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Abstract
Complex system theory is increasingly applied to develop control protocols for dis-
tributed computational and networking resources. The paper deals with the impor-
tant subproblem of finding complex connected structures having excellent navigabil-
ity properties using limited computational resources. Recently, the two-dimensional 
hyperbolic space turned out to be an efficient geometry for generative models of 
complex networks. The networks generated using the hyperbolic metric space share 
their basic structural properties (like small diameter or scale-free degree distribu-
tion) with several real networks. In the paper, a new model is proposed for gen-
erating navigation trees for complex networks embedded in the two-dimensional 
hyperbolic plane. The generative model is not based on known hyperbolic network 
models: the trees are not inferred from the existing links of any network; they are 
generated from scratch instead and based purely on the hyperbolic coordinates of 
nodes. We show that these hyperbolic trees have scale-free degree distributions and 
are present to a large extent both in synthetic hyperbolic complex networks and real 
ones (Internet autonomous system topology, US flight network) embedded in the 
hyperbolic plane. As the main result, we show that routing on the generated hyper-
bolic trees is optimal in terms of total memory usage of forwarding tables.
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1 Introduction

With the initial deployment of the third generation of mobile systems, networked 
IT infrastructures have been becoming increasingly complex with each newer 
generation. The widespread introduction of computational clouds to support the 
pervasive AI formed by a large number of intelligent and dumb devices under 
the framework of IoT (Internet of Things) an unprecedented, highly complex 
networking environment have been evolved. The IT service ecosystem is further 
complicated by the software first paradigm shift, that is when software-based 
configuration control is preferred over changing the underlying hardware. Hyper-
scaler companies appeared to offer cloud-native scalable computational resources 
on complex connected data-center infrastructures. To handle the inextricably 
connected heterogeneous computational environment, recently complex network-
ing solutions have been proposed [1]. An important subproblem in this line of 
research is obtaining resource efficient routing algorithms in large networks. 
Short paths are desired for low latency applications or to scenarios where efficient 
network resource allocation is the primary objective, while low memory usage is 
favorable, e.g., in small, energy-efficient communication devices like IoT sensors 
[2]. Memory efficiency is also advantageous to make unstructured complex net-
working environments scalable for navigation, as in the case of the BGP tables in 
the Internet interdomain routing system [3].

In the paper, navigational trees are proposed to establish scalable routing of 
large networks in terms of total memory usage of the forwarding tables employed. 
The proposed tree, as a kind of ”navigation skeleton,” is considered to be the 
set of edges in the network made available for communication. Trees play an 
essential role in network operation and management. Carefully chosen ones can 
be considered skeletons of more complex, real networks, acting as a scaffold for 
certain vital functions like routing [4], navigation [5], cluster analysis or broad-
casting [6]. For example, the so-called minimum (weight) spanning tree can effi-
ciently be used for designing routing algorithms and protocols in computer and 
communication networks. The spanning tree of a network contains all the nodes 
with only a subset of the edges. That is, it is algorithmically generated from the 
whole original network. In this paper, we follow a completely different approach. 
Led by the assumption that the evolution of real networks is toward economi-
cal ways of implementing efficient navigability, we propose an essentially hier-
archical structure—a hyperbolic tree—as a vital part of complex networks. Only 
hyperbolic plane coordinates of network nodes are used, and a simple rule is 
applied to establish tree edges. The rule significantly differs from the ones used 
for hyperbolic complex network generation [7], and no other structural properties 
of the network are considered in the hyperbolic tree generation.

The main contributions of the paper are the following:

• First, it is shown, both analytically and numerically, that the degree distri-
bution of the hyperbolic trees generated are scale-free, that is, they follow a 
power-law function.
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• Second, it is also demonstrated that the hyperbolic trees are highly present in syn-
thetic hyperbolic networks, as well as in real networks embedded in the hyperbolic 
plane.

• Third, as the highlighted contribution of the paper, it is shown based on extensive 
numerical investigations, that the expected memory usage of hop-by-hop routing 
with hyperbolic trees has optimal scaling with respect to the size of the trees.

