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Abstract
Task graphs provide a simple way to describe scientific workflows (sets of tasks 
with dependencies) that can be executed on both HPC clusters and in the cloud. An 
important aspect of executing such graphs is the used scheduling algorithm. Many 
scheduling heuristics have been proposed in existing works; nevertheless, they are 
often tested in oversimplified environments. We provide an extensible simulation 
environment designed for prototyping and benchmarking task schedulers, which 
contains implementations of various scheduling algorithms and is open-sourced, in 
order to be fully reproducible. We use this environment to perform a comprehensive 
analysis of workflow scheduling algorithms with a focus on quantifying the effect 
of scheduling challenges that have so far been mostly neglected, such as delays 
between scheduler invocations or partially unknown task durations. Our results indi-
cate that network models used by many previous works might produce results that 
are off by an order of magnitude in comparison to a more realistic model. Addition-
ally, we show that certain implementation details of scheduling algorithms which 
are often neglected can have a large effect on the scheduler’s performance, and they 
should thus be described in great detail to enable proper evaluation.
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1 Introduction

Representing a computation by a directed task graph is a common programming 
model for defining programs for a distributed system or a parallel computer. The 
main advantage of such a program description is the possibility to capture paral-
lelizable behaviour of an application while allowing to abstract the computation 
from specific architectures and computational resources. Task graphs are becom-
ing one of the most popular ways of executing complex workflows on distributed 
systems (both cloud and high-performance clusters) and it is an active research 
idea to design both new task execution frameworks [4, 5, 31, 33, 37] and schedul-
ing algorithms [13, 40, 43, 44].

Task graphs are used with various levels of task granularity. Fine-grained task 
graphs occur in the context of task-based programming models where tasks are 
usually short running fragments of code within a single program [18, 41]. In con-
trast, coarse-grained task graphs are used to represent complex workflows com-
posed of a set of potentially long-running programs  [3, 17, 28]. Although our 
benchmarks primarily focus on the latter category, the results are generalizable to 
a wider spectrum of task graph scheduling problems.

To execute a task graph as quickly as possible, it is crucial to produce a quality 
schedule that will distribute the computation amongst multiple nodes to achieve 
as much parallelization as possible, while also minimizing data transfers over 
the network. Yet, finding the optimal schedule for a task graph is NP-hard even 
for very restricted formulations (without transfer costs and resource manage-
ment) [42]. Plenty of heuristics have been proposed to tackle this problem, rang-
ing from list-based scheduling to genetic algorithms. Many surveys and compari-
sons of scheduling algorithms were published in [1, 21, 26, 44].

The primary objective of this paper is to analyze the behaviour of various 
scheduling heuristics and present the results in a verifiable and reproducible 
form. Most scheduler surveys assume an environment with an oversimplified 
communication and computation model. Some works use more complex commu-
nication models that attempt to simulate more realistic network behaviour  [23, 
30, 36, 38]. However, none of them deal with two important properties that inevi-
tably arise during the actual execution of real world task graphs, namely that the 
scheduling itself takes time and that the duration of the individual tasks may not 
be known in advance to the scheduler. Also, to our best knowledge, no previous 
survey provides source codes of the implemented schedulers. One of the findings 
of our analysis is that various scheduler implementation details can have a large 
effect on the performance of the scheduling algorithm. Surveys that do not pro-
vide detailed scheduler source codes will thus be difficult to reproduce and verify.

It is not a goal of this paper to introduce new scheduling heuristics, rather it 
should provide guidance on which scheduler implementation details should be 
published and which benchmark properties should not be omitted in order to 
obtain reproducible results.

This work has the following goals to improve the current situation:
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• Benchmark various scheduling algorithms in a complex communication and 
computation environment and provide the results in an open and reproducible 
form. This includes the task graphs, all source codes for schedulers and the simu-
lation environment and also all benchmark scripts.

• Evaluate various simulated properties (such as network model or knowledge of 
task durations) to find out which have the largest effects on the performance of 
the individual schedulers.

• Provide an extensible simulation environment that facilitates prototyping and 
evaluation of task graph schedulers and network models.

This paper is structured as follows: We describe the problem of task graph schedul-
ing in Sect. 2. Section 3 gives a brief overview of related works. Section 4 describes 
the simulation environment and implemented scheduling algorithms. Section  5 
describes benchmark methodology and benchmarked task graphs. Section  6 con-
tains benchmark results and discusses effects of the simulated properties. Lastly, we 
conclude in Sect. 7.

