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A Multi-level Weighted Concept Drift Detection Method 

Meng Han, Zhiqiang Chen, Hongxin Wu, Muhang Li, and Xilong Zhang  

（School of Computer Science and Engineering, North Minzu University, Yinchuan 750021） 

Abstract The concept drift detection method is an online learner. Its main task is to determine the position of drifts in 
the data stream, so as to reset the classifier after detecting the drift to improve the learning performance, which is very 
important in practical applications such as user interest prediction or financial transaction fraud detection. A new level 
transition threshold parameter is proposed, and a piecewise weighting mechanism including "Stable Level-Warning 
Level-Drift Level" is innovatively introduced in concept drift detection. The instances in the window are weighted in 
levels, and it is applied to the double sliding window. Based on this, a multi-level weighted drift detection 
method(MWDDM) is proposed. Especially, two variants which are MWDDM_H and MWDDM_M are proposed basd 
on Hoeffding inequality and Mcdiarmid inequality respectively. Experiments on artificial datasets show that MWDDM 
can detect abrupt and gradual concept drift faster than any other comparison algorithms, while maintaining a low false 
positive ratio and false alarm rate. Experiments on real-world datasets show that MWDDM has the highest classification 
accuracy in most cases. 
Keywords data stream; concept drift; drift detection method; sliding window; multi-level mechanism 

 

1 Introduction 

In recent years, big data, Internet of Things technology and artificial intelligence have developed rapidly. All walks 
of life continue to generate a large amount of data, and it has been growing at an alarming rate. These data are called 
data streams with their own characteristics, such as network data, Weather forecast data, wireless sensor data, financial 
and power grid data, etc.[1]. Traditionally, machine learning algorithms have assumed a stationary distribution of data. 
However, the underlying data distribution in an evolving data flow environment may change over time, a phenomenon 
known as concept drift, which means that the data distribution at time points x and y satisfies Dx≠Dy[2]. In real life, 
examples of concept drift include changing user interest preferences, monitoring systems, weather forecasting, and 
financial fraud detection, etc.[3][4][5]. As concept drift occurs, the old learned models in the past will no longer be 
effective, resulting in a decrease in classification accuracy. Therefore, it becomes crucial to adapt to changing data 
distributions to ensure high learning performance.  

Currently, quite a few adaptive learning algorithms use concept drift detection methods to detect concept drift in 
evolving data streams. Typically, when the learner detects drift, the classification model is updated or retrained to 
accommodate concept drift. In the past decades, many concept drift detection methods have been proposed, mainly 
including statistical-based methods[6][7][8][9][10], window-based methods [11][12][13][14], and sequence analysis-
based methods[15]. In the past proposed drift detection methods, many methods either require huge time and memory 
costs, or cannot detect concept drift as quickly as possible while maintaining low false and false nagative ratios. Based 
on this, this paper proposes a multi-level weighted concept drift detection method (Multi-level Weighted Drift Detection 
Method, MWDDM). MWDDM can detect concept drift with low detection delay and keep low false positive ratio and 
false nagative ratio to detect abrupt and gradual concept drift in data stream.  

In this paper, we innovatively introduce a multi-level weighted drift detection mechanism of "stable level-warning 
level-drift level" in concept drift detection by proposing a threshold parameter for level transition, also, a window 
mechanism where a long sliding windows overlapps with a short sliding window is used in MWDDM. The algorithm 
will assign weights to the instances in the two windows during the "stable level", the newest instance in the window 
will be assigned a larger weight, and the old outdated instances will be assigned a smaller weight, and the difference 
between the weight value of instances at this time is small. At the same time, the weighted average of correct prediction 
and the maximum weighted average of correct prediction within the window are calculated at the same time. After 



 

 

entering the "warning level", the algorithm will increase the difference of weight values between instances within the 
window to detect drift faster, and update the weighted average of correct prediction and the maximum weighted average 
of correct prediction. Finally, in the "drift level", MWDDM_H and MWDDM_M use the Hoeffding bound based on 
Hoeffding's inequality and the Mcdiarmid bound generated by Mcdiarmid's inequality, respectively, to determine if the 
difference between the weighted average of correct prediction and the maximum weighted average of correct prediction 
exceeds the value in advance. defined threshold, the occurrence of a concept drift will be reported. At this point, the 
classifier will be reset for retraining. 
2 Related work 

2.1 Concept drift 
Concept drift is a widespread problem in data stream mining, caused by the change or evolution of streaming data 

over time. Changes in the underlying distribution cause the feature vectors of arriving instances to no longer reflect 
class labels. This can negatively impact the reliability and accuracy of classifiers making predictions using the streaming 
data distribution. Suppose the data stream is in the form of consecutive (𝑥𝑡, 𝑦𝑡) instances, where t=1, 2, 3…., and 𝑥𝑡 
is a feature vector and y belongs to a set with n class labels That is, 𝑦 ∈ {𝑦1, 𝑦2,⋯ 𝑦𝑛}. A prediction obtained by the 
predictor based on the feature vector 𝑥𝑡 at a specific time can be denoted by �̂�𝑡. Then the concept drift in the time t0 

to t1 can be defined as formula (1)[16]. Here 𝑝𝑡 represents the joint probability distribution between the feature vector 𝑥𝑡 and the target class label 𝑦𝑡 at time t. The change of the data flow distribution is the concept drift, which can be 
reflected in the change of the joint probability distribution.  ∃𝑥𝑡: 𝑝𝑡0(𝑥𝑡, 𝑦𝑡) ≠ 𝑝𝑡1(𝑥𝑡, 𝑦𝑡) (1) 

