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Abstract The presence of community structures in complex networks reveals
meaningful insights about such networks and their constituent entities. Finding
groups of related nodes based on mutual interests, common features, objec-
tives, or interactions in a network is known as community detection. In this
paper, we propose a novel Stacked Autoencoder-based deep learning approach
augmented by the Crow Search Algorithm (CSA) based k-means clustering
algorithm to uncover community structure in complex networks. As per our
approach, firstly, we generate a modularity matrix for the input graph. The
modularity matrix is then passed through a series of stacked autoencoders to
reduce the dimensionality of the matrix while preserving the topology of the
network and improving the computational time of the proposed algorithm.
The obtained matrix is then provided as an input to a modified k-means clus-
tering algorithm augmented with the crow search optimization to detect the
communities. We use Crow Search Algorithm based optimization to gener-
ate the initial centroids for the k-means algorithm instead of generating them
randomly. We perform extensive experimental analysis on several real-world
and synthetic datasets and evaluate various performance metrics. We compare
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the results obtained by our algorithm with several traditional and contempo-
rary community detection algorithms. The obtained results reveal that our
proposed method achieves commendable results.

Keywords Community detection · Complex networks · Crow search
algorithm (CSA) · Stacked autoencoders · k-means clustering · Social
Networks

1 Introduction

In recent years, the study of complex networks has drawn much attention
from researchers of different disciplines. Various real-life networks like online
social networks, biological networks, communication networks, collaboration
networks are examples of complex networks consisting of a large number of
nodes or entities and intricate relationships between the nodes [1]. Complex
network analysis or network science offers a plethora of research problems like
node classification [2], community detection [3], link prediction [4], influence
maximization [5], information diffusion [6], and many more. Community de-
tection is one of the widely studied topics in the fields of network science,
which aims at grouping nodes of a network into clusters or modules such that
each cluster has a dense internal connection and is sparsely connected with
other clusters [7, 8]. The presence of community structure is ubiquitous and
quite common in real-life networks [9]. Community detection has been ex-
tensively applied to various fields, such as biology, sociology, and computer
science. For instance, in online social networks such as Facebook, Twitter, or
Instagram, users with similar hobbies or a common cause can form a com-
munity. In protein-protein interaction networks, communities correspond to
functional groups where proteins having similar functions are anticipated to
be involved in the same processes [10]. In social networks, discovering commu-
nities can help in targeted advertisements, suggesting similar users, controlling
rumors, crowdfunding campaigns, etc. [11]. E-commerce companies can target
prospective communities to promote their products to exploit the mutual trust
between the users of a community to achieve optimal advertisement of their
products.

Traditional algorithms for community detection like hierarchical, parti-
tional, and spectral clustering perform poorly and give results with low accu-
racy, and are cost-intensive [12]. To overcome this challenge lower-dimensional
representation of the network can be used, which would improve the com-
putation cost while maintaining the topological details of the network. Low
dimensional representation of a network is the task of representing a network
with fewer dimensions while retaining all important features [13]. However,
various low-dimensional representation of the networks suffers from a loss of
crucial information about the network topology.

In this paper, we propose a novel Community Detection algorithm, named
CD-SACS, using Stacked Autoencoders and Crow Search algorithm based k-
means clustering technique. Firstly, we generate a modularity matrix for the
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network from the adjacency matrix of the network under consideration. The
generated modularity matrix has high dimensions which make it infeasible to
use in a reasonable computation time. Moreover, this modularity matrix con-
tains several irrelavant and highly correlated features which are redundant and
useless to solve the problem. To improve upon the modularity matrix, we pass
it through a network of stacked autoencoders which reduces the dimensionality
of the original modularity matrix and keeps the most relevant and least corre-
lated features while preserving the network topology. This reduces the loss of
original data in the lower dimensional matrix. The lower dimensional matrix is
then passed to our novel crow search based k-means clustering algorithm. The
clustering algorithms like k-means use a random initialisation of the centroids
or initial solutions which often leads the algorithm to converge to a local op-
timum. To avoid such scenario, we use the Crow Search Algorithm (CSA) to
generate the initial centroids for the k-means clustering algorithm. This helps
our algorithm to explore a relatively bigger search space without converging
to a local optimum in a reasonable time. Our crow search optimisation based
k-means clustering algorithm helps us in optimally detecting communities in
the network. Finally, we perform the experimental results of the proposed
algorithm against several traditional and contemporary community detection
algorithms on ten real-life and three synthetic networks of varying size, dimen-
sions, and topologies. The obtained results echo that the proposed algorithm
produces commendable results. For example, the NMI value obtained by the
proposed method for Karate, Football, Citeseer, and LFR 0.1 is 1, 0.94, 0.879,
and 1, respectively. Similarly, the precision value reported by the proposed
algorithm for Karate, Football, Citeseer, and LFR 0.1 is 0.868, 0.868, 0.908,
0.94, and 0.878, respectively.

The main contributions of the proposed work can be summarised as follows.

– We propose a novel stacked autoencoder-based deep learning approach
augmented by the Crow Search Algorithm (CSA) based k-means clustering
algorithm to uncover community structure in complex networks.

– We utilize the modularity matrix for feature generation and then use a
network of stacked autoencoders for dimensionality reduction and feature
selection.

– We introduced a modified Crow-Search based k-means clustering algorithm
to avoid local optimum and explore a larger search space to achieve a better
result close to global optimum.

– The performed intensive experimentation and the results obtained establish
the efficacy of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 shows related works
for community detection. Section 3 describes various preliminary related to
our work like autoencoders, modularity matrix, k-means clustering, and crow
search algorithm. Section 4 presents the proposed community detection al-
gorithm in detail. The networks datasets on which we apply the proposed
algorithm and the evaluation metrics that we use to calculate the performance
of the proposed algorithm are mentioned in Section 5. Section 6 presents the
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experimental results performed based on numerous performance measures and
real-life and synthetic datasets. Finally, in Section 7 we conclude our work.

2 Related Work

Revealing community structure is a significant measure for an insight into
complex systems, which go beyond the local structure of the members in the
network. Uncovering community structure finds numerous applications in var-
ious disciplines like biology, sociology, and computer science. Over the years,
numerous community detection algorithms have been proposed [14]. Modular-
ity based methods become quite popular for community detection [15]. Since
modularity optimization is an NP-hard problem, various techniques exist to
solve for a close approximation. Some of them are greedy techniques, simu-
lated annealing, extremal optimization, spectral optimization and some other
techniques. Greedy Technique was the first one invented for modularity maxi-
mization by Newmann [16] where vertices that are grouped together are joined
to increase modularity. Simulated annealing uses probabilities to explore the
space of possible states to maximize the given function . Extremal optimization
uses heuristic search procedure to improve computation time while keeping the
accuracy comparable to simulated annealing [17]. In Spectral Optimization, we
optimize the modularity using the eigenvalues and eigenvectors of the mod-
ularity matrix. Some algorithms like Infomap [18], SC(Spectral Clustering)
[19], AP (Affinity Propagation) [20], AC (Agglomerative Clusttering) [21] and
LP (Label Propagation) [22] have also worked well on detecting communities.
Infomap is a flow based method that detects communities on the basis of the
map equation. In Spectral Clustering (SC), communities are detected on the
basis of edges. It uses a similarity matrix for clustering. Affinity Propagation
(AP), creates clusters by sending signal between data points until they con-
verge. LP is a semi supervised machine learning algorithm which starts from
a small subset points having labels. These labels are propagated to the un-
labeled points to label them. Membership in a community is determined by
the majority label the points have in its neighbourhood upto a degree of one.
Agglomerative Clusttering (AC) is a bottom up hierarchical clustering method
in which each data point initially is considered a cluster. After each iteration,
similar clusters merge until k clusters are produced.