2  Related work

The characterization of real network structures through binding evolutionary forces 
to properties like being navigable [8], searchable [9] or controllable [10] is a popular 
approach since the birth of complex network theory. The principal idea behind many 
of them is the assumption that network formation is led by a hidden metric among the 
nodes. The idea of characterizing networks by embedding them into the hyperbolic 
space [11] stems from the observation that artificial generation of nature-like hyper-
bolic networks can readily be done by surprisingly compact generative models. Related 
studies [12, 13] show that scattering points as nodes on the hyperbolic plane evenly 
within a disk and adding edges between nodes being closer than a threshold directly 
give rise to scale-free networks similar to many real networks. Applications of this line 
of research consist of, e.g., designing routable data centers [14] or fitting protein inter-
action networks [15]. Recent developments in the area propose hyperbolic routing tech-
niques to achieve low delay data transmission in NDN (Named Data Networks) [16] or 
robust learning strategies in Hyperbolic Deep Neural Networks [17]. In the paper, we 
aim to apply hyperbolic embedding-based network design to make the network routa-
ble using small table sizes in the participating nodes. Related research works in the 
area [11, 12] concentrated on making the network navigable directly by the assigned 
hyperbolic coordinates. Current paper assumes no structure built into the assigned 
coordinates. It uses any general popularity versus similarity type hyperbolic embedding 
schemes [18, 19] and shows that the required memory to successfully route the entire 
network scales optimally with respect to the number of network nodes. For that pur-
pose, a tree is generated using the coordinates derived from the initial embedding, and 
routing is restrained to the edges of the tree. Although the tree may contain extra edges 
not existing in the original network, according to experimental results, the excess link 
ratio quickly diminishes as network size increases.

3  The hyperbolic plane

The hyperbolic plane (the two-dimensional hyperbolic space) is a metric space, hence 
there is a well-defined distance calculation such as (hyperbolic cosine theorem)

where ru and rv are the radial components of the polar coordinates of points u and v, 
and � = �u − �v is the difference of the angular components of the polar coordinates 

(1)cosh d(u, v) = cosh ru cosh rv − sinh ru sinh rv cos�



15253

1 3

Hyperbolic trees for efficient routing computation  

[20, 21]. Note that it significantly differs from the Euclidean cosine theorem. The 
fundamental nature of hyperbolic space is its constant negative curvature, which is 
not specified here because we do not directly need it. From now on, we assume unit 
negative curvature, which corresponds to the distance calculation formula above. 
The direct consequence of negative curvature is the exponential behavior; for exam-
ple, the circumference and area of circles are exponential functions of the radii 
instead of polynomials like in the Euclidean space. The area of a hyperbolic disk 
with radius R is

A further exciting and counter-intuitive property of the hyperbolic plane is that 
the area of triangles is bounded above by � and equals to (in case of unit negative 
curvature)

where � , � , � are the angles of the triangle. The immediate consequence is that the 
triangle areas can usually be neglected, which can significantly simplify the calcula-
tions. For example, the area of a circle sector with R = 5 and � = �∕2 (a quarter cir-
cle) is �

2
(cosh 5 − 1) ≈ 115 while the area of the right-angled triangle with sides 5 a 

is less than �∕2 ≈ 1.57 . This means that the area of a circle sector is mainly concen-
trated to the circle segment. The above equations represent the three main proper-
ties, the careful use of which provides the basis of our calculations and derivations.

4  Hyperbolic trees

For generating hyperbolic random trees, let the model be the following. Let N points 
having uniform distribution random coordinates be generated on a hyperbolic disk 
of radius R. The uniform distribution means that the node density (i.e., the number 
of nodes per unit area) on the R−disk is constant. From this and (1), it follows that 
the probability density of the angle coordinates of the points is uniform between 0 
and 2� , while the radial coordinate density is given by

In a generated point set, the coordinates of the points are randomly sampled from 
the distributions above. The construction of the hyperbolic tree is given by the fol-
lowing rules. Each point in the set generated corresponds to a node in the tree. First, 
the points are ordered by increasing radial coordinates. The first node (the point with 
the smallest radial coordinate) is the root of the tree. Then the ith node ( i = 2, ...,N ) 
is connected to the closest one among ( 1, ..., i − 1 ), that is to the closest one having 
smaller radial coordinate. An example can be seen in Fig. 1 in which N = 200 nodes 
are placed uniformly on a disk of radius R = 9 . For illustration purposes, on the 
figure, the native representation of hyperbolic space is used; that is, in the drawings, 
we use hyperbolic coordinates as if they were Euclidean. Although this may cause 

(2)AR = 2�(cosh (R) − 1) .

