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Abstract As a low-frequency and smooth signal, the bias field has a certain destructive effect on 

magnetic resonance(MR) images, and is the main obstacle for doctors' diagnosis and image 

processing (such as segmentation, texture analysis, and registration). Before analyzing a damaged 

MR image, a preprocessing step is needed to correct the bias field in the image. Unlike traditional 

bias field removal algorithms based on signal models and a priori assumptions, deep learning 

methods do not require precisely modeling signals and bias fields, and do not need to adjust 

parameters. After the large training set is trained through the deep neural network, the MR image 

with the bias field is input, and the corrected MR image is output. In this paper, we propose taking 

the local feature images of the bias field in multiple frequency bands obtained by the log-Gabor 

filter bank and the original image as input, correct the bias field of a brain magnetic resonance image 

through a deep separable convolutional neural network, and use residual learning and batch 

normalization to speed up the training process and improve bias field correction performance. Our 

training model was tested on the BrainWeb simulated database and HCP real dataset, and the results 

of the qualitative analysis show that our training model achieved better performance than the 

traditional state-of-the-art N4 and NIMS (Non-Iterative Multi-Scale) methods. 

Keywords: Magnetic resonance imaging; Intensity inhomogeneity correction; Bias field; Log-

Gabor filter; Deep learning  

1 Introduction 

Among the many image acquisition technologies, magnetic resonance imaging (MRI), as a 

noninvasive medical imaging technology, has the characteristics of high resolution and high contrast 

in soft tissues and plays an important role in diagnosing the pathology of human internal tissues and 

organs. Especially in brain image research, MRI is superior to other imaging techniques. However, 

in the MRI imaging process, due to the influence of factors such as the uneven static magnetic field, 

the eddy current formed by the gradient field, and the uneven sensitivity of the receiving coil, MRI 

will have uneven intensity. This phenomenon is called MR image artifacts and is, also known as the 

bias field. The bias field is a poor low-frequency smooth signal (as shown in Fig. 1), and it will 

change the intensity value of the pixel, which makes the same tissue in the image have a different 

intensity distribution. The existence of the bias field may affect the accuracy of clinical diagnosis 

and reduce the performance of quantitative image processing (such as segmentation, registration 

and classification) algorithms. Therefore, before further processing an image, the bias field of the 
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MR image must be eliminated. 

In past research, a variety of correction methods for the bias field have been proposed [1]. 

According to the different sources of the bias field, the correction methods are mainly divided into 

two types: prospective methods [2,3] and retrospective methods [4,5]. Prospective methods, 

 

Fig. 1 Bias field in MR brain image. (a) Original image (b) Bias field (c) Corrected image 

such as model-based calibration [6], and multicoil imaging [7–8], mainly correct the bias fields 

caused by specific nuclear magnetic resonance equipment. This method can only handle the bias 

fields caused by equipment and environmental reasons, but cannot handle the bias fields introduced 

by the patients. Retrospective methods are image-based postprocessing methods. They are 

correction methods proposed for the bias field generated by the shape, position, direction and 

specific magnetic permeability of an imaged object. They do not distinguish the source of a bias 

field, and are only based on the image intensity and prior knowledge of an imaging object [9]. 

Retrospective strategies mainly include methods based on filtering [10–11], surface fitting [12–15], 

segmentation [16–19] and histograms [20–22]. These methods mainly rely on the information of 

the acquired image and use prior knowledge about the spatial relationships of the imaged anatomical 

structure and/or intensity probability distribution to extract the hidden bias field in the image [23]. 

Retrospective methods usually make some assumptions about the acquisition process and can 

handle the bias field artifacts related to the scanner and anatomy. Compared with prospective 

methods that can only correct bias fields caused by MR scanning equipment, retrospective methods 

can also eliminate the bias fields introduced by patients. 

The N4 bias correction method proposed by Tustison et al. [24] is currently the most popular 

and widely used bias correction method. It uses a robust B-spline approximation procedure and an 

improved hierarchical optimization method for bias field correction [25]. This method requires 

foreground extraction, and the bias removal efficiency may depend on the background removal 

acccracy, the initialization of the width of the bias field histogram and the spline distance [26]. When 

the method is executed in ITK (The Insight Segmentation and Registration Toolkit), it is time-

consuming. George et al. [26] proposed a new method for correcting intensity nonuniformity using 

non-iterative multi-scale (NIMS) method in 2017. This method does not need to segment an image, 

nor does it need to have any prior knowledge of the scanner or the subject, and it extracts the bias 

field by using the log-Gabor filter bank to perform multiscale analysis on the input image. The 

NIMS method does not require iteration, so the running time is relatively short; however it easily 

causes filtering artifacts in the high-contrast area of brain images, and it is not effective at removing 

the biases of brain images with serious pollution. 

