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Abstract
In this paper, the authors present several self-developed implementation variants of 
the Discrete Wavelet Transform (DWT) computation algorithms and compare their 
execution times against the commonly approved ones for representative modern 
Graphics Processing Units (GPUs) architectures. The proposed solutions avoid the 
time-consuming modulo divisions and conditional instructions used for DWT filters 
wrapping by proper expansion of the DWTs input data vectors. The main goal of 
the research is to improve the computation times for popular DWT algorithms for 
representative modern GPU architectures while retaining the code’s clarity and sim-
plicity. The relations between algorithms execution time improvements for GPUs 
are also compared with their counterparts for traditional sequential processors. The 
experimental study shows that the proposed implementations, in the case of parallel 
realization on GPUs, are characterized by very simple kernel code and high execu-
tion time performance.

Keywords  Time effectiveness optimization · Graphics processing unit (GPU) · 
Discrete wavelet transform (DWT) · Lattice structure · Matrix-based approach

1  Introduction

The digital signal processing (DSP) has become an integral part of everyday life. 
The increasing number of electronic devices has led to a situation where almost eve-
ryone has to deal with digitally processed data. A digital signal can be a sequence 
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of samples extracted from a continuous signal or any discrete set of data like, e.g., 
image in bitmap form. However, still more often, the digital signal is directly derived 
from the continuous signal as its representation [1].

Nowadays, numerous computational problems are so complex that they not only 
require computer aided processing, but also a very efficient processing of huge data 
sets, often in real time [2]. Therefore, there are efforts to optimize the known algo-
rithms both from the perspective of the processing time and the precision of the 
results as well. Current processors are often optimized to an extreme physical oper-
ational conditions, e.g., the widths of the electric paths are regularly close to the 
atomic size. This causes the need to look for new techniques to increase the compu-
tational efficiency. Increasing the frequency also meets the physical barriers. Those 
are only few of the reasons why parallel computing is becoming more and more 
popular [3, 4]. The conversion of traditional, sequential computation algorithms to 
their parallel counterparts requires suitable implementations and poses a real chal-
lenge for software engineers involved in algorithm optimization [5].

The quality of the developed algorithms is, of course, subject to evaluation. There 
are different evaluation methods. Often we refer to computational complexity or 
time complexity. In the case of parallel devices and, in particular, graphics cards, the 
problem is much more complicated. The number of basic operations such as arith-
metic, logic, and memory accesses does not directly affect the actual computation 
time. Extra parameters like versatility, simplicity, ease of implementation, ease of 
modification, utilization of hardware resources, achieved acceleration, complexity 
of communication, synchronizations, portability and others are also highly impor-
tant. Among this and other reasons, time efficiency models are created for specific 
architectures. In the end, it often eventually turns out that only experimental stud-
ies give a real insight into performance characteristics of a chosen computational 
method. Software designer always tries to minimize the computational complexity, 
memory usage or other criteria of the overall cost [6]. However, such approaches are 
not always successful. It is quite often the case that a simpler algorithm with worse 
traditional computational complexity performs better because of the advantages 
resulting from its computational structure design.

In this paper, we present several optimization variants of commonly used 
DWT computation algorithms, namely the matrix and the lattice structure-based 
approaches, and compare their execution time effectiveness for both CPU and GPU 
implementations. The results indicate that, despite of twofold reduction in compu-
tational complexity of the lattice structure-based approach in comparison with the 
matrix-based method, the former algorithm performs significantly worse for large 
transform sizes due to its more complex computational structure when implemented 
on GPU.

2 � Discrete wavelet transform

An important reason for transforming data from one form into another is the desire 
to analyze the features of the signal that are more visible after the transformation 
than in the original form. Such transformations are also sometimes called mappings. 
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The fundamental group of transformations is linear transformations which are one of 
the axioms of linear algebra. These are homomorphic mappings preserving the spa-
tial structure. A special case of linear transformations is orthogonal ones possessing 
an important property of their inverse matrix being the transposition of the forward 
one. Computing the inverse matrix for multidimensional data can be a much more 
complex problem than a simple transposition for transformations. It is common to 
use harmonic functions as basis functions due to the fact that harmonic signals do 
not change their shape after passing through a linear system (only their phase and 
amplitude changes) [7].

The wavelet transform provides a time-frequency representation of a signal. It is 
similar to the Short Time Fourier Transform (STFT), but the wavelet transform uses 
a multi-resolution technique where different frequencies are analyzed at different 
resolutions. Its name is derived from the term “wavelet” meaning localized wave 
(Fig. 1). The energy of such signal is concentrated in time and space. Another differ-
ence between wavelet transform and Fourier transform is that Fourier transform uses 
waves to analyze signal, while wavelet transform uses short waves of finite energy. It 
can be stated that wavelet transform gives good time resolution at high frequencies 
and poor frequency resolution at low frequencies.

The discrete wavelet transform (DWT) is a discretized version of the continuous 
wavelet transform (CWT). In CWT, the signals are analyzed using a set of basis 
functions which relate to each other by simple scaling and translation. In the case of 
DWT, a timescale representation of the digital signal is obtained using digital filter-
ing techniques. The signal is passed through filters with different cutoff frequencies 
at different scales [8].

The basic method of calculating the linear transformation is an algebraic approach 
based on multiplying a matrix by a vector of the input signal. This operation can be 
simply stated as

where � is a N-element input vector, � is a N-element output vector, and � is a N×N

-element matrix performing the filtering. There are infinitely many wavelets, so 
there is also an infinite number of possible wavelet transforms.

� = ��,

(a) (b)

Fig. 1   Example of wave a and wavelet b 
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The wavelet transform for discrete signals is specified by the following formula:

where x represents the signal, and Ψj,k is the wavelet transform kernel for which the 
parameters j and k represent shifts in the frequency and time domain. Wavelet trans-
formation can be implemented using low-pass and high-pass filters. The organiza-
tion of the calculations means that in each step, the high-pass filter produces detailed 
results, while the result of the low-pass filter depends on the scaling function. Thus, 
the time resolution remains at a good level for high frequencies and the frequency 
resolution remains at a good level for low frequencies. The number of decomposi-
tion stages depends on the size of the transform. The reconstruction process is based 
on the inverted version of the scheme presented in Fig. 2.

The discrete wavelet transform in direct matrix form can be implemented as a 
stage in the analysis of a two-channel filter bank with a finite impulse response. The 
two filters h and g with the number of coefficients K each compose the transforma-
tion matrix [9–11]:

Two channel filter banks can be implemented in various ways. These are direct 
form, polyphase structure, lattice structure and lifting structure [12]. From the effi-
ciency point of view, each of these has its advantages and drawbacks. For example, 
the lattice structure having good computational complexity cannot be used for all 
types of filters, and in the case of parallel implementation, its structure forces the 
need for synchronizations. In the case of polyphase implementations, it is easy to 
achieve a high degree of parallelism of computations, but the compute complexity 
is higher than in the case of the lattice form [1]. In the case of a lifting structure, the 
problem of quantization error arises, which is increased with each step. Despite this, 

WΨ[j, k] =
1

√
N

N−1�

n=0

x[n]�j,k[n],

�=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hK−1 … h1 h0 0 0 … 0 0

gK−1 … g1 g0 0 0 … 0 0

0 0 hK−1 … h1 h0 … 0 0

0 0 gK−1 ... g1 g0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

hK−3 ... h1 h0 0 0 … hK−1 hK−2

gK−3 ... g1 g0 0 0 … gK−1 gK−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Fig. 2   Example decomposition tree of DWT with filters h and g 
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the lattice structure is acclaimed as an efficient tool in the implementation of two 
channel filter banks with finite impulse response.

