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Abstract

We present a probabilistic method for classifying chest computed tomography (CT)
scans into COVID-19 and non-COVID-19. To this end, we design and train, in an
unsupervised manner, a deep convolutional autoencoder (DCAE) on a selected
training data set, which is composed only of COVID-19 CT scans. Once the model
is trained, the encoder can generate the compact hidden representation (the hidden
feature vectors) of the training data set. Afterwards, we exploit the obtained hidden
representation to build up the target probability density function (PDF) of the train-
ing data set by means of kernel density estimation (KDE). Subsequently, in the test
phase, we feed a test CT into the trained encoder to produce the corresponding hid-
den feature vector, and then, we utilise the target PDF to compute the corresponding
PDF value of the test image. Finally, this obtained value is compared to a threshold
to assign the COVID-19 label or non-COVID-19 to the test image. We numerically
check our approach’s performance (i.e. test accuracy and training times) by compar-
ing it with those of some state-of-the-art methods.
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1 Introduction

There is general agreement on chest computed tomography (CT) scans having a
potential role in diagnosing COVID-19 and being particularly effective when used
as a complement to polymerase chain reaction (PCR) testing [1-5]. Clearly, cheaper
testing methods exist, like lateral flow test. Moreover, the radiation dose inflicted to
the patient by a scan may be harmful. However, the method can be useful when a
different test is unavailable or too expensive or when a quick diagnosis is needed.

Due to its noteworthy detection capabilities, deep learning (DL) is often
employed to assist the evaluation of CT scans for the diagnosis of COVID-19.
Indeed, classification of chest CT scans is an important and active research area. In
recent contributions, classification is carried out by exploiting supervised DL, using
only a few classes of chest CTs (for instance, COVID-19 class and normal one).
However, the symptoms of chest diseases manifest themselves in a broad spectrum
of visual characteristics. Hence, supervised-trained models could run into trouble
when they are fed with chest CTs that do not belong to any of the classes used in
the training phase. This issue can be addressed by taking advantage of unsupervised
DL, where the neural network models are trained only on data sets of the COVID-19
class. In this manner, the trained model can differentiate the COVID-19 class (the
target class) from any other types of chest images (anomalies).

This paper develops an unsupervised classification approach based on autoen-
coders (AEs). An AE is composed of an encoder and a decoder [6]. The encoder
takes an image and transforms it into a hidden feature vector, a compressed input
representation. The decoder is used to reconstruct the input image from the hidden
feature vector. Since deep convolutional neural networks (CNNs) have proved their
effectiveness in image processing and feature extraction, in this paper, we design a
deep convolutional autoencoder (DCAE) as the neural network model [7].

We train the proposed DCAE, in an unsupervised manner, on a data set of
chest CT scans obtained from COVID-19 patients. After training, the encoder is
used to obtain the hidden feature vectors of the training set CT scans. These hid-
den feature vectors are, in turn, exploited to estimate the probability density func-
tion (PDF) of COVID-19 hidden feature vectors, by means of the multivariate
kernel density estimation (KDE) method. The classification of a test image is per-
formed by feeding it into the trained encoder to produce its hidden feature vector.
Afterwards, the PDF is used to compute the PDF value of the test image. Finally,
the obtained PDF value is compared to a suitably tuned threshold to classify the
test image as either COVID-19 or non-COVID-19.

For comparison, we also consider a second method for classification based on
the DCAE reconstruction error. The resulting error is noticeably higher than the
average error corresponding to the training set instances when the trained DCAE
is fed with a CT scan of a non-COVID-19 case and attempts to recover it. If this
error is below a suitably tuned threshold, the image is classified as COVID-19,
otherwise as non-COVID-19.

The rest of the paper is organised as follows: In Sect. 2, we review the related
work and present the contributions of this paper. In Sect. 3, we provide details of
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the used data sets and pre-processing tasks. Sections 4 and 5 describe the pro-
posed DCAE architecture and classification approach, respectively. We discuss
the obtained numerical results in Sect. 6 and compare the performance of our
approach to the ones of some state-of-the-art approaches that rely on the super-
vised training method. Finally, in Sect. 7, we point out the summarised observa-
tions and provide some hints for future research.