Although both prospective and retrospective methods have achieved good performance in the 

removal of bias fields, they still have some shortcomings, including the needs to model the signal 

and bias fields, manually set parameters, and optimize methods in the test phase, etc. Recently, as 



the architecture has become more flexible, deep learning techniques have gained the ability to 

overcome these shortcomings [27]. Therefore, in this paper, we use deep learning to build a bias 

removal network (BiasNet) to correct the bias field of brain magnetic resonance images. 

In order to obtain more local contrast information of the bias field, before conducting network 

training, we first use the log-Gabor filter bank to extract the local feature map of the bias field 

located in multiple frequency bands from a T1 image and take the local feature map and the original 

image as the input of the network. Then, deep separable convolution is introduced in BiasNet to 

obtain more pixel-level features, residual learning and batch normalization are used to speed up the 

training process, and BiasNet can automatically conduct deep learning to obtain a more accurate 

bias field. We tested the model proposed in this paper on the dataset of different INU (intensity 

nonuniformity) levels of the SBD (Simulated Brain Database) and the real HCP (Human 

Connectome Project) dataset. The results of the qualitative analysis show that the training model 

proposed in this paper achieves better performance than the traditional state-of-the-art N4 and NIMS 

methods. 

2. Log-Gabor filter bank 

The Gabor filter, as a statistical image local information extraction method, has good multi-

channel and multi-resolution characteristics, but it is not a bandpass filter in the strict sense. When 

the bandwidth is greater than 1 octave, even part of the Gabor filter will produce non-DC 

components, so the bandwidth of the Gabor filter can only be limited to the 1 octave range [28]. If 

you want to obtain wider spectrum coverage, you need to use many Gabor filters, and the amount 

of calculation will be greatly increased. David J. Field introduced the log-Gabor filter in 1978 to 

solve the nonzero DC component in the Gabor filter at a higher bandwidth [29]. In addition to the 

advantages of the Gabor filter, the log-Gabor filter also compensates for some of its shortcomings 

[28]: (1) log-Gabor filter has no DC component and the bandwidth is not limited; (2) the transfer 

function of the log-Gabor filter has an extended tail at the high-frequency end, which is more 

effective for natural image encoding than the Gabor function that overrepresents low-frequency 

components; and (3) the log-Gabor function's measurement of the logarithmic frequency scale is 

consistent with that of the human visual system. 

  Due to the singularity of the logarithmic function at the origin, the response function of the log-

Gabor filter cannot be represented in the spatial domain, but the filter can be constructed in the 

frequency domain. The polar coordinate expression of the two-dimensional log-Gabor filter 

function in the frequency domain is [30]: 

   GGG , ，                              （1） 
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where G  is the radial component; G  is the direction component; 0  and 0   are the center 

frequency of the filter and the direction of the filter, respectively; and are the frequency and 



direction of the image to be filtered, respectively; and 
0

 takes a value between 0 and 1. When 

constructing the filter bank, as 0 changes, the value of   must be adjusted to keep their ratio 

constant, so as to achieve a constant shape ratio filter. The bandwidth B  of the filter depends on 

the value of 
0


 ,  0ln2ln22  B ,and the bandwidth direction B   is 

determined by  , 2ln22  B . Fig. 2 and Fig. 3 are the images of the 2D Gabor function and 

the 2D log-Gabor function in the frequency domain and the spatial domain, respectively. 

Fig. 2 The function images of 2D Gabor transformation in frequency domain and spatial domain. (A) image of Gabor 

transformation in frequency domain (b) Gabor even function image in spatial domain (c) Gabor odd function image 

in spatial domain 

 

Fig. 3 The function images of 2D log-Gabor transformation in frequency domain and spatial domain. (A) image of 

log-Gabor transformation in frequency domain (b) log-Gabor even function image in spatial domain (c) log-Gabor 

odd function image in spatial domain 

Fig. 2 and Fig. 3 show that the 2D log-Gabor filter and 2D Gabor filter have relatively similar 

function images in the spatial domain, which indicates that the 2D log-Gabor filter not only inherits 

the multi-resolution and multi-channel advantages of the Gabor filter [31] but also compensates for 

its lack of bandwidth. By constructing the log-Gabor filter bank, the local feature information of the 

image can be extracted from filters with different directions and different center frequencies. 

The extraction of the bias field has high requirements for frequency and spatial positioning. 

The log-Gabor filter can provide any bandwidth to ensure better spatial positioning [32]. The log-

Gabor filter bank can achieve frequency positioning through a set of tuned log-Gabor filters. 

Therefore, we choose log-Gabor function to construct a log-Gabor filter bank to extract the local 



feature information of a bias field. The 3 octave bandwidth contains a large range of frequency 

components, which increases the difficulty of separating the bias field information from the 

decomposition band, and the 2 octave bandwidth can ensure that a smaller number of filters are used 

to effectively extract all frequency bands with deviation fields [26]. Therefore, each Gaussian filter 

in the filter bank uses the best bandwidth of 2 octave bands, namely 

  2ln2ln22 0  B  octaves. Therefore, in order to maintain the bandwidth of the 

2-octave filter, when 0   changes, the scale factor    must be adjusted to keep the ratio 

0
  constant. 