2  Problem statement

A task graph is an acyclic graph where nodes represent tasks and output data objects. 
Formally, TG = (T,O,A) , where T  is a set of tasks, O is a set of data objects pro-
duced by tasks; T ∩O = � . A = (T ×O) ∪ (O × T) is a set of arcs between tasks 
and objects. Let t ∈ T, o ∈ O , then (t, o) ∈ A means that a task t produces object o; 
(o, t) ∈ A means that a data object o is an input for task t. We always assume that 
each object is produced by exactly one task ( ∀o ∈ O ∶ |A ∩ (T × {o})| = 1 ). For a 
task t, we call the set {o ∈ O ∣ (o, t) ∈ A} inputs of task t and {o ∈ O ∣ (t, o) ∈ A} 
outputs of task t. We also assume that (T ∪O,A) forms a finite directed acyclic 
graph.

Many works related to task graph scheduling assume that each task produces at 
most one output; however, in practice having multiple outcomes from a single task is 
a common requirement in workflows and is directly supported by some frameworks 
(e.g. Luigi,1 Rain2). Multiple outputs per task can be simply modeled in systems 
supporting only one output per task by introducing artificial tasks with zero execu-
tion times. Each such task takes an output and decomposes it into pieces. However, 
as we do not want to complicate scheduling by introducing dummy tasks that are 
actually not necessary to schedule, our simulation environment directly supports 
tasks with multiple outputs.

The task graph is executed on a set of workers, processes/machines that are 
able to execute tasks and produce their outputs. Let W denote the set of all work-
ers. When a task t is finished on a worker w, all its output objects become imme-
diately available at worker w. The worker w may send an object o to another 

1 https:// luigi. readt hedocs. io/ en/ latest.
2 https:// github. com/ subst antic/ rain.

https://luigi.readthedocs.io/en/latest
https://github.com/substantic/rain
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worker w′ and make o available on w′ . A task t can be executed on worker w only 
if all inputs of t are available at worker w. We assume that execution of each task 
is uninterruptible and non-replicable. We say that a task t is ready if all its inputs 
are already computed; a task t is enabled on w if t is ready and all its inputs are 
available on w.

The job of the scheduler is to assign tasks to workers, formally to produce a map 
S ∶ T → W . Static schedulers produce this map at the beginning of the computation 
and assign a worker to each task. Dynamic schedulers compose the map dynamically 
during the execution of the task graph. The goal of the scheduler is to create S such 
that it minimizes the makespan (the time it takes to finish all tasks in the graph).

A scheduler is allowed to change its decision and reschedule an already sched-
uled task to a different worker. A task reschedule may fail if the task is already run-
ning or if it has been already finished.

To align the simulation better with real-world task graph execution, we also 
include the following properties:

Multi-core workers   Each worker may have multiple CPU cores; each task may 
require a number of CPU cores. The total number of cores required by simultane-
ously running tasks on a worker cannot exceed the total number of CPU cores of 
that worker. This reflects the fact that currently most of commodity and HPC proces-
sors have multiple CPU cores and software (represented by tasks) can utilize them.

Communication model      In many previous scheduler surveys and theoreti-
cal papers, it is assumed that the transfer time of a data object depends only on the 
size of the object and not on the current network utilization [25, 39, 44, 46]. This 
is an unrealistic assumption about real computer networks, as the network speed is 
affected by the number of concurrently running downloads. Moreover, it is common 
that a real worker downloads more than one data object simultaneously, which fur-
ther affects the transfer durations because the worker’s bandwidth is shared.

We provide a more realistic network model that simulates full-duplex commu-
nication between workers where the total upload and download bandwidth of each 
worker is limited. The sharing of bandwidth between worker connections is modeled 
by the max-min fairness model [7]. Max-min fairness provides a bandwidth alloca-
tion for each worker. If we increase an allocation of any participant, than we nec-
essarily decrease the allocation of some other participant with an equal or smaller 
allocation. When a download starts or finishes, the data flow between workers is 
recomputed immediately, thus we neglect the fact that it may take some time for the 
bandwidth to fully saturate.

To compare this model with previous results, we also include the simple model 
in our simulation environment. It corresponds to the above mentioned behaviour 
used in several previous works. In our experiments, we observe how the makespan 
changes in response to the used network model.

Worker inner scheduler      Since each worker has to keep track of its running 
tasks, manage resources, and handle data object transfers, it becomes quite com-
plex. In practice, the global scheduler cannot micromanage each worker because this 
approach could not scale to a larger number of workers. Therefore, we model a situ-
ation where each worker has its own inner scheduler. We call it w-scheduler and we 
reserve the word “scheduler” for the global scheduler that assigns tasks to workers.
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The w-scheduler is not a subject of study in this work, hence we are going to fix 
one particular worker scheduler and execute all experiments with it. The implemen-
tation is inspired by the worker implementation used in HyperLoom [17] and Rain. 
It is described in Appendix 1.

