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ABSTRACT

Although the matrix multiplication plays a vital role in computa-
tional linear algebra, there are few efficient solutions for matrix
multiplication of the near-sparse matrices. The Sparse Approximate
Matrix Multiply (SpAMM) is one of the algorithms to fill the perfor-
mance gap neglected by traditional optimizations for dense/sparse
matrix multiplication. However, existing SpAMM algorithms fail to
exploit the performance potential of GPUs for acceleration. In this
paper, we present cuSpAMM, the first parallel SpAMM algorithm
optimized for multiple GPUs. Several performance optimizations
have been proposed, including algorithm re-design to adapt to the
thread parallelism, blocking strategies for memory access optimiza-
tion, and the acceleration with the tensor core. In addition, we
scale cuSpAMM to run on multiple GPUs with an effective load
balance scheme. We evaluate cuSpAMM on both synthesized and
real-world datasets on multiple GPUs. The experiment results show
that cuSpAMM achieves significant performance speedup compared
to vendor optimized cuBLAS and cuSPARSE libraries.
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1 INTRODUCTION

Generally, the existing GEMM algorithms can be classified into
dense and sparse algorithms according to the ratio of non-zero
elements of the input matrices. Given a matrix A € RN*N | the
number of non-zero elements is O(N?) and O(N) for dense and
sparse algorithms, respectively. However, in real applications, there
are a large number of matrices in the middle ground between dense
and sparse matrices, a.k.a. near-sparse matrices, whose non-zero
elements are between O(N?) and O(N). Near-sparse matrices are
widely used in the field of scientific computing, such as computa-
tional chemistry [41], quantum physics [26], electronic structure
calculation [44].

The near-sparse matrices also exist in emerging domains such
as deep neural networks. Especially in convolutional neural net-
works (CNNs), the feature and weight matrices participated in the
calculation are near-sparse [13, 23] due to weight pruning [31] and
activation functions [33]. For example, the activation function of
Rectified Linear Unit (ReLU) can lead to more than 50% sparsity
of the feature matrices on average [13]. In CNNs, the convolution
operations between feature and weight matrices are transformed
to GEMM using the im2col algorithm [2]. In such case, the matrices
involved in the GEMM calculation are also near-sparse.

There is also a special class of matrices that are inherently near-
sparse, the matrices with decay [5] (a.k.a. decay matrices), whose

elements (values) decrease rapidly from diagonal to sides. The ele-
ments can be ignored if they are small enough and the correspond-
ing matrices become near sparse. Due to the unique properties,
there are many researches focusing on decay matrix itself, such
as the decay rate [20], the left inverse [21, 48], high-dimensional
statistics [4], and numerical analysis [52]. In addition, the decay
matrices often appear in widely used matrix operations such as
matrix inverse [7, 20], matrix exponential [32], Jacobi matrices [47],
and etc [6]. Moreover, decay matrices are commonly adopted in ap-
plication domains such as quantum chemistry [5, 11] and quantum
information theory [18, 19, 22, 46].

However, existing research works [12, 37, 51] for dense and
sparse GEMM are hardly efficient when applied to near-sparse
matrices. On the one hand, the researches for dense GEMM focus
on reducing the computation complexity. For example, Strassen’s
algorithm [37] and Williams’ algorithm [51] achieve O(N?#) and
O(N?%3727), respectively. Whereas, the complexity reduction is
hardly useful for eliminating redundant computation of near-sparse
matrices on the zero elements. On the other hand, the researches
for sparse GEMM propose various storage formats such as CSR [12]
to store the sparse matrices compactly. However, the sparse formats
can hardly benefit the near-sparse GEMM due to its non-sparse
nature. Therefore, both the dense GEMM and the sparse GEMM
have limited performance potential for near-sparse GEMM.

Fortunately, the approximation provides a good opportunity to
boost the performance of near-sparse GEMM. For example, skipping
the calculation of small enough elements of near-sparse matrices is
a profitable way for performance acceleration. Based on such idea,
Sparse Approximate Matrix Multiply (SpAMM) [14] has been pro-
posed for accelerating the decay matrix multiplication. For matrices
with exponential decay, existing research [3] has demonstrated the
absolute error of SpAMM can be controlled reliably.

In the meanwhile, with wide adoption in a large number of fields,
GPUs have been proven with excellent speedup for matrix opera-
tions [45]. Especially with the advent of tensor core units provided
by NVIDIA GPUs, mixed-precision techniques have been exploited
to further accelerate matrix operations [42]. Although there are few
research works optimizing SpAMM computation on CPUs [3, 9, 10],
to the best of our knowledge, there is no GPU implementation avail-
able for accelerating SpAMM computation, especially exploiting
the architectural features such as tensor core and scaling to multi-
ple GPUs. This motivates our work in this paper to re-design the
SpAMM algorithm for better adaption to GPU architecture and pro-
pose corresponding optimizations to achieve superior performance
compared to the state-of-the-art GEMM libraries. Specifically, this
paper makes the following contributions:

e We propose cuSpAMM, a re-designed SpAMM algorithm
tailored for GPU. Specifically, we adapt the calculation steps



and the data access patterns of the SpAMM algorithm to
the memory hierarchy and thread organization of GPU with
increased parallelism and reduced memory accesses.

e We propose several optimization schemes such as blocking
strategies for the calculation kernels and utilization of tensor
core for accelerating the calculation. In addition, we present
a scaling method to extend cuSpAMM to multiple GPUs.

o We compare cuSpAMM with highly optimized vendor li-
braries such as cuBLAS [15] and cuSPARSE [17] on GPUs. In
addition, we evaluate on two real datasets from electronic
structure calculation (ergo) and convolutional neural net-
work (VGG13), to demonstrate the performance of cuSpAMM
on real-world applications.

