
ar
X

iv
:2

10
1.

09
79

7v
1

 [
cs

.D
C

]
 2

4
Ja

n
20

21

Independent Spanning Trees in Eisenstein-Jacobi Networks

Z. Hussain1, H. AboElFotoh1, and B. AlBdaiwi1

1Computer Science Department, Kuwait University, Kuwait

Abstract— Spanning trees are widely used in networks for

broadcasting, fault-tolerance, and securely delivering mes-

sages. Hexagonal interconnection networks have a number of

real life applications. Examples are cellular networks, com-

puter graphics, and image processing. Eisenstein-Jacobi (EJ)

networks are a generalization of hexagonal mesh topology.

They have a wide range of potential applications, and thus

they have received researchers’ attention in different areas

among which interconnection networks and coding theory.

In this paper, we present two spanning trees’ constructions

for Eisenstein-Jacobi (EJ). The first constructs three edge-

disjoint node-independent spanning trees, while the second

constructs six node-independent spanning trees but not edge

disjoint. Based on the constructed trees, we develop routing

algorithms that can securely deliver a message and tolerate

a number of faults in point-to-point or in broadcast com-

munications. The proposed work is also applied on higher

dimensional EJ networks.

Keywords: Interconnection network, hexagonal network,

Eisenstein-Jacobi, spanning tree, edge disjoint, fault-tolerant,

routing, broadcasting.

1. Introduction

The characteristics and properties of an interconnection

network play a major role in the performance of the network

since they determine the fault tolerance capabilities. Over past

decades, many types of interconnection networks have been

discussed such as Hypercube [15], mesh [25], Torus [9], k-

ary n-cube [3], butterfly, and Gaussian [11]. Some machines

have been implemented based on the topologies of these

interconnection networks such as the IBM BlueGene [1],

the Cray T3D and T3E [33], the HP GS1280 multiprocessor

[8], and the J-machine [29]. Hexagonal networks are another

type of interconnection are used in cellular networks [30],

computer graphics [26], image processing [32], and HARTS

project [34].

Eisenstein-Jacobi networks (EJ) were proposed in [28]

and [11]. They are generated based on EJ integers [16]. EJ

networks are symmetric 6−regular networks and they are

generalizations of the hexagonal mesh topology presented in

[5][10]. One of the advantages of these type of networks is

that they are used as a new method for constructing some

classes of perfect codes that are used to solve the problem

of finding perfect dominating set [28][16]. In addition, there

are some studies on the applications of EJ netowkrs such as

routing, broadcasting, and Hamiltonian cycles [11][21]. The

detailed definition of EJ network is discussed in Section 2.

Independent spanning trees are widely used to broadcast

messages and to obtain routing paths between nodes in

a network. Moreover, they are used in networks to offer

a reliable communication [22][23]. For example, given a

regular network of degree d, we can tolerate a number of

faulty nodes by constructing d independent spanning trees

so that the network will still be connected even with the

existence of d − 1 faulty nodes. In addition, independent

spanning trees are used to securely deliver a message to the

destination node [31][39]. For instance, a message can be

sliced into d parts where each part travels in distinct path

until all parts reach the destination node. A clear definition

of independent spanning trees is described in Section 2.

The three main contributions of this paper are as follows.

First, we introduce a construction of six node-independent

spanning trees (IST) in EJ networks. Second, we present a

construction of three edge-disjoint node-independent span-

ning trees (EDNIST) in EJ networks. Note that both con-

structions can be also applied in hexagonal networks. Third,

we develop routing algorithms based on the constructed trees

that can be used in fault-tolerant point-to-point routing, fault-

tolerant broadcasting, or in secure message distributions. The

designed algorithms are unified in the sense that they can be

initiated from any node in an EJ network due to the network

topology symmetry and node transitivity.

Throughout this paper, the terms vertices and nodes are

used interchangeably. Similarly for edges and links; and,

graph and network. The rest of this paper is organized as

follow. In Section 2 we review some terminologies from

graph theory and we briefly describe the EJ networks. Section

3 discusses some previous works related to the domain

of this paper. We introduce the node-independent spanning

trees and edge-disjoint node-independent spanning trees in

EJ networks in sections 4 and 5, respectively. In Section 6,

we present the routing algorithm. The simulation results are

described in Section 7. In Section 8, we apply the proposed

construction methods on higher EJ networks. Finally, the

paper is concluded in Section 9.

2. Background
Based on graph theory, some definitions and properties of

graph are reviewed in this section. In addition, we briefly

describe the topological properties of EJ networks.

Given a graph G(V,E) such that v is the set of |V |
vertices and E is the set of |E| edges. An edge is a direct

http://arxiv.org/abs/2101.09797v1

connection between two vertices denoted as (u, v), such

that u, v ∈ V . A sequence of connected edges are called

path. That is, a path P (s, d) of length |P (s, d)| = n from

vertex s to vertex d in G is a sequence of connected edges

(s, x1), (x1, x2), . . . , (xn, d) where the intermediate vertices

are distinct. Two paths P1(u, v) and P2(u, v) are said to

be independent if their intermediate vertices are mutually

disjoint. A tree ST (V ′, E′) that is a subgragh of G(V,E)
where V ′ ⊆ V and E′ ⊆ E is called spanning tree when

it contains all the vertices of G, i.e., V ′ = V . Two or more

spanning trees STj , for j = 1, 2, . . . , n, rooted at vertex r
are called independent spanning trees if

⋂n
j=1(PSTj

(r, u) \
{r, u}) = φ for u ∈ V , where PSTj

(r, u) is a path from r
to u in the jth spanning tree. Further, the trees which their

edge sets are pairwise disjoint are called edge-disjoint node-

independent spanning trees. That is, for all trees STj(V,E
′

j),
for j = 1, 2, . . . , n, we have E′

p ∩ E′

q = φ for all p 6= q
such that 1 ≤ p ≤ n and 1 ≤ q ≤ n. In a graph G, the

distance (denoted as D(u, v)) between two vertices u and v
is the number of edges along the shortest path P (u, v) (the

path with minimum length over all possible paths between u
to v). The diameter k of the graph is known as the shortest

distance between two most farthest vertices in graph G.

Eisenstein-Jacobi networks [11] are based on EJ integers

[16][28], which can be modeled on planar graphs as a graph

EJα(V,E) generated by α = a + bρ such that 0 ≤ a ≤
b, where V = Z[ρ]α is the vertex set modulo α, which

represents the nodes in the network; and E = {(A,B) ∈
V × V : (A − B) ≡ ±1,±ρ,±ρ2 mod α} is the edge set,

which represents the network links. The set of Eisenstein-

Jacobi integers Z[ρ] is defined as:

Z[ρ] = {x+ yρ | x, y ∈ Z}

where ρ = (1+i
√
3)/2, and i =

√
−1. It is known that Z[ρ] is

a Euclidean domain and the norm of EJ integer α = a+bρ is

given by N(α) = a2+b2+ab [11], which is the total number

of the distinct vertices in the network under the residue class

modulo α. It can be seen that ρ2 = ρ−1, ρ3 = −1, ρ4 = −ρ,

ρ5 = 1− ρ, and ρ6 = 1.