Minimal scheduling delay     Dynamic schedulers create task assignments con-
tinuously, based on the current situation. They could make a scheduling decision 
every time a task is finished; however, in practice there is often an upper bound on 
the number of scheduler invocations per second. It might be introduced artificially 
to reduce the scheduling overhead or it might be caused by a software or hardware 
limitation (e.g. messages with task changes cannot be received more often). We 
introduce minimal scheduling delay (MSD) that forces a minimal delay between two 
scheduler invocations.

Information modes      In most works, it is expected that the scheduler is aware 
of the duration of all tasks and the sizes of all resulting data objects in advance. 
However, in practice this information may not be available. In many cases, it may 
not be clear for the author of the task graph how long will the tasks run or what will 
be the size of the resulting objects (e.g. even for an experienced data scientist, it 
may be hard to estimate how long will it take to train a machine learning model on 
a particular dataset with particular hyperparameters). Even if the task-graph author 
has precise knowledge of each task duration, it may be tedious to manually annotate 
each task individually. Therefore, we consider the following three modes of execu-
tion, which we call imodes:

• exact—scheduler has access to all task durations and object sizes for all elements 
in the task graph.

• user—for unfinished tasks, the scheduler has access only to a user-provided esti-
mate of the task duration and its output sizes.

• mean—for unfinished tasks, the scheduler does not have any information about 
the duration or size of any graph element. However, the scheduler obtains the 
mean of the duration of all tasks and the mean of the size of all outputs.

Another possible scenario to consider could be a “blind“ mode, where the scheduler 
does not know any durations nor sizes in advance. However, in this situation, the 
schedulers would be very sensitive to an initial estimate of the durations and sizes 
(namely the ratio between them, which influences decisions whether to move data 
objects between workers). This estimate strongly influences the early behaviour of 
dynamic schedulers and it is completely vital for static schedulers. To avoid explor-
ing various estimated values that would have to be chosen almost arbitrarily, we pro-
pose to use the mean mode instead of the blind mode. We assume that if the sched-
uler knows nothing in advance, it could always monitor the durations and sizes of 
finished tasks gradually and such monitored values would converge to the mean. In 
practice, this would take some time, in our environment the schedulers know about 
the mean in advance. Nevertheless, we can often get a reasonable estimate of the 
mean durations based on previous executions of similar workflows.

For the user imode, we use values sampled from a random distribution that is spe-
cific to a subset of tasks or objects within the task graph that share similar properties 
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(e.g. in MapReduce, all map operations use the same distribution, all reduce opera-
tions use another distribution). Categorization of tasks into these subsets was done 
manually. This simulates a user that is able to categorize tasks and provide an esti-
mate for each category.

In the experiments presented in this work, we aim to explore the behaviour of 
state of the art schedulers in a complex simulation environment that includes all of 
the aspects described above.

Beside the comparison of individual schedulers, we also want to measure how 
much does the used network model, information modes and minimal scheduling 
delays affect the individual schedulers. Many previous scheduler studies were per-
formed in relatively simple environments without these effects. We want to analyze 
whether there is a significant difference between the performance of the standard 
heuristics when they are benchmarked in more realistic conditions.

3  Related work

Various workflow scheduling algorithms have been researched and implemented 
to date (e.g. HLFET [1], SCFET [27], DLS [34], LAST [6], MCP [45], ETF [19]). 
Number of publications overview and compare properties of these algorithms [26, 
27, 44].

Numerous surveys on distributed workflow environments and their schedulers 
have been performed to categorize workflow environments based on their task allo-
cation strategies, load balancing, and multi-tenancy behaviour [2, 22, 24, 29]. These 
are mostly focused on cloud scenarios and scheduling algorithms are not their main 
focus. They thus do not provide scheduler benchmarks.

Many works evaluate the algorithms using simplified environments with simple 
communication models and without considering MSD and imode effects. In [36] a 
complex network model with various network topologies was considered, but it only 
reports results on two scheduling algorithms. The [38] investigates the incorporation 
of contention awareness into task scheduling. In [30], performance impact of com-
munication costs on static schedulers is studied.

All of these works use the assumption that task durations and data object sizes 
are known in advance (i.e. in our terminology they use the exact imode). As far as 
we know, there was no systematic study of MSD or imodes in the context of DAG 
scheduling.