(3)Atriangle = � − � − � − �

(4)�(r) =
sinh r

coshR − 1
.
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some strange phenomena in the figures, the textual descriptions of the algorithms 
and examples become more comfortable to interpret. As the calculations and deriva-
tions do not rely on the properties of any specific representations, there is no reason 
to use more sophisticated models like the Poincarè disk or the Klein model in our 
investigations.

In Fig.  2, a more complex example can be seen with R = 14 , N = 1000 . One 
can immediately notice that the nodes seem to be non-uniformly distributed on 
the disk. This is due to the non-isometric nature of the native representation. Note 
that all other representation models in the Euclidean plan lack isometry, the hyper-
bolic plane simply “too big”, e.g., contains exponentially larger amount of space 
than the Euclidean one. In the case of the disk with a radius of 14, the total area is 
2�(cosh 14 − 1) ≈ 3.78 × 106 . The half of this area is 1.89106 , which can be covered 

- 5 5

- 10

- 5

5

10

Fig. 1  Points generated on a radius R = 9 hyperbolic disk according to uniform distribution (left side) 
and the hyperbolic tree inferred from this point (right side). One can observe that several links in the tree 
are oriented toward radial directions due to the explanation of hyperbolic distance characteristics

Fig. 2  A hyperbolic tree with 
1000 nodes. One can observe 
the strong hierarchy and the 
wide spectrum of node degrees. 
There are exactly half of the 
nodes (500) inside the red 
dashed circle. Areas and node 
densities are not what they 
seem. Distances also sig-
nificantly differ from Euclidean 
one, e.g., node 936 and 999 
closer to node 1 than to each 
other (green dots), see explana-
tion in the text

1

936
999
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by a disk with radius 13.3! Due to the uniform node distribution, half of the nodes 
are expected within the disk of 13.3. In the particular realization in Fig. 2, exactly 
500 nodes are inside the 13.14 radius disk (shown by red dashed line in the figure) 
while the other 500 ones have radial coordinate values within 13.14 and 14. This 
clearly illustrates the exponential behavior of a hyperbolic plane: areas and node 
densities are not what they seem in the figures.

Another strange phenomenon in Figs.  1 and 2 is that the orientation of most of the 
connections lies close to the radial direction. It seems that lots of node pairs (espe-
cially in the outer rim of the disk) should have been connected because they look to 
lie close enough to each other; further evidence that the hyperbolic distance calcula-
tion significantly differs from the Euclidean one. We demonstrate that with simple 
examples. In Fig. 2, the green connections highlight the first node (with the smallest 
radial coordinate) connected to nodes 936 and 999. The polar coordinates are as fol-
lows: (�1, r1) = (1.07836, 1.88073) , (�936, r936) = (0.93668, 13.8972) , (�999, r999)

= (0.829746, 13.9966) . According to the hyperbolic cosine law (1), the distances are 
d(1, 936) = 12.2075 , d(1, 999) = 12.6142 d(936, 999) = 22.0355 . Thus nodes 936 
and 999 turn out to be much farther from each other than it seems in the native rep-
resentation, becoming the first node the closest neighbor to both. Hence, they should 
not be connected. In fact, if the radial coordinates of two nodes are close to each 
other, the hyperbolic distance rapidly increases with increasing angular difference, 
especially in the range of small values. Figure 3 illustrates this behavior, in which 
the angular coordinate �999 of node 999 is varying from �936 to �936 − �.

One can observe that node 999 would be closer to node 936 only in an extremely 
small range of 0 < 𝛥𝜙 < 0.00076 ; for all larger �� d(936, 999) > d(1, 999) holds.

5  Degree distribution of hyperbolic trees

In this section, the degree distribution of the nodes in the hyperbolic tree is investi-
gated. First approximate analytical derivations are performed, than numerical exper-
iments are presented. The derivation of the approximate degree distribution formula 
consists of three main steps. In the first step, the connection probability p(u, v) for 

1.×10- 5 5.×10- 51.×10- 4 5.×10- 40.001 0.005
2
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Fig. 3  Hyperbolic distances between nodes 936,999 and nodes 1,999 are presented. In case of similar 
radial coordinates ( r936, r999 ) the distance is quickly increasing with angular difference, while in case of 
large radial coordinate difference ( r1, r999 ) the distance function is quite flat
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a node pair u, v ( ru < rv ) is derived. In the second step, the conditional expected 
degree k̄(ru)1 is computed based on p(u, v) and the probability density of node v. 
In the third step, the degree distribution is inferred from k̄(ru) with appropriate 
deconditioning.