The EJ networks are regular symmetric networks of degree

six since each node in EJ network has six neighbors. The

nodes in the network are addressed by x + yρ. Two nodes

in the network are adjacent if and only if there is an edge

between them, i.e., the distance between them is 1.

The distance distribution in the network is based on the

distance of the nodes from the center node, usually node 0.

That is, it is the number of nodes at distance t from node 0

where t > 0. EJ networks are called dense EJ networks when

they contain a maximum number of nodes at distance k where

k is the diameter of the network. Usually, their generator is

α = a+ bρ such that b = a+ 1. Thus, the number of nodes

at distance t is 1 or 6t, respectively, for t = 0 or t > 0. It

can be concluded that the diameter of dense EJ networks is

k = a and the number of nodes d(t) at distance t is:

d(t) =

{

1 if t = 0
6t if 1 ≤ t ≤ k

Example 1: Fig. 1 illustrates the node distribution (white

nodes) of EJ network generated by α = 3 + 4ρ where the

center node is 0.

There are two types of links in the EJ networks. The

links that reside within the network are called regular links,

which connect two neighboring nodes either two of them are

none boundary nodes or one of them is a boundary node

and the other one is a none boundary node in the network.

Whereas, the links that are not residing within the network

are called wraparound links, which connect two neighboring

nodes where both of them are boundary nodes in the network.

Fig. 1 illustrates these types of links where the regular links

are represented by solid lines and the wraparound links are

represented by dotted lines.

The wraparound links can be recognized either by tiling or

by modulo operation. By tiling, we mean that placing the EJ

network at the origin of a grid and consider it as a basic EJ

network with its center node is 0; and then making tiles by

copying the basic EJ network and placing its copies around it.

By modulo operation, we use mod operator after adding ±1,

±ρ, or ±ρ2 to the EJ integers to get the corresponding nodes

in the basic EJ network. Note that, we have removed the

straight dotted lines from node 3 to describe them as wrapped

edges in the following example. Also, we have kept the nodes

of the tiles that are connected to the basic EJ network through

the wraparound edges and the rest of tile nodes are removed.

The nodes in different tiles of the network are represented in

different gray colors.

Example 2: Consider the node 3ρ in Fig. 1. The node 3ρ
is connected to node 1+3ρ, which its corresponding node is

−2−ρ in the basic EJ network, through +1 edge. That is, the

resultant of adding +1 to node 3ρ and then taking the mod α
is node −2 − ρ. Similarly, the +ρ and +ρ2 edges connect

the node 3ρ to nodes, in respective order, 4ρ and 3ρ + ρ2,

which their corresponding nodes in the basic EJ network are

−3 and −3ρ2, respectively.

3. Related Works
Over the past years, the independent spanning trees have

been widely studied in different types of networks. For

instance, the construction of two completely independent

spanning trees in any torus network and in the Cartesian prod-

uct of any 2-connected graphs is investigated in [14]. More

studies on torus networks can be found in [37][36] and on

Cartesian product graphs in [24][41]. Additionally, The opti-

mal independent spanning trees on Hypercubes is presented

in [35]. Further, a fully parallelized construction of ISTs

on Mobius cubes has been discussed in [44]. Moreover, An

implementation of a fast parallel algorithm for constructing

ISTs on Parity Cubes is explained in [4]. In addition, in [6],

-1 0 1 2 3-2-3

✂
2

✂ 1+✂ 2+✂-1+✂
2

-2+✂
2

-✂ -✂
2

1-✂
2

2-✂
2

-1-✂-2-✂

✂+✂
2

2✂ 1+2✂2✂
2

-1+2✂
2

-✂-✂
2

-2✂
2

1-2✂
2

-2✂-1-2✂

2✂+✂
2

3✂✂+2✂
2

3✂
2

-✂-2✂
2

-3✂
2

-2✂-✂
2

-3✂

-✂-2✂
2

-3✂
2

-2✂-✂
2

-3✂

3

2+✂

1+2✂

3✂

-3

-2+✂
2

-1+2✂
2

3✂
2

-2-✂

-1-2✂

-3✂

3

2-✂
2

1-2✂
2

-3✂
2

2✂+✂
2

3✂✂+2✂
2

3✂
2

-3 = 4� mod ✁

= 1+3� mod ✁

= 2+2� mod ✁

= 3+� mod ✁

= 4 mod ✁

= 3-�
2
 mod ✁

= 2-2�
2
 mod ✁

= 1-3�
2
 mod ✁

= -4�
2
 mod ✁

4�
2
 mod ✁ =

-1+3�
2
 mod ✁ =

-2+2�
2
 mod ✁ =

-3+�
2
 mod ✁ =

-4 mod ✁ =

-3-� mod ✁ =

-2-2� mod ✁ =

-1-3� mod ✁ =

-4� mod ✁ =

-3�-�
2
 mod ✁

=

-2�-2�
2
 mod ✁

=

-�-3�
2
 mod ✁

=

= = =

�+3�
2
 mod ✁ 2�+2�

2
 mod ✁ 3�+�

2
 mod ✁

Fig. 1: EJ Network generated by α = 3+4ρ with dotted lines

as wraparound edges.

the authors presented a common method for constructing ISTs

on bijective connection networks based on V-dimensional-

permutation technique. Furthermore, Building independent

spanning trees on Twisted Cubes has been studied in [38][45].

There are some research studies on building ISTs in other

networks such as: Crossed Cubes [7], Locally Twisted Cubes

[27], Folded Hypercubes [40][42], and Enhanced Hypercubes

[43].

Our previous studies on independent spanning trees include

the followings. In [2], the two edge-disjoint node-independent

spanning trees have been constructed for dense Gaussian

networks. Further, in [18][19], the construction and parallel

construction of four independent spanning spanning trees

were presented such that the edges are not disjoint where

the simulations have been done on the presence of 0, 1,

2, and 3 faulty nodes. Both studies have tree height 2k,

where k is the diameter of the network. Lately, a parallel

construction algorithms and its evaluations for edge-disjoint

node-independent spanning trees in dense Gaussian networks

was introduced in [17].

4. Edge-Disjoint Node-Independent

Spanning Trees

4.1 Network Partitions

Given EJ network generate by α = a+bρ where b = a+1,

the network can be partitioned into subsets as illustrated in

Fig. 2. Let c = 0, 2, 4 for tree t = 1, 2, 3, respectively, and

for d = 1, 2, 3, 4, 5, 6 such that |x| + |y| = k where k is the

diameter of the network. Then, the subsets are as follows (all

the powers of ρ are modulo 6):

Bd = {xρj−1 + yρj | x > 0, y = 0, j = d+ c}.

