]. Many existing platforms incorpo-
rate new devices to enhance the communication with users and automate the data 
collection process [13]. As these devices become more relevant and abundant, exist-
ing cloud models and platforms need to be redesigned, taking into account the fog 
and IoT paradigms. Fog architectures can induce a great improvement for institu-
tions, organisations and companies, facilitating real-time monitoring, critical deci-
sion-making, and optimising resources. Overall, scalability and fares are improved.

Data collected from mobile devices can be made accessible to overall users in 
real time by the use of fog computing, where a requirement is to design systems 



11140	 L. Mas et al.

1 3

that can offer a high QoS given an increasing number of devices connected to the 
system is a requirement. These systems need to have high scalability, ensuring 
that they can keep up with a increasing demand when more devices are added, 
while maintaining the level of QoS established in the service-level agreement 
(SLA). The SLA is the contract that specifies the QoS that a provider has to offer 
for the price being paid [14].

Most of the publications related to fog computing deal with load prediction, sim-
ulation, scheduling, load balancing, etc. [15, 16]. However, there is a lack of work 
focused on designing cloud-fog architectures properly. In this context, the key con-
tribution of this work is to provide a generic model for designing efficient fog archi-
tectures, depending on the expected workload.

To address fog and cloud design challenges and to guarantee the QoS require-
ments at a minimal resource cost, this paper makes the following contributions:

•	 Modeling cloud-fog architectures using a queuing theory model.
•	 Propose a model capable of evaluating the performance regarding response time, 

throughput and node usages metrics aimed to guarantee QoS at minimal resource 
cost.

Therefore, this work aims to develop a user-friendly generic model, based on queu-
ing theory, to help design two-level cloud-fog frameworks. This two-level proposal 
(cloud and fog) is an extension of the model for a single cloud level, presented in 
[17].

Moreover, the model proposed is aimed to assure the QoS performance agreed in 
an SLA by using configurable parameters. Furthermore, the model proposed can be 
applied to evaluate scenarios and fine–tune the parameters adapting the architecture 
to the designer’s needs. Finally, the model presented is flexible and is not limited to 
any specific kind of cloud.

To sum up, this work presents a number of significant contributions in the 
design and performance of cloud–fog architectures. These improvements in perfor-
mance have a direct impact on reducing infrastructure costs and ensuring a greener 
footprint.

Section  2 introduces previous work. The proposed fog model is explained in 
Sect. 3. Section 4 presents the model implemented and examples showing its appli-
cability on tuning the fog in order to fit the agreed QoS performance. Section 5 pre-
sents the outcomes obtained from the work. The discussion and comparison with 
previous work is presented in Sect. 6. Finally, in Sect. 7, the results presented are 
summarised together with the conclusions obtained, and possible future research 
lines for this work.

2 � Related work

Queuing theory has been used to analyse the performance of cloud services [18]. 
Previous work has been done on modelling and simulating fog models with the 
Java Modeling Tool (JMT) for Internet of Things middle-ware [19]. There are 



11141

1 3

A queuing theory model for fog computing﻿	

also tools to perform analysis for cloud and fog computing [20]. Queuing theory 
has also been used to enhance job completion by means of load balancing [10], 
and to reduce data overhead for heterogeneous networks in smart city environ-
ments [21].

Mobile device users usually connect to cloudlets through WiFi. These data 
centres are widely distributed, which means they are in different geographic 
points. Because of that, the decision about which cloudlet to connect to becomes 
a problem as it not only depends on proximity, but also load balancing [22]. Add-
ing an extra layer (cloud and fog) makes it more complex, as suggested in [23]. 
In [24], queuing theory and multi-objective optimisation methods were employed 
to determine the offloading solutions for the deadline-constrained workflows in 
the cloudlet-based mobile cloud, a key challenge in these environments since a 
cloudlet has limited resources.

Various algorithms for optimal assignment of tasks in Mobile Cloud Comput-
ing environment (MCC) have been proposed [22, 25]. The main feature of these 
algorithms is to efficiently assign tasks depending on the location of the cloud 
environment. Another main concern is the optimisation of the energy consump-
tion for all mobile devices [26]. That is the terminology used in MCC for design-
ing cloud/fog architectures as well as the one shown in Fig. 1. The cloud (public) 
is situated far from the users. Therefore, the communication between the cloud 
servers and the users requires an Internet connection [27], consequently, having 
a slow connection would make the task spend considerable amounts of time and 
battery. Queuing theory, control theory, and machine learning are the main solu-
tions for this issue [28, 29], equivalent to having only a one-level architecture 
(just the cloud). Queuing models have proven useful for developing analytical 
models to provide QoS in cloud architectures [17, 30–32].

There are many examples of practical proposals for one-level architecture. For 
instance, in [8], the authors were interested in designing a virtualised mobility 
management entity (vMME) for 5G Mobile Networks, but on a single level (the 
cloud). The proposal determines the minimum number of processing instances 
required to guarantee a given mean system response time. To accomplish that, the 
authors used an approach based on queuing theory. Another important applica-
tion is in web auto-scaling [33], where cloud service providers and researchers 
are working to reduce the costs while maintaining the Quality of Service (QoS). 