In literatures, concept drift is further described. At a certain moment, 𝑝(𝑥𝑡, 𝑦𝑡) can be obtained from the conditional 
class concept distribution by formula (2). 𝑝(𝑥𝑡, 𝑦𝑡) = 𝑝(𝑦𝑡)𝑝(𝑥𝑡|𝑦𝑡) (2) 

Then, when the input 𝑥𝑡  is predicted, the posterior probability distribution can be obtained according to the 
Bayesian decision theory as shown in formula (3).    𝑝(𝑥𝑡) = ∑ 𝑃(𝑦𝑡)𝑃(𝑥𝑡|𝑦𝑡)   𝑛𝑡=1 。 𝑝(𝑦𝑡|𝑥𝑡) = 𝑝(𝑦𝑡)𝑝(𝑥𝑡|𝑦𝑡)/𝑝(𝑥𝑡) 𝑤ℎ𝑒𝑟𝑒 𝑦 ∈ {𝑦1, 𝑦2, … 𝑦𝑛} (3) 

The above is the definition of concept drift in general. In addition, the time step at which a new target concept 
replaces the old target concept is usually referred to as the duration of concept drift, and the shorter the duration of 
completing the drift, the faster the drift. Therefore, according to the speed of concept drift, concept drift can be divided 
into abrupt drift, gradual drift, incremental type and recurring drift[17]. Figure 1 shows the difference between the four 
types of concept drift.  

 

Figure 1 concept drift 

2.2 Drift detection methods of different window mechanism 

The window mechanism has been widely used to deal with the concept drift problem. They argue that the most 
recent observed instances are the most useful information, and incrementally estimate changes over time or data 
windows. The window mechanism defines a window as a short in-memory data structure that can store informative data 



 

 

or summarize some statistics about model behavior or data distribution in order to describe the current concept. The 
sliding window mechanism has become one of the most commonly used window mechanisms for drift detection 
methods. The sliding window is generally composed of a first-in-first-out (FIFO) data structure. After a sliding window 
defines a window of size n, as a new instance arrives, the oldest instance is discarded[19]. Its mechanism is shown in 
Figure 2. The FHDDM drift detection method[13] uses a sliding window and Hoeffding inequality to calculate and 
compare the difference between the maximum prediction accuracy and the current prediction accuracy to detect drift.  

 
Figure 2 sliding window 

The two-window mechanism is mainly divided into separate type, adjacent type and overlapping type. The 
mechanisms are shown in Figure 3, Figure 4, and Figure 5, respectively. 

STEPD[8] uses a statistical test of equal proportions with continuity correction on the data in two separate windows, 
signaling a warning and drift when a significant difference in accuracy between the recent and old windows is detected. 
Adaptive Sliding Window (ADWIN)[11] is one of the classic drift detection methods using adjoining double windows. 
The main idea of ADWIN is: when the average values in the two sub-windows w1 and w2 of the latest window W show 
a sufficiently large difference, and it is inferred that the corresponding predicted values are different, the old window is 
deleted. The mean of the two windows is defined according to the Hoeffding boundary is greater than the threshold. 
Based on ADWIN, SEED[12] compares two sub-windows, and when the average of the sub-windows is higher than the 
selected threshold, the old sub-windows are discarded. It calculates its test statistic using Hoeffding's inequality with 
Bonferroni correction. The FHDDMS[21] drift detection method uses two superimposed sliding windows to obtain 
prediction results to detect concept drift. 

 

Figure 3 Separate window 

 
Figure 4 adjacent window 



 

 

 

Figure 5 overlapping window 

3 Proposed algorithm 

In this paper, the abrupt and gradual concept drift in the data stream is taken as the research object, and a level 
transition threshold parameter is proposed. In the concept drift detection, a multi-level weighted mechanism including 
"stable level-warning level-drift level" is introduced. The weighting mechanism changes the difference between the 
weight value of instance. Finally, combined with the double-layer sliding window mechanism, a multi-level weighted 
Drift Detection Method (MWDDM) is proposed. In addition, two variants of MWDDM are proposed based on 
Hoeffding's inequality and Mcdiarmid's inequality, respectively: MWDDM_H and MWDDM_M.  

3.1 Multi-level weighted mechanism 

Many drift detection algorithms based on sliding window have been proposed. ADWIN[11], DDM[6], STEPD[8], 
FHDDM[13] are all classical drift detection methods using sliding windows. Most of the above algorithms compare the 
differences in two sub-windows within a window to detect drift.  