We construct a filter bank composed of three tuned discrete log-Gabor filters, and the transfer 

function of the filter bank is shown in Formula (2). The filters are arranged in descending order of 

cutoff frequency. Among the three filters, the one with the smallest cutoff wavelength has the largest 

spectral radius in the frequency domain. 
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The local feature maps obtained after applying the log-Gabor filter bank to the T1w image 

from SBD are shown in Fig. 4. 

 

Fig. 4 Local feature maps obtained after applying log-Gabor filter bank on BrainWeb T1w image. (A) T1w image 

with 0% noise and 40% INU (b) Log-Gabor scale 1 output (c) Log-Gabor scale 2 output (d) Log-Gabor scale 3 

output 

3. Theory and Method 

With a deeper network architecture, the deep learning-based method can expand the receptive 

field of a network to obtain a larger range of contextual information of an image, thereby obtaining 



a more accurate bias field. Convolutional neural networks (CNNs) have been rapidly developed in 

image classification and segmentation since 2010 and have achieved great success [31]. The 

denoising convolutional neural networks (DnCNNs) using residual learning strategies proposed by 

Zhang et al. have achieved good performance [34]. A deep convolutional network (SRCNN) for 

image superresolution proposed by Dong et al. realized the conversion from low-resolution images 

to high-resolution images [35]. At present, there are few papers that use deep learning to remove 

the bias field in an image. We first introduce a simple and widely used mathematical model of a bias 

field [26]:  

       xnxbxuxf                                 (3) 

Where f(x) is a contaminated image; u(x) is the real image; b(x) is the bias field; and n(x) 

represents the high-frequency noise introduced due to the defect of the MRI scanner, which is 

considered to be independent of the bias field. Assuming that n(x) follows a Gaussian probability 

distribution [36,37], it can be removed by conventional low-frequency filtering. In the current work, 

no explicit preprocessing of additive noise is considered. Therefore, Formula (3) can be simplified 

as: 

buf *
                                      (4) 

u is the desired signal, f is the contaminated signal, and b is the bias field. The basic idea of DL 

(deep learning) based on a NN (neural network) is to use the following formula to obtain the 

predicted bias field signal: 

                      );( fNetb 


                                 (5) 

Where Net represents the NN architecture and is a network parameter, including weights and 

biases. Therefore, the predicted real image can be obtained, and the multiplicative noise contained 

in the image is also removed. In this section, we will introduce the network architecture and how to 

optimize the parameters. 

3.1 BiasNet architecture 

 
Fig. 5 Structure diagram of component CR and component SCR. (a) Structure diagram of component CR (b) 

Structure diagram of component SCR 



Contextual information is very important for the reconstruction of pixels destroyed by the bias 

field. The deep learning-based method mainly captures more global contextual information by 

expanding the receptive field [38]. Although increasing the depth and width of the deep network 

can expand the receptive field, when the depth of the network is very large, continuing to increase 

the depth of the network may lead to the disappearance of the gradient, and the use of widening 

methods may generate more parameters, resulting in network overfitting. Therefore, we set the 

dilation rate to 2 in the convolutional layer of the convolution residual (CR) component or separable 

convolution residual (SCR) component of BiasNet and use the dilated convolution to extract global 

features, as shown in Fig. 5. 

The CR component consists of the dilated convolution, residual learning, batch normalization 

(BN) and ReLU functions. The SCR component consists of separable expanded convolution, 

residual learning, batch normalization (BN) and ReLU functions. Residual learning fundamentally 

breaks the symmetry of the network and improves the ability to characterize the network. Moreover, 

a residual network is easier to optimize, and better accuracy can be obtained from the greatly 

increased depth [39]. By setting the BN layer, the generalization ability of the network is improved. 

 

BiasNet does not directly output an unbiased image but is used to predict the bias ijb


 at each 

pixel ijf of the original image. Therefore, according to Formula (4), the unbiased intensity can be 

calculated as 
ij

ij

b

f  . The process of MR image bias removal under this architecture is shown in 

Fig. 6. 

BiasNet has 4 input layers, which are the original image T1w and the feature images of scale 

1, scale 2, and scale 3 from the log-Gabor filter bank. Each input layer extracts features through a 

convolutional layer with a 33   convolution kernel and 64 filters and then uses an addition layer 

Fig .6 Flow chart of bias removal in MR image based on the proposed BiasNet network structure. 



to perform feature fusion. Subsequently, 15 SCR components are cascaded. The convolution kernel 

of each SCR component is 33  and there are 64 filters. In order to expand the receptive field, the 

dilation rate is set to 2. Finally, through a 11   convolution layer, a bias field image of the same 

size as the input is generated, and an unbiased image can be obtained by using the formula. The 

combination of residual learning and batch normalization in the SCR (CR) component speeds up 

the training speed and improves the bias removal performance. Because the output should have the 

same size as the input, the network does not have a pooling layer. 