The computations for the first K/2 stages of lattice structure-based DWT are 
described by the Γi,j operations (denoted by ’ ∙ ’ in Fig. 3):

where si,j , ti,j are parameters whose values are determined during the factorization 
process, i = 0, 1,… ,K∕2 − 1 and j = 0, 1,… ,N∕2 − 1 . A single Γi,j operation con-
sists of two multiplications and two additions.

The wavelets used in DWT can be classified into two categories: orthogonal 
and biorthogonal. The coefficients of orthogonal filters are real numbers. Both 
filters have the same length and are not symmetric. If we mark the low-pass fil-
ter as g and the high-pass filter as h, then the following relation should be true: 
h0(k) = z−Ng0(−z

−1) . For biorthogonal filters, the low-pass filter and the high-pass 
filter have different lengths. The low-pass filter is symmetric and the coefficients 
are real numbers or integers. There are many functions that can be used to prepare 
wavelets for the DWT. Some of the most common ones are shown in Fig. 4.

One of the earlier wavelets examples is the Haar wavelet, in today’s practice 
though Daubechies wavelets are very common. Many wavelets are created for spe-
cific features. The field of designing wavelets is very wide and still growing. It 
involves both theoretical aspects of wavelets and their implementation. Wavelets are 
the result of work in many fields, including mathematics, physics, computer science 
and others but the target of research is to develop tools for describing functions in 
time and frequency domain at the same time. Each practical application of DWT 
requires wavelet bases with different properties. In practical applications, the larger 

(1)Γi,j =

[
1 si,j
ti,j 1

]
,

Fig. 3   Lattice structure of N = 8 point DWT (both decomposition and reconstruction) and filters of 
length K = 6
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the set of wavelets the better. In order to prepare the correct and useful wavelets, a 
set of restrictions is imposed. Among many conditions, most important are regular-
ity, symmetry, compact support, orthogonality with polynomials of degree n. It is 
not possible to achieve all carious properties of wavelets at the same time because 
different properties may be incompatible with each other. Biorthogonal wavelets 
have most of the properties of orthogonal wavelets, with the advantage that they are 
more flexible. There are many more biorthogonal wavelets than orthogonal wave-
lets. Detailed rules for designing wavelets are discussed in the paper [7].

The DWT finds countless applications today, such as digital signal processing, 
high-speed data transmission protocols, biometric data and image compression, e.g., 
in JPEG2000 standard, in case of which DWT enables attaining high compression 
ratios with good quality of image reconstruction.

2.1 � Theoretical effectiveness of selected DWT algorithms

We have chosen to base our considerations on two selected implementations of the 
DWT, namely the direct matrix-based approach, also called the convolutional form, 
and the lattice structure-based approach. The direct matrix approach and the lattice 
structure-based one both have features that are particularly important in the con-
text of parallel implementations on a GPU. The convolutional form is very simple, 
and its matrix structure is beneficial for the GPU architecture. In contrast, the lat-
tice form reduces computational complexity, but its staged structure generates some 
implementation difficulties and sequentially parallel execution. Moreover, the step-
wise structure creates another obstacle for the implementation, because in the tradi-
tional approach, the kernel code for the last step should be different than all previous 
steps, due to the fact that the last step consists only of multiplication, while each 

(a) (b) (c)

(d) (e) (f)

Fig. 4   Example of few popular wavelets: a Haar, b Daubechies, c Coiflet, d Meyer, e Morlet, f Mexican 
Hat
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previous step consists of two multiplications and two additions. This generates the 
need to call a special kernel code for the last stage or to use a conditional instruc-
tion in the kernel code and both solutions are clearly disadvantageous in terms of 
GPU computing performance. However, let’s take a closer look at the theoretical 
time complexity of these algorithms.

Computational complexity of the direct matrix-based approach to DWT calcu-
lation requires CMAT

MUL
= NK multiplications and CMAT

ADD
= N(K − 1) additions, where 

K is the filter length, and N is the size of wavelet transformation. Of course, these 
values can be lowered for a lattice structure due to the use of a factorization pro-
cess. Such factorization exploits the dependencies between the filters of the two 
banks that are inherent in the perfect reconstruction condition imposed on the fil-
ter banks. As a result, the computational complexity of the wavelet transform using 
a lattice structure is characterized by a theoretical computational complexity of 
C
LAT
MUL

=
1

2
N(K + 2) multiplications and CLAT

ADD
=

1

2
NK additions. Therefore, it can 

be said that from the point of view of both multiplication and addition operations, 
the lattice structure has twice better computational complexity. The relationship 
between theoretical computational complexities is particularly important in the case 
of sequential implementations, but in the case of parallel processors, a very precise 
model is necessary to translate the theoretical complexities into real computational 
time. Among the group of purely theoretical evaluation tools for parallel algorithms, 
there is a property called step-complexity [13, 14]. Stepwise complexity is defined as 
the minimum required number of sequential steps necessary for a parallel algorithm 
to complete its calculations, considering the infinite amount of arithmetic processing 
units available during its activity. Using this definition and combining the operations 
of addition and multiplication, we can say that the step-complexity of the matrix 
algorithm is SMAT

ALL
= 2K − 1 , while the step-complexity of the lattice algorithm is 

S
LAT
ALL

= 2K + 2 . Evaluation of parallel algorithms is a tricky issue because the num-
ber of elementary operations influencing the computational complexity and memory 
utilization lose their significance. Instead, important are aspects such as universal-
ity, simplicity of the algorithm, ease of implementation and possible modification, 
degree of utilization of available resources, acceleration achieved, cost, communica-
tion complexity, portability. Efforts to develop accurate execution time prediction 
models for parallel platforms have been carried out for a period many years now, 
but still no model has been accepted as a general parallel computing model or even 
GPU limited model. There are simulators, but they are expensive to use in terms 
of simulation time and difficult to maintain for developers as they require constant 
updates for new layouts. For this reason, conventional experimental research is still 
very popular in the case of GPGPU.

3 � Related work

There are some different architectures for implementing a two-channel DWT filter 
bank. The most popular implementations are direct matrix-based structure, poly-
phase structure, lifting structure and lattice structure. The transformation itself is 
highly acclaimed and finds countless practical applications [32]. The classical DWT 
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algorithm is a direct implementation of a 2-channel filter bank based on building 
a transformation matrix [7]. Lattice factorization of two-channel orthogonal filter 
bank for wavelet transform has been proposed in the following papers [9, 15, 16]. 
The effectiveness of the mentioned lattice factorization against existing solutions 
has been tested for CPU in paper [3] and for GPU in paper [17]. The research on 
efficient realizations of DWT, e.g., using lattice structures is also very common for 
both CPU and GPU processors [18].