Fig. 1   Fog architecture. For a 
Mobile Cloud Computing envi-
ronment (MCC), Fog should be 
replaced by Cloudlets



11142	 L. Mas et al.

1 3

Also, in [34], the authors allocate Virtual Machines dynamically to obtain an 
optimal VM utilisation and perform traffic control at the same time.

There are also many practical applications of fog computing. In [35], the authors 
proposed an architecture, based on the queuing-theory model presented in [17], for 
managing Unmanned Aerial Vehicles (UAV). In [36], the authors performed thor-
ough research on fog applications; they pointed out their uses in many fields includ-
ing health care system [37, 38], augmented reality [39], traffic control systems [40], 
and video streaming systems [41]. The examples of fog computing are not limited to 
these. On the contrary, its applicability keeps growing day by day.

3 � Fog model

Many computational systems and data centers have multiple components. A sys-
tem where interactions are performed by the users is assumed in this model. These 
communications are accomplished by exchanging data with several devices (smart-
phones, smart bands, smartwatches, health sensors, laptops, personal computers, 
etc.) with the cloud platform. In order to improve cloud QoS, such dynamic infor-
mation should be managed by an intermediate stage of the computing environment, 
called Fog.

Figure 1 shows a diagram of a fog computing architecture. The components of 
such architecture are the computing servers and the database on the cloud. The 
smart devices used to exchange and provide data are in the middle, forming the fog. 
Finally, the users engaged with the system are represented on the bottom level.

The fog architecture shown in Fig. 1 is modelled by queuing theory. The model 
obtained, derived from the work published in [17], is shown schematically in Fig. 2. 
It follows a closed Jackson network [42], with a fixed number of jobs circulating 
inside, starting from the user devices. The system workflow is governed by a proba-
bilistic routing through the network. Since there are no outside arrivals nor depar-
tures from the network, the equilibrium distribution can be mathematically formal-
ised. This model represents a system with a fixed number of users, and the smart 
devices of the fog are designed to enhance the performance of computation and data 
exchange between the user devices and the cloud. The purpose of this architecture 
is to analyse the behaviour of the system for a fixed workflow. The fog model is 
made up of three components, the client devices, the fog and the cloud. The cli-
ents ( CSi, i = 1..M ) send the workload to the fog. The fog nodes ( FSj, j = 1..N ) are 
responsible for processing the client’s tasks or resending them to the cloud in case it 
has not enough computing power to process the data. The fog is also responsible for 
collecting data and processing it asynchronously. In the proposed model, the fog will 
forward the workflow to the cloud with a probability of �.

Based on the proposal presented in [17], the cloud level consists of 4 inter-
connected components, the entry server (ES), processing servers (PS), database 
server (DS) and, the output server (OS). The ES is the entry point to the cloud. 
From there, the load-balancer is in charge of distributing the data towards the 
processing servers. Each processing server ( PSk ) accesses the DS with a prob-
ability of � . The DS is responsible for servicing the data (data warehouse, regular 



11143

1 3

A queuing theory model for fog computing﻿	

files, operational database, etc.). Finally, the OS is left in charge of transmitting 
the processed data and results to the Internet, acting as an output gateway of the 
cloud subsystem. The workflow from the Internet enters the corresponding client, 
thus ending the closed Jackson network.

The ES, DS and OS are modelled as M/M/1 queues, relying on three exponen-
tial probability density functions with service rates �E , �D and �O , respectively. 
Every CSi is modelled as an M/M/1 queue with the same exponential service 
rates, that is, �C

i
= �

C, i = 1..M . The fog servers are modelled as an M/M/N queue 
with �F

j
= �

F, j = 1..N . In other words, all the fog servers have the same compu-
tational power. In the cloud, the processing serves are also modelled as an M/M/R 
queue, where R is the number of processing servers. All the processing servers 
are also considered to have the same processing capabilities, that is 
( �P

i
= �

P, i = 1..R).
Jobs cannot circulate freely through the network. Three routers divide the work-

flow. One of them is located after the Fog, where the workflow can be sent to the 
cloud or backwards to the clients. Jobs will be redirected to the cloud with probabil-
ity � , representing high cloud computing or data requirements. The Fog will have 
enough processing or data management capabilities to serve the client jobs with a 
probability 1 − � . Another workflow routing is determined by � , representing the 
probability of accessing the cloud database. Finally, jobs will exit the cloud with a 
probability � . In such a case, the jobs will be redirected to the output server (OS), 
responsible for forwarding jobs to the clients through the Internet. Conversely, jobs 
will be redirected to the processing servers with a probability of 1 − � , representing 
jobs that request more computing or data before they are finished and ready to be 
passed to the clients.

Fig. 2   Fog model using queuing theory



11144	 L. Mas et al.

1 3

The workflow is defined by the stochastic transition matrix (T) (Fig.  3). This 
matrix defines the one-step transition probability of jobs between a pair of adjacent 
servers of the architecture proposed. This way, jobs always move forward from ES 
to PS, from OS to CS and from CS to FS. Jobs also move forward from PS to DS 
with probability � , to OS with probability � , and backwards to PS with probability 
(1 − �) . Note that the probabilities of each row must sum 1.