Td = {xρj−1 + yρj | x > 0, y > 0, j = d+ c}.

S2 = {xρj−1 + yρj | x = a, y = 0, j = 2 + c}.

S4 = {xρj−1 + yρj | x = a, y = 0, j = 4 + c}.

L4 = {xρj−1 + yρj | x > 0, y = 1, j = 4 + c}.

L6 = {xρj−1 + yρj | x > 0, y = 1, j = 6 + c}.

B2\S2 = {xρj−1 + yρj | 0 < x < k, y = 0, j = 2 + c}.

B4\S4 = {xρj−1 + yρj | 0 < x < k, y = 0, j = 4 + c}.

T4\L4 = {xρj−1 + yρj | x > 0, y > 1, j = 4 + c}.

T6\L6 = {xρj−1 + yρj | x > 0, y > 1, j = 6 + c}.

Lemma 3: The partitions in Fig. 2 are disjoint and can be

obtained from the above subsets.

Proof: Let S be the set of subsets defined above and

illustrated in Fig. 2, i.e. S = {B1, T1, (B2\S2), S2 , T2, B3,

T3, (B4\S4), S4, L4, (T4\L4), B5, T5, B6, L6, (T6\L6)}.

Based on the definition of the subsets, for any two subsets

X,Y ∈ S,X 6= Y,X ∩ Y = φ.

Lemma 4: The subsets contains all nodes in the network.

Proof: Given the norm as a total number of nodes in

the network, N(α) = a2+b2+ab, then for α = k+(k+1)ρ
we get N(α) = 3k2 + 2k + 1. It is obvious that |Bd| = k
for d = 1, 3, 5, 6. Thus, we got a total of 4k. In addition,

|S2| = |S4| = 1, |B2\S2| = |B4\S4| = k− 1, |L4| = |L6| =
k − 1. Further, |Td| =

∑k−1
i=1

∑k−i
j=1 1 =

∑k−1
i=1 (k − i) =

1/2(k − 1)k for d = 1, 2, 3, 5. That is, a total of 2(k − 1)k.

Finally, we have |T4\L4| = |T6\L6| = 1/2(k−1)k−(k−1).
Thus, Bd ∪ Td ∪ S2 ∪ S4 ∪ L4 ∪ L6 ∪ (B2\S2) ∪ (B4\S4) ∪
(T4\L4) ∪ (T6\L6) ∪ {0} (including node 0) is equal to the

set V , which is the set of nodes in the network. We conclude

that, 4|Bd|+ 4|Td|+ |S2|+ |S4|+ |L4|+ |L6|+ |B2\S2|+
|B4\S4|+ |T4\L4|+ |T6\L6|+ |{0}| = 3k2+3k+1 = N(α)
(excluding B2, B4, T4, and T6).

B1

T1

T2

T3

S4 B4\S4

T5

L4

L6T4\L4

T6\L6

B6

B3

B5

B1

T1

T2

T3

S4 B4\S4

T5

L4

L6T4\L4

T6\L6

B6

B3

B5

Fig. 2: EDNIST partitions.

This partitioning is helpful in finding the Edge-Disjoint

Node-Independent Spanning Trees described in the following

section.

4.2 Tree Construction

We construct the spanning tree based on Table 1, which

illustrates the parent and child nodes in the spanning tree for

a given node belonging to a set.

Example 5: Given EJ network generated by α = 4 + 5ρ
and a node v = 1+ρ. For the first spanning tree, since v ∈ T1,

then its parent is node 1 and its child is node 1 + 2ρ.

Lemma 6: Let STED be a set of edge disjoint node

independent spanning trees in EJ network generated by

α = a+ bρ, where b = a+ 1, then |STED| ≤ 3.

Proof: The total number of nodes in the EJ network

generated by α = a+ bρ is known as N(α) = a2 + b2 + ab.
In case of b = a+1, the total number of nodes is 3a2+3a+1
and the total number of undirected edges is 9a2+9a+3. Since

the spanning trees are edge disjoint then each spanning tree

STED must have exactly 3a2 + 3a undirected edges. Thus,

it follows that |STED| ≤ 3.

Table 1: Parent and child nodes for EDNIST

Set Parent Child

B1 ρj+2 ρj−1, ρj , ρj+4

B2\S2 ρj+3 ρj , ρj+2

S2 ρj+3 ρj+2

B3 ∪ B5 ρj−1 –

B4\S4 ρj+1 –

S4 ρj+1 ρj+2

B6 ∪ T2 ∪ T5 ρj−1 ρj+2

T1 ∪ (T4\L4) ρj+3 ρj

T3 ∪ (T6\L6) ρj+1 ρj+4

L4 ρj+3 –

L6 ρj+1 ρj+2, ρj+4

Lemma 7: The first spanning tree is connected.

Proof: Based on Section 4.1, consider the j values with

c = 0. Let STED1
(V1, E1) represents the first edge disjoint

node independent spanning tree where V1 ⊆ V and E1 ⊆
E are the set of nodes and edges in STED1

, respectively.

Based on Lemma 6, we have |E1| = 3a2 + 3a = |V1| − 1.

Further, Table 2 shows the path from the source node S = 0
to all other nodes in the network using tree STED1

. As it is

noted in Table 2, the paths are described by a word on the

alphabet {−1, 1,−ρ, ρ,−ρ2, ρ2} where the symbols denote

the direction of the edges to be passed. The number of steps

are represented as (direction)steps. We conclude that STED1

is connected.

Example 8: In the first spanning tree, let S = 0 and D =
ρ4+3ρ5 (which is D = −1−4ρ2) where x = −1 and y = −4,

then D ∈ B6 ∪ T5 ∪B5. Thus, the steps are 1(−ρ2)4(−1)2.

That is, D can be reached by going 1 step along direction 1,

then 4 steps along direction −ρ2, and finally 2 steps along

direction −1.

Lemma 9: The second and third spanning trees can be

obtained by rotating the first spanning tree.

Proof: Based on Lemmas 3 and 4, and Table 1, since

the network is symmetric then it is sufficient to prove that the

obtained second and third spanning trees are connected by

following Lemma 7, but with different j values with c = 2, 4
as described in Section 4.1.

Theorem 10: STEDt
, for t = 1, 2, 3, are edge disjoint node

independent spanning trees.

Proof: Based on Lemmas 3-9, and Tables 1 and 2,

let STEDt
(E) be the set of undirected edges for spanning

tree t. Thus, we get STEDt
(E) ∩ STEDt′

(E) = φ, t, t′ ∈
{1, 2, 3}, t 6= t′. We conclude that all trees are edge disjoint

node independent spanning trees.