2 Related work and paper contributions

The literature on the application of DL-based algorithms to the detection of COVID-
19 is vast. The small volume of available data on COVID-19 patients has motivated
the researchers to take this deficiency into account. For instance, the transfer learn-
ing approach is adopted in [8—17] to deal with the lack of large-size data sets. In
[18], the authors utilise GoogleNet and ResNet for supervised COVID-19 classifica-
tion. The authors of [19] take a statistical method to address issues like huge com-
putational complexity and large datasets required by deep networks. The adopted
approach is based on the evaluating and comparing the statistical representation of
medical images. The authors of [20] consider an unbalanced-data supervised algo-
rithm and obtained good results comparable with benchmark architectures.

A large number of research papers adopt supervised learning approaches [21-31].
In [21], the authors consider a binary classification problem and apply the off-the-
shelf VGG-16. In [26], the authors use depth-wise convolutions with varying dila-
tion rates to extract more diversified features of chest images. The authors use a pre-
trained model and reach the overall 90.2% accuracy. In [28], the authors design a
neural network model as a combination of convolutional and capsule layers, called
COVID-FACT. Despite their great effort, the considered model achieves the 90.82%
accuracy. The authors of [29] propose a model based on the pre-trained ResNet50
and achieve the accuracy, rather similar to the original ResNet50. The DenseNet-
based approach, considered in [31], achieves 92% accuracy. The work by [32] com-
pares different classification architectures on a specific dataset to discover the most
suitable real-world scenarios.

The approaches developed in all these papers typically deal with only a limited
class of chest images. Hence, a naturally posed question is: to which category does
a CT fit when it does not belong to any of the classes learned by the supervised-
trained models? In any case, the aforementioned supervised methods must be trained
on both COVID-19 and non-COVID-19 CTs.

Lastly, we provide an overview of AE-based approaches. The authors of [33] con-
sider a stacked AE (SAE), composed of four CAEs, followed by a dense layer, and
a final softmax classifier. Each layer is equipped with regularisation to improve the
local optimum. The binary classification task, considered by the authors, occurs at
the last stage, where the softmax classifier obtains the probability of the two types
of labels and performs the classification task with an average accuracy of 94.7%.
This method is different from our approach because we perform the classification by
directly using the PDF of the hidden feature vectors, without inserting any classifier
at the top of our model. The deep convolutional denoising AE, proposed in [34], is
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trained on COVID-19, pneumonia, and a few other types of chest X-rays. Then, the
hidden feature vector of a test image is compared to the features of the selected train-
ing data sets. The considered AE exhibits good performance. However, unlike our
work, this approach relies on training the considered model over each selected class
and therefore cannot detect chest CTs except those that belong to the classes of train-
ing data sets. The work by [35] focuses on a two-stage learning method and a triple
classification task. The authors train their considered model on classes of COVID-
19, pneumonia, and normal cases separately. Once the hidden feature vectors of all
classes are independently obtained, a feature classifier is employed and trained—in a
supervised manner—to detect each decision class. The considered approach reaches
a quite good accuracy of 93.50%. In contrast to this work, we train our DCAE model
on only one class, i.e. the COVID-19. The paper by [36] is based on a variational
autoencoder (VAE) model for COVID-19 classification. The VAE model involved
adaptive Wiener filtering (AWF)-based pre-processing technique to enhance the
image quality. Besides, Inception v4 with Adagrad technique is employed as a fea-
ture extractor and unsupervised VAE model is applied for the classification process.
As the last research paper, the method introduced by [37] builds a robust statisti-
cal generating target histogram of the deep denoising convolutional autoencoder’s
(DDCAE) latent vector. It then estimates the statistical distance between unknown
and target histograms to classify the images according to proper thresholds.

A brief overview of the given literature is provided in Table 1. Finally, the main
contributions of this paper are listed below:

e we base the classification task on exploiting an unsupervised deep neural net-
work model, which is trained only on COVID-19 images and, in so doing, we
strengthen the robustness of the proposed model concerning the presence of CT
scans of other diseases which are not seen during training phase;

e we propose an ad hoc DCAE with an optimised number of layers for the best
classifying test performance;

e as an additional novelty, we base the classification task on the estimation of the
probability density of the training hidden feature vectors by adopting the KDE
method; and finally,

e we carry out numerical tests under benchmark data sets available in the literature
and compare the performance of our approach to the ones of some supervised/
unsupervised deep neural networks, both in terms of test accuracy and process-
ing times.