Some of the popular distributed environment simulators such as Simgrid [14] or 
CloudSim [12] focus on deployment and provisioning infrastructures with low gran-
ularity of resource requirements, but do not directly consider scheduling task work-
flows with task dependencies. This problem has been assessed by various tools built 
on top of these two systems. DAGSim [23] only reports experimental results without 
providing the actual implementation which makes it difficult to extend the solution 
or reproduce the results. SimDAG [47] does not consider task resource requirements 
(e.g. number of cores) and also does not allow to define custom network models. 
WorkflowSim  [16], ElasticSim  [11], CloudSim4DWf  [20] and Wrench  [15] focus 
on simulating complex cloud scenarios, involving datacenter costs, multi-tenancy, 
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storage layers and other advanced factors. Even though their simulation environ-
ments are very advanced, their scheduling mostly operates on a different level of 
granularity, focusing on relatively coarse-grained cloud or cluster jobs. Scheduling a 
large number of fine-grained tasks is not their main focus and therefore it would be 
challenging to extend their schedulers with support for MSD or imodes.

4  Simulation environment

This section describes the simulation environment that we have implemented to ana-
lyse and compare various schedulers., benchmarked schedulers, network models and 
task graph sets.

4.1  Simulation

We have implemented EstEE,3 a flexible open-source simulation environment that 
is designed for benchmarking and experimenting with task schedulers. The imple-
mentation is very open-ended and allows us to implement new schedulers, network 
models and workers easily. However, it also comes “battery-included“ and provides 
implementations for all its components.

4.2  Architecture

The architecture of EstEE is depicted in Fig. 1. The central component is the Simula-
tor, which controls the whole simulation and communicates with the scheduler and 
workers. The Scheduler reads events about finished tasks and returns allocations of 
tasks to workers. A Worker simulates the execution of assigned tasks and also the 
transfer of task outputs between workers. The communication between workers is 
handled by a network model that informs them about download completion.

Fig. 1  EstEE architecture

3 https:// github. com/ it4in novat ions/ estee.

https://github.com/it4innovations/estee
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EstEE is written in Python to provide a high-degree of flexibility that facilitates 
rapid prototyping. EstEE is an open-source project provided under MIT license.

4.3  Schedulers

We have implemented a set of schedulers inspired by classic scheduling heuristics. 
Originally these heuristics were mostly designed for environments with only one 
core per worker and one output per task; therefore, we had to slightly extend their 
implementation.

blevel     Highest Level First with Estimated Times  [1] (HLFET) is a basic list-
based scheduling algorithm that prioritizes tasks based on their b-level. B-level of 
a task is the length of the longest path from the task to any leaf task (in our case the 
length of the path is computed using task durations, without data object sizes). The 
tasks are scheduled in a decreasing order based on their b-level.

tlevel   Smallest Co-levels First with Estimated Times [27] is similar to HLFET, 
with the exception that the value computed for each task (t-level) is the length of the 
longest path from any source task to the given task. This value corresponds to the 
earliest time that the task can start. The tasks are scheduled in an increasing order 
based on their t-level.

dls     Dynamic Level Scheduling [34] calculates a dynamic level for each task-
worker pair. It is equal to the static b-level lessened by the earliest time that the task 
can start on a given worker (considering necessary data transfers). In each schedul-
ing step, the task-worker pair that maximizes this value is selected.

mcp     The Modified Critical Path [45] scheduler calculates the ALAP (as-late-
as-possible) time for each task. This corresponds to the latest time the task can start 
without increasing the total schedule makespan. The tasks are then ordered by this 
value in an ascending order and scheduled to the worker that allows their earliest 
execution.

etf      The ETF (Earliest Time First) scheduler [19] selects the task-worker pair 
that can start at the earliest time at each scheduling step. Ties are broken by a higher 
static b-level.

genetic      This scheduler implementation uses a genetic algorithm to schedule 
tasks to workers. It uses the mutation and crossover operators described in   [32]. 
Only valid schedules are considered, if no valid schedule can be found within a rea-
sonable amount of iterations, a random schedule is generated instead.

ws      Implementation of a simple work-stealing algorithm. The default policy is 
that each ready task is always assigned to a worker where it can be started with min-
imal transfer costs. The scheduler monitors the load of workers and when a worker 
starts to starve then a portion of tasks assigned to other workers is rescheduled to the 
starving worker.