The proposed implementation of the DWT without wrapping, to the best of our 
knowledge, is a novelty in the implementation of both the lattice and matrix-based 
DWT algorithms. By extending the input data sets, we are able to avoid time-expen-
sive modulo divisions and conditional instructions. All implementation details are 
presented in the next chapter. In addition, we present the performance of the devel-
oped implementations for a few different granularities of computations division. 
As shown in the research [19, 20], the partitioning of a computational task directly 
affects general performance.

Although computational complexities of the proposed algorithms and their step-
efficiencies, which we have presented in the previous chapter, can be quite easily 
derived, we have decided to evaluate the proposed solutions experimentally, along 
with validation of the achieved numerical accuracy. This comes from the fact 
that based on our previous experiences we know that in the case of GPU imple-
mentations, often only experimental tests can provide a real insight into the algo-
rithms performance. However, it is still worth noting that there are many models 
for parallel computations, such as, e.g., the general PRAM model (Parallel Random 
Access Machine) which are useful in, at least coarse, estimation of parallel algo-
rithms execution performance. Unfortunately, many of them are significantly inac-
curate because of the complexity of GPUs architectures, which combine together 
the features of both sequential and parallel computations [5]. We here should note 
the existing analytical, statistical, simulation-based and hybrid models [21–29]. The 
precision of those models, depending on the type of algorithm, oscillates from about 
90% upward, with a maximum prediction mismatch of up to 50%. The interested 
Reader can find a comprehensive review of the existing models in our paper [30] in 
which we have also proposed the new execution time prediction model for parallel 
GPU implementations of the discrete transforms computation algorithms, i.e., for 
the algorithms analyzed in the present work.

4 � DWT implementations

In this section, we present our self-developed and tested implementations of the 
DWT computation algorithms along with their reference implementations. During 
our study, we have tested a significant amount of speed up techniques of the algo-
rithms analyzed in this paper which cannot all be presented in this work for obvious 
reasons. Among all the variations we have prepared and tested, we have chosen those 
which gave the best performance increase during the tests. The improvements were 
made at the level of implementation, compilation and the algorithm structure. We 
noticed that wrapping the filters within the transformation matrix is computationally 
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expensive so we proposed solution without wrapping for both (matrix-based and lat-
tice) algorithms. We also tested the impact of granularity of the computations on the 
total time in the case of graphics cards.

For the sake of clarity, we have labeled the selected sequential implementations 
analyzed in this article as cpu_dwt_m2_ww_ref, cpu_dwt_m2_nw, cpu_dwt_l2_ww, 
cpu_dwt_l2_nw, and the parallel GPU implementations as gpu_dwt_m1_ww_ref, 
gpu_dwt_m2_ww, gpu_dwt_m4_ww, gpu_dwt_m2_nw, gpu_dwt_m4_nw, gpu_dwt_
l2_ww and gpu_dwt_l2_nw. The naming convention used for the implementations is 
designed in such a way to immediately give an intuitive hint on how a given algo-
rithm is implemented. A name starting with “cpu” means that it is an implementa-
tion designed for CPUs, while the beginning “gpu” indicates that the implemen-
tation is designed for GPUs. The next segment, “dwt”, is exactly the same for all 
implementations, as they all implement the DWT transformation (using different 
algorithms). The following segment indicates whether the implementation uses a 
lattice algorithm or a direct matrix approach along with the algorithm’s granular-
ity, e.g., “m4” stands for a matrix algorithm with granularity “4”, “l2” stands for a 
lattice algorithm with granularity “2”. The next segment specifies if the implemen-
tation contains wrapping, “ww” is used for implementations that wrap the DWT 
filters and “nw” is used for implementations that bypass the filter wrapping. At the 
very end of the tested implementation name, the “ref” postfix may appear to indi-
cate that we are treating this particular implementation as a reference for the others.

Let us now present the details of the proposed implementations. For the wrapped 
matrix model, the input signal has a length of N samples and the transformation 
matrix has a size of N×N-elements. In the case of the matrix model without wrap-
ping, for an input signal of length N samples the transformation matrix has size 
N×(N + K − 2) where K represents the filters length. The input signal is expanded 
by K − 2 initial samples. Likewise, for the lattice model without wrapping, the input 
signal must be extended by K − 2 initial samples (K defines the length of the filters). 
Then, because of the introduction of additional operations in each step, wrapping 
can be bypassed.

Parallel implementations were developed with different granularity. The gran-
ularity choice when implementing an algorithm is especially important for par-
allel architectures, but it is also affecting sequential program performance. For 
matrix-based algorithms, granularity “1” means the maximum level of parallel-
ism, unfortunately it means at the same time the need to use the low-pass and 
high-pass filter selection logic. Granularity “2” eliminates the need to select the 
appropriate filter for even and odd indexes of the input signal, in other words, 
means processing of 2 rows of the matrix by a single thread, analogically, granu-
larization “4” means processing of “4” rows of the matrix by a single thread. In 
the case of the lattice-based DWT algorithms, the most intuitive granularity is a 
multiple of “2,” because every single butterfly operation always works on “2” ele-
ments of the input vector. The detailed impact of granularity selection for GPU 
efficiency has been tested using the Fast Fourier Transform in the following paper 
[19]. All the code listings, presented in the following section, use a consistent 
variable naming: K - the filter length (integer, odd, natural number), N - input 
signal length (integer, odd, natural number, N > K ), hp[] - vector with first 
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filter samples (array of floats), gp[] - vector with second filter samples (array 
of floats), wtg[] - vector with tangent factors of base operations (array of floats, 
K∕2 + 1 elements), x[] - input/output signal (N - samples), y[] - helper table 
for computations (N - elements), finally hpgp[] - the merged hp[] and gp[] 
arrays (2K elements).

4.1 � Sequential implementations on CPUs

4.1.1 � cpu_dwt_m2_ww_ref ‑ sequential, matrix‑based, 2‑point, with wrapping

We will start our analysis by presenting a chosen reference implementation. 
There are many examples of DWT implementations for CPUs in the literature. 
However, we have chosen an implementation presented in the book [7] whereby 
the authors proposed a pseudocode for the forward fast wavelet transform, as 
well as its inversed version. What’s more, code was presented in a clear manner 
and supported by mathematical derivation of the transform formulas with finite 
sequence of coefficients. The authors of the book are acknowledged profession-
als in the field of discrete linear transformations and although their aim was not 
to optimize the implementation, we believe that it is an excellent starting point 
for optimization and further research. This implementation is representative of 
direct matrix approach Fig. 5a using modulo division to perform filter wrapping. 
We have optimized this proposal by reducing number of modulo divisions, inte-
gration of for loops and reducing the organisation cost. In our implementation, 
instead of two internal for loops, there is only one, where single iteration com-
putes two elements of the output vector. The filter arrays h and g remain sepa-
rated. The implementation is considered a reference implementation for the other 
sequential implementations. 