Bhih et al. [23] proposed a topological and content based community de-
tection algorithm. In their work, they proposed a new hybrid similarity ma-
trix representing a weighted contribution of attribute information, information
shared by the neighbors of a node, and the connectivity information among the
nodes. Once this similarity matrix is generated then it can be used with any
state-of-the-art community detection algorithms. Jalali et al. [24] used a dy-
namic local and overlapping community detection based approach to propose
a dynamic collaborative filtering based social recommender system. To over-
come the issues of scalability, sparsity, and cold start issues of the collabora-
tive filtering approach they used users’ temporal rating data, temporal friend-
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ship relationships amongst the users and a local community detection based
method. Mohammadi et al. [25] proposed an accelerated implementation of the
classical Louvian method called adaptive CUDA Louvain method (ACLM) al-
gorithm. Their implementation benefits from the performative excellence of
the graphic processing unit (GPU). ACLM implementation minimizes paral-
lelization overhead and accelerates the modularity parameters calculation by
using shared memory in GPU along with optimal threads in the GPU block.
ACLM allocates thread to the blocks of GPU on the basis of the number of
the required streaming multiprocessors and warps on the GPU. Jaradat et al.
[26] introduced community detection using the firefly algorithm by exploiting
the effect of the attractiveness function, which is unique to the firefly behav-
ior and maximizing the modularity measures. Kumar et al. [27] proposed a
community detection method using the idea of network embedding and grav-
itational search algorithm (GSA) and produced better results. Messaoudi et
al. [28] presented a multi-objective Bat Algorithm, which practices the Mean
Shift algorithm to produce the initial population to manage randomness in
initial population choice, and produced good results for community detection
in dynamic social networks. Pattanayak et al. [29] proposed a fire propagation-
based community detection algorithm by relating the seed nodes in the com-
munity detection as the fire started forming a source. They defined the search
space by a two-radius neighborhood graph. Guo et al. [30] suggested a local
community detection algorithm based on the internal force between nodes.
They obtained the seed nodes using local degree central nodes and the Jac-
card coefficient. The node with maximum degree among seeds is pre-extended
by the fitness function. Bandyopadhyay and Peter [31] proposed an unsuper-
vised constrained community detection algorithm using a self-expressive graph
neural network. They incorporated the principle of self-expressiveness frame-
work with a self-supervised graph neural network for unsupervised community
detection.

Zhang et al. [32] presented a Structural Deep Nonnegative Matrix Factor-
ization model, named SDNMF. They proposed a multi layer Negative-Matrix
Factorisation model comprising of an encoder and decoder module similar to
a deep autoencoder. They exploit the first order and second order similarities
to capture the local and global structural details of the network. Xu et al. [33]
presented a stacked autoencoder and ensemble framework based community
detection model (SAECF). They obtain efficient low-dimensional feature rep-
resentation of the network using transfer learning and a stacked autoencoder.
They use clustering algorithms for obtaining consistent matrix which is later
improved using non-negative matrix factorisation. Wang et al. [34] presented
a proximity group formation game based model (PFGM). It works on the no-
tion that the higher second-order pairwise proximity is due to higher number
of shared communities. They illustrate the evolution of community structures
using a two-step non-cooperative game model. A local community detection
(LCD) model was presented by Shang et al. [35]. Their proposed algorithm
relies on higher-order structure and edge information. They start by using
the connectivity of the first node to the local community based on a seed de-



6 Sanjay Kumar et al.

gree. Then they propose a new modularity function to generate an extended
and more tightly connected local community. The central part of the local
community is more clearly defined using a community central node. The edge
information amongst the nodes is used to determine the membership strength
of a node to a particular community.

3 Preliminaries

3.1 Community Detection

In this section, wwe describe the problem of community detection. Finding
groups of related nodes which are densely connected in a network is known
as community detection. The presence of community structures in complex
networks like online social networks, biological networks, collaboration net-
works is ubiquitous, revealing meaningful insights about such networks and
their constituent entities. Community detection is one of the prominent re-
search topics in network science and contains numerous real-life applications.
Let there be a graph G = (V,E), where V = {v1, v2, ..., vn} is the set of
nodes and E = {eij}ni,j=1 represents the vertices in the network. The prob-
lem of community detection refers to partitioning the entire graph G into a
set of k communities C = {C1, C2, ..., Ck}. Each node in the graph belongs
to one of the communities which represent the local topological details of the
community. Fig. 1 illustrates the community detection problem statement.

Community 1 Community 2

Graph Communities

Fig. 1: Illustration of the Community detection problem statement.

3.2 Autoencoder

Our proposed model relies on autoencoders to learn features from the graph.
Autoencoders are unsupervised artificial neural networks that learn how to
efficiently encode(compress) data and how to decode(reconstruct) original data
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from the compressed data[36]. It does so by applying backpropagation while
setting the target values to be equal to the input matrix X. i.e. it sets Y=X,
where Y is the output matrix of the encoder. It tries to learn a matrix h on
input X defined in Eq. 1.

h = f(WT
e xi + be) (1)

where h is a low dimensional embedding of X and f(.) is an element-wise
nonlinear mapping, such as the sigmoid function or tanh function and W ,b
are weights and biases for the neural networks. This process of transforming
a high dimensional data into a low dimensional embedding is encoding. Simi-
larly, a decoder transforms a low dimensional embedding to reconstructed data
according to the given Eq.2.

xo = f(WT
d h+ bd) (2)

Here xo is the reconstruction matrix and f(.), W and b are similar to that
used in the encoding layer.

3.3 Modularity Matrix

The adjacency matrix A gives us limited information about the relationship
between nodes. Hence, we convert it to another form of matrix known as
modularity matrix. Formally, we describe the similarity relationship between
nodes by a modularity matrix B = [bpq]ϵR

NXN , which can be written as shown
below in Eq. 3:

bij = aij −
kikj
2m

(3)

where
kikj

2m is the expected number of edges between nodes i and j if the edges
are placed randomly, ki is the degree of vertex i, and m = 1

2

∑
i ki is the total

number of edges in the network[37]. The modularity maximization model is
taken as a reference to use the matrix B to maximize to improve the quality
of partition in the network.

3.4 k-means clustering

k-means clustering is a method of vector quantization, originally from signal
processing, that aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean (cluster centres or
cluster centroid), serving as a prototype of the cluster [38]. The way the k-
means algorithm works is as follows.