It is comprehensively found that a shorter sliding window can detect the change of data distribution in the data stream 
more quickly when abrupt concept drift is occurring, and timely warn a drift signal and make the learner make 
corresponding changes to adapt to the concept drift. In addition, for gradual concept drift with long drift length, the 
short sliding window may not be able to adapt to the slowly changing data flow, so a sliding window with a larger length 
may be more suitable for dealing with gradual concept drift. Based on the above conclusions, this paper uses a 
combination of sliding windows with overlapping long sliding window and short sliding window to simultaneously 
adapt to the abrupt and gradual concept drifts in the data stream. Its double sliding window mechanism is shown in 
Figure 6 below.

  

Figure 6 two sliding window mechanism

Also, in a data stream environment, the old instance is considered obsolete or no longer valid. Therefore, 
incremental learners should be trained using the most recent instances, as the latter are more reflective of the current 
situation in the context of data stream. Online learning algorithms typically use fading factors or weighting methods to 
increase the weight of recent instances. This is very important from an adaptive learning perspective, especially when a 
transition between two concepts in a data stream occurs, i.e. concept drift. Therefore, according to this observation, 
giving more weight to the newest instances in the window helps to detect concept drift faster. 



 

 

Based on this, this paper proposes a piecewise weighted concept drift detection mechanism. The drift detection 
level is divided into three levels, namely "stable level", "warning level" and "drift level". 

First, in this algorithm, the data stream is composed of paired instance groups (xi⃗⃗⃗  , yi), where xi⃗⃗⃗   is the attribute 
vector and yi is its corresponding class. For each instance, Naive Bayes Or a classifier such as Hoeffding tree will 
make a prediction �̂�𝑖, and then compare �̂�𝑖 with the actual result 𝑦𝑖 to decide whether the prediction is correct or 
no(�̂�𝑖 = 𝑦𝑖), if the current prediction is correct, then at the same time insert 1 into the long sliding window and short 
sliding window, and insert 0 if the prediction is wrong. 

During the "stable level", we weight the instances within two windows. The weighting method used in this paper 
is a linear weighting method, and its weighting mechanism is shown in Figure 7. As the number of instances increases, 
the weight value of the newest instance increases linearly compared to the weight value of the old instance. The article 
defines 𝜔𝑖 as the weight value assigned to an instance. In the linear weighting method, 𝜔𝑖+1 − 𝜔𝑖 = 𝑑𝑖𝑓𝑓, that is, the 
calculation formula (8) of the weight value of an instance in the window is as follows: 𝜔𝑖 = 1 + (𝑖 − 1) ∗ 𝑑𝑖𝑓𝑓 (8) 

During the "stable level", the diff is assigned a value of 0.01. Then, this paper defines the weighted average 
classification prediction accuracy 𝑢𝑠∙𝜔 and 𝑢𝑙∙𝜔 within the short sliding window and the long sliding window. Its 
calculation formula is shown in the following formula (4) and formula (5). Among them, |𝑊𝑠| and |𝑊𝑙| represent the 
length of the long sliding window and the short sliding window, respectively. 

𝑢𝑠∙𝜔 = ∑ (𝜔𝑖 ∗ Wi)Wsi=1∑ 𝜔𝑖wsi=1 (4) 
𝑢𝑙∙𝜔 = ∑ (𝜔𝑖 ∗ Wi)Wli=1∑ 𝜔𝑖wli=1 (5) 

Here，𝜔𝑖 = 1 + (𝑖 − 1) ∗ 0.01。 

At the same time, before the next concept drift is reported, the paper defines the maximum weighted average 
classification prediction accuracy observed so far in the long sliding window and the short sliding window, respectively, 𝑢𝑠∙𝜔𝑚𝑎𝑥 and 𝑢𝑙∙𝜔𝑚𝑎𝑥, which is calculated as follows, if 𝑢𝑠∙𝜔𝑚𝑎𝑥 < 𝑢𝑠∙𝜔,    then 𝑢𝑠∙𝜔𝑚𝑎𝑥 = 𝑢𝑠∙𝜔 if  𝑢𝑙∙𝜔𝑚𝑎𝑥 < 𝑢𝑙∙𝜔,    then  𝑢𝑙∙𝜔𝑚𝑎𝑥 = 𝑢𝑙∙𝜔 

Then, in order to judge when the drift detection method enters the "warning level", this paper defines a level 
transition threshold parameter 𝜆𝑠 and 𝜆𝑙 for the long sliding window and the short sliding window, respectively. The 
calculation methods are shown in formula (6) and formula (7) respectively. 𝜆𝑠 = 𝑢𝑠∙𝜔𝑢𝑠∙𝜔𝑚𝑎𝑥 (6) 

𝜆𝑙 = 𝑢𝑙∙𝜔 𝑢𝑙∙𝜔𝑚𝑎𝑥 (7) 
When either of the two conditions 𝜆𝑠 > 𝜃𝑠 or 𝜆𝑙 > 𝜃𝑙 is satisfied, the algorithm will enter the "warning level", 

where 𝜃𝑠=0.78, 𝜃𝑙=0.85. Among them, the determination of the pre-defined thresholds 𝜃𝑠 and 𝜃𝑙 will be discussed 
in detail in the experimental section. 