4 � Simulation

The following section presents the simulation of the outcomes obtained to evalu-
ate our proposal (see Fig. 4). It implements a fog architecture modelled by queuing 
theory as presented above (Section 3). The model was implemented using the sta-
tistical R [43] software (version 4.0.1) and the queueing package [44]. The model 
was deployed as an R Shiny application [45] and is accessible using any modern 
web browser. The developed software enables an analysis of how the performance 
is affected when different parameters are modified. That way, a designer can assess 
whether the design they came up with will handle the workload or, perhaps, the 
architecture allocates too many resources.

The software enables an analysis of how the response time is affected by modi-
fying the different metrics of the model to be performed, allowing verification of 
whether the model behaves as expected when a range of parameters and system con-
figurations is tested in the simulation environment. The source code of the simula-
tion is publicly available at GitHub.1

4.1 � Input parameters

The model’s input parameters are:

•	 J: Number of jobs (customers) in the system.
•	 �

E : Service rate of the Entry Server.
•	 �

P : Service rate of every Processing Server.
•	 �

D : Service rate of the Database Server.
•	 �

O : Service rate of the Output Server.

Fig. 3   Transition probabilities 
matrix

T =





ES PS DS OS CS FS

ES 0 1 0 0 0 0
PS 0 (1− δ)(1− τ) δ (1− δ)τ 0 0
DS 0 (1− τ) 0 τ 0 0
OS 0 0 0 0 1 0
CS 0 0 0 0 0 1
FS κ 0 0 0 (1− κ) 0





1  Source code hosted at GitHub: https://​github.​com/​jvila​plana/​QTFM/​relea​ses/​tag/​v1.0.0.

https://github.com/jvilaplana/QTFM/releases/tag/v1.0.0


11145

1 3

A queuing theory model for fog computing﻿	

•	 �
F : Service rate of every fog Server.

•	 �
C : Service rate of every Client Server.

•	 R: Number of processing servers.
•	 N: Number of fog servers.
•	 M: Number of client servers.
•	 � (0...1): Database access probability.
•	 � (0...1): Output server exit probability.
•	 � (0...1): Fog server exit probability.

Once the parameters are set, the simulator automatically simulates the closed 
Jackson network model specified in the transition matrix T until an equilibrium 
of the overall system is reached.

Fig. 4   Overview of the model’s website



11146	 L. Mas et al.

1 3

4.2 � Outcomes

When the simulation ends, the obtained QoS outcomes are displayed, these being 
throughput, response time, and node usage. Throughput is defined as the number 
of jobs processed per unit of time. Response time is the mean elapsed time per 
job. Finally, node usage is the percentage of occupation of each server.

Furthermore, a summary table containing additional information is displayed. 
Said table has a row for every node and has the following columns:

•	 L: Mean number of customers of the network.
•	 W: Mean time spent in the network.
•	 X: Total throughput of the network.
•	 Lk: Mean number of customers in each node (server).
•	 Wk: Mean time spent in each node.
•	 Xk: Throughput of each node.
•	 ROk: Usage of each node.

All of these parameters can be used to verify the overall degree of occupation 
of the components of the architecture. These outcomes allow the deployment 
of additional resources in the appropriate subsystems to be properly optimised 
(either Cloud, Client, or Fog).

5 � Results

In this section, we present the results guided by an example based on a real-life 
scenario. We show how, for this example, the resource needs are minimised while 
the QoS requirements are still guaranteed.

5.1 � Case study

The case study consists of a system with 100 jobs. Every job has a 50% prob-
ability of needing database access, 50% chance that the task is computing-heavy, 
hence needing more cloud computing time and 50% chance of being a fog heavy-
task, needing more fog computing time.

This scenario dictates that a mean response time of up to 4  s is acceptable. 
Anything past that is considered to violate the quality of service agreement.

After a first design, an architect assessed that the system needs 10 Processing 
servers of 0.4 service rate, 10 Fog servers of 0.4 service rate, 10 Client servers of 
0.4 service rate. The service rate of the Entry server should be 0.9 the Database 
server should have a 0.4 service rate finally, the service rate of the output server 
should be 0.4.



11147

1 3

A queuing theory model for fog computing﻿	

Now let us assess how this initial design will fare in the real scenario using 
the proposed model. As well as whether some optimisations could be made to the 
design.

In the following subsections, different metrics are analysed to evaluate the per-
formance of this case study regarding throughput, response time and node usage. 
Finally, by comparing the results presented in this case study between using the pro-
posed model and one of the most popular simulators in the field (iFogSim), we hope 
to determine the strengths and advantages of using our model and highlight the situ-
ations in which our model could obtain better results and its usage is recommended.

5.2 � Throughput

Throughput is a metric commonly used to measure performance. It is defined as the 
ratio of the number of the number of jobs served per unit of time. This is, R = J∕T  , 
where R is the throughput, J is the number of jobs, and T is the time unit. Figure 5 
shows a plot of the throughput from 0 …100 jobs, as specified in the parameter set-
tings (see Fig. 4).