We have also implemented several naive schedulers to serve as a baseline for 
scheduler comparisons.

single   Scheduler that assigns all tasks to a single worker (it selects the worker 
with the most cores). The resulting schedule never induces any data transfers 
between workers.
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random   Static scheduler that schedules each task to a random worker.
All scheduler implementations use a random choice when an indistinguishable deci-

sion in the algorithm occurs, e.g. when more tasks have the same b-level in the case of 
blevel.

We have implemented the list based schedulers (blevel, tlevel, dls, mcp, etf) as 
closely as possible according to their description from the works that introduced them. 
These heuristics often schedule a task to a worker that allows the earliest start time 
of the task. However, the scheduler algorithms do not prescribe in detail how exactly 
should the scheduler find such worker, because the exact earliest start time often can-
not be determined in advance due to unpredictable network contention. This imple-
mentation detail is crucial and should be included in the description of new scheduling 
algorithms.

For our implementation, we used a simple estimation of the earliest start time based 
on the currently running and already scheduled tasks of a worker and an estimated 
transfer cost based on uncontended network bandwidth.

In addition, we have also created extended versions of the blevel, tlevel and mcp 
schedulers to make them more compatible with the additional properties that are pre-
sent in our simulation environment (e.g. multi-core workers, multi-core tasks, imodes). 
These modified versions use a worker selection heuristic that we call “greedy transfer“ 
and they contain -gt suffix in their name in the benchmark results. We have not applied 
this heuristic to other schedulers, either because it could not be applied to them with-
out changing their behaviour fundamentally or they already supported the mentioned 
properties.

The “greedy transfer“ heuristic assigns the selected task to a worker that has a suf-
ficient number of free cores on which the task may be executed and that requires the 
minimal data transfer (sum over all sizes of data objects that have to be transferred to 
that worker). It also adds support for clusters where some machines have a different 
number of cores than others. When a task t that needs c cores cannot be scheduled 
because of an insufficient number of free cores, the list scheduling continues by tak-
ing another task in the list instead of waiting for more free cores. This task will only 
consider workers that have less than c cores. This allows to schedule more tasks while 
it does not modify the priority of tasks because t cannot be scheduled on such workers 
anyway. Note that when all workers have the same number of cores, the behaviour is 
identical to ordinary list scheduling.

5  Benchmark description

This section describes task graphs that we have used to compare the performance of 
various scheduling algorithms and also cluster and scheduler configuration that we 
have used in our benchmarks.



15163

1 3

Analysis of workflow schedulers in simulated distributed…

5.1  Task graph datasets

We use three task graph sets including simple elementary graphs as well as real 
world inspired graphs to test the behaviour of schedulers in various situations. The 
first two sets are prepared by the authors, the third task graph set is derived from a 
set commonly used in other works. All graphs are published at [8]. EstEE contains a 
task graph generator that can be used to generate graphs from the following catego-
ries with various parametrizations.

elementary     contains trivial graph shapes, such as tasks with no dependencies 
or simple fork-join graphs. This set should test how the scheduler heuristics react to 
basic graph scenarios that frequently form parts of larger workflows.

irw   is inspired by real world workflows, such as machine learning cross-valida-
tion or map-reduce.

pegasus      is derived from graphs created by the Synthetic Workflow Genera-
tors [35]. The generated graphs correspond to the montage, cybershake, epigenom-
ics, ligo and sipht workflows. We have extended the graphs with additional proper-
ties needed for testing imodes (notably expected task durations and data object sizes 
for the user imode).

The properties of all used graphs are summarized in Table  1. Each task in all 
described task graphs requires at most four cores.

5.2  Clusters

We have used the following cluster configurations (where w × c means that the clus-
ter has w workers and each worker has c cores): 8 × 4 , 16 × 4 , 32 × 4 , 16 × 8 , 32 × 16.

For simulating network connections, we use the max-min fairness and simple net-
work models with bandwidths ranging from 32 MiB/s to 8 GiB/s. For experiments 
that do not focus on the network model (e.g. comparing imodes), we only use the 
max-min network model.

5.3  Scheduler settings

For evaluating the effect of MSD, we benchmark several MSD configurations. As a 
baseline we use a configuration with no delay (MSD is zero), i.e. the scheduling pro-
cess is executed as soon as an event occurs. Beside the base case we have also meas-
ured delays of 0.1, 0.4, 1.6, and 6.4 seconds. In all these nonzero cases, we have 
also added a 50 milliseconds delay before sending the scheduler decision to workers 
to simulate the scheduler computation delay. For experiments that do not focus on 
MSD, we always use MSD of 0.1 seconds and 50 milliseconds delay.