1. Specify the number of clusters k.
2. Initialize centroids by first shuffling the network and then randomly select-

ing k data points for the centroids without replacement.
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3. Keep iterating until there is no change to the centroids. i.e assignment of
data points to clusters isn’t changing.

The objective function is described below in Eq. 4:

J =

m∑
i=1

K∑
k=1

wik||xi − µk||2 (4)

In the proposed work, k-means algorithm is optimized using crow search
method explained in Section 3.5.

3.5 Crow Search Algorithm

The accuracy of the k-means clustering algorithm is dependent on the random
initialization of centroids. The final result of k-means depends on the initial
position of centroids and may confine in local optima. To counter this, we apply
a recent swarm intelligence technique known as the crow search algorithm
(CSA) which is a metaheuristic optimizer based on the behavior of crows [39].
CSA is a population based technique that works on the idea of crows hiding
excess food and retrieving it when required. It is considered that there are n
crows, where each crow denotes an initialization position in a d-dimensional
search space. Each crow stores the memory of its best hiding place as mi,k

and moves in the environment, aiming to find a better hiding position search
space. Assume that a crow j visits its hiding position for an iteration k. Two
cases can occur for a crow i while following crow j:

– Case 1 − Crow j is unaware of crow i while visiting its hiding location, so
crow i approaches the hiding position of crow j.

– Case 2 − Crow j is aware of crow i following it and it decides to visit
another random location.

The new position of crow i is given by Eq. 5.

xi,k+1 =

{
xi,k + ri × fli,k × (mj,k − xi,k) if rj ≥ AP i,k

a random position otherwise
(5)

where,
xi,k is the position of crow i at k-th iteration which is given by the d-dimensional
vector [xi,k

1 , xi,k
2 , xi,k

3 , ...... xi,k
d ]

ri = a random number with value between 0 and 1
fli,k = flight length of crow
mj,k = hiding spot of crow
AP = awareness probability, denotes awareness of crow w.r.t its surroundings

In this algorithm, AP is used to control the search space. If AP is decreased,
CSA will search in local region whereas on increasing the AP, CSA will be less
likely to search in local regions and much more likely to explore and search
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space on global scale. The details of the algorithms are presented in Algorithm
1.

Algorithm 1 Crow Search Algorithm

Input: S : Flock Size,
d : number of dimensions,
F : Set of all possible solutions and values,
itermax : Max number of iterations,
fl : flight length,
AP : Awareness probability

Output: Optimal positions
1: crowPositions← InitializeRandomPosition(d, F, S)
2: Memory ← InitializeMemory(d, F, S)
3: Fitness← CalculateF itness(CrowPositions)
4: score← NMIscore(ActualLabels, PredictedClusterLabels)
5: while k < itermax
6: for i← 1 to S
7: ri ← GenerateRandom()
8: RandomCrow ← ChooseRandomCrow(S)
9: NewPosn← UpdatePosn(CrowPositions, i,Memory,RandomCrow,AP, ri)
10: endfor
11: if NewPosn ∈ F
12: CrowPostions← NewPosn
13: endif
14: NewFitness← CalculateF itness(CrowPostions)
15: if NewFitness > Fitness
16: Memory ← CrowPostions
17: endif
18: k ← k + 1
19: endwhile
20: return crow position with best fitness out of all CrowPostions

4 Methodology

In this section, we present our proposed stacked autoencoder-based deep learn-
ing approach augmented by the Crow Search Algorithm (CSA) based k-means
clustering algorithm for community detection, and in short, we name our algo-
rithm as CD-SACS. The proposed algorithm can be used to uncover commu-
nity structure based on the interactions and relationships between the nodes
in the network. We start by first generating a modularity matrix from the
adjacency matrix, which is described in Section 4.1. Then we reduce the di-
mensionality of the modularity matrix to extract the most relevant and the
least correlated features using a network of stacked autoencoders, which is
presented in Section 4.2. The newly generated feature matrix is then fed to
our Crow-Search optimization based k-means clustering algorithm to detect
the community as described in Section 4.3. The detailed description of the
proposed algorithm, CD-SACS, is explained in Section 4.4.
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4.1 Modularity matrix generation

To perform any network analysis task like community detection, we first need
to represent it mathematically. One possible way to do so is the Adjacency ma-
trix, which is a basic representation of the existence or non-existence of edges
amongst the nodes of the network. The Adjacency matrix represents only the
relationships amongst individual nodes and not between the communities to
which they belong. To better understand the relationships amongst the nodes
of the network as part of sub-modules within the network, we use the Mod-
ularity matrix as discussed in Section 3.3. It helps as a measure to ascertain
the strength of the partition of a network into modules or communities. It
also helps to understand the density of the connection within the modules and
amongst the nodes in various modules. This is the reason we generate and use
the Modularity matrix.

4.2 Dimensionality reduction using Stacked Autoencoders

The Modularity matrix obtained in the previous step has very high dimen-
sionality and may contain several irrelevant and highly correlated information,
which is redundant and increases the computational cost of the algorithm. We
perform dimensionality reduction on the modularity matrix to extract the es-
sential features using a network of stacked autoencoders, which helps to reduce
dimensionality while preserving the topological network information. This is
done by reducing the modularity matrix to capture the network topology, fur-
ther encoded by a series of stacked autoencoders to represent the modularity
matrix in a lower-dimensional feature space. Followed by passing the modu-
larity matrix through a feed-forward neural network. Finally, it generates the
feature vectors for the nodes in the network such that the nodes having similar
topology are closely placed in the lower dimensional feature space. We use a
network of multiple autoencoders (single layer autoencoders) stacked together
in series with the encoded output of previous autoencoders as an input to
successive autoencoders. Adam optimizer is used for updating autoencoder
weights. The encoding and decoding functions are as mentioned in Eq. 1 and
2. In our proposed model, we have taken f(.) as hyperbolic tangent or tanh(.),
which is given by Eq. 6.

tanh(x) =
ex − e−x

ex + e−x
(6)

Autoencoder aim to learn a low dimensional non-linear representation that can
be reconstructed into modularity matrix B with minimized loss under param-
eters {We, be,Wd, bd}. We utilize the Mean Squared Loss as our reconstruction
error function given by Eq. 7:

MSE =
1

N

N∑
i=1

(fi − yi)
2 (7)
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where fi is the value returned by the model and yi is the actual value. After
training the autoencoders, the obtained parameters are used in the encoding
equation given above to generate the new representation for the graph G with
reduced dimensions. Same is denoted by line 2-5 of Algorithm 2.