(a) (b)

Fig. 5   Matrix model with wrapping a and without wrapping b for a transformation of size N=10 and 
filters of length K = 6
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Listing 1 Code fragment of the cpu dwt m2 ww ref implementation.
1 float t1 , t2; // Output:
2 for (int k = 0; k < N; k += 2){y[k] = x[k]; y[k + 1] = x[k + 1];} // x[] - signal after transform
3 for (int Nd2 = N / 2, i1 = 0, i = 0; i < N; i += 2, i1++) //
4 { //
5 :tupnI//;]1[ph*]1+i[y+]0[ph*]i[y=1t
6 )taolf(langistupni-][x//;]1[pg*]1+i[y+]0[pg*]i[y=2t
7 )tni(htgnellangis-N//)2=+k;K<k;2=k,jtni(rof
8 { // t1 , t2 - temp variables (float)
9 )taolf(elbatyraropmet-][y//;N%)k+i(=j

10 )taolf(retliftsrif-][ph//;]1+k[ph*]1+j[y+]k[ph*]j[y=+1t
11 )taolf(retlifdnoces-][pg//;]1+k[pg*]1+j[y+]k[pg*]j[y=+2t
12 } // K - filter length (int)
13 //;2t=]2dN+1i[x;1t=]1i[x
14 } //

4.1.2 � cpu_dwt_m2_nw ‑ sequential, matrix‑based, 2‑point, without wrapping

Based on the reference implementation cpu_dwt_m2_ww_ref, we present an imple-
mentation of cpu_dwt_m2_nw. The main difference is that this implementation 
completely bypasses the need to wrap the filters by using the concept presented in 
the previous section (Fig. 5b). In fact, it is very similar to cpu_dwt_m2_ww_ref but 
does not have any modulo operations or conditional statements. To achieve this, the 
input signal had to be extended by K − 2 initial samples. Therefore, there is an addi-
tional loop in the code performing K − 2 iterations. This implementation is the first 
evaluator of the proposed no-wrap optimization 5(a). The filters remain separated 
into two arrays. Every single loop iteration computes two samples of the output vec-
tor with the use of two separated low-pass and high-pass filters. 

Listing 2 Code fragment of the cpu dwt m2 nw implementation.
1 float t1 , t2; // Output:
2 for (int k = 0; k < N; k += 2) {y[k] = x[k]; y[k + 1] = x[k + 1];}// x[] - signal after transform
3 for (int k = 0; k < K - 2; k++){ y[k + N] = y[k]; } //
4 for (int Nd2 = N / 2, i1 = 0, i = 0; i < N; i += 2, i1++){ // Input:
5 )taolf(langistupni-][x//;]1[ph*]1+i[y+]0[ph*]i[y=1t
6 )tni(htgnellangis-N//;]1[pg*]1+i[y+]0[pg*]i[y=2t
7 )taolf(selbairavpmet-2t,1t//{)2=+k;K<k;2=ktni(rof
8 t1 += y[i + k] * hp[k] + y[i + k + 1] * hp[k + 1]; // y[] - temporary table (float)
9 t2 += y[i + k] * gp[k] + y[i + k + 1] * gp[k + 1]; // hp[] - first filter (float)

10 } // gp[] - second filter (float)
11 )tni(htgnelretlif-K//;2t=]2dN+1i[x;1t=]1i[x
12 } //

4.1.3 � cpu_dwt_l2_ww ‑ sequential, lattice, 2‑point, with wrapping

The cpu_dwt_l2_ww is the first presented lattice implementation with wrapping 
(Fig.  6a). It has been developed based on the work of published in papers [3, 
9, 15, 16]. This implementation uses, instead of two filters, a single vector of 
K∕2 + 1 samples of factorized two-point base operations with tangent multipli-
ers. Wrapping for butterfly operations out of the array size is implemented with 
the use of time-efficient helper variables. We will call such an implementation 
the wrapped one. A single butterfly operation works on two input samples. The 
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number of steps in the structure depends on the size of the input vectors and is 
K/2, noting that the last step consists of multiplications only. 

Listing 3 Code fragment of the cpu dwt l2 ww implementation.
1 :tuptuO//;0=dnitni;isp,ataolf
2 // x[] - signal after transform
3 //)2=+i;N<i;0=itni(rof
4 { // Input:
5 )taolf(langistupni-][x//;]1+i[x=]1+i[y;]i[x=]i[y
6 } // N - signal length (int)
7 // t1 , t2 - temp variables (float)
8 )taolf(elbatyraropmet-][y//)++k;1-2/K<k;0=ktni(rof
9 { // hp[] - first filter (float)

10 )taolf(retlifdnoces-][pg//;]++dni[gtw=a
11 )tni(htgnelretlif-K//;]1[y*a+]0[y=ttaolf
12 )taolf(selbairavpmet-isp,a//;]1[y-]0[y*a=]0[y
13 )taolf(srotcafsnegnat-][gtw//)2=+i;1-N<i;2=itni(rof
14 { //
15 //;]1+i[y*a+]i[y=]1-i[y
16 //;]1+i[y-]i[y*a=]i[y
17 } //
18 //;t=]1-N[y
19 } //
20 //
21 //;]++dni[gtw=a
22 //;]dni[gtw=isp
23 //
24 for (int Nd2 = N / 2, i1 = 0, i = 0; i < N; i += 2, i1++) //
25 { //
26 //;isp*)]1+i[y-]i[y*a(=]1i[x
27 //;isp*)]1+i[y*a+]i[y(=]2dN+1i[x
28 } //

(a) (b)

Fig. 6   Lattice model with wrapping a and without wrapping b for a transformation of size N=10 and 
filters of length K=6
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4.1.4 � cpu_dwt_l2_nw ‑ sequential, lattice, 2‑point, without wrapping

The cpu_dwt_l2_nw is modified cpu_dwt_l2_ww lattice implementation in which 
wrapping has been bypassed according to the scheme Fig. 6b involving the exten-
sion of the input vector by K − 2 initial samples. Like the base implementation, 
the filters were factored to a single vector of K∕2 + 1 coefficients of the tangent 
basis operations. The final step of the structure is combined with the organization 
of the data in the resulting vector. This is a sequential implementation of the lat-
tice algorithm without wrapping. 