During the "warning level", the algorithm will increase the difference in weight values between the instances in 
the long and short sliding windows to emphasize the importance of the latest instances so that the detection method can 
detect concept drift faster. Therefore, after the algorithm enters the "warning level", the weighted average of correct 
prediction 𝑢𝑠∙𝜔 and 𝑢𝑙∙𝜔 within the long and short sliding windows are updated to 𝑢𝑠∙𝜔′ and 𝑢𝑙∙𝜔′, similarly, the 
maximum weighted average of correct prediction 𝑢𝑠∙𝜔𝑚𝑎𝑥  and  𝑢𝑙∙𝜔𝑚𝑎𝑥  will also be updated to 𝑢𝑠∙𝜔𝑚𝑎𝑥′ and 𝑢𝑙∙𝜔𝑚𝑎𝑥′ . Its 
calculation formula is as follows. 



 

 

𝑢𝑠∙𝜔′ = ∑ (𝜔𝑖 ∗ Wi)Wsi=1∑ 𝜔𝑖wsi=1 (9) 
𝑢𝑙∙𝜔′ = ∑ (𝜔𝑖 ∗ Wi)Wli=1∑ 𝜔𝑖wli=1 (10) 

Here，𝜔𝑖 = 1 + (𝑖 − 1) ∗ 5。 

The maximum weighted average of correct prediction within the long and short sliding Windows 𝑢𝑠∙𝜔𝑚𝑎𝑥′ 
and𝑢𝑙∙𝜔𝑚𝑎𝑥′are updated as follows if 𝑢𝑠∙𝜔𝑚𝑎𝑥′ < 𝑢𝑠∙𝜔′,    then 𝑢𝑠∙𝜔𝑚𝑎𝑥′ = 𝑢𝑠∙𝜔′ if 𝑢𝑙∙𝜔𝑚𝑎𝑥′ < 𝑢𝑙∙𝜔′,    then 𝑢𝑙∙𝜔𝑚𝑎𝑥′ = 𝑢𝑙∙𝜔′ 

 

Figure 7 Weighted mechanism 

Finally, in the “drift level”, MWDDM_H and MWDDM_M are determined by the Hoeffding and Mcdiarmid 
bounds generated by the Hoeffding inequality and Mcdiarmid inequality respectively. If the difference between the 
maximum weighted average of correct prediction and the weighted average of correct prediction in the long and short 
sliding windows is greater than the pre-defined threshold, the occurrence of a concept drift will be reported. At this time, 
the classifier will be reset to retrain to adapt to the new data distribution 

The Hoeffding inequality used by MWDDM_H is shown in Theorem 1 below[15]. 
Theorem1 Hoeffding inequality 

Let X1, X2, ..., Xn be n independent random variables，𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖], 𝑖 ∈ {1,2,3… . . 𝑛}。The difference between the 

empirical means �̅� = 1𝑛 ∑ 𝑋𝑖𝑛𝑖=1  , for any ε, there is the following formula (11): 

𝑝𝑟{𝐸[𝑓] − 𝑓 ≥ 𝜀𝑀} ≤ exp(− 2 ∗ n2 ∗ 𝜀𝑀2𝛴i=1𝑛 (𝑏𝑖 − 𝑎𝑖)2) (11) 
According to this theorem, considering the average �̅� which can be at most δ at a given significance level, the 

estimated error 𝜀𝛿, that is, the Hoeffding bound is shown in Equation (12): 

𝜀𝛿 = √ 12𝑛 𝐼𝑛 1𝛿 (12) 
Therefore, MWDDM_H defines two thresholds 𝜀𝑠∙𝐻 and 𝜀𝑙∙𝐻 for the long and short sliding windows respectively, 

and the calculation formulas are shown in formula (13) and formula (14) respectively; 

𝜀𝑠∙𝐻 = √ 12 ∗ Ws 𝐼𝑛 1𝛿𝐻 (13) 
𝜀𝑙∙𝐻 = √ 12 ∗ Wl 𝐼𝑛 1𝛿𝐻 (14) 

MWDDM_H defines the difference between the maximum weighted average of correct prediction and the 



 

 

current weighted average of correct prediction in the long and short sliding windows as 𝛥𝑠 and 𝛥𝑙, where 𝛥𝑠 =𝑢𝑠∙𝜔𝑚𝑎𝑥 − 𝑢𝑠∙𝜔  and 𝛥𝑙 = 𝑢𝑙∙𝜔𝑚𝑎𝑥 − 𝑢𝑙∙𝜔 . hhen, when 𝛥𝑠  is greater than the pre-defined threshold 𝜀𝑠∙𝐻  or 𝜀𝑙   is greater than the pre-defined threshold 𝛥𝑙∙𝐻 , when either condition is satisfied, the occurrence of concept drift will be reported. 
The Mcdiarmid inequality used by MWDDM_M is shown in Theorem 2. 