3 Utilised data sets and pre-processing

The training data set used in this paper is composed of 4000 CTs of COVID-19
cases collected from over 500 patients. These CT scans have been selected from the
‘COVIDx CT-2A’ data set; the ‘A’ variant of the ‘2nd’ version of the open-source
‘COVIDx-CT’ data set [38]. The ‘COVIDx CT-2A’ data has been validated by med-
ically qualified personnel. The data are split into training and validation sets contain-
ing 80% and 20% of instances, respectively.
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Table 1 A synoptic overview of main related work on COVID-19 detection/classification

Work Algorithm specifications Accuracy

Ref. [8] * Modified inception 0.8502
¢ BC (Pneumonia, COVID)
* Transfer learning

Ref. [10] * ResNet50V2/Xception + Softmax 0.9849
* BC (Normal, COVID)
* Transfer learning

Ref. [13] * AlexNet/GoogleNet/ResNet + Softmax 0.9905
* MC (Normal, COVID, Tumour)

* Transfer learning

Ref. [16] * Modified AlexNet 0.9410
* BC (Normal, COVID)
* Transfer learning 0.9410
Ref. [17] * DensNet-121 0.8711

* MC (Normal, COVID, Cancer)
* Transfer learning

Ref. [18] * AlexNet/GoogleNet/VGG-16 0.9951
* MC (COVID, Atypical/Viral Pneumonia)

* Transfer learning

Ref. [20] * Deep CNN 0.9943
¢ MC (Normal, COVID, Bacterial Pneumonia)

Ref. [21] * SRGAN/VGG-16 0.9800
* BC (Normal, COVID)

Ref. [25] * Deep CNN + SVM 0.9866
¢ MC (Normal, COVID, Bacterial Pneumonia)

Ref. [29] * ResNet50 + FPN 0.9300
¢ MC (Normal, COVID, Bacterial Pneumonia)

Ref. [31] * DenseNet 0.9500
* BC (Normal, COVID)

Ref. [33] * SAE + Softmax Classifier 0.9470
* BC (Normal + COVID)

Ref. [34] * Denoising AE + Hidden Features -
* MLC (COVID, Pneumonia, and other classes)

Ref. [35] * AE + FPN + Classifier -
* MC (Normal, COVID, Pneumonia)

Ref. [36] * VAE + AWF 0.9920

Ref. [37] * DDCAE + Latent Space 1.0000

¢ (Pneumonia & Normal)

BC, Binary classification; MC, Multiclassification; MLC, Multilabel classification; UC, Unary classifica-
tion
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Table2 Train/validation/test set compositions and related web links; WP: Web Page

Data set COVID-19 Pneumonia Cancers Normal Link
Training 3200 - - - wP1!
Validation 800 - - - WP1

Test 2500 300 900 300 WP1 & WP2?

! https://kaggle.com/hgunraj/covidxct
2 https://kaggle.com/mohamedhanyyy/chest-ctscan-images

The test data set comprises 4000 CT slices of COVID-19, normal, pneumonia,
and three types of lung cancers, namely adenocarcinoma, large cell carcinoma and
squamous cell carcinoma. The test images have been randomly selected from two
separate data sets [38, 39], composed of CTs of over 500 patients different from
those involved in the training set. The data sets include both male and female
patients and cover a wide age range.

The information about the employed training/test data sets is summarised in
Table 2, where we also give the links to the corresponding web pages. For illustra-
tive purpose, in Fig. 1, we present some instances of various chest CT categories,
which are drawn from training and test data sets. As can be seen from the figure, the
COVID-19 image is characterised by the presence of several opacities. Indeed, com-
monly reported imaging features specific of COVID-19 pneumonia are peripheral,
bilateral, ground-glass opacities with or without visible intralobular lines: see [40]
for a wider discussion.

As a pre-processing task, the margin of every CT is cropped before performing
the training phase. Moreover, all the images are resized to 300 pixels in width and
200 pixels in height: this size was selected as a compromise between computational
complexity and resolution. Two samples of the COVID-19 dataset in the original,
cropped and resized versions are demonstrated in Fig. 2.

4 The proposed DCAE architecture

A DCAE is composed of an encoder and a decoder as depicted in Fig. 3. The
encoder takes an image as input and transforms it into a hidden feature vector
called latent space. The decoder takes the hidden feature vector and attempts to
recover the input image. The difference between the input and the output images
results in the reconstruction error, which is the cost function to minimise dur-
ing the training phase. We point out that the hidden feature vectors have fewer
dimensions than those of the input images since the DCAE produces compressed
versions.