Assume that N points are randomly placed on a disk of radius R evenly distrib-
uted over its area and a tree is generated applying the previously described algo-
rithm. We can establish the probability p(u, v) that an arbitrary node pair (u, v) is 
connected. More specifically, p(u, v) is the probability that u and v are connected 
under the condition that ru < rv.2 In Fig. 4, a node pair u, v are shown with ru < rv . 
According to the tree generation rule, v is connected to the closest node which has a 
smaller radial coordinate than rv . In a geometric interpretation, v connects to the 
closest node inside the O-centered disk of radius rv (red disk in the figure). The clos-
est node will be exactly u when no points lie inside the intersection of the O-cen-
tered disk with radius rv and the v-centered disk with radius d(u, v) (green disk in the 
figure). The probability that all the N − 2 points fall outside the intersection area is 
1 −

AQP

AR

 , where AQP denotes the area of the intersection, and AR = 2�(coshR − 1) is 
the area of the whole disk. It follows that

where � is the node density: � =
N

AR

≈
N−2

AR

 What remains to be done to calculate the 
probability p(u, v) is to establish AQP . One can observe in Fig. 4 that AQP is equal to 
the sum of the two circle sectors POQ (red, sector angle is 2� ) and PvQ (green, sec-
tor angle is 2� ) minus the area of the two triangles PQO and PQv:

(5)p(u, v) =

(

1 −
AQP

AR

)N−2

=

(

1 −
AQP

AR

)AR
N−2

AR

≈ e−�AQP ,

Fig. 4  Geometric illustration for 
the calculation of the connec-
tion probability p(u, v): Node v 
is connected to node u ( ru < rv ) 
if no nodes are contained in the 
intersection of the O−centered 
disk (colored in red) with radius 
rv and the v−centered disk 
(green line) with radius d(u, v) O

v

u

P

Q
rv

rv

d(u, v)

d(u, v)

α

β

1 We introduce the short notation k̄(ru) for E[k(u)|ru] , that is, the conditional expectation of the degree of 
a node u, whose radial coordinate is ru.
2 The notation p(u connectedtov|ru, rv, ru < rv) could be more appropriate, but for brevity we use p(u, v).
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where the area of the two triangles 2(� − � − 2�) is already neglected. The angles 
� and � can be determined by applying the hyperbolic cosine law (1) to the triangle 
vOQ with edges OQ and vQ. From these

and

Now the Eqs. (6), (7) and (8) can be combined to get AQP as a function of d(u, v) and 
rv . Because the formula is a bit lengthy and not very expressive, it is not repeated 
here. However, based on a sequence of approximations a much simpler and useful 
expression can be obtained as

by which we get a simple formulae for the approximation of the connection 
probability:

At this point, it is practical to postpone the in-depth analysis of the details and qual-
ity of these approximations, as two more weighing functions are to appear in the 
computation of k̄(ru) . Instead, an illustrative example is shown in Fig.  5 to study 
the performance of the different approximations of AQP , where rv = 7 is fixed and 
d(u, v) is running from 1 to 14 (note that d(u, v) < 2rv holds for all (u, v), ru < rv).

One can observe that for a wide range of d(u, v) values, the simpler approxima-
tion (9) is quite close to the more tedious one; the relative difference is below 5% 
when 3 < d(u, v) < 13 . Because the distance d(u, v) is also a function of ru and rv 
itself, it is worth expanding it exploiting (1) as

(6)AQP ≈ 2�(cosh rv − 1) + 2�(cosh d(u, v) − 1),

(7)�(duv, rv) = arccos
cosh2 rv − cosh duv

sinh2 rv

(8)�(duv, rv) = arccos
cosh rv(cosh duv − 1)

sinh rv sinh duv

(9)AQP ≈ 4e
d(u,v)

2

(10)p(u, v) ≈ e−�4e
d(u,v)
2

.