3.2 Optimization of BiasNet 

In order to optimize the parameter of the proposed BiasNet, the total loss function is defined 

as:             

 disssimmse LossLossL                    (6) 

     where mseLoss  is the mean squared error (MSE) function between the desired bias image 

and the estimated image from the input pollution image. It is defined as follows: 
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disssimLoss  is the average structural difference function between the estimated bias field image 

and the desired bias field image and is defined as follows: 
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In Formulas (6)~(8), if   is the i-th image contaminated by the bias field, iu   is the 

corresponding real image,    represents the network parameter, and   and   are the 

hyperparameters that control the ratio of mseLoss  and disssimLoss  . In experiment, we set 

1 and 010. . 
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fNetSSIM    is used to measure the structural similarity between the 

estimated bias field image and the desired bias field image. Its value range is [0,1], and it is a full 

reference image quality evaluation index [40]. Its formula is defined as follows: 
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where, 
1C and 

2C  are constants. In order to avoid the denominator being 0, they are usually 



set as  21 1 RKC  and  22 2 RKC  . R is the dynamic range of the pixel value; and generally 

K1=0.01, K2=0.03, and R=255 (if the image is normalized, R=1). );( 
ifNet   and 

)(
i

i

u
f  

respectively represent the mean value of the estimated bias field image and the desired bias field 

image, );( 
ifNet   and 
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f   respectively represent the variance of the two, and 
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 represents the covariance of the two. 

4. Experimental Results and Analysis 

4.1 Quantitative standard for bias removal 

In order to evaluate the bias removal performance, in the experiments on the same dataset, our 

method was quantitatively evaluated and compared with the N4 and NIMS methods in terms of the 

structural similarity index(SSIM), coefficient of variation(CV) and joint coefficient of variation 

(CJV). 

The SSIM is a structural similarity index that measures the similarity of two images, and its 

definition is shown in Formula (9). It measures the similarity between the real image and the 

corrected image and judges whether the bias removal is good according to the degree of similarity. 

CV is the coefficient of variation of the same tissue. The smaller the CV is, the better the 

uniformity of an image [23]; and its calculation formula is as follows: 
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where,   and   respectively represent the variance and mean of the pixels in the area. In 

each original image and the corresponding corrected image, the CVs of the white matter and gray 

matter tissue regions were respectively calculated, and the quality of the bias removal in the same 

tissue region was determined according to the CV. 

However, the coefficient of variation alone cannot provide information about the joint variation 

of the distribution of different tissues. When the CV of one tissue region changes and the other tissue 

region remains unchanged, the effect of image nonuniformity correction is still not ideal, and the 

joint coefficient of variation (CJV) can overcome these limitations. The calculation of the CJV, 

which is a direct indicator of the degree of overlap between the two tissue regions, requires two 

different tissue regions; and the smaller the CJV is, the better the image uniformity correction effect 

[38]. For two different organizational regions 1T  and 2T , the calculation formula is as follows: 
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BiasNet was implemented using the publicly available TensorFlow framework and Keras 



artificial neural network library with Adam optimization and trained using a deep learning 

acceleration computing server. The server is configured with a 3.20 GHz Core i5–6500H CPU, an 

NVIDIA GeForce RTX 2080 (11GB) GPU and 32 GB RAM. In the training process, the learning 

rate was set to 1e-3. 

4.2 Results from the simulation database BrainWeb 

In this paper, we first studied the performance of the proposed method on the SBD [41]. The 

size of each MRI brain image is 181217181  , and the resolution is 111   mm3. Here, 

2D MRI slices were extracted from the volumes with different INU levels (20%, 40%, and 60%) on 

the axial plane and were trained and tested respectively. We use rotation, mirroring, translation and 

other methods to expand the samples. Finally, for the volume of each INU level, 1359 slices were 

obtained for training, 151 slices were used for verification and 30 slices were used for testing. In 

order to further speed up the training process and obtain less redundant regions, we cropped the 

edge of each slice, and the slice size was 210×180. 

In order to prove the effectiveness of the method proposed in this paper, we compared our 

method with the N4 and NIMS methods and performed experiments on replacing the SCR 

component in BiasNet with the CR component. 

Fig. 7 The results of different methods of correction on the T1w image with 40% INU and 1% noise on the Brainweb 

dataset (top) and the corresponding intensity distribution comparison diagram of the 90th column (bottom). (a) Real 

image (b) Original image (c) Image corrected by N4 (d) Image corrected by NIMS (e) Image corrected by BiasNet 

(CR) (f) Image corrected by BiasNet. 

In Fig. 7, we drew a comparison of the intensity distribution of the simulated T1w image with 

1% noise and 40% INU before and after correction in the 90th column (along the turquoise line). Fig. 

7(a) is the real image (top) and the intensity distribution diagram of the 90th column (bottom); Fig. 