Table 2: Steps from node S = 0 to all other nodes D =
xρj−1 + yρj , where k is the diameter

Node in set Path (steps)

B1 (1)x

T1 (1)x(ρ)y

{B2\S2} ∪ S2 (ρ)y

T2 ∪ B3 (ρ)|y|(−1)|x|

(after converting to form x+ yρ)

T3{B4\S4} ∪ S4 (1)k−|x|+1(−ρ2)k−y

L4 ∪ {T4\L4} (1)k−|x|(ρ)k−|y|+1

L6 ∪ {T6\L6} (1)x(−ρ2)y

B6 ∪ T5 ∪ B5 (1)(−ρ2)|y|(−1)|x|+1

(after converting to form x+ yρ2)

Lemma 11: The depth of all trees STED, for t = 1, 2, 3,

is 2k + 2.

Proof: The proof is provided for tree STED1
. The same

proof can be applied to the other trees accordingly. Based on

Lemma 4 and Table 2, the longest path in tree STED1
starting

from node 0 is 2k+ 2, which leads to node −kρ or to node

kρ2. Further, the last set in Table 2 is B6∪T5∪B5 which has

a maximum steps of max|x|+max|y|+1+1 = k+k+2 =
2k + 2.

Example 12: Fig. 3(a), Fig. 3(b), and Fig. 3(c) illustrate

the first, second, and third edge disjoint node independent

spanning trees in EJ network generated by α = 4 + 5ρ,

respectively.

5. Node-Independent Spanning Trees

This section discusses the construction of six node-

independent spanning trees in EJ networks. First, we describe

the network partitions in Section 5.1, which help in construct-

ing these trees as illustrated in Section 5.2.

5.1 Network Partitions

The EJ network generated by α = a+ bρ, where b = a+1
can be partitioned into disjoint subsets, as shown in Fig. 4.

The disjoint subsets are described as follows. Let c = t−1 for

tree t = 1, 2, 3, 4, 5, 6, d = 1, 2, 3, 4, 5, 6, and all the powers

of ρ are modulo 6. In addition, Let |x|+ |y| = k where k is

the network diameter, then:

Bd = {xρj−1 + yρj | x > 0, y = 0, j = d+ c}.

Td = {xρj−1 + yρj | x > 0, y > 0, j = d+ c}.

S = {xρj−1 + yρj | x = 1, y = 0, j = 5 + c}.

(a) (b) (c)(a) (b) (c)

Fig. 3: First-third EDNISTs from (a) to (c), respectively, for EJ with α = 4 + 5ρ.

B5\S = {xρj−1 + yρj | x > 1, y = 0, j = 5 + c}.

L3 = {xρj−1 + yρj | x > 0, y = 1, j = 3+ c}.

L4 = {xρj−1 + yρj | x > 0, y = 1, j = 4+ c}.

T3\L3 = {xρj−1 + yρj | x > 0, y > 1, j = 3 + c}.

T4\L4 = {xρj−1 + yρj | x > 0, y > 1, j = 4 + c}.

Lemma 13: The partitions in Fig. 4 are disjoint and can

be obtained from the above subsets.

Proof: Let S be the set of subsets defined above

and illustrated in Fig. 4, i.e. S = {B1, T1, B2, T2, B3,

L3, (T3\L3), B4, L4, (T4\L4), (B5\S), S, T5, B6, T6}.

Based on the definition of the subsets, for any two subsets

X,Y ∈ S,X 6= Y,X ∩ Y = φ.

Lemma 14: The subsets contains all nodes in the network.

Proof: Given the norm as a total number of nodes in

the network, N(α) = a2+b2+ab, then for α = k+(k+1)ρ
we get N(α) = 3k2 + 2k + 1. It is obvious that |Bd| = k
for d = 1, 2, 3, 4, 6. Thus, we got a total of 5k. In addition,

|S| = 1, |B5\S| = k − 1, |L3| = k − 1, |L4| = k − 1.

Further, |Td| =
∑k−1

i=1

∑k−i

j=1 1 =
∑k−1

i=1 (k − i) = 1/2(k −
1)k for d = 1, 2, 5, 6. That is, a total of 2(k − 1)k. Finally,

we have |T3\L3| = |T4\L4| = 1/2(k− 1)k− (k− 1). Thus,

Bd ∪Td ∪S ∪ (B5\S)∪L3 ∪L4 ∪ (T3\L3)∪ (T4\L4)∪ {0}
(including node 0) is equal to the set V , which is the set of

nodes in the network. We conclude that, 5|Bd|+4|Td|+ |S|+
|(B5\S)| + |L3| + |L4| + |(T3\L3)| + |(T4\L4)| + |{0}| =
3k2 + 3k + 1 = N(α) (excluding |B5|, |T3|, and |T4|).

This partitioning is helpful in finding the Node-

Independent Spanning Trees described in the following sec-

tion.

5.2 Tree Construction

Similar to Section 4, the node independent spanning trees

can be constructed based on Table 3, which provides the

parent and child nodes for a given node in a certain set.

Example 15: Given EJ network generated by α = 4 + 5ρ
and a node v = 4ρ. For the first spanning tree, since v ∈ B2,

then its parent is node 4ρ− 1 and it has no child.

Lemma 16: Let ST be a set of node independent spanning

trees in EJ network generated by α = a + bρ, where b =
a+ 1, then |ST | ≤ 6.

B1

T1

T2

B4

T5

L4

T4\L4
T6

B6

B3
B2

L3

T3\L3

S

B1

T1

T2

B4

T5

L4

T4\L4
T6

B6

B3
B2

L3

T3\L3

S

Fig. 4: IST partitions.

Proof: Following Lemma 6, and since the edges are

not disjoint then the directed edges are used to construct

the trees instead of undirected edges. That is, using each

undirected edge twice (in both directions) to construct two

different trees that are not necessarily edge disjoint we get

2|STED| = |ST | ≤ 6.

Table 3: Parent and child nodes for IST

Set Parent Child

B1 ρt+2 ρt−1, ρt, ρt+4

B2 ∪ B6 ρt+2 –

B3 ∪ T2 ∪ T5 ρt+2 ρt−1

L3 ρt+1 ρt−1, ρt+4

(T3\L3) ∪ T6 ρt+1 ρt+4

B4 ρt+1 –

L4 ρt+3 –

T1 ∪ (T4\L4) ρt+3 ρt

(B5\S) ρt+3 ρt−1, ρt

S ρt+3 ρt−1

Lemma 17: The first node independent spanning tree is

connected.

Proof: Based on Section 5.1, consider the j values with

c = t − 1, for t = 2, 3, 4, 5, 6. Let ST1(V1, E1) represents

the first node independent spanning tree where V1 ⊆ V and

E1 ⊆ E are the set of nodes and edges in ST1, respectively.

Based on Lemma 16, we get |E1| = 3a2 + 3a = |V1| − 1.