Fig. 5  Different approximations of AQP and their relative difference
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where � is the difference between the angle coordinates of u and v. Using the 
approximations cosh x ≈ ex

2
 and sinh x ≈ ex

2
 when x is not too small, one can write

Based on this equation, we get

Using the remarkable identity 
√

1−cos�

2
= sin

�

2
 a further, more useful formula can 

be obtained for p(u, v) for subsequent derivation as

Now we can continue with the derivation of k̄(ru) . Roughly speaking, k̄(ru) is the 
expected number of neighbors of u when all nodes v, (ru < rv < R) are counted for 
which u is the closest. There is surely one more “downward” connection of u to a 
node with an even lower radial coordinate due to the tree generation rule (except 
when u has the smallest ru , but this exception does not influence the results). 
More formally, p(u, v) is to be integrated with the probability densities of rv and � 
(�) ∶= �v − �u (and a constant 1 should be added), that is

First, consider the integral with respect to the angle difference �:

Interestingly enough, if we use approximation (14), it can be expressed exactly with 
two distinguished functions: the zero-order modified Bessel function III0(x) and the 
zero-order modified Struve function LLL0(x)

where x = 4�e
ru+rv

2  . It is known that for large x, III0(x) − LLL0(x) quickly tends3. to 2

�x
 , 

therefore the right-hand side of the equation above is approximated by

(11)cosh d(u, v) = cosh ru cosh rv − sinh ru sinh rv cos�,

(12)ed(u,v)

2
=

eru+rv

4
(1 − cos�) .

(13)e
d(u,v)

2 ≈ e
ru+rv

2

√

1 − cos�

2
.

(14)p(u, v) ≈ e−4�e
ru+rv

2 sin
�

2 .

(15)k̄(ru) = 1 + N ∫
R

rv=ru
∫

2𝜋

𝜙=0

p(u, v)
1

2𝜋

sinh rv

coshR − 1
d𝜙drv .

(16)∫
2�

�=0

p(u, v)d� .

(17)∫
2�

�=0

e−x sin
�

2 d� = 2�
(

III0(x) − LLL0(x)
)

,

3 The asymptotic series expansion of III0(x) − LLL0(x) at x = ∞ starts with 2

�x
 , see [22] . The asymptotic 

series expansion in this case means that limx→∞
III0(x)−LLL0(x)

2

�x

= 1
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Putting it back to Eq. (15), we get

Using the definition of node density � =
N

2�(coshR−1)
 , we get

Finally, we get the stunningly simple formula

The final formula reflects the property observed in the previous numerical examples, 
namely that nodes with smaller radial coordinates tend to have a much higher num-
ber of connections. There is an interesting and easy way to perform a sanity check 
on the formula. All trees with N nodes have exactly N − 1 links, that is the grand 
average node degree is k̄ = 2(N − 1)∕N ≈ 2 . This means that the result of integrat-
ing k̄(ru) with respect to the density ru should be very close to 2:

which differs from 2 with a negligible factor when R is not too small (for example, 
in case of R = 10 k̄ = 1.98652).

As a third step, the complement cumulant degree distribution is derived, i.e., the 
probability that an arbitrary node degree is larger than a given value k, P(degree > k) 
is computed. Here we present an approximate and more perceptible reasoning 
instead of a sophisticated but tedious one. If we accept the approximation (21), than 
from its monotonicity if follows, that nodes with higher expected degrees than a 
given k are exactly inside the circle of radius ru(k) , where ru(k) is the inverse func-
tion of (21). One can also state that nodes with degrees exactly higher than a given k 
are expectedly inside the circle with radius ru(k) . These two statements are approxi-
mately equivalent; therefore, P(degree > k) can be approximated by the ratio of the 
area of ru(k)-disk and the R-disk

Substituting the inverse function ru(k) = R − 2 log k into this equation

is obtained, that is approximately a power-law distribution with parameter 2.

(18)
4

x
=

1

�
e−

ru+rv

2 .

(19)1 + N ∫
R

rv=ru

1

�
e−

ru+rv

2
1

2�

sinh rv

coshR − 1
drv .

(20)1 + ∫
R

rv=ru

e−
ru+rv

2 sinh rvdrv ≈ 1 − 1 + e
R−ru

2 .

(21)k̄(ru) ≈ e
R−ru

2 .

(22)k̄ = ∫
R

ru=0

e
R−ru

2 eru−Rdru = 2(1 − e−
R

2 ),

(23)P(degree > k) ≈
2𝜋(cosh ru(k) − 1)

2𝜋(coshR − 1)
≈

eru(k)

eR
.