This plot can be used to assess the limit of the system and its capacity for process-
ing jobs. Note that the x-axis represents the number of jobs in the system, whereas 
the y-axis represents the value of the throughput metric. This plot can be used to 
assess the limit of the system and its ability for processing jobs. That informs the 
system-architect designer of the processing capacity of the entire system. Thus, 
evaluating this metric allows cloud-architect to minimize breaches of Service-Level 
Agreement (SLA) contracts. SLA is usually related to service completion limits.

5.3 � Response time

Response time is another standard metric to assess the performance of a sys-
tem. It is defined as the elapsed time between submitting a request to the server 
and completing the task execution. The total system response time ( Tresponse ) 

Fig. 5   Throughput evolution plot. Relationship between the number of jobs and throughput metric in the 
case study



11148	 L. Mas et al.

1 3

corresponds to the summatory of the residence times at the various nodes of the 
model, this is Tresponse =

∑K

k=1
Rk , where K is the total number of nodes and Rk is 

the total response time of a job in the node k.
Properly calculating the response time is of utmost importance for comply-

ing with any SLA contract, and to ensure acceptable performance of the final 
designed fog architecture. Figure 6 shows the response time of the entire system 
when varying the number of jobs from 0… 100 , as shown above in the through-
put case. Similarly, the x-axis represents the number of jobs in the system, 
whereas the y-axis represents the value of the response time metric.

As can be appreciated, the response time increases almost linearly. We 
assume the system is in ideal conditions, in other words, the additional over-
head caused by saturating the nodes and connections of the system is negligible. 
Processing saturation will be reached when overloading the servers. Connection 
saturation would be reached instead when the tasks exceed the bandwidth capac-
ity. Simulating saturation caused by other factors is beyond the scope of this 
work as it would reduce the scalability of the model. The model is focused on 
computing resource usage and optimising these accordingly. In addition, we are 
not interested in measuring or designing particular aspects of connections and 
servers. Thus, no worsening of the response time with the number of tasks can 
be observed. That means that the response time increases linearly with the num-
ber of tasks and no polynomial or exponential extra cost penalties are introduced 
by increasing them.

In addition to the evolution of the response time as the number of jobs 
increases to the specified target, Fig. 6 also includes a dashed line with the spec-
ified SLA, showing the maximum response time that would be acceptable for the 
system. The intersection between the SLA and response timelines determines 
the maximum number of jobs that the modelled system would be able to handle 
without affecting the desired quality of service.

Fig. 6   Response time evolution plot. Relationship between the number of jobs, the SLA guarantees and 
the response time metric in the case study



11149

1 3

A queuing theory model for fog computing﻿	

5.4 � Node usage

This subsection describes the results related to the percentage of resources con-
sumed by the case study workload, which shows how active the system’s nodes are. 
Figure 7 depicts the occupation of every node for the target number of jobs and the 
given parameters.

Note that the x-axis represents the different nodes [entry server (ES), process-
ing servers (PS), database server (DS) and the output server (OS)]. In contrast, the 
y-axis represents the percentage of usage normalized between 0 and 1. The values 
close to 0 illustrate that the node is underused, whereas around 1 mean that the node 

(a) µE = 9, N = M = 10 0.802117

(b) µE = 7, N = M = 9 0.853284

(c) µE = 6.1, µD = 3.5, µP = 5, µO = 3.5, µF = 5, µC =
5, R = N = M = 5 0.947385

Fig. 7   Sensitivity analysis of nodes usage executing the workload while tuning the main parameters



11150	 L. Mas et al.

1 3

is saturated. Thus, this plot allows us to quickly check which components of the 
architecture are being underused and which others are saturated. These plots are 
remarkably useful for detecting bottlenecks in the system, in other words, which 
nodes are saturated and also which are redundant or oversized.

Figure 7a shows how some of the nodes are slightly underused. Fine-tuning some 
of the model parameters, like the service rate of the entry server ( �E ∶ 0.9 → 0.7 ), 
and the number of fog and client servers ( N,M ∶ 10 → 9 ) resulted in more optimal 
utilization of these nodes, as shown in Fig. 7b. With a thorough parameter adjust-
ment, it can be seen how node usage changes from 85% (Fig. 7b) to a 94% (Fig. 7c).

Figure 8 shows the additional information in a Summary table produced for the 
example in Fig. 4. These values are additional aid for tuning the architecture as a 
debugging aid.

5.5 � Model validation

The developed Fog Model has been tested against iFogSim [46]. iFogSim is a state-
of-the-art simulator widely used in the community. It uses traces to simulate the 
architecture. The main objectives of the comparison are to check how the system 
fares in iFogSim then, run the architecture in our model, detect bottlenecks or sys-
tems with too many resources allocated. Once these issues are detected, the system 
should be modified to improve node usage.

To achieve that, iFogSim has been modified to include node usage at the end of 
each simulation.

Fig. 8   Usage of each node

Fig. 9   Percentage of resources consumed in each node by running DCNSFog example



11151

1 3

A queuing theory model for fog computing﻿	

The base for this study has been the DCNSFog example that base iFogSim pro-
vides. The example uses four areas, each one containing one fog device (FS) and 
four camera devices (CS).