4.3 Crow Search optimisation based k-means clustering algorithm

The final feature matrix obtained in the last step is then passed to a clustering
algorithm to cluster the nodes into separate clusters or to detect communi-
ties in the network. For detecting communities, we propose a Crow-Search
optimisation based k-means clustering algorithm. Crow Search Algorithm is a
relatively new metaheuristic algorithm that simulates the intelligent behavior
of crows and finds an optimal solution to various optimization problems. It
requires less number of parameters, and it is easier to implement the crow
search algorithm [40]. The fewer parameters and easy implementation make
it suitable for tasks like community detection. Also, to the best of our knowl-
edge, we are the first to apply Crow Search Algorithm in combination with
Stacked Autoencoders to uncover community structure in complex networks.
The classical k-means clustering algorithm heavily depends upon its random
initialization of centroids, and hence it has a tendency to converge at a local
optimum. To improve upon this drawback of the k-means clustering algorithm,
we use the Crow-Search based swarm intelligence algorithm. The Crow-Search
optimization generates a solution set of multiple centroid initializations, and
then it works on arriving at the best solution based on the fitness function.
This helps our algorithm to explore a much larger search space and obtain
results much closer to the global optimum.

The results obtained for the Crow-Search optimization depend on the flock
size S, dimension of the search space d, flight length fl, iterations itermax and
awareness probability AP [39]. The flock size is decided as per the problem. For
a smaller flock size, the algorithm would converge faster to a local optimum,
while for a larger flock size, the task of obtaining the optimal solution becomes
computationally expensive. The dimension d of search space for the crows is
the number of clusters to be detected in the network under consideration. The
values of AP and fl are chosen so that the crows search for a globally optimum
solution rather than limiting in a local search space. For the proposed Crow-
Search optimized k-means algorithm, the For optimizing k-means, the initial
population details, fitness function, and termination conditions are described
as follows.

– Initial Population: The Crow-Search optimization starts with initializing
the position and the search space of the crows. An initial population or
a flock of crows of size S is randomly generated having a d dimensional
search space. Here, each crow represents a set of possible centroids, and d
is the number of centroids that is given by the actual number of clusters
to be detected in the network under consideration.
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– Fitness function: The goal of Crow-Search optimization is to maximize the
value of the fitness function. For our study, we choose the NMI score, which
is defined as the percentage of nodes correctly classified for each cluster,
as the fitness function. It is given by Eq. 8. Every possible solution tries
to maximize the value of the NMI score, and the solution with the highest
NMI score becomes the fittest solution.

– Termination condition: The Crow-Search optimization is run until a ter-
mination condition is met. For our study, we have defined the maximum
number of iterations as itermax as the termination condition. This implies
that our algorithm will run itermax number of times after which the algo-
rithm would be terminated.

Fig. 2: The algorithmic flow chart of our proposed CD-SACS method.
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4.4 Community Detection Using Stacked Autoencoder & Crow-Search
optimzation based k-means clustering (CD-SACS)

This section presents a consolidated view of our proposed community detection
algorithm using Stacked Autoencoder and Crow-Search optimization based k-
means clustering. Firstly, we represent the network as an adjacency matrix
which is then converted into a modularity matrix as shown in Section 4.1.
The generated Modularity matrix is then passed through a series of stacked
autoencoders to obtain a lower-dimensional representation of the modularity
matrix while preserving the network topology and relationships. This is de-
scribed in Section 4.2. The stacked-autoencoders extract the most relevant
and the least correlated features from the modularity matrix while reducing
its dimensionality to make it more computationally efficient. These extracted
features are then passed through a Crow-Search based k-means clustering al-
gorithm to detect the communities in the network as shown in Section 4.3.
This allocates the nodes in the networks to their predicted communities. Var-
ious performance metrics are evaluated on the community results obtained by
our algorithm. Fig. 2 shows the entire algorithmic flow of our proposed CD-
SACS algorithm. The algorithmic steps for our proposed algorithm are shown
in Algorithm 2.

Algorithm 2 Proposed Community Detection Using Stacked Autoencoder &
Crow-Search optimzation based k-means clustering (CD-SACS) algorithm

Input: G :Graph, A : Adjacency Matrix , α : Learning rate,
P,Q,R :Number of hidden layers in each autoencoder m1, m2, m3

actualLabels :Actual Clustering Labels of nodes
Nclusters :Total number of clusters

Output: NMI, Modularity score, Precision, Recall and clustering result
(predictedLabels)

1: ModularityMatrix← create modularity matrix(AdjacencyMatrix)
2: m1,m2,m3 ← create autoencoder(P,Q,R)
3: encoded output1← train autoencoder(m1,ModularityMatrix,α)
4: encoded output2← train autoencoder(m2,encoded output1,α)
5: encoded output3← train autoencoder(m3,encoded output2,α)
6: centroidPositions← crowSearchAlgorithm(N,Nclusters, S, fl, AP, itermax)
7: predictedLabels← Kmeans(encoded output3,centroidPositions)
8: NMI ← NMIscore(actualLabels,predictedLabels)
9: Modularity ← ModularityScore(actualLabels,G)
10: Precision,Recall← PrecisionAndRecall(actualLabels,predictedLabels)
11: return predictedLabels, NMI, Modularity, Precision, and Recall

The various steps of our proposed algorithm are explained as follows.

– Step 1 : This step covers line number 1 of the proposed Algorithm. We
convert the input adjacency matrix to a modularity matrix according to
Eq. 9. The modularity matrix represents the similarity relationship between
nodes of the network. The modularity matrix has the same dimensions as
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the adjacency matrix, i.e., N*N where N is the number of nodes in the
network.

– Step 2 : This step covers line number 2, in which we create the stacked
autoencoders m1, m2, m3 with learning rate α and P , Q and R as their
hidden layers as explained in Section 4.2. The layer settings of autoencoders
are written as N − s1 − s2 − s3 where m1, m2 and m3 have their layers
as N − s1−N , s1− s2− s1, and s2− s3− s2 respectively. Here, N is the
number of nodes in the network, s1, s2 and s3 are powers of two such that
s1 is the greatest power of two less than N , while s2 = s1

2 and s3 = s1
4 .

Layer settings for real world and synthetic networks are shown in Section
5.1 and 5.2 respectively.

– Step 3 : This step covers line number 3,4,5, where we train stacked au-
toencoders m1, m2 and m3 with modularity matrix as an input to the
first autoencoder m1, while for the subsequent autoencoders m2 and m3,
encoded output of previous autoencoders m1 and m2 acts as their input
respectively. These steps are performed so as to minimize the reconstruc-
tion loss compared to the original network. Stacked autoencoders are used
to reduce dimensionality along with preserving the relationships. We ob-
serve that if the autoencoder is trained for too many epochs, the output
matrix does not yield optimal results for community detection. Hence, we
limit the number of epochs for each network to obtain the optimum result.
Hence, based on the analysis made, for small networks, only two stacked
autoencoders are used, while for relatively larger networks, we use three
stacked autoencoders.

– Step 4 : In line number 6, we apply the crow search algorithm to obtain
optimal centroids for applying k-means algorithm. We give the number of
clusters as dimensions, S, which denotes flock size as 30. We also set the de-
cision variables and constraints like flight length fl, Awareness probability
AP , and the maximum number of iterations itermax for the Crow-Search
optimization.

– Step 5 : In line number 7, the encoded output ofm3 and centroids are fed to
a modified k-means algorithm for obtaining clustering result predictedLabels.