(24)P(degree > k) ≈ k−2 .
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6  Numerical analysis

In this section, numerical results are presented in connection with synthetic and real 
networks embedded on the hyperbolic plane. First, the generative model for synthe-
sizing complex networks on the hyperbolic plane is considered [12] . In the simplest 
case, the network generation rule is as follows: distribute N nodes uniformly on a 
hyperbolic disk with radius R then connect every node pair which are closer than R. 
It is analytically shown and numerically confirmed that the degree distribution of 
such networks follows power law, and the ccdf is proportional to k−2 [12, 23].

Two numerical examples are presented for N = 1000 , R = 13 and for N = 3000 , 
R = 14 . In Figs. 6 and  7 the hyperbolic trees generated and the synthetic networks 

Fig. 6  Hyperbolic tree and a synthetic complex network with N = 1000 , R = 13 for the same set of nodes

Fig. 7  Hyperbolic tree and a synthetic complex network with N = 3000 , R = 14 for the same set of nodes
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can be seen. It is observable that despite the completely different generation rule 
the structure of the synthetic network is strongly hierarchical and resembles to the 
tree network. Moreover, 860 of the total 999 links can be found in the original net-
work too. In the second example ( N = 3000 ) 2857 of the total 2999 tree links are 
also present in the synthetic network. The tree inclusion ratio in the first example 
is 860∕999 = 0.86 , while in the second example is as high as 2857∕2999 = 0.95 . 
We have performed more detailed numerical investigations on the inclusion ratio 
versus network size. The general observation is that the tree inclusion ratio is 
quickly increasing with increasing size of the network N. Table 1 summarizes the 
tree inclusion ratios for different sizes of networks averaged over 100 networks for 
every size.

The structural similarity is confirmed by the histograms for the degree distribu-
tions which are shown in Fig. 8. Note that the theoretical function k−2 well fits to the 
measured degree distribution of the tree and is in accordance with the similar decay 
in the synthetic network for larger values of k.

The degree distributions are also investigated on several networks with different 
sizes N. In all cases, the decay of the degree distributions is in accordance with the 
theoretical prediction, especially for larger networks and larger values of degree. In 
Fig.  9 the histograms of the degrees are shown for N = 1000, 2000, 5000, 10000 . 
One can observe that for small values of degrees ( k = 1..5 ), the theoretical function 
underestimates the measured frequency in all sizes a bit, and the estimation becomes 
more accurate for N > 2000 and k > 5 . Note that the very tail of the histograms are 
statistically less reliable due to the lack of enough data in the vicinity of the maxi-
mum degree, in these regions (i.e., N = 10000, k = 60–100) well fit to the theoretical 
curve cannot be expected.

Table 1  Tree inclusion ratios for 
different size of networks Number of nodes N 1000 3000 5000 7000 10000

Tree inclusion ratio 0.863 0.948 0.972 0.987 0.992

Fig. 8  Degree distributions of a synthetic complex network and the corresponding hyperbolic tree
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The hyperbolic tree networks are also generated and tested on two types of real 
networks embedded in the hyperbolic plane. Here we do not outline the embedding 
process; just note that the embedding process does not use algorithms based on any 
trees inferred from the original network. For more details of the embedding see [12, 
24, 25]. Thus, our hyperbolic tree generation method does not “know” directly any-
thing about any trees contained in the original real networks.

The first network is the US flight network, that was downloaded from the Bureau 
of Transportation Statistics http://transtats.bts.gov/ on 5 November 2017. It consists 
of 283 nodes and 1973 edges. In the network, the nodes are US airports. Two nodes 
are linked if a direct flight connects them. The hyperbolic tree and the original net-
work are drawn in Fig. 10. The hyperbolic tree has 282 links of which 246 are also 
in the original network. It corresponds to a 87.2% tree inclusion ratio. The degree 
distributions of the hyperbolic tree and the original flight network can be seen in 
Fig. 11. One can observe that the decay of the histograms is different; however, both 

Fig. 9  Empirical degree distributions (histograms) for four different hyperbolic tree sizes

Fig. 10  The US flight network (right) embedded into the hyperbolic plane, and the corresponding hyper-
bolic tree (left)
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are power-law functions which confirms our theoretical results. The flight network 
is embedded into a 11.3 radius disk determined by the embedding algorithm, so the 
average node density on this disk is about 0.0035.