Further, Table 4 shows the path from the source node S = 0
to all other nodes in the network using tree ST1. As it is

noted in Table 4, the paths are described by a word on the

alphabet {−1, 1,−ρ, ρ,−ρ2, ρ2} where the symbols denote

the direction of the edges to be passed. The number of steps

are represented as (direction)steps. We conclude that ST1 is

connected.

Example 18: In the first spanning tree, let S = 0 and D =
ρ4+3ρ5 (which is D = 3−4ρ) where x = 3 and y = −4, then

D ∈ {B5\S}∪S∪T5∪B6. Thus, the steps are (1)4(ρ)1(1)3.

That is, D can be reached by going 4 steps along direction

1, then 1 step along direction ρ, and finally 3 steps along

direction 1.

Lemma 19: The second, third, forth, fifth, and sixth node

independent spanning trees can be obtained by rotating the

first node independent spanning tree.

Proof: Based on Lemmas 13 and 14, and Table 3, since

the network is symmetric then it is sufficient to prove that the

obtained second, third, forth, fifth, and sixth node independent

spanning trees are connected by following Lemma 17, but

with different j values with c = t− 1 for t = 2, 3, 4, 5, 6 as

described in Section 5.1.

Theorem 20: STt, for t = 1, 2, 3, 4, 5, 6, are node inde-

pendent spanning trees.

Proof: Based on Lemmas 13-19, and Tables 3 and

4, let STt(E) be the set of directed edges for the span-

ning tree t. Thus, we get STt(E) ∩ STt′(E) = φ, t, t′ ∈
{1, 2, 3, 4, 5, 6}, t 6= t′. That is, each directed edge is used

once among all trees. We conclude that all trees are node

independent spanning trees.

Table 4: Steps from node S = 0 to all other nodes D =
xρj−1 + yρj , where k is the diameter

Node in set Path (steps)

B1 (1)x

T1 ∪ B2 (1)x(ρ)y

T6 (1)x(−ρ2)y

B4 ∪ {T3\L3} ∪ L3 (1)k−|x|+1(−ρ2)k−y

B3 ∪ T2 (1)k(−ρ2)k−y(1)x+1

L4 ∪ {T4\L4} (1)k−|x|(ρ)k−y+1

{B5\S} ∪ S ∪ T5 ∪ B6 (1)k(ρ)k−|y|+1(1)x

Lemma 21: The depth of all trees STt, for t =
1, 2, 3, 4, 5, 6, is 2k + 1.

Proof: The proof is provided for tree ST1. The same

proof can be applied to the other trees accordingly. Based on

Lemma 14 and Table 4, the longest path in tree ST1 starting

from node 0 is 2k + 1, which leads to nodes cρ or to nodes

−cρ2, where 1 ≤ c ≤ k.

Example 22: Fig. 5(a), Fig. 5(b), Fig. 5(c), Fig. 5(d), Fig.

5(e), and Fig. 5(f) illustrate the first, second, third, fourth,

fifth, and sixth node independent spanning trees in EJ network

generated by α = 4 + 5ρ, respectively.

6. Routing

In this section, we present the algorithm used to rout the

messages in the trees constructed in Sections 4 and 5. The

algorithm uses Tables 2 and 4 to determine the link in the

current node to be used for sending/forwarding the messages.

Algorithm 0 describes the procedures to be taken at the

source node as follows. Since Tables 2 and 4 assume the

source node is 0 and due to the symmetry of the network

then, as stated in line 1, the given source node S is mapped to

node 0, and relatively, the destination node D is also mapped.

Line 2, obtains the path sequence as tuples consisting of

(direction, steps) based on the Set that the destination node

D belongs to. The direction represents the link to be used in

the current node to send/forward the message and the steps is

the number of hops along the given direction. In line 3, the

first tuple is obtained to be used to send the message in line 4.

The time complexity of this algorithm is O(n), where n is the

total number of nodes in the network, since all the lines take

constant time except the line 2, which needs to match the D
with its corresponding Set. The communication complexity

is O(1) since it only sends one message as stated in line 4.

Algorithm 1 Init-Routing(S, D, α)

1: Map S to node 0 and D accordingly

2: Lookup Table 2 or 4 such that D ∈ Set to get the

corresponding path P consisting of a sequence of tuples

(direction, steps)
3: dir:steps = P .pop()

4: Send through link (dir) message Rout(dir, steps−1, P ,

S + dir, D, α)

In Algorithm 0, Lines 1-4 checks whether the message has

arrived to the destination node. Lines 5-7, checks whether the

number of the steps is equal to 0. If so, then it means that

there are no more steps in current given direction. Thus, a

tuple is obtained from the current path P sequence where

the remaining tuples will be obtained later on. In line 8,

the algorithm sends the message using link described in

direction and reduces the number of steps by 1. The time

complexity of this algorithm is O(1) since each line takes

constant time. The communication complexity is O(1) per

node as stated in line 8.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 5: First-sixth ISTs from (a) to (f), respectively, for EJ with α = 4 + 5ρ.

Algorithm 2 Routing(dir, steps, P , S, D, α)

1: if (S = D mod α) then

2: Consume packet

3: Return

4: end if

5: if (steps = 0) then

6: dir:steps = P .pop()

7: end if

8: Send through link (dir) message Rout(dir, steps−1, P ,

S + dir, D, α)

The following example illustrates the usage of the routing

algorithm.

Example 23: Let the source node be S = 0 and the

destination node be D = −2 − ρ2 in EJ network generated

by α = 4 + 5ρ. We get k = 4, x = −2, and y = −1.

Based on Algorithm 0, no need to map S because it is 0

and we obtain path P = {(1, 3), (−ρ2, 3)} since D ∈ Set =
T3{B4\S4}∪S4. The dir is set to 1 and the steps is set to 3
by calling P.pop(), which results P = {(−ρ2, 3)}. After that,

based on Algorithm 0, the source node S sends the message

Route(1, 2, P, 1,−2− ρ2, α) through link 1 to node 1. Node

1 applies the line 8 in Algorithm 0 and continue sending the

message Route(1, 1, P, 2,−2− ρ2, α) to node 2 via link 1.

Node 2 applies the line 8 in Algorithm 0 and continue sending

the message Route(1, 0, P, 3,−2− ρ2, α) to node 3 via link

1. At node 3, since the steps = 0 then it gets the next tuple

by calling P.pop() and sets dir to −ρ2 and steps to 3, after

that it continue sending the message Route(−ρ2, 2, P, 3 −
ρ2,−2 − ρ2, α) to node 3 − ρ2 via link −ρ2. The receiving

node 3 − ρ2 applies the line 8 in Algorithm 0 and continue

sending the message Route(−ρ2, 1, P, 3−2ρ2,−2−ρ2, α) to

node 3−2ρ2 via link −ρ2. The receiving node 3−2ρ2 applies

the line 8 in Algorithm 0 and continue sending the message

Route(−ρ2, 0, P, 3 − 3ρ2,−2 − ρ2, α) to node 3 − 3ρ2 via

link −ρ2. Finally, the receiving node 3 − 3ρ2 observes that

S = 3 − 3ρ2 ≡ −2 − ρ2 = D mod α and receives the

message.