Theorem 2 McDiarmid's inequality 

Let X1, X2, ..., Xn be n independent random variables that all take values in the set X. Furthermore,  let f : Xn→ R  
X1, ..., Xn, we have ∀i, ∀x1, ..., xn, 𝑥𝑖′∈X，which is shown as formula (15)。 |𝑓(𝑥1, … 𝑥𝑖 , … 𝑥𝑛) − 𝑓(𝑥1, … 𝑥𝑖′ …𝑥𝑛)| ≤ 𝑐𝑖 (15) 

This means that replacing xi with some arbitrary value changes the function f at most 𝑐𝑖 . For all 𝜀𝑀>0, we have 
formula (16). 𝑝𝑟{𝐸[𝑓] − 𝑓 ≥ 𝜀𝑀} ≤ exp(− 2𝜀𝑀2𝛴i=1𝑛 𝑐𝑖2) (16) 

Finally, given a confidence 𝛿𝑀, the obtained 𝜀𝑀, the Mcdiarmid bound, is shown in formula (17). 

𝜀𝑀 = √𝐼𝑛 ( 1𝛿𝑀)𝛴i=1𝑛 𝑣𝑖22 (17) 
Therefore, MWDDM_M defines two thresholds 𝜀𝑠∙𝑀  and 𝜀𝑙∙𝑀  for the long and short sliding windows 

respectively, and the calculation formulas are shown in formula (18) and formula (19). Here, 𝑣𝑖 = 𝑤(𝑖)∑ 𝑤(𝑖)𝑛𝑖=1 。 

𝜀𝑠∙𝑀 = √𝐼𝑛 ( 1𝛿𝑀)𝛴i=1Ws𝑣𝑖22 (18) 
𝜀𝑙∙𝑀 = √𝐼𝑛 ( 1𝛿𝑀)𝛴i=1Wl 𝑣𝑖22 (19) MWDDM_M still uses the difference between the maximum weighted average of correct prediction and the current weighted average of correct prediction in the same long and short sliding window as in MWDDM_H, namely 𝛥𝑠  and𝛥𝑙 , where 𝛥𝑠 = 𝑢𝑠∙𝜔𝑚𝑎𝑥 − 𝑢𝑠∙𝜔  and 𝛥𝑙 = 𝑢𝑙∙𝜔𝑚𝑎𝑥 − 𝑢𝑙∙𝜔 . hhen, when 𝛥𝑠  is greater than the pre-defined threshold 𝜀𝑠∙𝑀  or 𝛥𝑙  is greater than the pre-defined threshold 𝜀𝑙∙𝑀 , when either condition is satisfied, the occurrence of concept drift will be reported. 

3.2 Multi-level weighted drift detection method(MWDDM) 
Based on the piecewise weighting mechanism proposed above, this paper will analyze the predictions produced by 

the learner and store them in a two-layer sliding window, and then apply a decision model to try to detect changes in the 
data distribution and indicate the occurrence of concept drift. 

Specifically, given a set of pairs of instances (xi⃗⃗⃗  , yi), where xi⃗⃗⃗   is an attribute vector and yi is its corresponding 
class, for each instance, the base learner will make a prediction �̂�𝑖 , and then compare with the actual result yi to 
decide whether the prediction is correct or not (�̂�𝑖 = 𝑦𝑖). The information of the prediction results is stored in the sliding 
window for the detection model to use. In general, most existing drift detectors analyze the classification accuracy (error 
rate) and its corresponding standard deviation by predicting the results, and find differences within different windows. 
Different drift detection methods use different strategies or statistics to monitor the performance of the base classifier 
and decide when concept drift occurs. 

Based on the PAC learning model, MWDDM assumes that as long as the sample distribution is stationary, the error 
rate will decrease when the number of samples increases, that is, the distribution accuracy tends to increase. Therefore, 
an increase in error rate or a decrease in classification accuracy indicates a change in the data distribution. Immediately 
thereafter, the learning performance of existing learners is likely to be degraded. With this idea, the classification 



 

 

accuracy rate (or error rate) of the classifier can be used to reflect the data distribution changes in the current data stream. 
Specifically, this paper uses the superimposed long and short sliding windows to obtain the classification prediction 
results. Based on Hoeffding's inequality and Mcdiarmid's inequality, two variants of the algorithm are proposed, namely 
MWDDM_H and MWDDM_M. 