Running the example gives an execution time of 728  s and a total execution 
cost of 25,759. Figure 9 shows the analysis of the same problem using the pro-
posed Fog Model. As it can be seen in Fig. 9, the entry server (ES) and the output 
server (OS) allocate too many resources.

After reducing the resources allocated by the Entry and Output servers in iFog-
Sim, we obtained an execution time of 737 s and a cost of 19,004. In summary, 
it can be appreciated how the results yielded by both of the platforms correlate. 
Finally, using the proposed Fog Model, resource usage can be vastly improved.

6 � Discussion

Starting from an initial work where a one-level cloud environment was modelled 
by using queuing theory [17], the model was expanded to include a two-level fog 
system.

The main advantage of our proposal, as opposed to other fog simulation soft-
ware like CloudSim [47], EdgeCloudSim [48] and iFogSim [46], is that the 
parameters of the model can be adjusted in real-time, allowing users to fine-tune 
the architecture design in advance and detect how it would behave when changing 
the system parameters. This model can be used for rapid prototyping of fog archi-
tectures according to desired performance metrics (QoS or/and SLA). Moreover, 
the parameters in the model presented, like the number of servers and their com-
puting capabilities, can be adjusted in real-time allowing the optimal amount of 
resources to be obtained. Consequently, all the nodes will be close to total com-
puting occupation without being saturated. While developing the presented work, 
user-friendliness and ease of use of the application was a top priority as well. The 
final should be able to adjust the parameters of the model in real-time without the 
need for additional programming.

In the example presented, an increase in the utilisation of 14% was obtained by 
changing parameters only manually, either using lower performing machines or 
decreasing the number of these. Despite reducing the amount of computing power 
the system is provided with, the SLA requirements were still met, thus reducing the 
price a provider would pay for its fog infrastructure while simultaneously ensuring a 
greener footprint.

Rather than a simulation software, as the related literature presents, our proposal 
consists of a framework that will ease the design of fog architectures by simulating 
their load. The designer will easily spot bottlenecks, hence allowing the fine-tuning 
of the system by reducing or increasing the number of servers or their computing 
power. On top of that, the overcomes can be seen as the best configuration at a given 
time with a given load. Prediction and optimisation algorithms can be applied on 
top of the work presented to tune the architecture dynamically depending on the 
predicted load.



11152	 L. Mas et al.

1 3

7 � Conclusions

Modelling and simulating fog computing systems is a complex task. Queuing theory 
models can help perform a first approach to those simulations, helping to dimension 
their components properly. Systems adopting the Internet of Things paradigm can 
be successfully modelled as fog architectures. In this paper, we proposed software 
capable of modelling several fog computing architectures based on a closed Jackson 
network employing queuing theory, which will aid architects to design efficient fog 
architectures.

The results showed that useful performance metrics can be obtained to gather 
insight into how to dimension the system properly before designing and deploying 
an actual fog architecture with QoS or SLA constraints.

Future work includes performing more testing and validating the model used with 
other work from the literature. Also, an optimization algorithm could be developed 
to find the best parameters to ensure the optimal node usage automatically, instead 
of having to fine-tune the parameters manually. Additionally, a load prediction algo-
rithm could be run on top of it so that the load parameters (job number and access 
probabilities) could also feed the optimisation algorithm not only to predict the load 
a system will have but also what architecture will best fit it without saturating while 
still guaranteeing the QoS constraints. Moreover, more work needs to be done to 
extend the simulation software to implement more QoS metrics.

Acknowledgements  This work was supported by the Ministerio de Economía y Competitividad 
under contract TIN2017-84553-C2-2-R and the Ministerio de Ciencia e Innovación under contract 
PID2020-113614RB-C22. Dr. Jordi Vilaplana is a Serra Húnter Fellow.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Tang B, Chen Z, Hefferman G, Wei T, He H, Yang Q (2015) A hierarchical distributed fog comput-
ing architecture for big data analysis in smart cities. In: ACM International Conference Proceeding 
Series, vol 07-09-Ocob. https://​doi.​org/​10.​1145/​28188​69.​28188​98

	 2.	 Qi J, Yang P, Min G, Amft O, Dong F, Xu L (2017). Advanced internet of things for personalised 
healthcare systems: a survey. https://​doi.​org/​10.​1016/j.​pmcj.​2017.​06.​018

	 3.	 Pecori R (2018) A virtual learning architecture enhanced by fog computing and big data streams. 
Future Internet. https://​doi.​org/​10.​3390/​fi100​10004

	 4.	 Forum WE (2019) How much data is generated each day? World Economic Forum. https://​www.​
wefor​um.​org/​agenda/​2019/​04/​how-​much-​data-​is-​gener​ated-​each-​day-​cf4bd​df29f/

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2818869.2818898
https://doi.org/10.1016/j.pmcj.2017.06.018
https://doi.org/10.3390/fi10010004
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/