The DCAE, exploited in this work, has been designed to take account of the trade-
off between test classification accuracy and model complexity. Its “ad hoc” designed
architecture is detailed in Table 3: the encoder is composed of three convolutional
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(a) Normal. (b) COVID-19. (¢) Cancer. (d) Pneumonia.

Fig. 1 Samples of four lung CT scans drawn from the used training and test data sets

Original Covid-19 Image Original Covid-19 Image

Cropped Image Cropped Image

(a) Sample 1 (b) Sample 2

Fig.2 Two samples of original COVID-19 CTs and their cropped versions

Latent Space

Fig. 3 The autoencoder architecture

layers, two batch normalisation layers, two max-pool layers, followed by flatten and
dense layers with rectifier activation functions (ReLUs).

The DCAE is trained to recover its input, i.e. COVID-19 CT scans. As train-
ing cost function, we use the mean squared error (MSE), and in order to minimise
the considered cost function over the training set, we employ the Adam (Adaptive
moment estimation) solver, which is a gradient-based stochastic optimisation algo-
rithm that takes account of the first and second moments of underlying gradients
[41]. The training is carried out over 100 epochs. After the training phase, we select
the DCAE weights, which give rise to the minimum squared error on the validation
data set. Table 4 recap details on the adopted model setting. For illustrative purpose,
Fig. 4 presents the graphs of MSE and accuracy versus the number of epochs, over
which the training phase is carried out.

Note that we have considered other options for both the architecture and the train-
ing parameters, using several alternatives proposed in the literature. The various
options have been compared by means of unreported tests: the final architecture and
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Table3 The architecture of Layer Kernel Stride Output shape
proposed DCAE; encoder
input shape: 200 x 300 x 3; Encoder
sa - e
encoder: 31, 097, 408; number BatchNorm - - 200 x 300 x 256
of parameters of the decoder: Conv2D 3x3 _ 200 x 300 X 128
31,337,475 MaxPool2D 22 - 100 x 150 x 128
Conv2D 3x3 - 100 x 150 x 64
BatchNorm - - 100 x 150 x 64
MaxPool2D 2x2 - 50 X 75 x 64
Flatten - - 240000
Dense - - 128
Decoder
Dense - - 240000
Reshape - - 50x 75 x 64
Conv2DTranspose 3x3 2 100 x 150 x 128
BatchNorm - - 100 x 150 x 128
Conv2DTranspose 3x3 2 200 x 300 x 256
BatchNorm - - 200 x 300 x 256
Conv2DTranspose 3x3 1 200 x 300 x 3
Tablg 4 Main ‘pe‘irameters of the Description Value
carried out training phase
Batch size 16
Number of epochs 100
Optimiser Adam
Learning rate 1x1073
Loss function MSE
Size of hidden feature vectors 128

training parameters have been selected because they yielded the highest classifica-

tion accuracy.

The DCAE is implemented in Python language, using TensorFlow and Keras
API. All the numerical trials have been carried out on a PC equipped with an
AMD Ryzen 9 5900X 12-Core 3.7 GHz processor, two GeForce RTX 3070

graphics cards, and 128 GB RAM.

@ Springer



12032 S. Sarv Ahrabi et al.

Model Accuracy

1.00
0.98 —— Validation
—— Training
0.96
0.94
0.92
0.90
0 20 40 60 80 100
Model Loss
0.025
—— Validation
0.020 —— Training
0.015
0.010
0.005
0.000
0 20 40 60 80 100
Epochs

Fig.4 Numerically evaluated plots of accuracy-vs.-epochs and MSE-vs.-epochs under the training phase

5 Image classification

In this section, we describe the classification approach that is based on the PDF
estimation of the DCAE hidden feature vectors.

5.1 PDF estimation of the training hidden feature vectors

In order to estimate the PDF of the hidden feature vectors, a first choice that needs to
be done is whether to use a parametric or a nonparametric method. Since we have no
clues on the shape of the pdf and we do not want to polarise the estimation by guess-
ing, we decided to use a nonparametric estimate. Among the nonparametric meth-
ods, we selected the KDE approach,! which is well known [42] and outperforms the
simpler histogram approach.

! The KDE is a traditional density estimation method. Such methods may become unmanageable when
the number of variables is too high. Luckily, the computational power of modern computers makes this
method suitable for the problem at hand.
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e N Gaussian kernels
. r 1
o Estimated PDF -- --

(a) The Gaussian kernel. (b) Example of the kernel-based estimation.