The other network is the much larger Internet AS level topology. The cor-
responding data set representing the global Internet structure at the autonomous 
system (AS) level is from [26]. In this network, we use the inner core of 10000 
nodes (out of the total 23748), the number of edges is 40605, and the network is 
embedded into a 26.87 radius disk. In this case, the node density is much lower, 
6.83 × 10−9 . The degree distribution can be seen in Fig.  12. Similar power-law 
behavior also appears here, the difference between the decay rates is smaller than in 
the previous case. The inclusion ratio of the hyperbolic tree in the original network 
is also as high as 84.7% . In both cases, the difference between the exponents of the 
power functions can be attributed to the fact that real network embeddings usually 
cause non-uniform node distributions. According to our numerical experiments, 

Fig. 11  US flight network and its tree degree distribution. The tree is generated based only on the hyper-
bolic coordinates

Fig. 12  Internet AS level topology (inner core of 10000 nodes) and its tree degree distribution
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this non-uniformity results in a smaller change in the tree degree distribution than 
in that of the original network.

7  Routing efficiency of hyperbolic trees

In this section, the memory requirements of hop-by-hop routing is analyzed numeri-
cally when hyperbolic tree is used as a scaffold for the routing function. The analysis 
also contains the comparison to other spanning-tree-based routing algorithms. As 
presented in [4], the calculation of the information theoretical entropy of routing 
tables turned out to be a useful tool for estimating the total memory requirements. 
The hop-by-hop routing forwarding table of a node in an N-node network is an N−
length string with the alphabet consisting of the node neighbor identifiers. The ith 
element of the table is j at node k means that the packet arrived at node k should be 
forwarded to node j (as next hop) in order to reach node i. The entropy of the node k 
routing table can be defined as

where ni is the number of entries with the ith neighbor identifier, and �k is the 
number of neighbors of node k. NHk can be interpreted as the information theo-
retic lower bound of the required number of bits to encode the whole routing table, 
and therefore, the required number of bits to represent all routing tables is at least 
N
∑N

k=1
Hk . Therefore, from scalability point of view, the dependency of the whole 

routing entropy of the network H(N) ∶=
∑N

k=1
Hk with respect to N has an utmost 

importance.
For the numerical analysis, first, a sequence of hyperbolic trees was generated 

with different sizes ( N = 100, 200, 500, 1000, 2000, 5000, 10000 ) ranging two 
orders of magnitudes of N. Then the forwarding tables of the hop-by-hop routing 
were inferred, and the entropy of the tables was calculated. At all sizes of N 100, 
random trees were generated in order to eliminate statistical fluctuations. The fol-
lowing table shows the average entropies H̄(N) (standard deviations in brackets) of 
hyperbolic trees with different sizes (Table 2).

One can observe from the data set that the average total entropy H̄(N) increases 
with increasing N in a sub-linear manner. More accurate trend can be identified, if 
the data is plotted with a logarithmic scale x axis and a linear scale y axis.

As can be seen in Fig.  13 the average entropy values well fit on a line in 
this log-linear scaling, which means that the increase of H̄(N) with respect 
to N might approximately be in the order of O(logN) . This is a very nice 

(25)Hk =

�k
∑

i=1

ni

N
log

N

ni
,

Table 2  Average entropies of 
hyperbolic trees over different 
sizes

N 100 200 500 1000 2000 5000 10000
H̄(N) 16.771 18.872 21.635 23.719 25.801 28.534 30.657
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scaling property because the total amount of memory (measured in bits) NH̄(N)

required to store all routing tables in an N−size hyperbolic tree is in the order 
of O(N logN) which is the best possible scaling achievable in case of trees [4]. 
The approximate linear behavior of H(N) in the log-linear scaling means that 
it is worth fitting a linear model to the pairs (logN,H(N)) , which, in this case, 
is H(N) = 2.917 + 3.010 logN  . We have also tested the validity (the predic-
tion power) of this linear fit for such values of (logN,H(N)) which were not 
involved in the linear model generation. For example, the total entropy (aver-
aged over 100 hyperbolic trees generated) in case of N = 4000 and N = 6000 are 
H(4000) = 27.840 and H(6000) = 29.097 , respectively. The linear model predicts 
27.882 and 29.103 for these entropies, the relative error of the prediction in these 
cases (and in many other examples, too) is far below 1%.