– Step 6 : The predictedLabels are then used to calculate the NMI score,
Modularity score, Precision, and Recall, as shown in lines 8-10.

– Step 7 : Finally in line number 11, we return NMI score, Modularity score,
Precision, Recall and the predicted labels.

4.5 Time Complexity Analysis

In this section, we discuss the time complexity analysis for our proposed CD-
SACS algorithms. We start by generating a modularity matrix which can be
obtained in O(n2) from the adjacency matrix. Here, n is the number of nodes
in the network. Then we perform feature reduction using a stacked autoen-
coder which is a network of successive layers of neurons. Let l be the neurons
in the layers of the stacked autoencoder. Training a neuron layer involves two
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phases, namely, forward propagation and back propagation having time com-
plexities of O(l4) and O(l5) (https://lunalux.io/series/introduction-to-neural-
networks/computational-complexity-of-neural-networks). Hence, the total time
complexity of training the stacked autoencoder will be O(E×C × (l4 + l5)) ≈
O(E×C× l5). Here, E is the number of epochs and C is the number of layers
in the stacked autoencoder. Then we go onto generating the cluster centres
using the modified crow search algorithm. Let the flock size be S, the dimen-
sionality of the search space be d and the total number of iterations be I. Since
the fitness function is evaluated and the representations of the crows are up-
dated for the entire flock on every iteration, hence, the time complexity of the
modified crow search algorithm is O(I × S × d). Finally, we use the K-means
to classify the nodes into their respective communities with a complexity of
O(n2). Hence, the final time complexity for our proposed CD-SACS algorithm
is O(n2 +E × C × l5 + I × S × d+ n2). Here, E,C, andl are constant, so the
time complexity becomes O(n2 + I × S × d)=O(n2) where S, I, and d can be
considered as constant.

5 Datasets and Evaluation metrics

We perform the experimental simulations on various real-life datasets of vary-
ing size, number of edges and number of communities. We also apply the pro-
posed algorithm on LFR synthetic network for three different values of mixing
parameters. The experimental results were evaluated on several benchmarked
performance metrics. The description of the datasets and performance metrics
used by us is given as follows.

5.1 Real world networks

The description of the various real-life datasets is given below.

1. Zachary’s Karate Club [41]: It is a network of 34 members of a karate club
in US university in the 1970s. It has two ground-truth communities.

2. Dolphin Social network [42]: It is an undirected network of frequent as-
sociation among 62 Dolphins in New Zealand. This network contains four
ground-truth communities.

3. Polbooks network [43]: It is based on a book about US politics sold on
Amazon. Edges between books represent frequent co-purchasing of books
by the same buyer. This network has 105 nodes and three communities.

4. Word [44]: Word is a network containing the nouns and adjectives used
in Charles Dicken’s novel David Copperfield. The dataset has 112 nodes
and 425 edges. There are two ground-truth communities present in this
network.

5. American college football[45]: It is a network of American college football
having 115 nodes and is divided into twelve communities.
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6. Email network [46]: This network is obtained from a large European insti-
tution that has 1005 nodes and 25571 edges. Each edge (u, v) represents
that person u has sent an email to person v, and there are 42 ground-truth
communities present in the network.

7. Polblogs network [47]: It is a network of various blogs surrounding US
politics. It was published by Adamic and Glance in 2005. It has 1490 nodes,
16718 edges, and has two ground-truth communities.

8. Cora network [48]: It is a scientific publication network consisting of 2708
scientific publications and 5429 citation links. There are 7 communities in
the network.

9. Citeseer network [49]: It is also a scientific publications network which
consists of 3312 scientific publications and 4732 citation links with six
ground-truth communities in the network.

10. Facebook network [50]: It is a Facebook social network consisting of 4039
nodes and 81800 edges. There are twelve communities present in this net-
work.

Tab. 1 gives the stastical details about various real-world datasets used by
us including number of nodes, number of edges, and their brief descriptions.

Table 1: Statistical details about the real-world network

Data set # of Nodes # of Edges Description

Karate[41] 34 78
Zachary’s karate
club

Dolphin[42] 62 159
Dolphin Social
Network

Polbooks[43] 105 441
Books about US
politics

Word[44] 112 425
Adjectives and
nouns in novel

Football[45] 115 613
American college
football—2000

Email[46] 1005 25571
Email data from a
large European re-
search institution

Polblogs[47] 1490 16718
Blogs about US
politics

Cora[48] 2702 5429
Scientific publica-
tion network

Citeseer[49] 3312 4732
Scientific publica-
tion network

Facebook[50] 4039 81800
Facebook social
network
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5.2 Synthetic networks

Lancichinetti–Fortunato–Radicchi (LFR) algorithm [51] is commonly used for
generating benchmark networks. They have a priori known communities and
are used to compare different community detection methods. It requires some
parameters to generate the required type of graph. LFR(N, k,m, γ, ϕ, µ) re-
quires N which denotes the number of nodes, k denotes the average degree
of nodes, m denotes the maximum degree of nodes, γ is the exponent for the
degree distribution, ϕ is the component for the community size distribution, µ
is the mixing parameter which is used to control the ratio between the degree
of intra-communities of a node and its total degree.

By setting different parameters, we can generate various graphs with ground
truth values on which the proposed algorithm to detect communities can be
tested. We generate three different graphs keeping the number of nodes and
the number of edges constant in each case but varying k,m, γ, ϕ, µ using these
parameters, we generate three synthetic networks, namely, LFR 0.1, LFR 0.3
and LFR 0.5 networks. In all these networks, N=128, the total number of
edges =1024 and µ in the range of 0.1 to 0.3. The total number of communi-
ties existing in all three networks is four. The details of the synthetic networks
used by us are given below.

1. LFR 0.1: This network has µ = 0.1 due to which it’s clusters are dense and
are easily separable with less intermixing between each other. This serves
as a simple benchmark test for community detection.

2. LFR 0.3: This network has µ = 0.3 due to which its clusters are not so
dense and are not as easily separable as in LFR 0.1. Communities have a
small amount of intermixing between them which serves as a better testing
benchmark for testing of community detection algorithms.

3. LFR 0.5: This network has µ = 0.5 due to which its clusters are much less
dense than in LFR 0.3 and are not separable by the naked eye. Communi-
ties have a significant amount of intermixing between them due to which
community detection is very difficult for this dataset.

Tab. 2 gives the stastical details about various real-world datasets used
by us including number of nodes, number of edges, number ofground-truth
communities, and their descriptions.

Table 2: Statistical details about the used synthetic networks

Data set # of Nodes # of Edges Description

LFR 0.1 128 1024
LFR network with
µ = 0.1

LFR 0.3 128 1024
LFR network with
µ = 0.3

LFR 0.5 128 1024
LFR network with
µ = 0.5
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5.3 Evaluation Metrics

We have evaluated all the algorithms on various evaluation metrics to bench-
mark our proposed algorithm and compare it with other traditional and con-
temporary community detection algorithms. The descriptions of these evalua-
tion metrics are as follows.