7. Experimental Results

In this section, we discuss the simulation results. We have

used a Python network simulator called NetworkX [12], [13]

in our implementation. It is a package used to represent and

analyze the networks and the algorithms used in the networks.

In our simulation, we assumed that each node can send and

receive messages simultaneously to all its neighbors.

Based on Section 5, the algorithm always constructs 6 trees

where the maximum number of steps required to construct

the trees is 2k+2. Additionally, we measured the average of

maximum communication steps between the root node and all

other nodes in the network among all trees with the following

cases: (1) no faulty node, (2) one faulty node, (3) two faulty

nodes, (4) three faulty nodes, (5) four faulty nodes, and (6)

five faulty nodes. We did not measure beyond 5 faulty nodes

since in the worst case the root node will be pruned from the

trees if all of its neighbors are faulty, and there will be no

path to other nodes that can be used to measure the efficiency

of the communications. That is, the root node will isolated

from the network if all its neighboring nodes are faulty.

The network sizes selected in the simulation are when

α = 1+2ρ, α = 2+3ρ, α = 3+4ρ, α = 4+5ρ, α = 5+6ρ,

α = 6+ 7ρ, α = 7+ 8ρ, α = 8+ 9ρ, and α = 9+ 10ρ. The

results of the simulations are illustrated, in respective order,

in Tables 5 and 6. Both tables are represented in Figures 6 and

7, respectively. Some values are omitted due to the hardware

resource limitations. Table 5 shows the average maximum

number of communication steps in all IST using all ports.

Whereas, Table 6 shows the maximum of all maximums

number of communication steps in all IST using all ports.

It is observable that the simulation results are consistent with

the discussions in Section 5 where the results are bounded

by the lower and upper bounds. The lower bound is k + 1,

whereas, the upper bound is 2k+2 which is equal to the tree

depth − 1. That is, one more step is counted when the last

node is trying to communicate to its neighboring nodes.

The simulation measures the required number of commu-

nication steps to reach each destination node D from the

source node S = 0 in the network with no faulty node. In

one faulty node, we run the simulation n times, where n is

the total number of nodes in the network, and in each run we

take one node down then we measure the required number of

communication steps to reach the destination node. That is, In

case of one faulty node, for each network size, we measured

the maximum number of communication steps required to

reach each node in the network from the root node with all

one node fault possibilities and then we obtain the average

and the maximum of the steps. The same simulation applied

for the cases when all possibilities of 2, 3, 4, and 5 faulty

nodes are present in each network size.

Table 5: Average maximum number of steps to construct all

trees using all ports.

α 1+2ρ 2+3ρ 3+4ρ 4+5ρ 5+6ρ 6+7ρ 7+8ρ 8+9ρ 9+10ρ

Lower Bound 2 3 4 5 6 7 8 9 10

No Faulty 2 3 4 5 6 7 8 9 10

1 Faulty 2 3.333 4.5 5.6 6.666 7.714 8.75 9.777 10.8

2 Faulty 2 3.529 4.852 6.061 7.208 8.32 9.409 10.481 11.542

3 Faulty 2 3.649 5.105 6.417 7.648 8.831 9.98 11.107

4 Faulty 2 3.765 5.314 6.71 8.017 9.266

5 Faulty 2 3.899 5.512 6.971 8.339

Upper Bound 4 6 8 10 12 14 16 18 20

Table 6: Maximum of all maximums number of steps to

construct all trees using all ports.

α 1+2ρ 2+3ρ 3+4ρ 4+5ρ 5+6ρ 6+7ρ 7+8ρ 8+9ρ 9+10ρ

Lower Bound 2 3 4 5 6 7 8 9 10

No Faulty 2 3 4 5 6 7 8 9 10

1 Faulty 2 4 6 8 10 12 14 16 18

2 Faulty 2 4 6 8 10 12 14 16 18

3 Faulty 2 4 6 8 10 12 14 16

4 Faulty 2 6 8 10 12 14

5 Faulty 2 6 8 10 12

Upper Bound 4 6 8 10 12 14 16 18 20

8. Spanning Trees in Higher Dimensional

EJ Networks

In this section, we apply the proposed work on higher di-

mensional EJ networks [20] to obtain the spanning trees. The

higher dimensional EJ networks are explained in Subsection

8.1. In Subsection 8.2, we study the spanning trees in higher

dimensional EJ networks.

0

5

10

15

20

25

1+2rho 2+3rho 3+4rho 4+5rho 5+6rho 6+7rho 7+8rho 8+9rho 9+10rho

St
e
p
s

Network (�)

Average Maximum Steps Using All-Port Model

Lower Bound

No Faulty Node

1 Faulty Node

2 Faulty Nodes

3 Faulty Nodes

4 Faulty Nodes

5 Faulty Nodes

Upper Bound

Fig. 6: Average maximum steps using all-port model.

0

5

10

15

20

25

1+2rho 2+3rho 3+4rho 4+5rho 5+6rho 6+7rho 7+8rho 8+9rho 9+10rho

St
e
p
s

Network (α)

Maximum of Maximum Steps Using All-Port Model

Lower Bound

No Faulty Node

1 Faulty Node

2 Faulty Nodes

3 Faulty Nodes

4 Faulty Nodes

5 Faulty Nodes

Upper Bound

Fig. 7: Maximum of maximum steps using all-port model.

8.1 Higher Dimensional EJ Networks

The higher dimensional EJ network [20] is denoted as

EJ
(n)
α and it is based on the cross product between the lower

dimensional EJ networks. That is, EJ
(n)
α = EJα⊗EJ

(n−1)
α ,

which is EJα cross product itself n times, where n is known

as the number of dimensions. In this paper, we strict α to be

dense, i.e., α = a+ bρ ∈ Z[ρ] where b = a+1, and the α of

all dimensions are not necessarily equal, i.e., same network

sizes.

The result of the cross product between any two graphs

G1(V1, E1) and G2(V2, E2) is G(V,E). Then, G(V,E) can

be written as G1 × G2 where V = {(u, v)|u ∈ V1, v ∈
V2} and E = {((u1, v1), (u2, v2))|((u1, u2) ∈ E1 and v1 =
v2) or ((v1, v2) ∈ E2 and u1 = u2)}.