For testing the effect of imodes, we benchmark schedulers with different informa-
tion modes (exact, user, and mean) as defined in Sect. 2. For experiments that do not 
focus on imodes, we always use the exact imode.
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6  Evaluation

This section discusses results obtained by running the described benchmarks in our 
simulation environment. All obtained results are published at [9] including the gen-
erated charts for all configurations. Each particular configuration described in the 
previous section was executed 20 times, except for the single scheduler, which was 
executed only once, since it is deterministic. Unless specified otherwise, the experi-
ments were performed with the default benchmark configuration (max-min net-
model, exact imode and 0.1s MSD).

Our benchmarks have produced large amounts of results. Below we discuss sev-
eral noteworthy results, you can find more complete scheduler comparison results in 
the appendix.

Random scheduler     Figure 3 shows simulated makespan lengths produced by 
the random scheduler and two other competitive schedulers, blevel-gt and the work-
stealing scheduler on selected graphs. While the random scheduler produces quite 
long makespans in certain cases (for example in the cross-validation graph), it is 
also surprisingly often quite competitive. Especially as the number of workers and 
the bandwidth increases, it can get even with other schedulers and sometimes even 
overcome them.

Similar results have also been observed in  [10]. These results show that as the 
computational cluster and network transfer speed gets larger, scheduling decisions 
can become less important and other factors (like the runtime overhead of the task 
execution system) can start to dominate.

...

(a)

...

(b) (c)

...

(d)

...

(e)

...

(f)

...

(g)

...

(h)

...

...

(i)

...

(j)

...

(k) (l)

Fig. 2  Task graph shapes in the elementary data set
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Worker selection strategy      We have already explained in Sect.  4.3 that pub-
lished scheduler algorithms do not always specify the exact implementation of 
worker selection. Yet as we can see in Fig. 4, this implementation detail is crucial. 
The worker selection strategy (which is the only thing that differentiates the sched-
ulers with and without the -gt suffix) has a large effect on the produced schedule 
and thus the resulting makespan. Furthermore, it is evident that schedulers that use 
the “greedy transfer“ selection strategy are highly correlated, which hints that in this 
case selecting the correct workers is more important than scheduling the order in 
which tasks will be executed.

Network transfers      Figure  5 demonstrates that schedulers producing similar 
makespans may in fact generate vastly different amounts of network traffic. For 
example, for the nestedcrossv graph using the 32 × 16 cluster, the work stealing 
scheduler transfers almost twice as much data than blevel-gt, yet it produces almost 
identical makespans.

Network models     Figure 6 compares makespans between the simple and max-
min network models on the IRW data set using the 32 × 4 cluster for selected sched-
ulers. The results are normalized with respect to the simple model. It is clear that 
results obtained by using the simple model often under-approximate the resulting 
makespan length. This is caused by the fact that network contention is not taken into 
account, which causes their transfer duration estimation to be overly optimistic. It is 
however interesting to note that in some cases the simple model over-approximates 

Fig. 3  Random scheduler performance
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the makespan. Since most of the schedulers use heuristics, a faster network transfer 
does not necessarily lead to a shorter makespan.

On the IRW dataset, the differences vary based on the particular scheduler and 
task graph. Especially with slower bandwidths, the estimations produced by the two 
models can be an order of magnitude apart. Note that even small disparities are sig-
nificant, since as shown in previous surveys  [44] and in our provided results, the 
differences in produced makespans between existing scheduler heuristics are often 
very small and within a factor of two. As the bandwidth gets faster, the difference 
between the two models decreases, since network contention is lower and the max-
min model starts to behave similarly to the simple model.

For the Pegasus data set, the results of both models are much more aligned. Dif-
ferences on higher bandwidths are almost negligible. For slower bandwidths, the 
differences between the models are within a factor of two. Results for the Pegasus 
data set can be observed in Fig. 12 in the Appendix.

Fig. 4  Comparison of worker selection strategy
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MSD     Figure 7 shows the effect of MSD on the IRW data set using the 32 × 4 
cluster for selected schedulers. The results are normalized with respect to the case 
where MSD equals zero.