The paper is organized as follows. In Section 2, we introduce
the background of SpAMM algorithm and GPU optimizations. In
Section 3, we present our re-designed SpAMM algorithm cuSpAMM,
and corresponding optimizations for performance acceleration on
multiple GPUs. Section 4 compares our cuSpAMM with the-state-
of-art GEMM libraries and evaluates on two real-world datasets
using cuSpAMM. Section 5 discusses the related works and Section 6
concludes this paper.

2 BACKGROUND
2.1 Decay matrix and SpAMM algorithm

A matrix is defined as the decay matrix when its elements decrease
following the decay rate from the diagonal to the sides. The decay
rate can be exponential or algebraical, formulated as |A[i][j]| <
cMli=iland |A[i][j]] < ¢/(li— j|* + 1) respectively, where A[i][j] is
the index of the element in matrix A. The |i—j| is the separation and
can be replaced by other index-based distance function of the matrix
or physical distance such as |r; — rj| in non-synthetic cases [3]. By
mathematical definition, the decay matrix is quite dense due to few
zero elements. However, under certain conditions (e.g., elements
less than the threshold), a number of elements in the decay matrix
can be treated as zeros, which renders the matrix as near-sparse.

SpAMM is an approximate matrix multiplication method that
can be used on decay matrices. The problem solved by SpAMM
can be described as C = aAB + §C, where « and f are parameters,
and A, B, and C are the matrices with exponential decay or fast
algebraical decay [14]. For convenience, the rest of the paper takes
a =1, f = 0, and the square matrices NxXN. Besides, 7 is a parameter
for controlling the extent of approximation. The algorithm divides
the input into quad-tree recursively, depicted in Equation 1. Then,
the algorithm performs multiplication of sub-matrices recursively.
The density of sub-matrices is measured by the Frobenius norm (F-
norm), depicted in Equation 2. The Algorithm 1 shows the pseudo-
code of SpAMM. The algorithm performs multiplication only if the
product of norms from two sub-matrices is no smaller than the
parameter 7 (line 8 and line 13).
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Algorithm 1 SpAMM algorithm

: Input: Matrices A, B, parameter 7
: Output: Multiplication result C
. if lowest level then
return C = AB
: fori=0to 1 do
for j=0 to 1 do
if [|[AiollFIIBojllF > 7 then
To = SpPAMM(A; 0, B, j, T)
else
To=0
if [|A;111F|IB1,jl|lF 2 7 then
Ty = SpAMM(A; 1, Byj, 1)
else
T =0
ci,j =To+T

: return C
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2.2 GPU architecture and optimization

2.2.1 GPU architecture. The CUDA [16] programming paradigm
provides a classic definition of GPU architecture, with the thread
and memory organized hierarchically.

Thread hierarchy - The thread are organized at four levels
with coarsen granularity including thread, warp, block and grid.
One warp usually contains 32 threads, and the threads within a
warp are implicitly synchronized in execution. The warp is the
most basic unit for calculation execution and hardware scheduling.
The block consists of multiple threads, and the threads within the
same block can be synchronized. The grid consists of multiple blocks,
and the blocks within the grid are executed in the SIMD fashion.

Memory hierarchy - The memory hierarchy can be divided
into three levels, including register level, shared memory level and
global memory level. Each thread has private registers, which is the
fastest but also the most limited storage on GPU. The second fastest
memory is the shared memory for each block. The threads within
the same block can be synchronized through the shared memory.
The global memory level consists of global memory and texture
memory that hosts the data transferred from the CPU.

2.2.2  GPU optimization. We briefly summarize the commonly used
optimization strategies for high-performance matrix multiplication
on GPU.

Architecture targeted optimizations - The blocking strate-
gies [8] partition the matrices and performs calculations across
GPU memory hierarchy. Memory prefetching strategies [35] utilize
guiding statements for writing memory, explicitly creating buffers
and calling primitives, which overlaps the data movement with
computation. Register optimization strategies [45] achieve better
performance by reducing the active registers and minimizing access
to high-latency memory such as global memory. Other optimization
approaches that avoid bank conflict and tune hyper-parameters [50]
(e.g., block size) are also useful for accelerating GEMM on GPU.