11153

1 3

A queuing theory model for fog computing﻿	

	 5.	 Santos GL, Takako Endo P, da Silva Ferreira, Lisboa Tigre MF, Ferreira da Silva LG, Sadok D, 
Kelner J, Lynn T (2018) Analyzing the availability and performance of an e-health system inte-
grated with edge, fog and cloud infrastructures. J Cloud Comput. https://​doi.​org/​10.​1186/​
s13677-​018-​0118-3

	 6.	 Peng K, Zhu M, Zhang Y, Liu L, Zhang J, Leung VCM, Zheng L (2019) An energy- and cost-
aware computation offloading method for workflow applications in mobile edge computing. Eurasip 
J Wirel Commun Netw. https://​doi.​org/​10.​1186/​s13638-​019-​1526-x

	 7.	 Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation off-
loading. IEEE Commun Surv Tutor 19(3):1628–1656. https://​doi.​org/​10.​1109/​COMST.​2017.​26823​
18

	 8.	 Prados-Garzon J, Ramos-Munoz JJ, Ameigeiras P, Andres-Maldonado P, Lopez-Soler JM (2017) 
Modeling and dimensioning of a virtualized MME for 5G mobile networks. https://​doi.​org/​10.​1109/​
TVT.​2016.​26089​42

	 9.	 Satyanarayanan M, Bahl P, Cáceres R, Davies N (2009) The case for VM-based cloudlets in mobile 
computing. IEEE Pervasive Comput 8(4):14–23. https://​doi.​org/​10.​1109/​MPRV.​2009.​82

	10.	 Sthapit S, Thompson J, Robertson NM, Hopgood JR (2019) Computational load balancing on the 
edge in absence of cloud and Fog. IEEE Trans Mob Comput 18(7):1499–1512. https://​doi.​org/​10.​
1109/​TMC.​2018.​28633​01

	11.	 Ramalho F, Neto A, Santos K, Filho JB, Agoulmine N (2015) Enhancing eHealth smart applica-
tions: a Fog-enabled approach. In: 2015 17th International Conference on E-Health Networking, 
Application and Services, HealthCom 2015, pp 323–328. https://​doi.​org/​10.​1109/​Healt​hCom.​2015.​
74545​19

	12.	 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. 
In: MCC’12—Proceedings of the 1st ACM Mobile Cloud Computing Workshop, pp 13–15. https://​
doi.​org/​10.​1145/​23425​09.​23425​13

	13.	 Mateo-Fornés J, Pagès-Bernaus A, Plà-Aragonés LM, Castells-Gasia JP, Babot-Gaspa D (2021) 
An internet of things platform based on microservices and cloud paradigms for livestock. Sensors. 
https://​doi.​org/​10.​3390/​s2117​5949

	14.	 Vilaplana J, Mateo J, Teixidó I, Solsona F, Giné F, Roig C (2015) An SLA and power-saving sched-
uling consolidation strategy for shared and heterogeneous clouds. J Supercomput 71(5):1817–1832. 
https://​doi.​org/​10.​1007/​s11227-​014-​1351-2

	15.	 Farooq U, Shabir MW, Javed MA, Imran M (2021) Intelligent energy prediction techniques for fog 
computing networks. Appl Soft Comput 111:107682. https://​doi.​org/​10.​1016/j.​asoc.​2021.​107682

	16.	 Dixit A, Yadav AK, Kumar S (2017) An efficient architecture and algorithm for server provisioning 
in Cloud computing using clustering approach. In: Proceedings of the 5th International Conference 
on System Modeling and Advancement in Research Trends, SMART 2016, vol 8(1), pp 260–266. 
https://​doi.​org/​10.​1109/​SYSMA​RT.​2016.​78945​32

	17.	 Vilaplana J, Solsona F, Teixidó I, Mateo J, Abella F, Rius J (2014) A queuing theory model for 
cloud computing. J Supercomput 69(1):492–507. https://​doi.​org/​10.​1007/​s11227-​014-​1177-y

	18.	 Liu X, Li S, Tong W (2015) A queuing model considering resources sharing for cloud service per-
formance. J Supercomput 71(11):4042–4055. https://​doi.​org/​10.​1007/​s11227-​015-​1503-z

	19.	 Rathod D, Chowdhary DG (2019) Scalability of M/M/c queue based cloud-fog distributed internet 
of things middleware. Int J Adv Netw Appl 11(01):4162–4170. https://​doi.​org/​10.​35444/​ijana.​2019.​
11015

	20.	 Tadakamalla U, Menasce D (2019) FogQN: an analytic model for fog/cloud computing. In: Pro-
ceedings—11th IEEE/ACM International Conference on Utility and Cloud Computing Companion, 
UCC Companion 2018, pp 307–313. https://​doi.​org/​10.​1109/​UCC-​Compa​nion.​2018.​00073

	21.	 Said O, Tolba A (2020) DORS: a data overhead reduction scheme for hybrid networks in smart cit-
ies. Int J Commun Syst. https://​doi.​org/​10.​1002/​dac.​4435

	22.	 Sundararaj V (2019) Optimal task assignment in mobile cloud computing by queue based Ant-Bee 
algorithm. Wirel Pers Commun 104(1):173–197. https://​doi.​org/​10.​1007/​s11277-​018-​6014-9