Our results show that the effect of MSD is relatively limited, especially when 
compared to the effect of the simulated network model. There seems to be no clear 
pattern as to whether decreasing MSD improves the makespan length consistently 
or not. It is however interesting to note that increasing MSD can actually improve 

Fig. 5  Total transfers on IRW dataset

Fig. 6  Comparison of “max-min” and “simple” netmodel on IRW set; cluster 32 × 4
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the produced schedules (e.g. the ws scheduler on the fastcrossv graph). Increasing 
the delay between individual scheduling decisions introduces a “batching“ effect. 
Even though the scheduler is allowed to make decisions less often, it has access to 
more accumulated events that happened in the meantime and it can thus potentially 

Fig. 7  Comparison of MSD on IRW subset; cluster 32 × 4

Fig. 8  Comparison of imodes on IRW set; cluster 32 × 4
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make a better decision. Using an artificial MSD in a real scheduler implementation 
can thus serve to improve the produced schedules, not just to reduce the scheduling 
overhead.

Imodes      Figure  8 compares makespans between the imodes on the IRW data 
set using the 32 × 4 cluster for selected schedulers. The results are normalized with 
respect to the exact imode. The results show that the effect significantly depends 
on the particular scheduler. The effect of imodes seems to be more relevant than 
the effect of MSD, but in most cases it is still significantly smaller than the effect 
of the simulated netmodel. Since the exact imode provides the schedulers with the 
most accurate and complete information that they can get, it may be unintuitive why 
some schedulers actually perform better when presented with incomplete or inaccu-
rate data (e.g. the dls scheduler on the fastcrossv graph). This is partially caused by 
the fact that all of the schedulers use heuristics, they can thus produce worse results 
even when presented with a more accurate input and vice versa.

Another reason is that with the max-min netmodel, the scheduler knows only 
a lower bound on the communication costs even if it knows the exact data size in 
advance. It has access to the network maximum bandwidth, but does not know the 
current and future network utilization, thus it only has a crude estimation of the real 
transfer duration.

Figure  9 shows the effect of imodes on three graphs from the elementary set. 
Imode effects are mainly visible for the ws and blevel-gt schedulers; for other sched-
ulers, the effects are significantly smaller. The task graph duration_stairs has tasks 
with several different durations, the duration estimates produced by the mean imode 

Fig. 9  Comparison of imodes on three elementary graphs; cluster 32 × 4
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will thus be fairly inaccurate. This is observable for the blevel-gt and ws schedulers, 
which produce up to 25% longer makespans when compared to the exact imode.

6.1  Validation

It is challenging to validate the performance of multiple task schedulers in real task 
execution frameworks. Schedulers of existing task frameworks are usually very 
deeply integrated and coupled to the surrounding system in order to be as perfor-
mant as possible. It can thus be quite difficult, or even infeasible, to swap the sched-
uler for a different one. Task frameworks might also be fundamentally incompatible 
with some scheduling approaches. For example, workstealing schedulers perform a 
lot of complex communications amongst workers and the scheduler, and if the exe-
cution system does not support such communication patterns, implementing work-
stealing can amount to rewriting the whole system from scratch.

We have leveraged the approach from  [10] and used its modified version of 
Dask [33] as a validation framework. In addition to its built-in workstealing sched-
uler, we have also implemented three simple scheduling algorithms into it (blevel, 
tlevel and random).

The absolute makespans of task graphs simulated by EstEE and task graphs exe-
cuted by some task framework cannot be directly compared, because the framework 
will always introduce runtime overheads and system noise that cannot be fully simu-
lated. However, since one of the goals of this paper is to compare the relative per-
formance of various schedulers, we have decided to compare the relative makespans 
normalized to a reference scheduler (blevel) to see if the ratios between the schedul-
ers are similar when simulated and when executed.

To ensure that we use the same task graphs for execution and simulation, we have 
executed several task graph benchmarks from [10] (you can find their description in 
that work) in Dask and generated execution traces. These traces were then used to 
reconstruct the execution times and output sizes of all tasks and this reconstructed 
task graph was then simulated in EstEE. We have executed the task graphs with 24 
workers on two nodes (one with the scheduler and the second one with the workers). 
Each task graph was executed and simulated three times.

The performance of each scheduler was normalized to the performance of the 
blevel scheduler within the same environment. The relative ratios were centered 
around zero by subtracting 1 from them, to focus on the relative differences. For 
example, if a task graph took 100s to execute in Dask with the blevel scheduler, but 
110s with the ws scheduler, the ratio of the ws scheduler would be 0.1. If the simula-
tion was perfect, the two columns for each scheduler would have the same height.

We have selected three interesting situations that can be seen in Fig.  10. Full 
results are in the Appendix in Fig. 13.