Listing 4 Code fragment of the cpu dwt l2 nw implementation.
1 :tuptuO//;t,isp,ataolf
2 mrofsnartretfalangis-][x//;2-K+N=2KN,1-2/K=12K,0=dnitni
3 //
4 :tupnI//)2=+i;N<i;0=itni(rof
5 { // x[] - input signal (float)
6 )tni(htgnellangis-N//;]1+i[x=]1+i[y;]i[x=]i[y
7 } // t1 , t2 - temp variables (float)
8 // y[] - temporary table (float)
9 )taolf(retliftsrif-][ph//)++k;2-K<k;0=ktni(rof

10 { // gp[] - second filter (float)
11 )tni(htgnelretlif-K//;]k[y=]N+k[y
12 } // a, psi - temp variables (float)
13 // wtg[] - tangens factors (float)
14 //)++k;12K<k;0=ktni(rof
15 { //
16 //;]++dni[gtw=a
17 //)2=+i;k-2KN<i;k=itni(rof
18 { //
19 //;]1+i[y*a+]i[y=t
20 //;]1+i[y-]i[y*a=]1+i[y
21 y[i] = t; //
22 } //
23 } //
24 //
25 //;]++dni[gtw=a
26 //;]dni[gtw=isp
27 //
28 for (int Nd2 = N / 2, i1 = 0, i = K21; i < N + K21; i += 2, i1++) //
29 { //
30 //;isp*)]1+i[y-]i[y*a(=]1i[x
31 //;isp*)]1+i[y*a+]i[y(=]2dN+1i[x
32 } //

4.2 � Parallel implementations on GPUs

4.2.1 � gpu_dwt_m1_ww_ref ‑ parallel, matrix‑based, 1‑point, with wrapping

The general approach of parallel computing optimization aims to maximize the 
level of parallelism. For this reason, the first implementation we present and, at 
the same time, take as a reference for the following ones is a parallel direct matrix 
with 1 point granularity. This means that a single thread computes one element of 
the output vector, and the number of parallel threads is N. For such implementa-
tion, it is necessary to switch filters h and g for even and odd elements of the vec-
tor, respectively. Because the filters are stored in memory one by one, their selec-
tion is done with shifting the index by a constant value. The determination of the 
parity is done by modulo two divisions. The implementation implements a direct 
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matrix approach with wrapping. We consider it as a reference implementation for 
the others analyzed later. 

Listing 5 Kernel code of the gpu dwt m1 ww ref implementation.
1 float v = 0; // Output:
2 int i, k1, k2, id = blockIdx.x*blockDim.x + threadIdx.x; // y[] - signal after transform
3 //;)2/di(*2=1k
4 :tupnI//;K*)2%di(=2k
5 )stnemeleN(DI-di//{)++i;K<i;0=i(rof
6 )tni(htgnelretlif-K//;]2k[hg*]1k[x+v=v
7 )taolf(langistupni-][x//;N%)1+1k(=1k
8 k2 = k2 + 1; // gh[] - both filters (float)
9 } // N - signal length (int)

10 y[id] = v; // v, k1 , k2 , id - temp variables

4.2.2 � gpu_dwt_m2_ww ‑ parallel, matrix‑based, 2‑point, with wrapping

The gpu_dwt_m2_ww is an optimization of the gpu_dwt_m1_ww_ref implementation. 
Here, a reduced granularity of the computational task partitioning is used. The maxi-
mum level of parallelism is lower, it is possible to run max N/2 threads in parallel, but 
each thread is responsible for slightly more computations because it computes two ele-
ments of the output vector. There is no need to choose the filter. Both filters are stored 
in separate arrays h and g. Wrapping is implemented via “if” instruction. The imple-
mentation is direct matrix approach with wrapping. 

Listing 6 Kernel code of the GPU-B implementation.
1 :tuptuO//;)x.xdIdaerht+x.miDkcolb*x.xdIkcolb(=1itni
2 mrofsnartretfalangis-][x//;ki,k,2*1i=itni
3 :tupnI//;]1[ph*]1+i[y+]0[ph*]i[y=1ttaolf
4 )stnemele2/N(DI-1i//;]1[pg*]1+i[y+]0[pg*]i[y=2ttaolf
5 htgnellangis-N//{)2=+k;K<k;2=k(rof
6 )tni(htgnelretlif-K//;N=-ki)N=>)k+i=ki((fi
7 )taolf(langistupni-][x//;]1+k[ph*]1+ki[y+]k[ph*]ki[y=+1t
8 )taolf(sretlif-][pg,][ph//;]1+k[pg*]1+ki[y+]k[pg*]ki[y=+2t
9 } // y[] - temp vector (float)

10 x[i1] = t1; // Nd2 - half signal length (int)
11 sravpmet-2t,1t,ki,k,i//;2t=]2dN+1i[x

4.2.3 � gpu_dwt_m4_ww ‑ parallel, matrix‑based, 4‑point, with wrapping

The gpu_dwt_m4_ww implementation is very similar to the implementation gpu_dwt_
m2_ww. The only difference is once again the reduced level of parallelism. Here, it is 
possible to run N/4 threads, and each thread is responsible for yet more calculations as 
it determines 4 elements of the output vector. The filters are stored in separate arrays h 
and g. The implementation uses a direct matrix approach with wrapping via a condi-
tional “if” instruction. 
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Listing 7 Kernel code of the gpu dwt m4 ww implementation.
1 int i1 = 2 * (blockIdx.x*blockDim.x + threadIdx.x); // Output:
2 mrofsnartretfalangis-][x//;ki,k,2*1i=itni
3 //;]1[ph*]1+i[y+]0[ph*]i[y=1ttaolf
4 :tupnI//;]1[pg*]1+i[y+]0[pg*]i[y=2ttaolf
5 )stnemele4/N(DI-1i//;]1[ph*]3+i[y+]0[ph*]2+i[y=3ttaolf
6 )tni(htgnelretlif-K//;]1[pg*]3+i[y+]0[pg*]2+i[y=4ttaolf
7 )taolf(langistupni-][x//{)2=+k;K<k;2=k(rof
8 )taolf(retliftsrif-][ph//;N=-ki)2-N=>)k+i=ki((fi
9 )taolf(retlifdnoces-][pg//;]1+k[ph*]1+ki[y+]k[ph*]ki[y=+1t

10 )tni(htgnellangis-N//;]1+k[pg*]1+ki[y+]k[pg*]ki[y=+2t
11 )tni(htgnellangisflah-2dN//;]1+k[ph*]3+ki[y+]k[ph*]2+ki[y=+3t
12 selbairavpmet-ki,k,i//;]1+k[pg*]3+ki[y+]k[pg*]2+ki[y=+4t
13 } // t1 , t2 , t3 , t4 - temp variables
14 x[i1] = t1; // y[] - temp vector (float)
15 //;3t=]1+1i[x
16 //;2t=]2dN+1i[x
17 //;4t=]1+2dN+1i[x

4.2.4 � gpu_dwt_m2_nw ‑ parallel, matrix‑based, 2‑point, without wrapping

The gpu_dwt_m2_nw implementation is similar to the implementation gpu_dwt_
m2_ww. The major difference is that filter wrapping is bypassed, as in 5(b). The 
maximum level of parallelism is the same as for gpu_dwt_m2_ww because a max 
limit of N/2 parallel threads. The filters are stored in separate arrays. In contrast, 
there are no conditional instructions or modulo division. To make this possible, the 
input signal had to be extended by K − 2 of initial samples, which was done in an 
efficient native way using the cudaMemcpy function. This implementation is a direct 
matrix approach without wrapping, with granularity labeled by us as 2. 