7(b) is the original image with 1% noise and 40% INU (top) and the intensity distribution comparison 

diagram of the 90th column between the original image and the real image (bottom); and Fig. 7(c)~Fig. 

7(f) are the images corrected by the N4, NIMS, BiasNet (CR), and BiasNet methods (top) and the 

intensity distribution of the 90th column of the corrected image and the real image (bottom), 

respectively. The intensity distribution comparison diagram, shows that Fig. 7(f) best fits the intensity 

distribution of the real image, and the fitting effect of Fig. 7(e) is also better than those of Fig. 7(c) 

and Fig. 7(d). This shows that the proposed correction strategy is effective for intensity nonuniformity 

correction, while removing the multiplicative noise contained in the image and retaining the edges and 



finer details in the input image. 

Next, we will quantitatively evaluate the performance of BiasNet (CR), BiasNet, and the 

traditional state-of-the-art N4 and NIMS methods on the BrainWeb database using SSIM, CV, and 

CJV. 

Fig. 8 shows the SSIMs with different methods on datasets with different INU and noise levels 

from the BrainWeb database. 

In Fig. 8,  6040200,1,3 ,,;  jijni  refers to the dataset with noise level i% and 

INU j%. Fig. 8 shows that the SSIM of the NIMS method is almost the lowest on all the tested datasets. 

This may be because the NIMS algorithm uses the log-Gabor filter bank to perform multiscale analysis 

on the input image to extract the bias field, and filtering may affect the detailed characteristics of the 

image; therefore the SSIM of the NIMS algorithm is low. The SSIMs of BiasNet (CR) and BiasNet 

are not much different, and both are better than those of N4 and NIMS. As the INU level increases, 

this advantage becomes more obvious. 

 

Table 1 CV values in gray matter (GM) on T1w axial images of SBD 

Noise level(%) INU(%) 
                            Method 

Original(%) N4(%) NIMS(%) BiasNet(CR)(%) BiasNet(%) 

   

   0 

  20 8.05±0.18 7.94±0.33 7.96±0.35 7.97±0.17 7.94±0.17 

  40 8.46±0.22 8.09±0.35 8.09±0.37 7.99±0.25 7.94±0.21 

  60 8.42±0.39 8.07±0.42 8.22±0.38 8.02±0.17 7.80±0.26 

 

1 

  20 8.17±0.14 8.14±0.33 8.11±0.33 7.94±0.16 7.88±0.15 

  40 8.59±0.20 8.16±0.43 8.11±0.40 7.99±0.15 7.91±0.17 

  60 8.64±0.39 8.20±0.36 8.20±0.34 8.05±0.23 8.03±0.24 

 

3 

  20 8.70±0.21 8.36±0.33 8.36±0.31 7.89±0.16 7.87±0.17 

  40 9.00±0.29 8.51±0.31 8.49±0.32 7.98±0.21 7.85±0.15 

  60 10.1±0.39 9.33±0.35 9.32±0.35 8.02±0.33 8.22±0.36 

 

In the experiments, the performance of the proposed scheme was compared quantitatively with 

those of N4 and NIMS in terms of the CV and CJV. T1w images with three different noise levels (0%, 

Fig. 8 De-bias measure of SSIM from different methods of with different INU and noise levels from the Brainweb 

database. 



1%, and 3%) and three different INU amplitudes (20%, 40%, and 60%) from the BrainWeb database 

are considered for nonuniformity correction. Table 1 and Table 2 give the comparison of the CVs of 

the gray matter region and the white matter region before and after the T1w image correction, 

respectively. Table 3 provides a comparison of the CJVs of gray matter and white matter regions before 

and after image correction. The lower the CV is, the smaller the scattering intensity of the segmented 

region, which in turn indicates that the uniformity of the same tissue region is higher. Table 1 and 

Table 2 show that the performance of the proposed scheme is significantly better than that of the N4 

and NIMS methods. Especially in the case of a high noise level and high INU amplitude, the 

performance advantage of our method is more obvious. Of course, effective bias field correction 

should increase the contrast of the image, which can be reflected by the appropriate separation of the 

peaks of the white matter and gray matter distribution or characterized by a sharp drop in the CJV. 

Table 3 shows that under high noise levels, the CJVs of the BiasNet (CR) and BiasNet are significantly 

reduced, indicating that the separation of the intensity level of the white matter and gray matter tissue 

regions is improved. The quantitative analysis of the SSIM, CV, and CJV shows that the scheme 

proposed in this paper is effective at correcting the bias field under the condition of a higher noise 

level and INU amplitude. 