The first chart shows a situation where changing the scheduler resulted in large 
changes in makespans, and EstEE was able to simulate these precisely. The second 
chart demonstrates a situation where all schedulers produce similar makespans, 
therefore in this case the scheduling algorithm does not seem to be that important. 
EstEE also estimated that the differences between schedulers will be small. In the 
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third benchmark, EstEE systematically overestimated the makespans of all three 
schedulers with respect to the reference scheduler. While the ws implementation in 
EstEE was partly inspired by Dask, the scheduler behaviour is quite complex and in 
this case it was able to outperform the reference scheduler in a way that EstEE wasn’t 
able to simulate.

To summarize the average error, we took the relative makespans of individual 
schedulers w.r.t. the reference scheduler and calculated the difference between the 
executed and simulated relative makespan. The geometric mean of these differences 
is 0.0347, which suggests that the differences between the execution and simulation 
were relatively small, usually within a few percent.

7  Conclusion

We implemented a set of well known scheduling heuristics and prepared a dataset 
containing workflows of different types and scales. Based on those, we have con-
ducted a series of fully reproducible benchmarks to analyze the influence of network 
models, information modes and minimal scheduling delays on the behaviour of the 
implemented schedulers.

Our results show that several implementation details of both the scheduling algo-
rithms and the simulation environment must be clearly described and specified, oth-
erwise the results might not be reproducible. We have shown that the complexity of 
the used network model may significantly affect the simulated workflow execution 
makespan. To our surprise, the effect of information modes has been relatively low 
for most of the benchmarked cases. It seems that for the benchmarked scheduling 
algorithms, it is relatively sufficient to know only rough estimates of task durations 
and data object sizes.

Lastly, we showed that various MSD values have a limited impact on the result-
ing makespan, but increasing the scheduling delay may in some cases improve the 
produced schedules.

Our results confirmed that it is important to consider the network behav-
iour when applying scheduling heuristics in real-world applications and that 

Fig. 10  Scheduler performance relative to blevel in Dask and EstEE 
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it requires caution to refer to results that use simplified network models. We 
also encourage authors of scheduling algorithms to describe the worker selec-
tion strategy, possible delay between scheduler invocations, network model and 
other implementation details in utmost detail, to make scheduler benchmarks 
reproducible.

EstEE, workflow datasets and scheduler implementations are open sourced, 
to make the results reproducible and extendable by the community. We believe 
that our results provide a comprehensive overview and comparison of workflow 
schedulers in various simulated conditions and that EstEE has further potential to 
simplify the development and benchmarking of novel schedulers.

Appendix 1: W‑scheduler

This section contains description of the w-scheduler—worker inner scheduler. 
The (global) scheduler does not directly communicate with w-schedulers except 
by assigning tasks to workers. The assignment of task t may also contain two 
additional values: priority pt and blocking bt , such that bt ≤ pt . These values set 
priorities for downloading and task execution when more possible options are 
enabled at once for the w-scheduler.

Worker w starts to download an input o ∈ O for a task t ∈ T  if t was assigned 
on w by the scheduler and o is not already on w. The download is started as soon 
as the task producing o is finished and there is a free download slot.

When more objects can be downloaded at once but there are not enough down-
load slots, the downloads are prioritized based on the priority of tasks that need 
the object. When a task is not ready then its p is used, otherwise p is boosted by 
a constant. When more tasks need the same object, then the maximum priority 
is taken. Downloading is uninterruptible, once an object has started download-
ing, it is finished without interruption even when a download with a higher prior-
ity is enabled and the maximum number of concurrent downloads per worker is 
reached.

Download slots serve to limit simultaneous downloads. For the max-min net-
work model, the worker is allowed to download at most four inputs at once, but 
at most two from the same worker. These particular numbers were observed as 
a reasonable compromise between parallel downloads and using bandwidth for 
higher priority tasks. For the simple model, we allow the worker to run arbitrarily 
many simultaneous downloads to make the model behave in a way that is similar 
to previous studies.

When a new task becomes enabled on a worker w or an execution of a task is 
finished, worker runs the following algorithm to decides if another task can be exe-
cuted. We denote f as the a of free CPU cores (i.e. the total number of worker’s cores 
minus the sum of core requirements of currently running tasks), E as a set of tasks 
that are enabled and non-running and X as a set of tasks from E which require more 
than f CPU cores. The worker picks a task t from E⧵X with maximal priority such 
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that ∀t� ∈ X ∶ pt ≤ bt� . If such t exists, then t is started. This process is repeated until 
we cannot start another task this way.

Appendix 2: Benchmark results

See Figs. 11, 12, 13.

Fig. 11  Complete scheduler comparison on IRW set
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Fig. 12  Comparison of “maxmin” and “simple” netmodel on Pegasus set; cluster 32 × 4
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