The norm of EJ
(n)
α is N(α)n, which is the total number

of nodes in EJα network power of n. To address the nodes in

EJ
(n)
α , a set of n-tuples with coordinates in EJ is used, from

the highest to the lowest dimensions. That is, a node (xn +
ynρ, xn−1 + yn−1ρ, . . . , x1 + y1ρ) is located in the positions

xn + ynρ on the first layer (highest or nth-dimension) of

EJ
(n)
α , xn−1 + yn−1ρ on the second layer of EJ

(n)
α , and so

on until x1 + y1ρ on the last layer (lowest or 1st-dimension)

of EJ
(n)
α . In EJ

(n)
α , each node has degree of 6n. the network

EJ
(n)
α can be represented by placing a copy of EJ

(n−1)
α on

each node of EJ. For example, Fig. 8 shows the network

EJ
(2)
2+3ρ and the edges of the black node (1− ρ2, 1 + ρ) are

connected to its neighbores, and the neighbors of node (0, 0)
are obvious.

Fig. 8: EJ
(2)
2+3ρ.

8.2 Spanning Trees in EJ
(n)
α

In this subsection, we explain the construction of the

spanning trees in EJ
(n)
α .

In order to obtain the 3 edge disjoint node independent

spanning trees, we can recursively apply the tree construction

method discussed in Section 4 on the higher dimensional

EJ networks. That is, the proposed construction method

is applied on each dimension (layer) of EJ
(n)
α (from the

highest layer to the lowest layer). For instance, the EJ
(2)
2+3ρ

is composed of two layers. The tree construction method

is performed on the first layer, and whenever the node

in the first layer has a link then it can recursively apply

the tree construction method on the second layer of the

network. The same approach can be followed to obtain 6

node independent spanning trees in EJ
(n)
α by recursively

applying the tree construction method discussed in Section

5. The below algorithm describes the tree construction.

Algorithm 3 ConstructSTonHigherEJ(EJ
(n)
α)

1: for i = n to 1 do

2: Apply construction algorithm in Section 4 (or 5) on

ith layer

3: end for

Figures 9 and 10 illustrate the first edge disjoint node

independent spanning trees and the first node independent

spanning trees in EJ
(2)
2+3ρ, respectively. The other spanning

trees can be obtained by applying the rotations based on the

their corresponding sections.

Fig. 9: First edge disjoint node independent spanning trees in

EJ
(2)
2+3ρ.

9. Conclusion

In this paper, we have presented two construction tech-

niques of edge-disjoint node-independent spanning trees

(EDNIST) and node-independent spanning trees (IST) in

Eisenstein-Jacobi networks. Because of the network symme-

try, in EDNIST, the first tree is constructed and then it is

rotated twice to obtain the second and third disjoint trees.

Whereas in IST, the first tree is constructed and then it is

rotated five times to get the second, third, forth, fifth, and

sixth independent spanning trees. We have shown that the

depth of EDNIST is 2k + 2 and the depth of IST is 2k + 1.

Additionally, for borth trees, we have presented a unified

routing algorithm for a given network, source node S, and a

destination node D. The complexity of the routing algorithm

in the source node is O(n+k) and none for the intermediate

nodes. The communication complexity is equal to the depth

of the corresponding tree.

The simulation presented in Section 7 supports the Lemmas

and Theorems proved in this paper. The simulation shows

the average maximum number of steps taken to construct all

trees using all ports simultaneously with no faulty, 1 faulty,

2 faulty, 3 faulty, 4 faulty, and 5 faulty nodes. Further, the

maximum of all maximums number of steps to construct all

trees using all ports simultaneously is bounded to the upper

bound.

For future work, we will further investigate the problem to

find parallel constructions for both EDNIST and IST. Further-

more, we will also investigate whether there are more than

3 and 6, in respective order, edge disjoint node independent

spanning trees and node independent spanning trees in higher

dimensional Eisenstein-Jacobi networks.

Fig. 10: First node independent spanning trees in EJ
(2)
2+3ρ.

References

[1] N. R. Adiga, G. Almási, G. S. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich et al., “An overview
of the bluegene/l supercomputer,” in Supercomputing, ACM/IEEE 2002

Conference. IEEE, 2002, pp. 60–60.

[2] B. AlBdaiwi, Z. Hussain, A. Cerny, and R. Aldred, “Edge-disjoint
node-independent spanning trees in dense gaussian networks,” The
Journal of Supercomputing, pp. 1–19, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11227-016-1768-x

[3] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, “Lee distance and topo-
logical properties of k-ary n-cubes,” IEEE Transactions on Computers,
vol. 44, no. 8, pp. 1021–1030, 1995.

[4] Y.-H. Chang, J.-S. Yang, J.-M. Chang, and Y.-L. Wang, “A fast parallel
algorithm for constructing independent spanning trees on parity cubes,”
Applied Mathematics and Computation, vol. 268, pp. 489–495, 2015.

[5] M.-S. Chen, K. Shin, and D. Kandlur, “Addressing, routing, and
broadcasting in hexagonal mesh multiprocessors,” Computers, IEEE

Transactions on, vol. 39, no. 1, pp. 10–18, Jan 1990.

[6] B. Cheng, J. Fan, and X. Jia, “Dimensional-permutation-based in-
dependent spanning trees in bijective connection networks,” IEEE

Transactions on Parallel and Distributed Systems, vol. 26, no. 1, pp.
45–53, 2015.

[7] B. Cheng, D. Wang, and J. Fan, “Constructing completely independent
spanning trees in crossed cubes,” Discrete Applied Mathematics, vol.
219, pp. 100–109, 2017.

[8] Z. Cvetanovic, “Performance analysis of the alpha 21364-based hp
gs1280 multiprocessor,” in Computer Architecture, 2003. Proceedings.

30th Annual International Symposium on. IEEE, 2003, pp. 218–228.

[9] W. J. Dally and C. L. Seitz, “The torus routing chip,” Distributed
computing, vol. 1, no. 4, pp. 187–196, 1986.

[10] J. Dolter, P. Ramanathan, and K. Shin, “Performance analysis of virtual
cut-through switching in harts: a hexagonal mesh multicomputer,”
Computers, IEEE Transactions on, vol. 40, no. 6, pp. 669–680, Jun
1991.

[11] M. Flahive and B. Bose, “The topology of Gaussian and Eisenstein-
Jacobi interconnection networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 8, pp. 1132–1142, August 2010.

[12] A. Hagberg, D. Schult, and P. Swart, “Networkx: Python software for
the analysis of networks,” Mathematical Modeling and Analysis, Los

Alamos National Laboratory, 2005.

[13] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[14] T. Hasunuma and C. Morisaka, “Completely independent spanning
trees in torus networks,” Networks, vol. 60, no. 1, pp. 59–69, 2012.

[15] J. P. Hayes and T. Mudge, “Hypercube supercomputers,” Proceedings

of the IEEE, vol. 77, no. 12, pp. 1829–1841, 1989.

[16] K. Huber, “Codes over eisenstein-jacobi integers,” Contemporary

Mathematics, vol. 168, pp. 165–165, 1994.

[17] Z. Hussain, B. AlBdaiwi, and H. AboElfotoh, “Parallel construction
of edge-disjoint node-independent spanning trees in dense gaussian
networks,” The International Conference on Parallel and Distributed

Processing Techniques and Applications, pp. 117–122, 2017.