Fig.5 An example of KDE estimation over n = 4 data points: a copy of the kernel is placed on each data
point and the copies are summed to produce the final PDF estimate

The KDE method is based on a univariate kernel function denoted by K(x).
Although a wide variety of different kernels can be used, according to [6], we con-
sider the Gaussian one, i.e. K(x) = e"‘z(see Fig. 5a). The kernel is used as an inter-

polating function to build up the PDF estimate.
In order to describe the KDE approach, we first illustrate it for the simple case of

a univariate PDF. Let us consider a set of n real numbers: x; for i = 1, ..., n, drawn
from a (hidden) random variable (RV) X, which exhibits an unknown PDF, fy(x),
that we want to estimate. The KDE estimate of the PDF is [6]:

fx(x>=$21<(x;x") M

where the constant « is a normalisation factor, used to set the integral of fy(x) to
one, while the parameter 4 is the kernel bandwidth which is used to set the width of
the kernel. The estimation is illustrated in Fig. 5b, where we see that the density is
obtained as the superposition of n scaled and shifted copies of the kernel.

To describe the multivariate case, let us assume that we have a p dimensional RV
X, with a multivariate density fy(x) where x € R” is a p-dimensional vector. Moreo-
ver, we have a set of vectors x; € R? for i = 1, ...,n which are samples drawn from

the RV X. The KDE estimate generalises to the multivariate case as in:

- 1 © [Ix — x|
fX(X)=EZK<T>’ )

i=1

where IL.Il denotes the Euclidean norm.
In order to estimate the PDF of the DCAE hidden feature vector when the input

is a COVID-19 image, we use the KDE estimate of (2), where the vectors X; are the
hidden feature vectors obtained from the images of the training set, with n = 3200
and p = 128 in our setting. For the computation of the KDE estimate, we used
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Scikit-learn [43], an open-source machine learning library developed for the Python
environment. One parameter that needs to be carefully tuned is the bandwidth A.
Indeed, the choice of bandwidth controls the bias—variance trade-off in the estima-
tion of the PDF [6]. This means that a too narrow bandwidth leads to a high-variance
estimate (over-fitting), while a too wide bandwidth results in a high-bias estimate
(under-fitting). For selecting the bandwidth, we employed the Scikit-learn built-in
method of grid search cross-validation. This algorithm selects the best option from
a grid of parameter values provided by the user, automating the ‘trial-and-error’
method. A second option could be to use the maximum likelihood cross-validation
(MLCYV) approach, introduced in [44, 45].

We point out that the computational complexity of the evaluated KDE-based esti-
mation approach depends on the length p of the hidden feature vectors and the num-
ber n, of employed training images. specifically, since n Euclidean distances among
p-dimensional vectors must be computed, the resulting computational complexity
scales as:

O X p). 3)

5.2 Classification based on the estimated PDF

In our approach, the estimated PDF of the DCAE latent space is used to classify the
test images. To this end, we feed the image to the DCAE encoder to produce the cor-
responding hidden feature vector. Next, the obtained vector is used as the argument
of the estimated PDF, in order to compute its corresponding PDF value. In practice,
since the obtained values of the PDF are minimal, it is more robust to work with log
probability densities. If the obtained value of log density is above a (suitably tuned)
threshold, the image is classified as a COVID-19 case; otherwise, it is labelled as a
non-COVID-19 one.

Algorithm 1 — Pseudo-code of the proposed classification method
Function: ClassifyImage(img)

1: hiddenVector = Encode( img );

2: logProb = KDE( hiddenVector );

3: if logProb < threshold then

4: return non-COVID;
5
6
7

: else
: return COVID.
: end if

In order to suitably set the decision threshold, we evaluate the real-valued log
probability densities of n images in the training set, denoted by [;, fori = 1,2, -+, n.
Then, we compute the mean and the standard deviation of the evaluated /;s, denoted
by u; and o, , respectively. Thus, the threshold is set to:

TH = p; + poy, (@))
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“
Log density «_“'x _ - Stage 2
n, - . ge
latent space o =y
p \ \ 4, COVID
<
& i 7. non-COVID

Training
data set

Test dat // i X Testset .- N -
est data - =
latent space *\ Log density

Fig. 6 Estimation of the PDF of the latent space (stage 1) and classification of the test images (stage 2)

— Stage 1
Training set ' R -~ Stage 2
1 Reconstruction .
atent space —> Error —><T?
e ___ Ei N
T |7 \‘W/l : 7*Reconstructionkﬁ>§< COVID
g latent space] __Error J non-COVID

Fig. 7 Evaluation of reconstruction errors of training set and the threshold (stage 1), and classification of
the test images (stage 2)

where the constant f is evaluated by using the validation set. In particular, we select
p so that the threshold equals the minimum log probability of the validation set,
namely —233.5: in this way the whole validation set is classified as COVID-19. The
overall proposed classification procedure is summarised in Fig. 6 and Algorithm 1.