Listing 8 Kernel code of the gpu dwt m2 nw implementation.
1 :tuptuO//;)x.xdIdaerht+x.miDkcolb*x.xdIkcolb(=1itni
2 mrofsnartretfalangis-][x//;k,2*1i=itni
3 :tupnI//;]1[ph*]1+i[y+]0[ph*]i[y=1ttaolf
4 )stnemele2/N(DI-1i//;]1[pg*]1+i[y+]0[pg*]i[y=2ttaolf
5 )tni(htgnellangisflah-2dN//{)2=+k;K<k;2=k(rof
6 t1 += y[i + k] * hp[k] + y[i + k + 1] * hp[k + 1]; // K - filter length (int)
7 t2 += y[i + k] * gp[k] + y[i + k + 1] * gp[k + 1]; // x[] - input signal (float)
8 } // hp[], gp[] - filters (float)
9 x[i1] = t1; // y[] - temp vector (float)

10 selbairavpmet-2t,1t,k,i//;2t=]2dN+1i[x

4.2.5 � gpu_dwt_m4_nw ‑ parallel, matrix‑based, 4‑point, without wrapping

The gpu_dwt_m4_nw implementation is a direct modification of the implementation 
of gpu_dwt_m2_nw. The only difference is the twofold reduction in the maximum 
level of parallelism. The implementation works on up to N/4 threads. Filters without 
changes are stored in two arrays. Each single thread determines four samples of the 
output vector. There are no conditional instructions or modulo division. The input 
signal is extended by K − 2 initial samples. This implementation is a direct matrix 
approach without wrapping with granularity we label as 4. 
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Listing 9 Kernel code of the gpu dwt m4 nw implementation.
1 int i1 = 2 * (blockIdx.x*blockDim.x + threadIdx.x); // Output:
2 mrofsnartretfalangis-][x//;k,2*1i=itni
3 //;]1[ph*]1+i[y+]0[ph*]i[y=1ttaolf
4 :tupnI//;]1[pg*]1+i[y+]0[pg*]i[y=2ttaolf
5 )stnemele4/N(DI-1i//;]1[ph*]3+i[y+]0[ph*]2+i[y=3ttaolf
6 )tni(htgnelretlif-K//;]1[pg*]3+i[y+]0[pg*]2+i[y=4ttaolf
7 )taolf(langistupni-][x//{)2=+k;K<k;2=k(rof
8 t1 += y[i + k] * hp[k] + y[i + k + 1] * hp[k + 1]; // hp[] - first filter (float)
9 t2 += y[i + k] * gp[k] + y[i + k + 1] * gp[k + 1]; // gp[] - second filter (float)

10 t3 += y[i + 2 + k] * hp[k] + y[i + k + 3] * hp[k + 1]; // N - signal length (int)
11 t4 += y[i + 2 + k] * gp[k] + y[i + k + 3] * gp[k + 1]; // Nd2 - half signal length (int)
12 } // i, k - temp variables
13 x[i1] = t1; // t1 , t2 , t3 , t4 - temp variables
14 )taolf(rotcevpmet-][y//;3t=]1+1i[x
15 //;2t=]2dN+1i[x
16 //;4t=]1+2dN+1i[x

4.2.6 � gpu_dwt_l2_ww ‑ parallel, lattice‑based, 2‑point, with wrapping

The gpu_dwt_l2_ww is the second last implementation evaluated in this work. How-
ever, it is also the first parallel implementation that uses a lattice structure. In general 
terms, it is a parallel version of the cpu_dwt_l2_ww implementation, additionally 
optimized to run on GPUs. The implementation has maximum available granularity 
by running on N/2 parallel threads. Each thread performs a single butterfly opera-
tion. The filters are stored in the form of a single auxiliary array, in which both the 
low-pass and high-pass filters are properly factorized into two-point base operations 
with tangent multipliers. It is worth noting that the lattice structure is staged, so K/2 
kernel function calls are needed. The last stage is different than others, so we added 
an “if” conditional instruction in the kernel code. The kernel is launched sequen-
tially using for loop. This is a 2 point parallel implementation of a lattice structure 
with wrapping. 

Listing 10 Kernel code of the gpu dwt l2 ww implementation.
1 int i = 2 * (blockIdx.x * blockDim.x + threadIdx.x); // Output:
2 int i1, i2; // x[] - signal after transform
3 //;N=-1i)N=>)k+i=1i((fi
4 :tupnI//;N=-2i)N=>)1+1i=2i((fi
5 )taolf(langistupni-][x//;]1i[x=1ttaolf
6 )tni(htgnellangis-N//;]2i[x=2ttaolf
7 )stnemele2/N(DI-i//{)1-2/K==k(fi
8 t1 *= psi; // K - filter length
9 t2 *= psi; // k - current stage from 0 to K/2

10 int ii = i1; // psi - wtg[K / 2]
11 i1 = i2; // a - wtg[/stage /]
12 i2 = ii; // t1 , t2 - temp variables
13 } // wtg[] - tangens factors (float)
14 //;2t*a+1t=]1i[x
15 //;2t-1t*a=]2i[x

4.2.7 � gpu_dwt_l2_nw ‑ parallel, lattice‑based, 2‑point, without wrapping

The last implementation studied, gpu_dwt_l2_nw, is a modification of the gpu_dwt_
l2_ww that is similar to cpu_dwt_l2_nw, bypass wrapping as proposed in the previ-
ous section. Lattice-based kernel for GPU is utilizing N/2 parallel threads. Both h 
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and g filters are transformed and stored in an array, in which both low-pass and high-
pass filters are properly factorized into two-point basis operations with tangent mul-
tiplications. The input signal is extended by K − 2 samples to bypass wrapping with 
the use of native on-gpu cudaMemcpy function. The kernel code is short and simple. 
This implementation is a parallel lattice algorithm without wrapping. 

Listing 11 Kernel code of the gpu dwt l2 nw implementation.
1 int i = k + 2 * (blockIdx.x*blockDim.x + threadIdx.x); // y[] - input and output signal
2 // i - ID ((N+K-2)/2 elements)
3 ezisretlif-K,ezislangis-N//;]1+i[y*a+]i[y=ttaolf
4 2/Kot0morfegatstnerruc-k//;]1+i[y-]i[y*a=]1+i[y
5 y[i] = t; // a - wtg[/stage /]