The specific flow of MWDDM is shown in Algorithm 1 below. Lines 1-3 of the algorithm indicate that the window 
size of the two sliding windows will be initialized, and the parameter values in the algorithm will be assigned, and then 𝜀𝑠∙𝐻、 𝜀𝑙∙𝐻 and 𝜀𝑠∙𝑀、 𝜀𝑙∙𝑀 are calculated for MWDDM_H and MWDDM_M respectively. Lines 4-7 of the algorithm 
indicate whether the instances in the window are full, and if so, discard the oldest instance and insert the newest instance. 
Lines 8-13 of the algorithm indicate that in the "stable level", the weighted average of correct prediction 𝑢𝑠∙𝜔、𝑢𝑙∙𝜔 
within the window are calculated, and 𝑢𝑠∙𝜔𝑚𝑎𝑥 and  𝑢𝑙∙𝜔𝑚𝑎𝑥 are updated. Lines 14-22 of the algorithm indicate that it will 
judge whether the algorithm has entered the "warning level", and if so, update weighted average of correct prediction 𝑢𝑠∙𝜔、𝑢𝑙∙𝜔  to 𝑢𝑠∙𝜔′、𝑢𝑙∙𝜔′ , and update to obtain the maximum weighted average of correct prediction 𝑢𝑠∙𝜔𝑚𝑎𝑥′、 𝑢𝑙∙𝜔𝑚𝑎𝑥′. Calculate the difference 𝛥𝑠 𝑎𝑛𝑑 𝛥𝑙 between the maximum weighted average of correct prediction and the current weighted average of correct prediction. Lines 24-29 of the algorithm indicate that during the "drift level", 
MWDDM_H and MWDDM_M will determine whether 𝛥𝑠 and 𝛥𝑙 are greater than a pre-defined threshold, and if so, 
will report the occurrence of a drift and reset the classifier for retraining.

Algorithm 1 MWDDM 

1: 𝑛𝑠 = |𝑊𝑠|,𝑛𝑙 = |𝑊𝑙| / initialize the window size 

2: 

𝑀𝑊𝐷𝐷𝑀_𝐻: 𝛿𝐻 = 𝑑𝑒𝑙𝑡𝑎 𝑀𝑊𝐷𝐷𝑀_𝑀: 𝛿𝑀 = 𝑑𝑒𝑙𝑡𝑎 𝑑 = 𝑑𝑖𝑓𝑓，𝜃𝑠 = 0.78，𝜃𝑙 = 0.85 

/ initialize parameter values 

3: 

𝑀𝑊𝐷𝐷𝑀_𝐻: 𝜀𝑠∙𝐻 = √ 12 ∗ Ws 𝐼𝑛 1𝛿𝐻  , 𝜀𝑙∙𝐻 = √ 12 ∗ Wl 𝐼𝑛 1𝛿𝐻   

𝑀𝑊𝐷𝐷𝑀_𝑀: 𝜀𝑠∙𝑀 = √𝐼𝑛 ( 1𝛿𝑀)𝛴i=1Ws𝑣𝑖22  , 𝜀𝑙∙𝑀 = √𝐼𝑛 ( 1𝛿𝑀) 𝛴i=1Wl 𝑣𝑖22  

 

/calculate 𝜀𝑠∙𝐻、 𝜀𝑙∙𝐻 

 

/calculate 𝜀𝑠∙𝑀、 𝜀𝑙∙𝑀 

4: if Win.size() = n then /if window is full 

5: Win.drop() /drop oldest instances 

6: end if   

7: Win.push() /insert newest instances 

8: /*stable level*/  

9: 
𝑢𝑠∙𝜔 = ∑ (𝜔𝑖 ∗ Wi)Wsi=1∑ 𝜔𝑖wsi=1  

𝑢𝑙∙𝜔 = ∑ (𝜔𝑖 ∗ Wi)Wli=1∑ 𝜔𝑖wli=1  

/calculate 𝑢𝑠∙𝜔、𝑢𝑙∙𝜔  

10: if 𝑢𝑠∙𝜔𝑚𝑎𝑥 < 𝑢𝑠∙𝜔 ,  then /update 𝑢𝑠∙𝜔𝑚𝑎𝑥 

11: 𝑢𝑠∙𝜔𝑚𝑎𝑥 = 𝑢𝑠∙𝜔  

12: if  𝑢𝑙∙𝜔𝑚𝑎𝑥 < 𝑢𝑙∙𝜔 ,    𝐭𝐡𝐞𝐧 /update  𝑢𝑙∙𝜔𝑚𝑎𝑥 

13:  𝑢𝑙∙𝜔𝑚𝑎𝑥 = 𝑢𝑙∙𝜔  

14: if (𝜆𝑠 = 𝑢𝑠∙𝜔𝑢𝑠∙𝜔𝑚𝑎𝑥 > 𝜃𝑠  or  𝜆𝑙 = 𝑢𝑙∙𝜔 𝑢𝑙∙𝜔𝑚𝑎𝑥 > 𝜃𝑙) then /judge to enter “warning level” 

15: /*warning level*/  

16: 𝑢𝑠∙𝜔′ = ∑ ((1 + (𝑖 − 1) ∗ 0.01) ∗ Wi)Wsi=1∑ 1 + (𝑖 − 1) ∗ 0.01wsi=1  /update 𝑢𝑠∙𝜔 to 𝑢𝑠∙𝜔′ 



 

 