5.3 A benchmark classifier

For comparison purposes, we consider a benchmark classification method. To this
end, we recall that the DCAE is trained to produce an output similar to the input
as much as possible. The difference between the input and the output is the recon-
struction error, which minimises the cost function during the training phase. How-
ever, since the training set contains COVID-19 scans only, the DCAE is effective at
recovering COVID-19 images, but it is ineffective for recovering non-COVID-19
images. Therefore, a high reconstruction MSE can be an index that the image does
not belong to the COVID-19 class.

By considering this fact, we build up the following benchmark classification pro-
cedure. Given an image, we feed it into the DCAE and compute the Euclidean norm
of its reconstruction error. If the obtained error norm is below a (suitably) set thresh-
old, the image is classified as COVID-19. The threshold is evaluated by using the
instances of validation set. In particular, we select the threshold equal to the maxi-
mum error of the validation set, namely 0.08: in this way the whole validation set
is classified as COVID-19. Figure 7 presents the flow diagram of the classification
process based on reconstruction error.
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Table 5 Basic metrics

Name Description

True positive (TP) COVID-19 image classified as COVID-19

True negative (TN) Non-COVID-19 image classified as non-COVID-19
False positive (FP) Non-COVID-19 image classified as COVID-19
False negative (FN) COVID-19 image classified as non-COVID-19

Table 6 Utilised performance

indexes Metrics Formula
Recall TP/(TP + FN)
Precision TP/(TP + FP)
F-score 2TP/Q2TP + FP + FN)
Accuracy (TP+TN)/(TP + FN + FP + TN)

6 Numerical results and performance comparisons

In order to evaluate the performance of our classification method, we carried out
several tests. We split the presentation into three parts that are: (i) the results that
are obtained from the KDE probabilistic approach; (ii) the results that are achieved
through reconstruction error evaluation; and (iii) performance comparisons with
some state-of-the-art solutions. In the next subsection, we describe the employed
performance metrics as a preliminary step.

6.1 Performance metrics

Given a binary classifier, the considered performance metrics are the rates of
true-positive (TP), true-negative (TN), false-positive (FP) and false-negative
(FN) assignments. These metrics are summarised in Table 5. These basic met-
rics can be represented in a compact form as the four elements of the resulting
confusion matrix [46].

From these basic metrics, a number of affiliated performance indexes can be
derived [46]. This paper will consider accuracy, recall, precision and F1-score,
as performance indexes. The formal definitions of these indexes are given in
Table 6.

6.2 Performance of the proposed approach
As a first experiment, we carried out a classification of the test data set by using

the proposed approach. To this end, each test image is fed to the trained DCAE,
and the corresponding hidden feature vector is obtained. Afterwards, the obtained
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Confusion matrix: Large test dataset

=« Threshold
BB COVID-19
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(a) Distribution of log densities on 4000 test CTs. (b) Corresponding confusion matrix.

=+ Threshold
B Validation Set

8 g 8 8

Number of CT scans

8

0
260 -250 -240 -230 -220 -210
Log Density

(¢) Distribution of log densities on 800 CTs of val-
idation set.

Fig. 8 Results under the proposed approach

hidden feature vector is used as an argument of the multivariate PDF estimated
by the KDE and then the corresponding log density value is computed. The so-
obtained log densities are plotted in Fig. 8a for all the test images and in Fig. 8c
for validation set.

From Fig. 8, we see that the log densities of the COVID-19 images are almost
separated from those of the non-COVID-19 ones. In Fig. 8a and c, the vertical
dashed line denotes the threshold, which is laid between the two classes. As a result,
the proposed method achieves a 97.12% test accuracy. The corresponding confusion
matrix is presented in Fig. 8b. The last row of Table 7 reports the evaluation perfor-
mance metrics.