5.3.1 Normalized Mutual Information (NMI)

The normalized mutual information (NMI) was introduced by Estevez et al.
)[52]. The NMI of two random variables represents the co-dependency amongst
the two variables. Formally, it is a measure of the amount of information that
can be revealed by observing the other variable. The fundamental notion of
NMI is linked to that of entropy of a random variable, i.e., a basic concept in
information theory that is a measure of the expected ”amount of information”
held in a random variable. It is an evaluation measure that helps us measure
how clusters correlate with each other. It is defined as given in Eq. 8.

NMI(Y,C) =
2× I(Y ;C)

H(Y ) +H(C)
(8)

where Y , C, H(.), and I(Y ;C) denotes class labels, cluster labels, entropy,
and Mutual Information between Y and C, respectively.

5.3.2 Modularity score

Modularity score (Q) represents the difference between the actual number of
connections and the expected number of connections in random conditions.
It is used to assess the quality of the network cluster structure. This score is
computed using Eq. 9

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj) (9)

where m denotes number of edges in the network, A represents adjacency
matrix, ki denotes degree of node i, δ denotes Kronecker delta and value of
δ(ci, cj ) is 1 if node i and j are in the same community otherwise 0.

5.3.3 Precision and Recall

Precision is used as a measure to estimate the positive predictive value of an
algorithm. Formally, it can be described as the number of positive instances
with respect to the total number of instances. On the other hand, recall is
an estimate of the sensitivity of an algorithm. It measures the total number
of relevant cases with respect to the instances that were positive. In simpler
terms, precision shows the agreement of the algorithm between labels and
predicted labels, while recall gives an idea of the algorithm’s effectiveness in
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predicting labels. Mathematically, precision and recall can be expressed as
below.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Here, TP , FP , and, FN represents the True Positives, False Positives, and
False Negatives, respectively for the communities detected.

6 Result Analysis

In this section, we present the experimental analysis of our proposed approach,
CD-SACS. We have conducted experiments on various real-life as well syn-
thetic datasets as described in Sections 5.1 and 5.2. The results have been
evaluated on popularly used evaluation metrics as described in Section 5.3. We
compared the performance of our purposed algorithm with some popular tradi-
tional community detection algorithms like KM (K-means), IF (Infomap) [18],
SC (Spectral Clustering) [19], AP(Affinity Propagation) [20], AC (Agglomera-
tive Clustering) [21] and LP(Label Propagation) [22]. The performance of our
proposed algorithm is also compared with several contemporary community
detection algorithms like: SAECF [33], PFGM [34], and LCD [35]. Fig. 3 pic-
torially shows the community detection results obtained by our algorithm on
various real-world and synthetic datasets with varying dimensions and com-
munity structures. We utilized python programming with several libraries like
Sklearn, NumPy, Pandas, Networkx, etc., and some publicly available GitHub
repositories to perform simulations and obtain results. We performed simula-
tions on a personal computer with an intel i7 11th generation processor, 16 GB
RAM, and RTX 3070 graphics card. The various parts of the analysis of the
results are organized in the subsections like parameter settings, comparison
of results based on normalized mutual information (NMI) score, modularity
score, precision, and recall score.

6.1 Parameter Settings

To obtain optimal results, we use proper parameter settings in our algorithm.
We set different layer configurations for the stacked autoencoder based on
the network. The network has a minimum of 2 and at max three stacked
autoencoders. The dimensions of autoencoders are decided in such a way that
the encoded result is of the dimension NX2t, where 2t is less than N(Size of
input data). The layer settings are shown in Tab. 3. Note that layer setting for
a network is written as N−512−256−128, which means that N is the number
of nodes in the network followed by three autoencoders of configuration N −
512 − N , N − 256 − N , and N − 128 − N . All autoencoders were trained
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separately, and the encoded result of each autoencoder was used as the input
for successive ones. The learning rate for each autoencoder was 0.001 trained
up to 1000 epochs.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: Community detection results on various real-world and synthetic net-
works (a) Dolphin Social network with four visible communities, (b) Polbooks
network with three visible communities, (c) Word network with two communi-
ties, (d) American college football with twelve communities, (e) Email network
with 42 communities (f) LFR 0.1 synthetic network with four visible communi-
ties, (g) LFR 0.3 synthetic network with four visible communities, and (h)LFR
0.5 synthetic network with four visible communities.
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Table 3: Layer Settings for the stacked autoencoders

Networks # of Nodes Layer Settings
Karate 34 N-32-16
Dolphin 62 N-32-16
Polbooks 105 N-64-32
Word 112 N-64-32
Football 115 N-64-32
Email 1005 N-512-256-128
Polblogs 1490 N-1024-512-256
Cora 2702 N-2048-1024-512
Citeseer 3312 N-2048-1024-512
Facebook 4039 N-2048-1024-512
LFR 0.1 128 N-64-32-16
LFR 0.3 128 N-64-32-16
LFR 0.5 128 N-64-32

The final output of the stacked autoencoders was then fed to the Crow
Search optimization based k-means clustering algorithm. For the Crow Search
optimization, we set the maximum number of iterations itermax as 100 as
it is a balanced value to obtain optimal results in a reasonable amount of
time. The initial population plays an important role in the performance of any
swarm intelligence algorithm. We select the initial flock size, S, to be 30, as
we achieved optimal results on several networks based on this value. The flight
length is chosen to be 0.9, i.e., closer to 1 so that the particles have larger flight
lengths and travel larger steps to exploit the feature space globally. We also
tune the hyperparameters manually depending on the experimental results so
that we adopt the best hyperparameters.

6.2 Normalized Mutual Information (NMI) Score

This section presents the results obtained for the Normalized Mutual Informa-
tion (NMI) Score for our algorithms as evaluated on all the networks mentioned
in sections 5.1 and 5.2. The NMI score results were also calculated for various
other community detection algorithms and the results were compared with
our proposed algorithm. Tab. 4 shows the results obtained for various algo-
rithms as evaluated on various networks for the NMI score. Brief description of
the obtained NMI scores is given below: Karate[41]: This network has 2 com-
munities having highly sparse edges between them. Spectral Clustering and
CD-SACS have the best NMI scores of 1. Infomap, AP and LP also perform
well on this network but have a low score due to less number of nodes(32)
in the network. Dolphin[42]: CD-SACS performs the best with a score 0.86
closely followed by Infomap with a score of 0.83. SC, AP, LP and AC have
relatively low scores. Polbooks[43]: This network have 3 communities with rel-
atively dense connection between them which makes prediction of clusters a
tough tasks and leads to relatively lower NMI scores for all of the algorithms.
For Polbooks network also our proposed CD-SACS algorithm performs the
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best with a NMI score of 0.556. This is closely followed by Spectral Cluster-
ing, Infomap, and Agglomerative Clustering, with NMI score of 0.538, 0.536,
and 0.515, respectively. Word[44]: We see that for the Word network, k-means
is the worst performer, while our proposed CD-SACS is the best performer.
Agglomerative clustering and Infomap also perform well on the word dataset.
Football [45]: This network has 12 communities which are easily divisible due
to sparse connection between them. All of the algorithms perform well and
proposed algorithm CD-SACS performs the best with an NMI score of 0.94
followed by Agglomerative Clustering with a score of 0.92. Email [46]: The
network 42 communities with dense connections between the clusters which
makes prediction of communities challenging task. This results in lower NMI
scores with CD-SACS performing the best with a score of 0.56 followed by
Infomap. All other algorithms have similar results except Agglomerative Clus-
tering which has a score of 0.05. LFR 0.1: This network is too simple for testing
and is used to check whether proposed algorithm is working fine. All the com-
munity detection algorithms including proposed algorithm peforms optimally.
Some algorithms like AP and AC fail to do so. LFR 0.3: Our model is able
to detect all communities but so does other algorithms like k-means, Infomap
and Spectral Clustering. In this network, communities are not as sparsely
connected as in LFR 0.1 but still many community detection algorithms are
able to detect communities perfectly including proposed algorithm LFR 0.5:
This network is challenging for community detection since it is hard even after
seeing the graph with naked eye to detect the communities. All algorithms
struggle on this network including proposed algorithm. Best result is obtained
by CD-SACS of 0.288 closely followed by AP with an NMI score of 0.218.