17: 𝑢𝑙∙𝜔′ = ∑ ((1 + (𝑖 − 1) ∗ 5) ∗ Wi)Wli=1∑ 1 + (𝑖 − 1) ∗ 5wli=1  /update 𝑢𝑙∙𝜔to 𝑢𝑙∙𝜔′ 
18: if 𝑢𝑠∙𝜔𝑚𝑎𝑥′ < 𝑢𝑠∙𝜔′,    𝐭𝐡𝐞𝐧  /update 𝑢𝑠∙𝜔𝑚𝑎𝑥′

 

19: 𝑢𝑠∙𝜔𝑚𝑎𝑥′ = 𝑢𝑠∙𝜔′  

20: if 𝑢𝑙∙𝜔𝑚𝑎𝑥′ < 𝑢𝑙∙𝜔′,    𝐭𝐡𝐞𝐧 /update 𝑢𝑙∙𝜔𝑚𝑎𝑥′
 

21: 𝑢𝑙∙𝜔𝑚𝑎𝑥′ = 𝑢𝑙∙𝜔′  

22: 𝛥𝑠 = 𝑢𝑠∙𝜔𝑚𝑎𝑥′ − 𝑢𝑠∙𝜔′、𝛥𝑙 = 𝑢𝑙∙𝜔𝑚𝑎𝑥′ − 𝑢𝑙∙𝜔′ /calculate 𝛥𝑠、𝛥𝑙 
23: /*drift level*/  

24: MWDDM_H:  

25: if  (𝛥𝑠 > 𝜀𝑠∙H   𝑜𝑟   𝛥𝑙 > 𝜀l∙H) /judge if a drift has occurred 

26: MWDDM_M:  

27: if  (𝛥𝑠 > 𝜀𝑠∙𝑀   𝑜𝑟   𝛥𝑙 > 𝜀l∙𝑀)  

28: return true /if yes, report a drift happening 

29: Win=[ ]，𝑢𝑠∙𝜔𝑚𝑎𝑥、 𝑢𝑙∙𝜔𝑚𝑎𝑥=0, 𝑢𝑠∙𝜔𝑚𝑎𝑥′
、𝑢𝑙∙𝜔𝑚𝑎𝑥′ = 0 /reset the window 

4 Experiments 

In this section, in order to verify the effectiveness of the MWDDM proposed in this paper, this paper conducts 
experimental evaluations on both artificial datasets and real-world datasets. The experimental platform is Massive 
Online Analysis (MOA) framework[23]. This paper compares MWDDM with the latest drift detection algorithms, 
including DDM[6], EDDM[7], RDDM[22], FHDDM[13], FHDDMS[21], MDDM[14], and HDDM[20]. Our 
experiments are performed on the processor Intel(R) Core(TM) i5-4200H CPU @ 2.80GHz and 8gb RAM. In Section 
4.1, this paper introduces the evaluation metrics used in the experiment, introduces the dataset used in the experiment 
in Section 4.2, and presents and analyzes the experimental results in Section 4.3. 
4.1 Evaluation metrics 

Currently, the evaluation metric for detecting concept drift in a data stream is detection delay. When drift occurs at 
a certain moment, the drift detection algorithm cannot detect it immediately, that is, there is usually a delay in drift 
detection. Therefore, in order to effectively evaluate the timeliness of drift detection, Detection Delay (DD) is introduced 
to describe the number of instances between the actual position of the drift and the detected position to evaluate the 
timeliness of the algorithm. 

In addition, the True Positive Ratio (TPR), False Positive Ratio (FPR) and False Negative Ratio (FNR) are defined 
according to the maximum detection delay Δd introduced in [13]. The maximum detection delay Δd is a threshold that 
determines how far a detected drift is allowed to be from the true position of the drift to be considered a true drift. In 
this paper, the maximum detection delay Δd is set to 250 in the dataset containing abrupt concept drift, and 1000 in the 
dataset containing gradual concept drift. The definitions of false positive ratio and false nagative ratio are as follows: 

True Positive Ratio (TPR): Suppose the moment when the drift occurs is T, then the number of drifts detected in 
the interval [T, T+Δd] is regarded as the number of correct detections (TP) is the correct detection The number of drifts. 
In this paper, the true positive ratio TPR is defined as the number of correct detections /the total number of drifts in the 
interval [T, T+Δd]. 

False Positive Ratio (FPR): Let the moment when the drift occurs be T, if the drift detector detects a drift that 
exceeds the acceptable detection interval, it will falsely issue a drift alarm. The number of drifts detected outside the 
interval [T, T+Δd] is regarded as the number of false positives (FP), and the false positive rate FPR is defined as 
FP/(FP+TP). 

False Negative Ratio (FNR): False negative means that the drift detector mistakenly ignores the drift that occurs 
in the interval [T, T+Δd], and the number of missed drifts is the number of false negatives (FN ), define the false nagative 



 

 

ratio FNR as FN/(FN+TP). 
Finally, classification accuracy (Accuracy), memory usage (model cost) and running time (evaluation time) in real-

world datasets are also important evaluation metrics. 
4.2 Datasets 

There have been many studies evaluating the proposed algorithms on artificial datasets of specific types of concept 
drift. One of the advantages of artificial datasets is to know details such as where the drift is. The real-world dataset 
used in this paper is as follows. They are frequently used in the fields of concept drift detection and adaptive learning 
in data streams. All artificial and real-world datasets used in this paper are summarized in Table 1. 