[18] Z. Hussain, B. AlBdaiwi, and A. Cerny, “Node-independent span-
ning trees in gaussian networks,” in Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA). Las Vegas, NV, USA: The Steering Committee
of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2016, pp. 24–29.

[19] ——, “Node-independent spanning trees in gaussian networks,” Jour-
nal of Parallel and Distributed Computing, vol. 109, pp. 324–332,
2017.

[20] Z. Hussain and A. Shamaei, “Higher dimensional eisenstein–jacobi
networks,” Journal of Parallel and Distributed Computing, vol. 102,
pp. 91–102, 2017.

[21] Z. A. Hussain, B. Bose, and A. Al-Dhelaan, “Edge disjoint Hamil-
tonian cycles in Eisenstein–Jacobi networks,” Journal of Parallel and

Distributed Computing, vol. 86, pp. 62–70, 2015.

[22] A. Itai and M. Rodeh, “The multi-tree approach to reliability in
distributed networks,” Information and Computation, vol. 79, no. 1,
pp. 43–59, 1988.

[23] M. Krishnamoorthy and B. Krishnamurthy, “Fault diameter of inter-
connection networks,” Computers & Mathematics with Applications,
vol. 13, no. 5, pp. 577–582, 1987.

[24] S.-C. Ku, B.-F. Wang, and T.-K. Hung, “Constructing edge-disjoint
spanning trees in product networks,” IEEE Transactions on Parallel

and Distributed Systems, vol. 14, no. 3, pp. 213–221, 2003.

[25] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel

computing: design and analysis of algorithms. Benjamin/Cummings
Publishing Company Redwood City, CA, 1994.

[26] L. N. Lester and J. Sandor, “Computer graphics on a hexagonal grid,”
Computers & graphics, vol. 8, no. 4, pp. 401–409, 1984.

[27] J.-C. Lin, J.-S. Yang, C.-C. Hsu, and J.-M. Chang, “Independent
spanning trees vs. edge-disjoint spanning trees in locally twisted
cubes,” Information Processing Letters, vol. 110, no. 10, pp. 414 –
419, 2010.

[28] C. Martínez, E. Stafford, R. Beivide, and E. M. Gabidulin, “Modeling
hexagonal constellations with Eisenstein-Jacobi graphs,” Probl. Inf.

Transm., vol. 44, pp. 1–11, March 2008.

[29] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The j-machine
multicomputer: an architectural evaluation,” ACM SIGARCH Computer

Architecture News, vol. 21, no. 2, pp. 224–235, 1993.

[30] F. G. Nocetti, I. Stojmenovic, and J. Zhang, “Addressing and routing
in hexagonal networks with applications for tracking mobile users and
connection rerouting in cellular networks,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 13, no. 9, pp. 963–971, 2002.

[31] A. A. Rescigno, “Vertex-disjoint spanning trees of the star network with
applications to fault-tolerance and security,” Information Sciences, vol.
137, no. 1, pp. 259–276, 2001.

[32] N. I. Rummelt and J. N. Wilson, “Array set addressing: enabling tech-
nology for the efficient processing of hexagonally sampled imagery,”
Journal of Electronic Imaging, vol. 20, no. 2, pp. 023 012–023 012,
2011.

[33] S. L. Scott et al., “The cray t3e network: adaptive routing in a high
performance 3d torus,” 1996.

[34] K. G. Shin, “Harts: A distributed real-time architecture,” Computer,
vol. 24, no. 5, pp. 25–35, 1991.

[35] S.-M. Tang, Y.-L. Wang, and Y.-H. Leu, “Optimal independent span-
ning trees on hypercubes,” J. Inf. Sci. Eng., vol. 20, no. 1, pp. 143–156,
2004.

http://dx.doi.org/10.1007/s11227-016-1768-x

[36] S.-M. Tang, J.-S. Yang, J.-M. Chang, and Y.-L. Wang, “Parallel
construction of independent spanning trees on multidimensional tori,”
in Proceeding of the 24th Workshop on Combinatorial Mathematics

and Computation Theory, 2007, pp. 85–93.
[37] S.-M. Tang, J.-S. Yang, Y.-L. Wang, and J.-M. Chang, “Independent

spanning trees on multidimensional torus networks,” IEEE Transactions

on Computers, vol. 59, no. 1, pp. 93–102, 2010.
[38] Y. Wang, J. Fan, G. Zhou, and X. Jia, “Independent spanning trees on

twisted cubes,” Journal of Parallel and Distributed Computing, vol. 72,
no. 1, pp. 58–69, 2012.

[39] J.-S. Yang, H.-C. Chan, and J.-M. Chang, “Broadcasting secure mes-
sages via optimal independent spanning trees in folded hypercubes,”
Discrete Applied Mathematics, vol. 159, no. 12, pp. 1254–1263, 2011.

[40] ——, “Broadcasting secure messages via optimal independent
spanning trees in folded hypercubes,” Discrete Applied Mathematics,
vol. 159, no. 12, pp. 1254 – 1263, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X11001454

[41] J.-S. Yang and J.-M. Chang, “Optimal independent spanning trees on
cartesian product of hybrid graphs,” The Computer Journal, vol. 57,
no. 1, pp. 93–99, 2014.

[42] J.-S. Yang, J.-M. Chang, and H.-C. Chan, “Independent spanning trees
on folded hypercubes,” in Proceedings of the 2009 10th International
Symposium on Pervasive Systems, Algorithms, and Networks, ser.
ISPAN ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 601–605.

[43] J.-S. Yang, J.-M. Chang, K.-J. Pai, and H.-C. Chan, “Parallel construc-
tion of independent spanning trees on enhanced hypercubes,” IEEE

Transactions on Parallel and Distributed Systems, vol. 26, no. 11, pp.
3090–3098, 2015.

[44] J.-S. Yang, M.-R. Wu, J.-M. Chang, and Y.-H. Chang, “A fully
parallelized scheme of constructing independent spanning trees on
möbius cubes,” The Journal of Supercomputing, vol. 71, no. 3, pp.
952–965, 2015.

[45] T.-J. Yang, J.-S. Yang, J.-M. Chang, and A.-H. Chen, “A simple
parallel algorithm for constructing independent spanning trees on
twisted cubes,” 2014, pp. 282–290.

http://www.sciencedirect.com/science/article/pii/S0166218X11001454

	1 Introduction
	2 Background
	3 Related Works
	4 Edge-Disjoint Node-Independent Spanning Trees
	4.1 Network Partitions
	4.2 Tree Construction

	5 Node-Independent Spanning Trees
	5.1 Network Partitions
	5.2 Tree Construction

	6 Routing
	7 Experimental Results
	8 Spanning Trees in Higher Dimensional EJ Networks
	8.1 Higher Dimensional EJ Networks
	8.2 Spanning Trees in EJ(n)

	9 Conclusion
	References