Table 4: NMI Score for all the algorithms evaluated on all the networks chosen
by us.

Network KM IF SC AP LP AC SAECF PFGM LCD CD-SACS
Karate 0.004 0.699 1.0 0.535 0.448 0.085 0.489 0.746 0.596 1.0
Dolphins 0.747 0.834 0.376 0.437 0.634 0.495 0.494 0.705 0.605 0.865
Polbooks 0.454 0.536 0.538 0.321 0.436 0.515 0.393 0.345 0.383 0.556
Word 0.614 0.705 0.697 0.653 0.673 0.723 0.522 0.764 0.644 0.764
Football 0.892 0.882 0.902 0.851 0.682 0.924 0.678 0.721 0.644 0.941
Email 0.478 0.539 0.439 0.459 0.368 0.587 0.391 0.315 0.389 0.561
Polblogs 0.518 0.558 0.538 0.535 0.575 0.593 0.372 0.382 0.345 0.648
Cora 0.623 0.632 0.661 0.753 0.758 0.773 0.562 0.583 0.754 0.827
Citeseer 0.737 0.758 0.763 0.774 0.849 0.827 0.609 0.694 0.814 0.879
Facebook 0.683 0.728 0.763 0.772 0.822 0.789 0.653 0.706 0.801 0.843
LFR 0.1 1.0 1.0 1.0 0.681 1.0 0.667 0.689 0.686 0.715 1.0
LFR 0.3 1.0 1.0 1.0 0.641 0.577 0.667 0.718 0.761 0.745 1.0
LFR 0.5 0.022 0.083 0.119 0.218 0.064 0.052 0.767 0.904 0.832 0.288

The above results show that our proposed CD-SACS algorithm is the best
performer in terms of the NMI score obtained on all the networks. This can
be attributed to the careful dimensionality reduction by our algorithm using
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the stacked autoencoder while maintaining all the topological details of the
network. The centroid generation for the k-means algorithm using the Crow
Search optimization also helps in detecting the community structures opti-
mally. In addition to this, the proper parameter tuning done by us also helps
in achieving the superior performance in terms of NMI score obtained by our
algorithm.

6.3 Modularity Score

This section presents the results obtained for Modularity score by various algo-
rithms over all the datasets mentioned in Sections 5.1 and 5.2. The scores were
also compared with several contemporary community detection algorithms to
obtain a comparative study. Brief description for results of modularity for the
networks are as follows.
Karate[41]: CD-SACS has the highest modularity score for this network fol-
lowed by SC, Infomap and LP. AC, AP and k-means have very low modularity
scores.
Dolphin[42]: In prediction of community detection for this network, proposed
algorithm performs best with a modularity score of 0.529 and closely followed
to Infomap. This is followed by LP, k-means and AC. SC and AP have very
low modularity scores for the Dolphin network.
Polbooks[43]: This network has 3 communities and is relatively diffcult for
community detection but proposed algorithm performs better than others with
a score of 0.527. CD-SACS has the highest modularity score for this network
followed by AC, SC, LP, Infomap and k-means. AP has very low modularity
score.
Word[44]: For the Word network, our proposed CD-SACS algorithm is the
best performer with a modularity score of 0.573. This is closely followed by
AC and LP algorithms.
Football [45]: This network has 12 communities to predict which proposed
algorithm does very well. This is shown by modularity score of 0.634 for pro-
posed algorithm which is higher than other community detection algorithms.
CD-SACS has the highest modularity score for this network followed by AC,
Infomap, LP, k-means, SC and AP. Apart from AP all algorithms have similiar
modularity scores.
Email[46]: This network has 24 communities which makes it difficult to per-
form community detection but proposed algorithm out performs other commu-
nity detection algorithm with a modularity score of 0.468. CD-SACS has the
highest modularity score for this network followed by Infomap and k-means.
Remaining algorithms used for comparision have very low scores.
Polblogs[47]: For the Polblogs network we see that our proposed algorithm is
the best performer with a modularity score of 0.489. This is closely followed
by AC, SC and k-means algorithms.
Cora[48]: All the algorithms generate competitive results for the Modularity
scores on the Cora network. But even for the Cora network, we see that our



24 Sanjay Kumar et al.

proposed CD-SACS algorithm is the best performer closely followed by AC
and AP algorithms.
Citeseer [49]: The Modularity results obtained for the Citeseer network show
that k-means clustering algorithm is the worst performer. Our proposed CD-
SACS algorithm is the best performer and all the other algorithms follow
thus.
Facebook [50]: For the facebook network also our proposed CD-SACS algo-
rithm is best performer outperforming the other community algorithms by a
considerable margin. k-means clustering algorithm tends to be the worst per-
former while the LP algorithm is the second best performer.
LFR 0.1: Same modularity score is obtained by the best performing algo-
rithms. All other algorithms also perform well on this network. This is because
community detection on this network is easy due to which many community
detection algorithms are able to detect the communities optimally including
our proposed CD-SACS algorithm.
LFR 0.3: The best modularity score is obtained by our CD-SACS algorithm.
This shows that despite being much more difficult for community detection
than LFR 0.1, most best algorithms are able to perform community detection
including proposed algorithm.
LFR 0.5: Modularity scores obtained for this network is very low. This shows
that it is difficult to perform community detection on networks where com-
munities are not sparsely connected and are close to each other. Even still our
proposed community detection algorithm CD-SACS performs best in detecting
the communities optimally.

Table 5: Modularity Score for all the algorithms evaluated on all the networks
chosen by us.