5 � Results of experimental research

In this section, we present the experimental results of research on the effectiveness 
of the proposed DWT implementations on GPUs. The experiments were performed 
on a server equipped with a GeForce RTX 2080 Ti graphics cards with 4352 CUDA 
cores each, and an Intel Xeon Silver 4112 CPU processors with 4 cores (8 threads) 
each and 256GB of DDR4 RAM memory. Programs were written in C language 
using CUDA Toolkit 11.2. Presented time results are averaged from at least 100 tri-
als. GPU was warmed up before the computations to eliminate the problem of its 
low performance at first run. To measure the time, we used techniques based on 
processor cycles. The kernel code time was measured directly on the device using 
the techniques proposed by the chip manufacturer, namely the “cudaEventRecord” 
function. Total time and CPU time were measured using “QueryPerformanceCoun-
ter” function. All implementations were designed to work on 32-bit floating point 
variables and provide numerically exactly the same results what was confirmed for 
each experiment using few error measures. The knowledge about the execution time 
of kernel functions is critically important for implementation optimization. There 
are several ways to measure kernel performance. An excellent solution is to use 
a dedicated profiler. This toolkit is called nvprof and collects detailed informa-
tion about the timeline of CPU and GPU activity during program execution. It cap-
tures details of kernel execution, data transfers and all CUDA API calls. The tool 
is powerful in helping to understand many of the dependencies, such as the time 
required for actual computation and the time required for data transfers. For an effi-
cient algorithm implementation, it is essential to balance between communication 
and computation. If the application spends more time on calculation than on data 
transfer, it may be possible to overlap these computations and completely hide the 
delay associated with data transfer. If the application spends less time on calculation 
than on data transfer, it is important to minimize the transfer between the host and 
the device. During implementation optimization, it is also possible to determine how 
the application stands up to the device’s theoretical limits. The measured values can 
be compared to theoretical peak values, and it can be determined whether the appli-
cation is limited by arithmetic or by memory bandwidth. The device’s peak single 



11556	 K. Stokfiszewski et al.

1 3

precision floating operations per second (FLOPS) performance can be determined 
using the following formula:

where P is FP32 peak performance, Ncl is GPU clock, Ngppd is number of graphics 
processors per device, Nsmpgp is number of streaming multiprocessors per graphics 
processor, Ncpsm is number of cores per streaming multiprocessor and Nipc is number 
of instructions per cycle. Substituting the data of the GeForce RTX 2080 Ti graph-
ics card read directly from device, i.e., Ncl = 1545MHz , Ngppd = 1 , Nsmpgp = 68 , 
Ncpsm = 128 , Nipc = 1 , we get the peak performance for the tested GPU:

The Peak Memory Bandwidth can be determined in the similar way using the fol-
lowing expression:

where B is the peak memory bandwidth, Ngppd is the number of graphics proces-
sors per device, Nmcl is the memory clock, Nmbw is the memory bus width and M is 
memory type multiplayer, for GDDR3 M = 2 , for GDDR5 M = 4 and for GDDR6 
M = 8 . By applying device parameters to the above formula, we get:

To measure the achieved percentage of utilization with respect to the theoretical 
maximum, we used the newest NVIDIA Nsight Compute toolset. The study clearly 
revealed that the highest level out of all, in case of computing SoL, achieves the 
gpu_dwt_m2_nw implementation with the value of 54% in peak. In the case of the 
memory SoL criterion, the best performing implementation is gpu_dwt_l2_nw with a 
value of 83% in peak. Hence, both leading implementations are non-wrapping ones.

CUDA toolkit provides a very precise timing tool on the GPU side based on 
events. Despite the fact that the kernel call is asynchronous for the host, the cudaDe-
viceSynchronize command can wait for all parallel threads to finish computations. 
An event in CUDA is a marker in a CUDA stream associated with a certain point 
in the flow of operations in that stream. It is possible to measure the elapsed time 
of CUDA operations marked by two events using the cudaEventElapsedTime func-
tion. This function returns the elapsed time in milliseconds between two events. The 
events start and stop do not need to be associated with the same CUDA stream. Such 
a timing technique is also widely accepted for performance studies in the case of 
GPUs [5].

In Table 1, we list the most important characteristics of the GPU we’ve used in 
our tests. The results in Figs. 7, 8, 9, 10, 11 and 12 show the actual computation 
times in milliseconds. The columns successively represent the size of the transfor-
mation formerly marked as N. The size of the input vectors has always been powers 

(2)P = Ncl ∗ Ngppu ∗ Nsmpgp ∗ Ncpsm ∗ Nipc,

P = 154MHz ∗ 1 ∗ 68 ∗ 128 ∗ 1 = 13, 447 ∗ 106 MFLOPS = 13, 45TFLOPS.

(3)B = Ngppu ∗

(
Nmcl ∗ Nmbw

8

)
∗ M,

B = 1 ∗
(
1750 ∗ 352

8

)
∗ 8 = 616000MB∕s = 616GB∕s.
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Table 1   Specification of the 
RTX2080Ti GPU

Parameter Value

Grpahics processor TU102
CUDA Capability Major/Minor version number: 7.5
Multiprocessors 68
CUDA Cores: 8704
GPU Max Clock rate: 1.54 GHz
Memory Clock rate: 7000 Mhz
Total number of registers available per block: 65536
Maximum number of threads per multiprocessor: 1024
Maximum number of threads per block: 1024
Warp register allocation granularity 64

Fig. 7   Time results of sequential implementations on CPU for filter length 4

Fig. 8   Time results of sequential implementations on CPU for filter length 8

Fig. 9   Time results of sequential implementations on CPU for filter length 12

Fig. 10   Time results of parallel implementations on GPU for filter length 4
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of 2, so they are labeled from 28 to 223 , for example, 210 is a signal consisting of 
1024 samples. All results were divided into groups for filter lengths of 4, 8, 12, 
respectively. The dark gray background highlights the lowest values in each column. 
The times were obtained on the basis of 100 repetitions for long input signals and 
1000 repetitions for short ones. The time KERNEL indicates the time of the kernel 
function only or, if multiple calls are needed, the time of the sequence of kernel 
function calls. Total time includes preprocessing, postprocessing and copying data 
to and from the device. We consistently use the proposed names of the implementa-
tions that we discussed in detail in the previous section.

6 � Conclusions

6.1 � Summary of experimental research on CPU

We have tested four sequential implementations running on the CPU: cpu_dwt_m2_
ww_ref, cpu_dwt_m2_nw, cpu_dwt_l2_ww, and cpu_dwt_l2_nw. The algorithms 
used in cpu_dwt_m2_ww_ref and cpu_dwt_m2_nw are based on the convolutional 

Fig. 11   Time results of parallel implementations on GPU for filter length 8

Fig. 12   Time results of parallel implementations on GPU for filter length 12
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approach, while in cpu_dwt_l2_ww and cpu_dwt_l2_nw are based on the lattice 
structure. We have evaluated the standard implementations with wrapping and the 
proposed implementations without wrapping. The implementation used in cpu_dwt_
m2_ww_ref and cpu_dwt_l2_ww performs wrapping with the use of conditional 
instructions or modulo division. In the case of the algorithms cpu_dwt_m2_nw and 
cpu_dwt_l2_nw, no wrapping was needed because the modification described ear-
lier. The implementation cpu_dwt_m2_ww_ref is considered to be the reference 
implementation. All mentioned implementations were self-developed and tested.