Tensor core adoption - The tensor core [38] introduced from
Nvidia Pascal GPU has already been explored in many fields for
further performance optimization such as linear algebra [28] and
weather simulation [29] recently. In general, tensor core is a com-
putation unit for Matrix-Multiply-Accumulate (MMA), formulated
as Dk = Amxn X Buxk + Crxk» Where the maximum number
of matrix elements is 256. The matrix A, B must be in FP16 pre-
cision, while matrix C, D can be in FP16 or FP32 precision. The
programming of tensor core is based on a special data structure



named fragment, which stores the computation data for the tensor
core. The threads in each wrap operate on the fragments to perform
MMA calculation on tensor core.

3 METHODOLOGY AND IMPLEMENTATION

In this section, we will first give an overview of our re-designed
SpAMM algorithm tailored for GPU, cuSpAMM. Then, we introduce
the design of two important kernels in cuSpAMM, which adopts
several optimization strategies as well as leverages tensor core to
optimize the performance. In addition, we scale our implementation
to multiple GPUs for processing larger matrices. Finally, we propose
load balance and accuracy searching optimizations that further
improve the performance of cuSpAMM.

For the convenience of illustration, we use the following no-
tations. The input of the algorithm are matrices A,B € RN*N
and 7, where A, B are decay matrices, and 7 is the approximation
threshold. The output matrix is C. For optimization, we divide the
input matrix into sub-matrices with size of LoNumxLoNum. We
use BDIM = N/LoNum to denote the number of sub-matrices
per row/column, where N is divisible by LoNum. The coordinates
of the sub-matrix are represented by a square bracket. For exam-
ple, A[i, j] represents the sub-matrix with the starting index of
Ali X LoNum][j X LoNum)]. To avoid incomplete division, the ma-
trices are padded with zeros to satisfy the above assumption.

3.1 Overview of cuSpAMM

Figure 1 shows the design overview of cuSpAMM. To eliminate the
GPU-unfriendly recursion in original SpAMM as well as exploit
higher parallelism, we re-design the algorithm composed of two ker-
nels, Get-norm kernel and Multiplication kernel. The first kernel is
responsible for calculating the F-norm of input matrices, and the sec-
ond kernel decides whether to multiply the matrices depending on
the F-norm results from the first kernel. The array used to record the
F-norm values is normmap, where A_normmap|i][j] = ||Ali, jll|F
and B_normmap|i][j] = ||Bli, j]||r for matrix A, B respectively.
The re-designed cuSpAMM algorithm is equivalent to the original
SpAMM algorithm, because they both perform calculation on the
sub-matrices that satisfy the F-norm threshold (7). In addition, we
propose several optimizations for the above two kernels, and utilize
tensor core for further performance acceleration. Specifically, we
apply the blocking optimization to cuSpAMM across the following
memory hierarchies. At device level, we partition matrices A, B, C,
A_normmap and B_normmap in GPU global memory. At block,
warp, and thread level, we partition the intermediate results in cor-
responding memory hierarchy. The details of blocking optimization
are presented in the following sections.

3.2 Get-norm kernel

The get-normkernel is responsible for calculating the F-norm (based
on Equation 2) results for all sub-matrices. Each block of get-norm
kernel calculates the F-norm of one sub-matrix. Considering the
computation characteristics of F-norm, we adopt the reduction
algorithm for better parallelization, as shown in Figure 2(a). Firstly,
each thread takes an element from the input matrix, calculates
its square value, and stores the results into shared memory. Then,
the thread block performs the reduction on the shared memory.
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Figure 1: The overview of cuSpAMM algorithm.

To optimize reduction, we adopt sequential addressing instead of
stride addressing to avoid the bank conflict on shared memory.

To further accelerate the performance with input matrices in
FP16 precision, we use tensor core as MMA unit for reduction. Equa-
tion 3 and 4 show the reduction of m? elements, where [1] mxm and
[0]mxm represents a square matrix composed of 1 and 0 respec-
tively, x11, X12, ..., Xmm are the data waiting for summation. After
two MMA operations, the reduction results are stored in matrix
D’. This optimization can accelerate the reduction calculation com-
pared to the traditional reduction on GPU [40]. Finally, the thread
0 writes the result back to normmap.

x11 T Xim
D = [1]mxm % + [0]mxm (3)
Xm1 Xmm
XRix o o X xu
D' = : . X [ mxm + [0]mxm (4)
Z:Zl.xmi Z;7:11.""’”'

Meanwhile, we apply additional optimizations to further boost
the performance. Firstly, we increase the amount of data to be pro-
cessed by each thread for coalescing the global memory access. We
also use the vector operations such as float2 to reduce the number
of memory load instructions. Moreover, we perform loop unrolling
on both algorithm level and warp level to reduces redundant jump
and synchronization operations.

3.3 Multiplication kernel

The multiplication kernel is responsible for performing the actual
matrix multiplication depending on the F-norm results from get-
norm kernel. Figure 2(b) shows the blocking strategy and execu-
tion flow for multiplication kernel. Each block has LoNumxLoNum
threads and is responsible for calculating one sub-matrix of ma-
trix C. Supposing the block is responsible for C[i,j], and C[i, j] =
> Ali, k] x B[k, j] X bitmap[k], where k ranges from 0 to (BDIM-
1) and bitmap(k] is 1 or 0, indicating whether A[i,k] and B[k,j]
satisfies the F-norm threshold, respectively. The bitmap is stored
in shared memory. After that, all threads begin to go through the
bitmap. If bitmap[k] is 1, the threads load the A[ik] and B[k,j] into
shared memory and then perform the dot product. We adopt double
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Figure 2: The blocking optimizations and execution flow of
get-norm kernel and multiplication kernel. To illustrate, as-
suming LoNum=2, bank number=2, and A is the decay ma-
trix.

buffering for hiding the memory access latency during the batched
sub-matrix product.