Network KM IF SC AP LP AC SAECF PFGM LCD CD-SACS
Karate 0.188 0.332 0.371 0.017 0.325 0.402 0.345 0.346 0.307 0.434
Dolphins 0.491 0.514 0.213 0.086 0.498 0.412 0.484 0.406 0.599 0.529
Polbooks 0.438 0.451 0.454 0.146 0.481 0.489 0.595 0.542 0.575 0.527
Word 0.436 0.457 0.469 0.485 0.493 0.542 0.492 0.565 0.438 0.573
Football 0.579 0.587 0.551 0.396 0.583 0.596 0.578 0.522 0.446 0.634
Email 0.234 0.417 0.368 0.326 0.386 0.423 0.382 0.417 0.582 0.468
Polblogs 0.465 0.461 0.465 0.453 0.463 0.474 0.377 0.373 0.345 0.489
Cora 0.513 0.528 0.517 0.527 0.518 0.553 0.567 0.591 0.557 0.594
Citeseer 0.497 0.483 0.545 0.512 0.523 0.537 0.511 0.407 0.413 0.576
Facebook 0.495 0.502 0.548 0.546 0.586 0.566 0.502 0.506 0.401 0.614
LFR 0.1 0.653 0.552 0.657 0.628 0.653 0.443 0.495 0.483 0.514 0.674
LFR 0.3 0.432 0.452 0.446 0.468 0.226 0.315 0.418 0.464 0.546 0.512
LFR 0.5 0.145 0.223 0.231 0.187 0.268 0.292 0.254 0.204 0.233 0.334

The above results shows that our proposed CD-SACS algorithm performs
more optimally in terms of modularity score as compared to other community
detection algorithms on all the chosen networks. Moreover, our CD-SACS algo-
rithm also gives stable results across real-world as well as synthetic networks.
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The optimised performance can be attributed to the efficient use Crow-Search
swarm-intelligence algorithm paired with the stacked autoencoders to cluster
the nodes in the networks in a much better way as compared to other contem-
porary algorithms. The efficacy of our proposed CD-SACS algorithm can be
observed over both synthetic as well as real-life networks of varied dimensions
and topology.

Table 6: Precision values for all the algorithms evaluated on all the networks
chosen by us

Network KM IF SC AP LP AC SAECF PFGM LCD CD-SACS
Karate 0.594 0.851 0.403 0.247 0.782 0.828 0.466 0.699 0.683 0.868
Dolphins 0.649 0.813 0.511 0.403 0.725 0.782 0.466 0.707 0.628 0.888
Polbooks 0.662 0.884 0.514 0.089 0.721 0.725 0.569 0.681 0.518 0.816
Word 0.596 0.879 0.389 0.556 0.755 0.721 0.475 0.773 0.722 0.894
Football 0.773 0.866 0.837 0.247 0.81 0.755 0.659 0.722 0.716 0.868
Email 0.828 0.863 0.849 0.118 0.739 0.81 0.618 0.795 0.855 0.776
Polblogs 0.87 0.81 0.365 0.16 0.844 0.739 0.721 0.756 0.825 0.904
Cora 0.826 0.828 0.303 0.771 0.886 0.844 0.641 0.704 0.722 0.885
Citeseer 0.727 0.863 0.323 0.908 0.779 0.886 0.621 0.807 0.785 0.908
Facebook 0.745 0.836 0.405 0.688 0.742 0.741 0.847 0.658 0.804 0.883
LFR 0.1 0.722 0.769 0.444 0.461 0.686 0.674 0.742 0.685 0.739 0.868
LFR 0.3 0.767 0.957 0.368 0.739 0.862 0.768 0.831 0.704 0.739 0.905
LFR 0.5 0.878 0.88 0.849 0.869 0.822 0.808 0.668 0.904 0.827 0.913

Table 7: Recall values for all the algorithms evaluated on all the networks
chosen by us

Network KM IF SC AP LP AC SAECF PFGM LCD CD-SACS
Karate 0.558 0.675 0.685 0.823 0.677 0.851 0.596 0.856 0.338 0.833
Dolphins 0.628 0.757 0.747 0.685 0.818 0.709 0.543 0.744 0.515 0.752
Polbooks 0.624 0.77 0.852 0.537 0.795 0.769 0.811 0.587 0.645 0.78
Word 0.648 0.806 0.805 0.77 0.704 0.771 0.914 0.729 0.496 0.848
Football 0.757 0.843 0.671 0.823 0.672 0.723 0.833 0.699 0.467 0.786
Email 0.872 0.877 0.719 0.85 0.796 0.717 0.839 0.869 0.461 0.88
Polblogs 0.911 0.881 0.683 0.833 0.808 0.778 0.897 0.491 0.842 0.672
Cora 0.563 0.751 0.606 0.829 0.573 0.826 0.274 0.338 0.861 0.828
Citeseer 0.638 0.789 0.677 0.868 0.556 0.551 0.523 0.595 0.854 0.83
Facebook 0.614 0.809 0.716 0.666 0.608 0.693 0.381 0.857 0.804 0.81
LFR 0.1 0.772 0.857 0.831 0.815 0.611 0.71 0.576 0.742 0.694 0.837
LFR 0.3 0.927 0.883 0.698 0.796 0.742 0.763 0.547 0.781 0.739 0.867
LFR 0.5 0.945 0.899 0.719 0.796 0.787 0.804 0.903 0.901 0.827 0.805
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6.4 Precision and Recall

This section presents the result analysis for the precision and recall perfor-
mance metrics. Tab. 6 shows the precision values for all the algorithms evalu-
ated on all the networks chosen by us, while Tab. 7 shows the recall values for
all the algorithms evaluated on all the networks chosen by us. From Tab. 6, we
see that our proposed CD-SACS algorithm performs best in terms of precision
except for Polbooks, Email, Cora, and the LFR 0.3 synthetic network. From
Tab. 7, we can see that our proposed CD-SACS algorithm gives competitive
results in terms of recall values being the best performer for Email, Cora,
and Facebook networks. The relatively lower performance of our algorithm in
terms of recall can be understood due to the inverse proportionality relation
between precision and recall.

7 Conclusion

Community detection is one of the most researched topics in complex network
analysis. In this work, we proposed a novel community detection algorithm,
named CD-SACS, using stacked autoencoders and a Crow Search Algorithm
based k-means clustering algorithm. We start by obtaining a modularity ma-
trix for the input graph, which is then passed through a network of stacked
autoencoders to reduce the dimensionality of the modularity matrix while pre-
serving crucial topological details and the least correlated and most relevant
features. This feature matrix is then passed through a Crow-Search optimiza-
tion based k-means clustering algorithm, which groups the nodes into their
clusters and divides the network into various communities. We exploited Crow-
Search optimization to generate the initial centroids for the k-means algorithm
to avoid early convergence into a local optimum and to allow the algorithm
to explore a much larger global search space to obtain a solution much closer
to the global optimum. We performed experimental analysis on several real-
life and synthetic benchmark networks based on various evaluation metrics.
The results of our proposed approach were also compared with some of the
traditional and contemporary community detection algorithms. The obtained
results exhibit the efficacy of our proposed algorithm over others community
detection algorithms. One major limitation of the proposed work is that, like
other metaheuristics, the modified crow search algorithm may also suffer from
the problem of early convergence and falling into local optimum. Also, the pro-
posed work can not be used for weighted and multi-layer complex networks. In
the near future, we can extend our work in weighted and multi-layer complex
networks.
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