The first insight confirms the theoretical computational complexity, and the lat-
tice structure is superior to the matrix implementation. When comparing the imple-
mentation of cpu_dwt_m2_ww_ref to cpu_dwt_l2_ww, namely, the classic matrix-
based implementation to the lattice structure without wrapping, it turns out that the 
lattice structure is clearly faster. In fact, average advantage after all the experiments 
is even larger than expected since it is 2.21× , while the theoretical advantage is at a 
level of about 2× . The next conclusion is that the reference method cpu_dwt_m2_
ww_ref can be clearly accelerated with wrapping elimination. The implementation 
without wrapping is clearly faster than the implementation with wrapping. The 
speedup after averaging all results is 1.85× , and still the cpu_dwt_m2_nw compared 
to cpu_dwt_m2_ww_ref has slightly worse computational and memory complexity.

After evaluation of the lattice implementation without wrapping, cpu_dwt_l2_nw, 
it turns out that also in the case of the lattice implementation, bypassing the wrap-
ping allows to speed up the computations, but speedup this time is minimal and is 
close to 3%. However, it is enough to make the cpu_dwt_l2_nw implementation the 
most efficient among all tested ones.

This part can be summarized in two points. First, for the implementation of the 
DWT for CPUs, the non-wrapping algorithms indicate better performance than 
the algorithms with wrapping. Second, the lattice algorithm without wrapping is 
the most efficient one tested, although its advantage over the lattice algorithm with 
wrapping and the optimized matrix algorithm is quite low.

6.2 � Summary of experimental research on GPU

We have prepared seven parallel implementations profiled for GPUs. These 
implementations are gpu_dwt_m1_ww_ref, gpu_dwt_m2_ww, gpu_dwt_m4_ww, 
gpu_dwt_m2_nw, gpu_dwt_m4_nw, gpu_dwt_l2_ww, and gpu_dwt_l2_nw. The 
algorithms used in gpu_dwt_m1_ww_ref, gpu_dwt_m2_ww, gpu_dwt_m4_ww, gpu_
dwt_m2_nw, gpu_dwt_m4_nw are implementations of the traditional convolutional 
algorithm, while for the implementations of gpu_dwt_l2_ww and gpu_dwt_l2_nw, a 
lattice structure was used.

We have studied the traditional implementations with wrapping and the proposed 
implementations without wrapping. Implementations with wrapping are gpu_dwt_
m1_ww_ref, gpu_dwt_m2_ww, gpu_dwt_m4_ww, gpu_dwt_l2_ww and without 
wrapping are gpu_dwt_m2_nw, gpu_dwt_m4_nw and gpu_dwt_l2_nw. In addition, 
we have also studied the granularity aspect of partitioning the computational task by 
reducing the overall level of parallelism by charging individual threads with more 
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computations. Thus, we came up with implementations using 1-point granularity: 
gpu_dwt_m1_ww_ref, 4-point granularity: gpu_dwt_m4_ww , gpu_dwt_m4_nw and 
2-point granularity: gpu_dwt_m2_ww, gpu_dwt_m2_nw, gpu_dwt_l2_ww, gpu_
dwt_l2_nw. As reference approach, we have chosen the gpu_dwt_m1_ww_ref imple-
mentation because it is closest to the traditional parallel implementation of the DWT 
algorithm in matrix-based form.

This time, we measured the total time as well as the time of the kernel function 
itself. The approach of presenting only kernel time is well known there, because 
in future, all computations can hopefully be performed internally within the GPU. 
However, currently, the GPU and CPU cooperation is still the main solution. There-
fore, we believe that for our implementations, it is also appropriate to present the 
total processing time, because, e.g., for an implementation without wrapping, the 
input signal has to be extended, which, although it is already performed on the GPU 
by simple memory copying operations, does not belong to the kernel code but is a 
fundamental part of the algorithm.

Looking only at the kernel code time, one can easily see a very interesting rela-
tionship. Implementations gpu_dwt_l2_ww and gpu_dwt_l2_nw which are both 
tested variants of the lattice algorithm have significantly lower performance than 
any implementation of the matrix-based algorithm. The loss of the lattice algo-
rithm is very noticeable and what is more, it grows as the amount of processed data 
increases. This is due to the design of the lattice algorithm for which synchroniza-
tions after each stage are essential. Thus, the cost of organizing the computations is 
so large that it has a greater impact on the total time than the computations them-
selves. A comparison of kernel codes for the gpu_dwt_l2_ww and gpu_dwt_l2_nw, 
i.e., the lattice structure with and without wrapping, indicates almost identical per-
formance which only confirms the earlier point.

In terms of matrix-based implementations, the versions with wrapping, without 
wrapping, with 2 point granularity, and with 4 point granularity namely gpu_dwt_
m2_ww, gpu_dwt_m2_nw, gpu_dwt_m4_ww, gpu_dwt_m4_nw, respectively, have 
nearly identical kernel code performance. One can see a minimal advantage of the 
optimized 2-point implementation without wrapping, i.e., gpu_dwt_m2_ww. In 
addition, changing the granularity to 4-point, which means reducing the total num-
ber of threads working in parallel, does not positively affect the computation time. 
Finally, it is worth mentioning that the reference implementation, i.e., gpu_dwt_m1_
ww_ref is noticeably slower than the proposed implementations with 2-point granu-
lation. The device limits expressed in TFLOPS are most closely approached by the 
gpu_dwt_m4_nw implementation, this is due to the high ratio of instructions in the 
kernel code to execution time.

In the case of the total processing time where preprocessing, postprocessing and 
all copy times to and from the device are included, the situation is slightly different. 
First, it should be noted that the total time is shorter than the CPU computation time 
only for large transformations and long filters slightly exceeding 30% speedup. Of 
course, the advantage would be clear when using filters with a much more samples, 
but we focused on the practical cases, so the filters of lengths of 4, 8 and 12 points 
were chosen. The results are very encouraging because it is clear that after the shift 
to 2D signals, the use of GPU will surely be beneficial.
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The first conclusion is that total times for all implementations are very close to 
each other. Only the 1-point (reference) implementation, i.e., gpu_dwt_m1_ww_ref 
is, on average, a slightly slower, however, this did not stop it from being very com-
petitive in the case of short input signals. The 4-point granulation applied to the 
gpu_dwt_m4_ww and gpu_dwt_m4_nw implementations similarly to the kernel time 
itself did not provide a clear advantage, however again, the times are very close. 
When considering total time, both lattice implementations only perform better than 
the reference implementation. The simple matrix form, although characterised by 
higher computational complexity, is faster. The times of all the proposed matrix 
implementations are very similar. Bypassing wrapping, in each case, gives at least 
a minimal advantage. The dependencies gained on the CPU do not carry over to the 
GPU, so formulating such clear conclusions as for the CPU is not possible. There is 
no single best solution, but the results presented should help one to choose the most 
beneficial implementation for a specific computational problem.

6.3 � Perspective on further research

Based on the presented conclusions, we infer that it undoubtedly seems to be an 
interesting direction to study the developed implementations for 2D signals. This 
will surely be the part of our future research on the performance of DWT imple-
mentations on GPUs. Once again, it is interesting to focus on lattice structure and 
matrix-based implementations, because from the computational point of view, they 
represent inherently different approaches in terms of their computational structures 
when implemented on GPUs.
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