Because NH̄(N) is a lower bound for the expected total memory requirement 
of routing, we have also implemented the binary codes of the routing tables for all 
sizes mentioned above and counted the actual total memory usage of the forward-
ing tables. Huffman coding has been used, which is suitable for encoding routing 
tables due to its prefix nature. The actual memory usage is very close to the entropy-
based lower bound in all cases (the relative error is below 3%), Table 3 shows this 
observation.

In our next research task, we are going to show analytically this scaling behavior 
of routing table entropy in hyperbolic random trees.

100 500 1000 5000 104

20

25

30

N

H
(N

)

Fig. 13  Average entropy in the function of N 

Table 3  Entropy-based lower bounds and actual values (by Huffman coding) for the memory usage of 
routing tables (in bits)

N 100 200 500 1000 2000 5000 10000
NH̄(N) 1677 3774 10817 23719 51600 142670 306570
Huffman codes 1717 3851 11102 24330 52629 144950 313570
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8  Discussion

The scalability of memory usage in arbitrary trees can widely vary [4] depending on 
the structure of the tree. For example, in case of pure binary trees the total routing 
entropy function scales as O(log2(N)) , where N is the number of nodes in the tree. 
Another extreme example is the star network in which the total entropy is exactly

The above scaling is desirable, but in case of general networks, it is impossible to 
generate spanning trees out of the original network edges that have similar structural 
characteristics. Furthermore, standard spanning tree generation algorithms neither 
can provide the structural similarities to the original network, which might be a fur-
ther reason of the diverse scaling behavior of tree routing in general. Reversing the 
train of thoughts, one can suspect that increasing trees showing structural similari-
ties might result in a focused, and well-characterizable scaling behavior. Because the 
hyperbolic plane can be used to generate increasing sequence of networks sharing 
similar structural properties, we expected the same in our hyperbolic tree generation 
method. This is confirmed by the observed similar scale-free degree distributions for 
two orders of magnitude in tree sizes (Fig. 9).

With respect to the high inclusion ratios of hyperbolic trees in real-world complex 
networks the phenomenon can mainly be attributed to the strong hierarchical and 
self-similar characteristic of complex networks [27]. Finally, we note that according 
to our preliminary numerical studies, in the presented hyperbolic tree model, not 
only the node degrees are distributed in a scale-free manner, but the size of the sub-
trees originating from the nodes at different levels has also scale-free distribution. 
Sub-tree sizes play a direct role in the routing entropy calculations; the good scaling 
behavior of routing entropy in our hyperbolic trees is likely due to the widely-spread 
sub-tree size distribution.

9  Conclusion

A new hyperbolic tree generation method has been presented. The generating algo-
rithm is based on the presumption that the successful navigability of many real net-
works is key to their evolution. Both analytically and by numerical experiments on 
synthetic and real data, it is shown that the degree distribution of the trees generated 
is approximately a power function. It has also been demonstrated that the trees are 
present to a large extent in real and synthetic networks and that hop-by-hop rout-
ing with hyperbolic trees is efficient in terms of total memory usage of forwarding 
tables.

The generation of the synthetic networks is carried out purely in a techni-
cal computing environment, as only topology information is to be used for the 
research. Due to the compact models applied, the complexity of the generation 
did not exceeded the square of the number of the nodes in the network: The 

(26)Hstar(N) =
2N − 1

N
log(N) = O(log(N)) .
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hyperbolic networks used simple random node generation on a planar disk with 
edges added depending on the distances between the nodes. Further, routing 
tables in synthetic, as well as, in networks obtained from public measurement 
databases are calculated on-the-fly during the edge creation phase. In a real envi-
ronment, simple modification of spanning tree protocols like STP (Spanning Tree 
Protocol) are available to carry out that function.

With respect to direct application of the results, the question arises as to how to 
circumvent the (although rare) problem of the addition of non-existent physical con-
nections in real technological networks. On the other hand, thinking in terms of the 
softwarized networking paradigm like the SDN (Software Defined Networking), in 
overlay networks, topology changes like the generation of new edges boils down to 
a simple reconfiguration process. Further real implementation problems may arise 
in heavy dynamic environments where the generation time of the navigation tree 
has strong real-time constraints. In such cases, e.g., auxiliary routing mechanisms 
may temporarily be applied to eliminate connection service disruption in the system. 
Finally, our results open further research questions on the deeper relation between 
navigable hyperbolic trees and the structural evolution of networks.
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