6.3 Performance of the benchmark classifier

As a second experiment, we evaluate the performance of the benchmark classifica-
tion approach of Sect. 5.3, which is based on the reconstruction error. To this end,
in Fig. 9a, we plot the reconstruction errors obtained by feeding the whole test set
to the DCAE, using two different colours for the COVID-19 and non-COVID-19
scans. From the figure, we see that, as expected, the error is lower for the COVID-
19 images. However, the two classes are not disjoint. The threshold is shown in
Fig. 9a by the vertical dashed line. The resulting accuracy is equal to 86.35%. The
corresponding confusion matrix is presented in Fig. 9b, and the related perfor-
mance indexes are reported in Table 7. From Table 7, we conclude that the obtained
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Fig. 9 Performance results of the reconstruction error approach

Table 7 Performance metrics of the proposed approach and the benchmark one based on the reconstruc-
tion error

Method Accuracy Precision Recall F1-score Test CTs
Reconstruction error 0.8635 0.8584 0.8531 0.8555 4000
Our approach 0.9712 0.9741 0.9659 0.9696 4000

performance of the classification approach based on the reconstruction error is about
11% inferior performance than the corresponding one of the KDE-based proposed
approach.

6.4 Performance comparison against state-of-the-art approaches and robustness
test

In this subsection, we study the classification accuracy of several other approaches
and compare their results with ours. For computational complexity reasons, we do
not use the whole test set but a subset of it, comprising 1000 images (500 COVID,
120 pneumonia, 120 normal and 260 cancer). On this reduced set, our approach
reaches a 100% accuracy, while the reconstruction error approach reaches 97% accu-
racy (see Table 8).
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In order to compare our results with those obtained by supervised learning, we
have considered three state-of-the-art supervised models, namely GoogLeNet [47],
AlexNet [48], and ResNet18 [49], which are typically used for image classification
and able to successfully classify out-of-sample examples.

As a first experiment, we have trained—in a supervised way—the aforementioned
models, using a training set composed of 2000 COVID-19 CTs and 2000 non-
COVID-19 CTs. The non-COVID-19 set is composed of five classes, namely nor-
mal CTs, pneumonia and three types of lung cancers CTs. Afterwards, each model
has been evaluated on the reduced test set. The obtained performance indexes are

Table 8 Comparison with

supervised classification Model Accuracy  Precision Recall ~ Fl-score
AlexNet 0.9840 0.9840 0.9841  0.9840
GoogleNet 0.9960 0.9960 0.9960  0.9960
ResNet18 0.9930 0.9931 0.9930  0.9930

Unsupervised approach
Reconstruction error 0.9710 0.9710 0.9710 0.9710
Our approach 1.0000 1.0000 1.0000  1.0000

The training set is composed of 4000 images (COVID only for the
proposed method and belonging to five different classes for the
supervised methods). The test set is composed of 1000 images (500
COVID, 120 pneumonia, 120 normal and 260 cancer)

Table 9 Robustness tests:

. Model Accuracy  Precision  Recall Fl-score
pneumonia CTs are present
in the test set, but not in the AlexNet 09060 09060 09209  0.9052
training set for the AlexNet,
GoogleNet and ResNet18 GoogleNet 0.9140 0.9140 0.9266 09134
ResNet18 0.9130 0.9130 0.9259 09123

Unsupervised approach
Reconstructio error  0.9710 0.9710 09710 09710
Our approach 1.0000 1.0000 1.0000  1.0000

The test set is composed of 1000 images (500 COVID, 120 pneumo-
nia, 120 normal and 260 cancer)

AlexNet_Accuracy: 90.6%

GoogleNet_Accuracy: 91.4% ResNet18_Accuracy: 91.3%
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Fig. 10 Confusion matrices: pneumonia CTs are present in test data set, but not in the train data set
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Table 10 Comparative analysis Model

of binary classification of Accuracy Precision Recall F1-score

bcgzglzr;lznvlislgrogige‘t’:m9 HB-DDCAE  1.0000 1.0000 1.0000  1.0000
SVM-2D 0.9340 0.9417 0.9340 0.9378
SVM-3D 0.9270 0.9363 0.9270 0.9316
SVM-RBF 0.9170 0.9788 0.9170 0.9469
MLP-50 0.7600 0.8132 0.7600 0.7857
MLP-100 0.7740 0.7874 0.7740 0.7806
MLP-200 0.7830 0.8123 0.7830 0.7974
RF-100 0.7110 0.7852 0.7110 0.7463
RF-500 0.7200 0.7903 0.7200 0.7535
RF-1000 0.7210 0.7893 0.7210 0.7536
The test set is composed of 1000 images (500 COVID, 500 non-
COVID)

Tt e
AlexNet 1.3566
GoogleNet 1.2400
ResNet18 2.4754
Proposed 1.0026

reported in Table 8. These results are comparable to those obtained from the KDE-
based approach.