However, as shown in Figure 3(a), it is inefficient to implement
double buffering naively. This is because the thread needs to go
through the bitmap to identify next valid sub-matrices for multi-
plication. The naive implementation introduces additional instruc-
tions (e.g., jump and comparison), which even leads to performance
degradation. To address the above problem, we improve the double
buffering technique as shown in Figure 3(b), which transforms the
access of the valid flags in the bitmap from discontinuous to con-
tinuous for better locality. Although such an approach introduces
additional calculations, it improves the efficiency of data prefetch-
ing with better locality, and thus accelerates the performance of
multiplication kernel.

Algorithm 2 shows the optimized multipilication kernel. The
threads identify the sub-matrices that requires actual multiplica-
tion and record corresponding indexes in bitmap in parallel (line
5~8). Specifically, threads calculate the F-norm condition using
A_normmap[i][k] and B_normmap[k][j] and update bitmap[k] for
each k. We use another array map_offset to store the indexes of valid
sub-matrices continuously (line 9~14). During each iteration (line
19~27), the first half of the block threads is responsible for matrix
multiplication, and the second half is responsible for data prefetch-
ing. This strategy facilitates hiding the memory access latency by
overlapping computation with data access on GPU. Besides, each
thread calculates two elements of C, which can be stored in thread
registers during dot product.

For input matrices in FP16 precision, we use the tensor core to
further accelerate the matrix multiplication. Algorithm 3 shows
the pseudo-code of multiplication kernel using tensor core for ac-
celeration (with the same code in FP32 precision omitted). Each
block has warpRowxwarpCol warps and each warp is responsible
for the sub-matrix C[warpRow,warpCol]. The fragment a_frag and

bitmap map_offset
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Figure 3: To implement double buffering technique, (a) the
naive way to traverse bitmap introduces discontinuous ac-
cesses and additional instructions, and (b) the optimized way
uses additional map_offset array to store the index of valid
sub-matrices continuously.

Algorithm 2 cuSpAMM: multiplication kernel

1: Input: Matrix pointer *A, *B, *C, normmap pointer*A_normmap, *B_normmap, parameter 7
2: Shared memory: bitmap, map_offset SAW, sBW, sAR, sBR
3: for k=threadId to N/LoNum by blockDim.x do

4: norm_mul = A_normmapli][k] X B_normmap[k][j]

5: if norm_mul > 7 then

6: bitmapl[i] = 1

7: else

8: bitmap[i] = 0

9: for i=threadld to N/LoNum by blockDim.x do

10: if bitmapli] == 1 then

11: t=0

12: for j=0 to i-1 do

13: t = t + bitmap[j]

14: map_offset[i] = t

15: _syncthreads

16: reduce bitmap to get the amount of valid multiplication, save it in validNum
17: if validNum is not zero, fetch data in first block

18: _syncthreads

19: for i=0 to validNum-1 do

20: b = map_offset[i]

21: _syncthreads

22: Exchange pointer between read and write

23: if the thread is in first half block then

24: if i is less than validNum-1, let next = map_offset[i+1] and perform prefetch
25: else

26: if the thread is in second half block then

27: Calculate two values (c1,c2) of sAWtimessBW

28: write back c1, ¢2 to matrix C

b_frag stores sub-matrices of A and B, ab_frag is the accumulator of
intermediate results. The ab_frag uses FP32 precision for obtaining
better accuracy. The ab_frag is initialized to 0. We also apply the
double buffering optimization using fragment, which is similar to
the implementation in FP32 precision.

Algorithm 3 Multiplication kernel using tensor core

: Input: Matrix pointer *A, *B, *C, normmap pointer*A_normmap, *B_normmap, parameter 7
shared memory: bitmap
: fragment: a_frag, b_frag, ab_frag
for i=0 to validNum-1 do
b = map_offset[i]
_syncthreads
Exchange pointer between read and write
if i is less than validNum-1, perform prefetch and let next = map_offset[i+1]
10: load_matrix_sync(a_frag, A+warpRowOff+bXLoNum, N)
11: load_matrix_sync(b_frag, B+warpColOff+bXLoNum*N, N)
12: mma_sync(ab_frag, a_frag, b_frag, ab_frag)
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13: store_matrix_sync(C+warpRowOffXT+warpColOff, ab_frag)




3.4 Scaling to multiple GPUs

Modern servers are usually equipped with multiple GPUs (e.g.,
Nvidia DGX contains up to 16 GPUs). To leverage such perfor-
mance potential, we extend the blocking optimizations to enable
cuSpAMM scale to multiple GPUs on a single server. Note that
our multiple GPU optimizations can be further integrated with dis-
tributed matrix multiplication optimizations such as CANNON [27]
and SUMMA [49]. However, due to the time constraint, we focus
on describing the multiple GPU optimizations on a single server,
and leave the extension for distributed GPUs in future work.