Table 2 CVs in white matter (WM) on T1w axial images of SBD 

Noise level(%) INU(%) 
Method 

Original(%) N4(%) NIMS(%) BiasNet(CR)(%) BiasNet(%) 

   

   0 

  20 4.54±0.40 4.32±0.32 4.37±0.34 4.14±0.62 4.12±0.52 

  40 5.37±0.32 4.29±0.38 4.31±0.39 4.26±0.40 4.15±0.56 

  60 5.71±0.31 4.51±0.30 4.83±0.36 4.60±0.32 4.43±0.50 

 

1 

  20 4.60±0.39 4.29±0.27 4.26±0.32 4.13±0.47 4.11±0.54 

  40 5.45±0.27 4.50±0.63 4.43±0.56 4.30±0.46 4.25±0.65 

  60 5.96±0.38 4.68±0.24 4.69±0.25 4.73±0.37 4.65±0.39 

 

3 

  20 5.44±0.36 4.69±0.31 4.66±0.30 4.37±0.42 4.48±0.46 

  40 6.03±0.36 4.82±0.24 4.80±0.21 4.64±0.51 4.61±0.41 

  60 7.27±0.54 6.04±0.41 6.01±0.43 5.07±0.46 4.99±0.56 

Table 3 Coefficients of joint variation (CJVs) on T1w axial images of SBD. 

 

Noise level(%) 

 

INU(%) 

                            Method 

Original(%) N4(%) NIMS(%) BiasNet(CR)(%) BiasNet(%) 

   

   0 

  20 44.4±3.36 43.5±2.16 44.1±2.15 42.9±3.67 42.9±3.36 

  40 48.7±2.97 44.8±2.26 45.1±2.31 43.4±3.23 43.3±3.17 

  60 51.7±2.92 45.9±1.89 47.4±2.03 46.1±3.45 45.2±2.65 

 

1 

  20 45.1±3.19 44.5±2.38 44.5±2.28 43.4±3.31 43.4±3.23 

  40 49.3±3.00 45.9±2.88 45.6±2.52 44.0±3.33 43.9±3.56 

  60 53.3±3.21 48.0±2.60 47.8±2.62 46.3±2.90 46.3±2.67 

 

3 

  20 50.3±3.45 47.5±2.41 47.5±2.37 44.6±3.20 45.8±3.07 

  40 53.6±3.54 49.0±2.05 49.0±2.00 46.1±3.49 47.1±3.16 

  60 64.8±4.18 57.9±5.62 57.9±5.58 51.7±2.88 49.9±3.30 

Fig. 9 shows the correction results obtained after applying the BiasNet method to BrainWeb 

simulation data with different noise levels and INU amplitudes. Fig. 9(a) shows the T1w axial image 



degraded by 20% INU (1% noise), Fig. 9(d) shows the T1w axial image degraded by 40% INU (no 

noise), and Fig. 9(b) ~ Fig. 9 (c) and Fig. 9 (e) ~ Fig. 9 (f) correspond to the predicted bias fields and 

corrected images, respectively. Through visual inspection, it can be clearly seen that the BiasNet 

method can effectively remove the bias field, and the intensity change of white matter tissue area is 

significantly reduced in the corrected image. 

 

Fig. 9 The correction result of the BiasNet method on the BrainWeb dataset. (a)~(c) Original image (20% INU, 1% 

noise), predicted bias field, corrected image (d)~(f) Original image (40% INU, no noise), predicted bias field, corrected 

image. 

4.3 Results from the real database HCP 

The model proposed in this paper is verified on real human brain MR images of the HCP (Human 

Connectome Project) [42] dataset. The dataset contains T1w and T2w structure MR images of healthy 

adults from a Siemens Skyra 3T scanner and contains the bias fields of the corresponding images. For 

specific details, please refer to the literature [43]. In the experiment, we randomly selected the T1w 

structure images of 10 patients in the dataset. The size of each MRI brain image was 260311260   

voxels and the resolution was 707070 ...   mm3. We randomly selected 1000 slices from these 

10 brain image volumes. In order to train the model better, we expanded the data using rotation and 

mirroring methods, and finally obtained 2880 training samples, 320 verification samples, and 200 test 

samples. Similarly, in order to speed up the training process and obtain fewer redundant regions, we 

cropped the edges of the images, and the size of each sample was 240300  . 

 
Fig. 10 The de-bias measures of SSIM of different methods from the HCP dataset 



Fig. 10 shows the SSIMs obtained after correction with different methods. It can be seen from 

Fig. 10 that the proposed scheme in this paper also shows good performance on the real human brain 

dataset. Fig.11 clearly shows that in the original image, the intensity of the white matter region along 

the selected line highlighted in turquoise has changed very obviously due to the bias field. After 

correction using the BiasNet method, the white matter intensity variation of approximately 0.25 in the 

normalized original image is reduced to less than 0.15. 

 
Fig. 11 Comparison of intensity distribution along the selected line displayed in the T1w axial image before and 

after correction 

In the test samples, the CVs before and after correction were calculated with the proposed model 

to evaluate the intraclass changes in white matter and gray matter tissue regions. Table 4 shows the 

average CV of 200 test samples. Although both the N4 and NIMS algorithms reduce the CVs of gray 

and white matter in the images, the model proposed in this paper is more effective than these two 

algorithms. The average CJVs between white matter and gray matter are also listed in Table 5. Table 

5 shows that after correction with the BiasNet model, the CJV between white matter and gray matter 

in the image drops to 64% of the initial value. In the same situation, the N4 and NIMS methods can 

only be reduced to approximately 77% of the initial value. Obviously, on the real human brain image 

dataset, the performance of the scheme proposed in this paper is also better than the N4 and NIMS 

methods in the three aspects of the SSIM, CV and CJV. 