While the supervised DL models have a performance similar to our approach,
we expect that their performance is more sensitive (i.e. less robust) to unseen test
images. To corroborate this statement, we carry out a final experiment, where we
retrain all the supervised models using a modified data set: we eliminate pneumo-
nia CTs from the non-COVID-19 images, replace them with the normal CTs, apply
all the procedures from scratch. Once the best weights are achieved, we perform
the test phase on the reduced test set, including pneumonia CTs. The correspond-
ing performance indexes are presented in Table 9, while the confusion matrices are
shown in Fig. 10. It is observed that the supervised models are able to distinguish
COVID-19 perfectly, but since the pneumonia images have not been included in the
training phase, the models are in trouble with these images. In other words, if some
classes of images are not present in the training set, the supervised-trained models
are not capable of correctly classifying them in the test phase. We conclude that our
approach is more robust in the presence of outliers in the test set.

As a second experiment, we compare our approach with several other methods
presented in [37]. In particular, we consider the Histogram-Based DDCAE (HB-
DDCAE) method proposed in that work, together with several shallow methods.
The shallow methods are: support vector machine (SVM) with 2-degree (SVM-2D)
and 3-degree (SVM-3D) polynomial, and radial basis function (SVM-RBF) kernels;
multilayer perceptron (MLP) equipped with single hidden layers composed by 50
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(MLP-50), 100 (MLP100), and 200 (MLP-200) neurons; random forest (RF) com-
posed by 100 (RF-100), 500 (RF-500), and 1000 (RF-1000) binary trees. See [37]
for details about the training. The results are presented in Table 10.

From Table 10, we note that the shallow algorithms have an inferior performance.
On the other hand, the HB-DDCAE method has the same performance of the pro-
posed approach.

6.5 Test-time comparisons

Table 11 reports the (numerically evaluated) average times required by the imple-
mented methods for classifying a batch of 10 images in the test phase. A comparison
of the entries of this table leads to the conclusion that the average test time of our
method is over 25% less than the corresponding ones of the implemented benchmark
models. We have numerically ascertained that this is due to the fact that our pro-
posed method works on the reduced-size (i.e. compressed) hidden feature vectors,
while all the benchmark models directly process the full-size input test images. This
conclusion provides further support about the actual effectiveness of the proposed
KDE-based classifying approach.

7 Conclusion and hints for future research

We propose a method for classifying lung CTs as COVID-19 or non-COVID-19.
The method exploits a DCAE trained on COVID-19 CTs only and a KDE estimation
of the PDF of the DCAE hidden feature vectors. The DCAE is used to produce the
corresponding hidden feature vector to classify an image. Afterwards, we use the so-
obtained PDF evaluation to compute, in the test phase, the PDF value of the hidden
feature vector, corresponding to a test image: if the PDF value is above a suitable
threshold, that image is classified as COVID-19, otherwise as non-COVID-19.

We compare our KDE-based approach to the benchmark method that is based
on the reconstruction error. In addition, we also check the accuracy performance of
three widely known supervised models and the results of some recent papers. The
carried out tests support the conclusion that the proposed approach is highly effec-
tive in terms of both achieved test accuracy and the needed test times.

The presented results could be extended, at least, along two main research lines.
A first research line could concern the utilisation of generative adversarial net-
works (GANSs) for the generation of additional training examples in the case of new
COVID-19 mutations (as, for example, the Omicron one), in order to quickly pro-
vide reliable automatic detection of these mutations without pausing for the acqui-
sition of sufficiently large new datasets. A second research line could regard the
implementation of the proposed algorithmic framework atop distributed Fog/Cloud
networked technological platforms [50, 51], in order to be capable to quickly gener-
ate reliable clinical diagnosis by leveraging the low-delay and (possibly, adaptive
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[52] and /or multiantenna empowered [53, 54]) capability of emerging Fog com-
puting platforms for allowing ubiquitous wireless access to computing-demanding
medical diagnostic services.
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