Algorithm 4 presents the pseudo-code of scaling cuSpAMM to
multiple GPUs. Supposing that there are M GPUs indexed from 0 to
M-1. The calculation task is divided by row, and GPU i is responsible
for the rows in the range of (iXxM/N, (i+1)XM/N] of C. The data
transfer is divided into P batches and implicitly managed by the
use of UM [16] technique. We control the data transfer by ordered
page faults. Firstly, several CUDA streams are created with each
stream manipulating one GPU device. Then, the CPU transfers the
whole matrix B to each GPU in batches, and each GPU obtains
the normmap of B at the same time (line 4~6). After that, the CPU
sends rows [iXN/M, (i+1)xXN/M) of matrix A in batches to GPU i.
When each GPU receives the corresponding rows of A, it invokes
get-norm kernel and waits for the kernel to finish (line 9). After that,
it invokes multiplication kernel for calculating the result (line 11).
The batching approach is able to hide the data transfer latency as
well as reduce the number of active blocks, which in turn mitigates
the scheduling overhead.

Algorithm 4 Scaling to multiple GPUs

: Input: matrix A, B, tau
Output:matrix C

: create CUDA stream stream for devices
: fori=0to P do

launch get-norm kernel for B

. synchronize at stream level

: fori=0to P do

launch get-norm kernel for A
synchronize at stream level

launch multiplication kernel

O PN YW

—
SV

11: synchronize at host level
12: output C

3.5 Additional optimizations

3.5.1 Improving load balance. The load imbalance could occur in
multiplication kernel as shown in Figure 4(a). This is because each
block calculates the bitmap dynamically to determine how many
operations it needs to perform, which leads to block with less load
staying idle and wasting resources. To measure the workload of
each block, we propose the concept of valid multiplication v. For
block responsible for calculating sub-matrix C[j, j], its v equals to
Z?:DOIM bitmap[i]. We organize the v values of all blocks into a
matrix V, where V[i][j] is the v value of the sub-matrix C[i, j]. We
observe that in matrix V, the closer to the diagonal, the greater the
v is, which is determined by the property of decay matrix.

Based on the above observation, we propose the following load
balance strategy. Each block of the multiplication kernel is respon-
sible for the calculation of s (tunable parameter) sub-matrices with
equal stride. For example, as shown in Figure 4(b), one block is
responsible for sub-matrices C[0,0], C[0, BDIM/2], C[BDIM/2,0]

and C[BDIM /2, BDIM /2] with s=2. The multiplication block can
easily adopt the above strategy by adding a loop to change the
index of its corresponding sub-matrices in order to achieve better
load balance.
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(b) the load of each block with load
balance strategy

(a) load imbalance across blocks
Figure 4: The illustration of load balance strategy. The size of
decay matrix is 1024x1024, the sub-matrix is 32x32 and each
multiplication block is responsible for 16xX16 sub-matrix.

3.5.2  Searching for customized accuracy. For users using SpAMM
algorithm to accelerate non-scientific applications such as deep
neural networks (DNNs), adjusting 7 to control the extent of ap-
proximation is not intuitive. For example, the users of DNNs are
more concerned about the accuracy of the entire network, other
than the numerical accuracy of a single GEMM. In such case, we
provide a tuning parameter valid ratio, formulated as valid ra-
tio= Z,Za}’i\(j)_l Vi, j1/BDIM3, to control the actual multiplication
of sub—me{trices, which ensures that the sub-matrices with large and
dense elements participate in calculation with higher priority. This
tuning parameter can better adapt to the accuracy requirements of
non-scientific applications.

Specifically, after the normmaps of A and B are obtained, we
use a tuning kernel to calculate the average result (ave) of the
norm products of all sub-matrices. The kernel then iterates to find
the suitable value of norm z that satisfies the valid ratio given by
the user. Binary search is applied during iterations with search
space [0, kxave], where the initial value of the norm is ave, k is the
expansion coefficient, and the upper bound of the search space is
dynamically extended. The initial value of k is one and will increase
to k+1 whenever the existing upper bound cannot satisfy the search
demand. Besides, users can specify the number of iterations and
tolerable error of valid ratio to balance the time cost and accuracy
for searching. Since the searching algorithm is independent of
the computation kernels, users can develop customized searching
algorithms according to their application characteristics.

4 EVALUATION

4.1 Experiment setup

Experiment platform - The experiments are conducted on a CPU-
GPU server, with two Intel Xeon E5-2680v4 processors and eight
NVIDIA Volta V100 GPUs. Each GPU contains 32 GB memory. We
use CUDA v10 [16] and nvce compiler with -O3 option for our
implementations.



GEMM libraries - We compare with cuBLAS that treats the
decay matrix as dense matrix, and cuSPARSE that treats the decay
matrix as sparse matrix through truncation. Note that, with trun-
cation, the elements smaller than the threshold are treated as zero.
For cuBLAS, we use cublasSgemm and cublasHgemm (with tensor
core optimization) for matrix multiplication in FP32 and FP16 pre-
cision respectively. For cuSPARSE, we use cusparseScsrgemm for
matrix multiplication in FP32 precision. However, cuSPARSE does
not provide matrix multiplication in FP16 precision in CUDA v10.