	23.	 Maiyama KM, Kouvatsos D, Mohammed B, Kiran M, Kamala MA (2017) Performance model-
ling and analysis of an OpenStack IaaS cloud computing platform. In: Proceedings—2017 IEEE 5th 
International Conference on Future Internet of Things and Cloud, FiCloud 2017, vol 2017-Janua, pp 
198–205. https://​doi.​org/​10.​1109/​FiClo​ud.​2017.​54

	24.	 Xu X, Fu S, Yuan Y, Luo Y, Qi L, Lin W, Dou W (2019) Multiobjective computation offloading for 
workflow management in cloudlet-based mobile cloud using NSGA-II. Comput Intell 35(3):476–
495. https://​doi.​org/​10.​1111/​coin.​12197

https://doi.org/10.1186/s13677-018-0118-3
https://doi.org/10.1186/s13677-018-0118-3
https://doi.org/10.1186/s13638-019-1526-x
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/TVT.2016.2608942
https://doi.org/10.1109/TVT.2016.2608942
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/TMC.2018.2863301
https://doi.org/10.1109/TMC.2018.2863301
https://doi.org/10.1109/HealthCom.2015.7454519
https://doi.org/10.1109/HealthCom.2015.7454519
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.3390/s21175949
https://doi.org/10.1007/s11227-014-1351-2
https://doi.org/10.1016/j.asoc.2021.107682
https://doi.org/10.1109/SYSMART.2016.7894532
https://doi.org/10.1007/s11227-014-1177-y
https://doi.org/10.1007/s11227-015-1503-z
https://doi.org/10.35444/ijana.2019.11015
https://doi.org/10.35444/ijana.2019.11015
https://doi.org/10.1109/UCC-Companion.2018.00073
https://doi.org/10.1002/dac.4435
https://doi.org/10.1007/s11277-018-6014-9
https://doi.org/10.1109/FiCloud.2017.54
https://doi.org/10.1111/coin.12197


11154	 L. Mas et al.

1 3

	25.	 Rashidi S, Sharifian S (2017) A hybrid heuristic queue based algorithm for task assignment in 
mobile cloud. Future Gener Comput Syst 68:331–345. https://​doi.​org/​10.​1016/j.​future.​2016.​10.​014

	26.	 Pandi V, Perumal P, Balusamy B, Karuppiah M (2019) A novel performance enhancing task sched-
uling algorithm for cloud-based e-health environment. Int J E-Health Med Commun 10(2):102–117. 
https://​doi.​org/​10.​4018/​IJEHMC.​20190​40106

	27.	 Sundararaj V, Muthukumar S, Kumar RS (2018) An optimal cluster formation based energy effi-
cient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. 
Comput Secur 77:277–288. https://​doi.​org/​10.​1016/j.​cose.​2018.​04.​009

	28.	 Zhang J, Huang H, Wang X (2016) Resource provision algorithms in cloud computing: a survey. J 
Netw Comput Appl 64:23–42. https://​doi.​org/​10.​1016/j.​jnca.​2015.​12.​018

	29.	 El Kafhali S, Salah K (2018) Modeling and analysis of performance and energy consumption in 
cloud data centers. Arab J Sci Eng 43(12):7789–7802. https://​doi.​org/​10.​1007/​s13369-​018-​3196-0

	30.	 Palvannan RK, Teow KL (2012) Queueing for healthcare. J Med Syst 36(2):541–547. https://​doi.​
org/​10.​1007/​s10916-​010-​9499-7

	31.	 Bai WH, Xi JQ, Zhu JX, Huang SW (2015) Performance analysis of heterogeneous data centers in 
cloud computing using a complex queuing model. Math Probl Eng. https://​doi.​org/​10.​1155/​2015/​
980945

	32.	 Cassar MR, Borg D, Camilleri L, Schembri A, Anastasi EA, Buhagiar K, Callus C, Grech M (2021) 
A novel use of telemedicine during the COVID-19 pandemic. Int J Infect Dis 103:182–187. https://​
doi.​org/​10.​1016/j.​ijid.​2020.​11.​170

	33.	 Singh P, Gupta P, Jyoti K, Nayyar A (2019) Research on auto-scaling of web applications in cloud: 
survey, trends and future directions. Scalable Comput 20(2):399–432. https://​doi.​org/​10.​12694/​scpe.​
v20i2.​1537

	34.	 Hanini M, El Kafhali S, Salah K (2019) Dynamic VM allocation and traffic control to manage QoS 
and energy consumption in cloud computing environment. Int J Comput Appl Technol 60(4):307–
316. https://​doi.​org/​10.​1504/​IJCAT.​2019.​101168

	35.	 Luo F, Jiang C, Yu S, Wang J, Li Y, Ren Y (2017) Stability of cloud-based UAV systems supporting 
big data acquisition and processing. IEEE Trans Cloud Comput 7(3):866–877. https://​doi.​org/​10.​
1109/​tcc.​2017.​26965​29