Table 4 Coefficient of variation on the HCP real dataset 

Table 5 Coefficient of joint variation on the HCP real dataset 

 

 

 

  

Original(%) 

Corrected 

N4(%) NIMS(%) BiasNet(CR)(%) BiasNet(%) 

 GM 18.8±0.69 18.6±1.77 17.8±1.86 16.9±0.46 16.5±0.76 

 WM 15.0±0.83 10.6±0.66 10.4±0.86 6.58±0.74 6.41±0.54 

 

Original(%) 

Corrected 

N4(%) NIMS(%) BiasNet(CR)(%) BiasNet(%) 

83.4±3.82 63.9±2.50 65.2±1.60 55.2±6.88 53.4±2.77 



 
Fig. 12 The correction results of BiasNet on the slices of two different patients. (a), (d) original image (b), (e) 

predicted bias field (c), (f) corrected image. 

Fig. 12 shows the corrected results of the BiasNet method on two randomly selected slices of 

different patients. It can be observed from Fig. 12 that the predicted bias field is smooth, and the 

intensity of each tissue region of the corrected image looks more consistent, which is obvious in the 

white matter regions in Fig. 12(c) and Fig. 12(f). Therefore, the effectiveness of the proposed scheme 

for the correction of intensity inhomogeneity in clinical data is visually verified. 

4.4 Experiment results on 3D images 

On the HCP [42] dataset, we further verified the model proposed in this paper on 3D data. From 

the dataset, we randomly selected T1w structure images of 179 patients, of which 139 samples were 

used for training, 20 samples were used for verification, and 20 samples were used for testing. In order 

to speed up the training process and obtain fewer redundant regions, we cropped each MRI brain image 

volume to 256304256  , and divided the image into patches. In order to better reduce the memory 

burden, we used 646464   voxel patches. By using a sliding window strategy with a stride of 

484848  , a total of 20850 patches were obtained for training, and 3000 patches were used for 

verification. In the test stage, in order to eliminate the patch boundary artifacts, we changed the stride 

of the sliding window to 242424  , so that 17820 patches could be obtained, and the trained 

network was applied to the patches of the test set. We performed an averaging operation on the 

predicted values of the overlapping regions of the patches. We trained our two different models for 10 

epochs, with a learning rate of 1e-3 and optimized the models with Adam. 

Table 6 Comparison of BiasNet (2D) and BiasNet (3D) on the HCP database 

Method CV(%) CJV(%) SSIM 

GM WM 

Original 18.8±0.69 15.0±0.83 83.4±3.82 0.6902 

BiasNet(2D) 16.5±0.76 6.41±0.54 53.4±2.77 0.9912 

BiasNet(3D) 16.9±0.98 6.36±0.46 51.1±2.64 0.9728 

Table 6 shows the experimental results of the quantitative evaluation of BiasNet based on two-

dimensional slices and three-dimensional patches. The corresponding boxplots of the CV and CJV are  



  

Fig. 13 The boxplot of the CV for gray matter and white matter, and the boxplot of the CJV between gray matter 

and white matter. 

  

Fig. 14 Comparison of the correction results of BiasNet (2D) and BiasNet (3D) on the HCP database. (a) Original 

image (b) Real image (c) BiasNet(2D) (d) BiasNet(3D) (e) Comparison of intensity distribution in column 90. 

shown in Fig. 13. It can be seen from Table 6 that in terms of CVs, BiasNet (2D) and BiasNet (3D) 

both show superior correction performance, especially for the visible high-intensity changes in the 



white matter tissue regions in the image that were effectively quantitatively corrected by reducing the 

CVs in the white matter. The CJVs between white matter and gray matter are also listed in Table 6. 

The CJV can better reflect the gray uniformity of an entire image. BiasNet (3D) considers more spatial 

information and shows better performance in the quantitative evaluation of the CJV. The boxplot in 

Fig. 13 depicts the same situation. Since BiasNet (3D) is trained based on patches, there may be 

boundary effects after the patches are stitched, resulting in the SSIM of BiasNet (3D) being lower than 

that of BiasNet (2D). 

Fig. 14 shows a comparison of the results of a patient after correction using BiasNet (2D) and 

BiasNet (3D). From a visual point of view, there is little difference between Fig. 14(c) and Fig. 14(d), 

but from the intensity distribution of the 90th column, the intensity distribution of BiasNet (3D) fits 

better with that of the real image. 