Evaluation criteria - We use cudaEvent to record the execution
time of the program in seconds, and the execution time ignores the
overhead of input and output transfer (including format conver-
sion) as well as warmup time. As for accuracy criteria, we use the
F-norm of error matrix Epxp, in Equation 5. For cuSPARSE, the decay
matrix is truncated by setting the elements smaller than the thresh-
old TRUN to zeros. The nz ratio represents the ratio of non-zero
elements in the matrix. We use valid ratio to exhibit computation
and memory patterns for cuSpAMM.

Enxn = AnxnBnxn — SPAMM (Anxn, Bnxn, 7) (5)

Synthesized matrix dataset - For performance analysis, we
synthesize the matrices with algebraical decay where a; ; = b; j =
0.1/(li — j|°! + 1), and we control the valid ratio of the matrix
indirectly by tuning the norm threshold 7. Specifically, we use the
tuning method in Section 3.5.2 to select the threshold and constrain
the number of iterations to 20. The errors between actual and
expected valid ratio are less than 1%.

Table 1: The synthesized matrices with algebraical decay.

valid ratio \ N 1,024 2,048 4,096 8,192 16,384 32,768
~30% 1.434815 1.310666 1.195803 1.093354 0.997847 0.905539
~25% 1.456555 1.330525 1.222981 1.113983 1.012852 0.919156
~20% 1.489164 1.360312 1.250158 1.138739 1.03536 0.939582
~15% 1.521774 1.40003 1.277335 1.171746 1.06537 0.966816
~10% 1.586993 1.449676 1.322631 1.204753 1.110386 1.007668
~5% 1.695691 1.548969 1.413222 1.28727 1.170407 1.062136

4.2 Comparison with GEMM libraries

In this section, we use synthesized matrices with algebraically
decay listed in Table 1 for comparing with vendor optimized GEMM
libraries including cuBLAS and cuSPARSE.

4.2.1 Comparison with cuBLAS. Table 2 presents the speedup of
cuSpAMM on a single GPU compared to cuBLAS. The maximum
speedup under each valid ratio is highlighted in red and blue for
FP32 and FP16, respectively. When the valid ratio is 5%, the highest
speedup is achieved with 13.4x (FP32) and 16.1x (FP16). Figure 5
shows the performance comparison when scaling our optimized
cuSpAMM to multiple GPUs. It can be seen that cuSpAMM can
accelerate matrix multiplication across all matrix sizes when the
valid ratio is below a certain threshold. The reason is that when
the valid ratio is below the threshold (25% for FP32 and 30% for
FP16), our optimizations adopted in cuSpAMM can leverage the
property of decay matrix multiplication for better parallelism com-
pared to dense matrix multiplication adopted in cuBLAS. Moreover,

cuSpAMM achieves better performance speedup when scaling to
multiple GPUs across all matrix sizes. For example, when valid ratio
= 5%, cuSpAMM achieves the highest speedup of 51.4X with matrix
size 4,096 in FP16 running on eight GPUs, compared to cuBLAS.

Table 2: The speedup on matrices with algebraical decay on
a single GPU. The first row under each valid ratio is the
speedup for FP32, and the second line is for FP16.

valid ratio \ N 1,024 2,048 4,096 8,192 16,384 32,768
~30% 5.7 3.1 1.0 0.9 0.9 13
4.3 5.2 2.3 1.1 13 1.6
~25% 6.4 3.6 1.2 1.2 1.0 15
4.6 5.8 2.9 1.6 1.5 1.8
~20% 7.6 4.3 15 14 13 18
5.2 6.9 3.7 2.0 19 2.2
~15% 8.7 5.6 19 1.9 17 2.4
5.8 8.7 4.7 2.7 2.5 2.9
~10% 10.8 7.6 2.6 2.6 2.7 3.8
6.5 114 6.8 3.5 3.8 4.5
~5% 13.4 11.7 5.0 5.2 4.8 6.8
7.6 16.1 11.9 7.0 6.5 7.6

4.2.2  Comparison with cuSPARSE. We choose the appropriate set-
tings for 7 so that both implementations reach the same level of
error. Since determining the appropriate settings (r and TRUN)
is time consuming, we choose matrices matrix size of 1,024 and
8,192 for illustration (larger matrix causes out-of-memory error
with cuSPARSE on a single GPU). From Table 3, it is clear that at
the same error level, cuSpAMM is much faster than cuSPARSE, and
the highest speedup reaches more than 601.0x. In addition, the
speedup becomes larger as the nz ratio increases. Especially as the
number of GPUs increases, the performance advantage of cuSpAMM
becomes even larger (e.g., 3,985.1x speedup on eight GPUs). The
phenomenon further demonstrates the incapability of cuSPARSE
for handling near-sparse matrices with large non-zero ratio (e.g.,
more than 24%). Note that, the execution time of cuSPARSE does
not include the time of format conversion. Thus, the performance
speedup of our cuSpAMM will be higher than the results in Table 3
when compared in real-world application.