	36.	 Rahman G, Chuah CW (2018) Fog computing, applications, security and challenges, review. Int J 
Eng Technol 7:1615

	37.	 Brzoza-Woch R, Konieczny M, Kwolek B, Nawrocki P, Szydło T, Zieliński K (2015) Holistic 
approach to urgent computing for flood decision support. Procedia Comput Sci 51(1):2387–2396. 
https://​doi.​org/​10.​1016/j.​procs.​2015.​05.​414

	38.	 Cao Y, Chen S, Hou P, Brown D (2015) FAST: a fog computing assisted distributed analytics sys-
tem to monitor fall for stroke mitigation. In: Proceedings of the 2015 IEEE International Conference 
on Networking, Architecture and Storage, NAS 2015, pp 2–11. https://​doi.​org/​10.​1109/​NAS.​2015.​
72551​96

	39.	 Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of things realize its potential. 
Computer 49(8):112–116. https://​doi.​org/​10.​1109/​MC.​2016.​245

	40.	 Tang C, Xia S, Zhu C, Wei X (2019) Phase timing optimization for smart traffic control based on 
fog computing. IEEE Access 7:84217–84228. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29251​34

	41.	 Chen N, Chen Y, You Y, Ling H, Liang P, Zimmermann R (2016) Dynamic urban surveillance 
video stream processing using fog computing. In: Proceedings—2016 IEEE 2nd International Con-
ference on Multimedia Big Data, BigMM 2016, pp 105–112. https://​doi.​org/​10.​1109/​BigMM.​2016.​
53

	42.	 Khac CN, Thanh KB, Dac HH, Hong SN, Tran VP, Cong HT (2019) An open Jackson network 
model for heterogeneous infrastructure as a service on cloud computing. Int J Comput Netw Com-
mun 11(1):63–80. https://​doi.​org/​10.​5121/​ijcnc.​2019.​11104

	43.	 Core Development Team R (2020) A Language and Environment for Statistical Computing. http://​
www.r-​proje​ct.​org

	44.	 Jiménez PC, Montoya YR (2017) queueing: A package for analysis of queueing networks and mod-
els in R. R Journal 9(2):116–126. https://​doi.​org/​10.​32614/​rj-​2017-​051

	45.	 Vinet L, Zhedanov A (2011) A ‘missing’ family of classical orthogonal polynomials, vol 44. Packt 
Publishing. https://​doi.​org/​10.​1088/​1751-​8113/​44/8/​085201

	46.	 Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017) iFogSim: A toolkit for modeling and simu-
lation of resource management techniques in the internet of things, edge and fog computing environ-
ments. Softw Pract Exp 47(9):1275–1296. https://​doi.​org/​10.​1002/​spe.​2509

https://doi.org/10.1016/j.future.2016.10.014
https://doi.org/10.4018/IJEHMC.2019040106
https://doi.org/10.1016/j.cose.2018.04.009
https://doi.org/10.1016/j.jnca.2015.12.018
https://doi.org/10.1007/s13369-018-3196-0
https://doi.org/10.1007/s10916-010-9499-7
https://doi.org/10.1007/s10916-010-9499-7
https://doi.org/10.1155/2015/980945
https://doi.org/10.1155/2015/980945
https://doi.org/10.1016/j.ijid.2020.11.170
https://doi.org/10.1016/j.ijid.2020.11.170
https://doi.org/10.12694/scpe.v20i2.1537
https://doi.org/10.12694/scpe.v20i2.1537
https://doi.org/10.1504/IJCAT.2019.101168
https://doi.org/10.1109/tcc.2017.2696529
https://doi.org/10.1109/tcc.2017.2696529
https://doi.org/10.1016/j.procs.2015.05.414
https://doi.org/10.1109/NAS.2015.7255196
https://doi.org/10.1109/NAS.2015.7255196
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1109/ACCESS.2019.2925134
https://doi.org/10.1109/BigMM.2016.53
https://doi.org/10.1109/BigMM.2016.53
https://doi.org/10.5121/ijcnc.2019.11104
http://www.r-project.org
http://www.r-project.org
https://doi.org/10.32614/rj-2017-051
https://doi.org/10.1088/1751-8113/44/8/085201
https://doi.org/10.1002/spe.2509


11155

1 3

A queuing theory model for fog computing﻿	

	47.	 Ahmad MO, Khan RZ (2019) Cloud computing modeling and simulation using CloudSim environ-
ment. Int J Recent Technol Eng 8(2):5439–5445. https://​doi.​org/​10.​35940/​ijrte.​B3669.​078219

	48.	 Sonmez C, Ozgovde A, Ersoy C (2018) EdgeCloudSim: an environment for performance evaluation 
of edge computing systems. Trans Emerg Telecommun Technol. https://​doi.​org/​10.​1002/​ett.​3493

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.35940/ijrte.B3669.078219
https://doi.org/10.1002/ett.3493

	A queuing theory model for fog computing
	Abstract
	1 Introduction
	2 Related work
	3 Fog model
	4 Simulation
	4.1 Input parameters
	4.2 Outcomes

	5 Results
	5.1 Case study
	5.2 Throughput
	5.3 Response time
	5.4 Node usage
	5.5 Model validation

	6 Discussion
	7 Conclusions
	Acknowledgements 
	References