4.5 The influence of Log-Gabor features on bias removal 

On the n1–20, n1–40, and n1–60 datasets of the BrainWeb database, we removed the log –Gabor 

features of three scales and used the BiasNet model for training. The experimental results on the test 

set are shown in Table 7. 

Talbe7 Comparison of BiasNet (no log-Gabor) and BiasNet on SBD 

  BiasNet(no Log-Gabor) BiasNet 

CV(%) CJV(%) SSIM CV(%) CJV(%) SSIM 

GM WM GM WM 

n1-20 7.96±0.19 4.30±0.43 43.6±3.10 0.9753 7.88±0.15 4.11±0.54 43.4±3.23 0.9758 

n1-40 8.01±0.22 4.50±0.31 45.1±3.05 0.9695 7.91±0.17 4.25±0.65 43.9±3.56 0.9723 

n1-60 8.18±0.22 5.69±0.43 51.6±1.45 0.9564 8.03±0.24 4.65±0.39 46.3±2.67 0.9643 

Table 7 shows that after adding log-Gabor features of different scales in training, the CVs, CJVs, 

and SSIMs have been improved to varying degrees. The greater the INU amplitude is, the more 

obvious this advantage. When the INU amplitude is 20%, after the introduction of the log-Gabor 

feature, the CJV decreases by 0.2; and when the INU amplitude is 60%, after the introduction of log-

Gabor feature, the value of CJV decreases from 51.6±1.45 to 46.3 ±2.67. Therefore, in the process of 

extracting the bias field, log-Gabor features of different scales can provide additional local information 

of the bias field. 

5. Discussion and Conclusion 

In this paper, we propose a new method for the bias removal of MR brain images based on 

deep convolutional neural networks. This bias field correction method based on deep learning does 

not require segmentation of the scanner or the subject or any prior knowledge, and it is a multi-input 

network combined with residual learning. The log-Gabor filter bank is used for multiscale analysis 

of an input image to extract the local feature maps of the bias field in multiple frequency bands. The 

local feature maps and the original image are simultaneously sent to BiasNet, so that BiasNet can 

automatically learn in depth to obtain the bias field. In addition, we designed the SCR component 

to extract more local features. Compared with the CR component, the SCR component can obtain a 

more accurate bias field. 

The performance of BiasNet was tested on the BrainWeb database and HCP dataset, and the 

results showed that the performance of BiasNet was better than the performances of the traditional 



state-of-the-art N4 and NIMS methods. 

In the white matter and gray matter regions, the performance of the method proposed in this paper 

was quantitatively evaluated on the simulated BrainWeb database using the CV. The intraclass 

variation of the decrease in intensity level observed in the qualitative analysis was verified by 

experiments. Regardless of the noise level and INU amplitude, the experimental results show that 

the CJV is also significantly reduced. The quantitative evaluations of the SSIM, CV, and CJV given 

in Fig.8, Table 1, Table 2 and Table 3 reveal that the performance of BiasNet is better than those of 

the N4 and NIMS methods, especially in the case of higher levels of noise and INU in the simulated 

data. On the HCP real dataset, after image correction, the significant decrease in the ratio of the CV 

and CJV indicates that the interclass separation of white matter and gray matter tissue regions has 

been improved and the intraclass intensity changes have been reduced. The small improvement of 

the SSIM shows that the images corrected by our method are more structurally similar to the real 

images. Compared with N4 and NIMS, BiasNet produces higher SSIMs and lower CVs and CJVs. 

In addition, we also performed 3D experiments on the HCP dataset. Table 6 shows that compared 

with the slice-based 2D experimental results, the CJV of BiasNet (3D) decreases significantly, 

which indicates that the gray matter and white matter separation is better on the 3D level. However, 

the SSIM has decreased due to the boundary effect that occurs when the patches are stitched. 

In our work, the SSIM is low due to the boundary effect in the experiment on 3D data. Next, 

we will study setting different weights for each patch to reduce the boundary effect that occurs 

during image stitching. In addition, another key limitation of our method is the need for high-quality 

unbiased ground-truth images from real datasets, which are difficult to obtain in practical 

applications. How to improve the image analysis performance by combining prior knowledge of 

organ shapes and locations is not obvious in recent deep learning techniques [44]. Oktay et al. used 

a new regularization model to integrate anatomical prior knowledge into a CNN for end-to-end 

learning in 2018. They showed that the method can not only be easily adapted to different analysis 

tasks (such as image segmentation and enhancement) but can also improve the accuracy of the 

prediction model [44]. Therefore, in future work, we will combine prior knowledge such as anatomy 

and residuals and use special learning techniques, such as transfer learning, to reduce future 

unsupervised bias removal tasks. 

In conclusion, the multi-input bias removal convolutional neural network method based on 

deep learning proposed in this paper can not only accurately estimate the bias fields in MR images, 

but also effectively retain the detailed MR brain image structure, which can provide high-quality 

MR images with uniform intensity distribution for subsequent image analysis tasks (such as 

segmentation, registration, etc.). 
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