Table 3: Performance comparison with cuSPARSE. We
choose the matrix size of 1,024 (no.1) and 8,192 (no.2) with
7 and TRUN in cuSpAMM determined for the same level of
error.

no. nz ratio | wvalid ratio ||E| |; ||E| |; speedup (1/2/4/8 GPUs)

1 52.13% 26.83% 1,020 996 232.3/379.5/586.8/875.8
24.37% 6.70% 1,324 1,302 34.6/53.2/71.6/88.4
10.91% 1.87% 1,400 1,387 11.0/14.6/22.9/21.4

2 59.59% 10.35% 38,173 37,090 589.9/1,171.4/2,127.4/3,985.1
26.95% 0.73% 46,340 46,340 601.0/1,150.6/1,900.8/3,097.0
2.12% 0.28% 46,340 46,340 71.2/130.9/220.8/336.9

* the error of cuSPARSE

" the error of cuSpAMM
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Figure 5: Performance comparison with cuBLAS on matrices with algebraical decay. We change the valid ratio from 30% to 5%
with matrix size increasing from 1,024 to 32,768. In addition, we evaluate cuSpAMM scaling from one to eight GPUs.

4.3 Case study

We choose two applications widely used in scientific computing
and deep neural network to further demonstrate the performance
speedup. we only compare with cuBLAS in our case study since the
experiment results in Section 4.2 indicate cuBLAS achieves better
performance with near-sparse matrices compared to cuSPARSE.

4.3.1 ergo application. ergo [44] is an electronic structure comput-
ing program widely used in a range of scientific disciplines. We
use ergo and the water cluster XYZ file [1] to derive the decay
matrices directly. The program generates four decay matrices with
exponential rate, and the size of each matrix is 13,656x13,656. We
use cuSpAMM to calculate the power of these matrices, and we use
parameter 7 to control the error (||E,xn||F) of the results.

Table 4 and Figure 6 present the F-norm of the matrices, the error
of cuSPAMM with different 7, and the performance speedup. cuS-
PAMM achieves increasing speedup when 7 becomes larger across
all matrices. The performance speedup of cuSPAMM also scales
when parallelizing on multiple GPUs. Especially for matrices with
large F-norm (||C||F > 1e”) and =172, the average speedup ranges
from 3.0X to 9.8x when scaling to multiple GPUs. In the meanwhile,
the error introduced by cuSpAMM is much smaller than the data
involved in the calculation (||E||r/||C||F < 8.9¢~7). For the matrix
with small F-norm such as the matrix no.1 and no.2, acceptable
error (||E||r/]|Cl|F < 1.6 when 7 = 1e™%) can be achieved with
average speedup of 1.7X/2.9%/3.4X/6.5X (1/2/4/8 GPUs). In the ex-
treme case with no errors introduced (when 7 = 1e—10), cuSpAMM
can still provide average speedup of 1.3%/1.5%/2.3%/4.0X across all
matrices.

4.3.2 VGGI3 application. We use VGG13 model on dataset MNIST.
We use the im2col algorithm to convert the trained weights and
input data into matrices. We use 80% of the dataset for training and

Table 4: The F-norm and error of the matrices from ergo ap-
plication under different settings of r when using cuSpAMM.

. c T

matrix no. lielir 1e~10 1e78 1e7¢ 1e72 1e7?
1 755 0.0 le-06 9e-05 0.01139 1.492293
2 10,406 0.0 1e-06 8.2e-05 0.013414 1.571806
3 3,169,858 0.0 0.0 3.3e-05 0.021516 2.835374
4 17,171,990 0.0 0.0 3e-06 0.013709 2.102697

the rest for validation. The size of the input figure is 32x32, and
the number of channels is three. The batch size is set to 100 in both
training and testing. The prediction accuracy of the original model
is 96.6%.

Due to the time constraint, we only choose the two largest convo-
lution layers conv21 and conv31 from VGG13 for detailed evaluation
with cuSpAMM. Other convolution layers should expect similar ten-
dency on performance speedup. After applying im2col operation,
the scale of the matrix multiplication is 128 X 576 X 25,600 and
256 X 1,152 x 6,400 for these two layers, respectively. We apply
cuSpAMM to accelerate the two layers and use the same dataset
to test the performance and accuracy. Since the size of matrices
is not large enough to occupy more than four GPUs, we only per-
form performance evaluation on four GPUs at the largest scale for
VGG13.

Table 5 shows the evaluation results on both accuracy and per-
formance when using cuSpAMM. In general, cuSpAMM is more
effective for improving the performance of matrices multiplication
in convolution neural network due to its insensitivity to matrix
approximation. For both conv21 and conv31, we can observe sig-
nificant performance speedup under different settings of r with
negligible accuracy loss (less than 1.1%). The performance speedup
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Figure 6: Performance comparison with cuBLAS on four matrices from ergo application. The four matrices exhibit exponential
decay. In addition, we evaluate cuSpAMM scaling from one to eight GPUs.

also scales well when increasing from one to four GPUs. Particu-
larly for layer conv31, cuSpAMM achieves 2.6X to 7.8X performance
speedup with the prediction accuracy unaffected. With 0.1% accu-
racy loss, cuSpAMM achieves 2.7X to 9.0X performance speedup.
The highest performance speedup 12.4x is achieved when scaling
to four GPUs with 1.1% accuracy loss.

Table 5: The accuracy and speedup of cuSpAMM on VGG13
application. The acc loss measures the difference of predic-
tion accuracy between the cuSpAMM optimized and original
models, where negative results indicate accuracy loss.

layer valid ratio | acc loss T speedup (1/2/4 GPUs)
97.47% 0 0.1 2.8/5.0/8.4
96.84% 0% 0.05 2.8/5.1/8.5

conv21 85.00% -0.1% 2.5 3.1/5.6/9.3
82.90% -0.1% 3.0 3.2/5.7/9.4
63.41% -0.9% 4.5 3.9/6.8/10.8
97.92% 0 2.5 2.6/4.8/7.6
94.21% 0 3.5 2.6/4.8/7.8

conv31 87.44% -0.1% 4.5 2.7/5.0/8.1
74.36% -0.1% 5.5 3.1/5.6/9.0
43.38% -1.1% 7.5 4.8/8.1/12.4

5 RELATED WORK
5.1 Optimizing SpAMM
The SpAMM was first introduced by Challacombe et al. [14]. They
proved that the time complexity of the algorithm is O(NlogN) at
worst for matrices with a sufficient decay rate. Compared to the ex-
isting approximate methods, such as truncation and rank reduction,
SpAMM requires much less floating-point operations. However,
Challacombe et al. [14] only presented empirical experiments on
error behavior, other than a detailed analysis on numerical error.
In addition, they provided limited study on the decay matrices gen-
erated by the Heaviside matrix function from electronic structure
domain [26]. Artemov et al. [3] studied the SpAMM algorithm with
the matrices of exponential decay. They proved the absolute error
behavior of SpPAMM is ||Enxnl|F = O(N(1/2) x O(z#/2)), where
p <2

Until recently, the performance optimization of SpAMM mainly
focuses on CPUs. Bock et al. [9] reformed the SpAMM compu-
tation recursively and implemented the algorithm in parallel. In

addition, they used hashed (linkless) tree structure [24] to map
the data and computation of sub-matrices. Moreover, the authors
adopted hardware prefetching and optimized the performance us-
ing Intel Math Kernel Library (MKL) and AMD Core Math Library
(ACML). Inspired from N-Body method [25], Bock et al. [10] and
Artemov et al. [3] leveraged parallel programming models such
as Charm++ [34] and Chunks/Tasks [43] to accelerate SpAMM,
respectively. However, none of the existing works has optimized
SpAMM on GPUs, which leaves the widely available GPU perfor-
mance unexploited.

5.2 High performance GEMM

The high performance GEMM libraries on GPU have inspired our
optimizations to SpAMM. cuBLAS and cuSPARSE are widely used
high performance GEMM libraries heavily optimized by NVIDIA.
Several optimization strategies have been proposed in cuBLAS and
cuSPARSE. For example, the blocking strategies, instruction-level
parallelism, parameter tuning, and tensor core acceleration have
been successfully adopted for optimizing dense matrix multipli-
cation in cuBLAS. For sparse matrix multiplication in cuSPARSE,
various matrix storage formats such as COO, CSR and CSC are
supported to optimize both sparse-sparse and sparse-dense matrix
multiplication.

Moreover, Huang et al. [30] reviewed the blocking strategies of
GEMM in cuBLAS and used tensor core to optimize the Strassen
algorithm. Combined with optimizations such as software prefetch-
ing and parameter tuning, their implementation achieves 1.11x
speedup on matrix multiplication compared to cuBLAS. Mukunoki
et al. [39] evaluated the parallelized linear algebra kernels with
multiple data precisions on GPUs. Ryoo et al. [45] summarized the
general principles of matrix multiplication optimizations on GPU.
Abdu et al. [40] used tensor core as matrix multiply-accumulate
unit and proposed a chained reduction strategy. The above works
have inspired the re-design and further optimization of SpAMM
algorithm on GPU. Except the optimization of a single GEMM,
batched GEMM [36] is a widely adopted technology that addresses
small scale matrix multiplication and has already been integrated in
vendor library such as cuBLAS. However, batched GEMM is not ap-
plicable to SpAMM due to its time-consuming reduction operations
for accumulating the final result.
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CONCLUSION

In this paper, we propose the first SpAMM algorithm cuSpAMM, tai-
lored for acceleration on multiple GPUs. We re-design the SpAMM
algorithm to parallelize the get-norm kernel and multiplication ker-

nel.

In addition, we apply several optimizations to improve the

performance and accuracy of cuSpAMM, including blocking strat-
egy, tensor core acceleration, double buffering, load balance and
parameter searching. Moreover, we scale cuSpAMM to multiple
GPUs for handling ever-increasing large near-sparse matrices. Our
experiment results on both synthesized and real-world datasets
show that cuSpAMM can achieve significant speedup compared to
vendor optimized cuBLAS and cuSPARSE libraries.
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