SINE: This dataset contains abrupt drift. It takes two properties (x and y) that are uniformly distributed in [0, 1]. 
Additionally, the dataset is classified using the following function y = sin(x). Therefore, any instances below the curve 
are classified as positive, while others are negative until the first drift occurs. The dataset contains a total of 100,000 
instances, and every 20,000 instances, a drift occurs, and then reverse classification occurs. The dataset contains a total 
of four drifts at 20,000, 40,000, 60,000, and 80,000 instances with 10% noise. 

MIXED: This dataset contains abrupt drift. The dataset has two numerical properties x and y uniformly distributed 
in [0,1], and two boolean properties v and w. An instance is classified as positive requires at least two or three of the 
following conditions: v, w, y < 0.5 + 0.3∗sin(2πx). The dataset flips the classification after one drift, and drifts every 
20,000 instances with 10% noise. 

CIRCLES: This dataset contains gradual drift, which has two continuous attributes x and y. The four circle 
equations represent 4 different concepts, the instances inside the circle are classified as positive, and the instances 
outside the circle are negative, a total of two categories. Drift is created by gradually changing the equation of the circle 
at the drift point. The dataset contains a total of 100,000 instances, and a gradual drift occurs every 25,000 instances, 
with 10% noise. 

LED: This dataset contains gradual drift. The goal of this dataset is to predict numbers on a seven-segment display, 
where each number has a 10% chance of being displayed. This dataset has 7 class-related attributes and 17 unrelated 
attributes. Simulate concept drift by exchanging related properties. The dataset contains a total of 100,000 instances, 
and a gradual drift occurs every 25,000 instances, with 10% noise. 

ELECTRICITY: It contains 45,312 instances with 8 input attributes, recorded every half hour for two years by 
the NSW Electricity Company in Australia. The classifier must predict the rise (Up) or the fall (Down) of the electricity 
price. Concept drift may stem from changes in consumption habits or emergencies. 

FOREST COVERTYPE: It consists of 54 attributes and 581,012 instances describing 7 forest cover types at 30 
× 30 m cells obtained from the United States Forest Service (USFS) information system for the Roosevelt National 
Forest in Northern Colorado 4 wilderness areas. 

POKERHAND: It consists of 1,000,000 instances, where each instance is an example of five cards drawn from a 
standard 52-card deck. Each card is described by two attributes (suit and rank), for a total of ten predicted attributes. 

Table 1 Summary of datasets 

 datasets instances features class labels num of drifts concepts drift type 

artificial 
datasets 

SINE 100000 2 2 4 20000 abrupt 

MIXED 100000 4 2 4 20000 abrupt 

LED 100000 24 10 3 25000 gradual 

CIRCLES 100000 2 2 3 25000 gradual 

real-world 
datasets 

ELECTRICITY 45312 8 2 \ \ unknown 

POKER HAND 1000000 2 10 \ \ unknown 

FOREST 

COVERTYPE 
581012 54 7 \ \ unknown 



 

 

4.3 Experimental results and analysis 

(1) Experiments of Parameter analysis 

First, the determination of parameters 𝜃𝑠 and 𝜃𝑙 in MWDDM is experimentally analyzed. If the artificial data 
and 𝜆𝑠 and 𝜆𝑙 of all instances in the real-world dataset are collected, the number is too large to clearly show the trend 
of 𝜆𝑠 and 𝜆𝑙 changing with the instances. Therefore, this paper collects the parameter values of 1000 instances before 
the first drift point and 1000 instances after the first drift point in all artificial datasets, and uses Naive Bayes and 
Hoeffding trees as classifiers for experiments respectively. . Figures 8 and 10 show the changing trends of the parameter 
value 𝜆𝑠 around the first drift point in the abrupt drift dataset and the gradual drift dataset, respectively. Figure 9 and 
Figure 11 show the changing trend of the parameter value 𝜆𝑙 in the abrupt drift dataset and the gradual drift dataset 
near the first drift point, respectively. 

It can be seen from Figure 8 and Figure 10 that the parameter value 𝜆𝑠 of the algorithm is 0.78-1.0 in most cases, 
whether in the abrupt drift dataset (SINE, MIXED) or the gradual drift dataset (CIRCLES, LED). The range of 𝜆𝑠 
fluctuates continuously, and when instance=20000 near the drift point, the 𝜆𝑠 value drops sharply from 0.78 to about 
0.4. This means that when 7.8≤𝜆𝑠≤1, the algorithm speculates that the data distribution in the data stream is in the 
"stable level", and when 𝜆𝑠 <0.78, the algorithm may experience conceptual drift and enter the "warning level". 
Therefore, this paper sets the parameter value 𝜃𝑠 in the algorithm to 0.78. In addition, it can be seen from Figure 9 and 
Figure 11 that the variation trend of 𝜆𝑙 is constantly changing in the range of 0.85-1.0 in most cases, while in the range 
near the drift point, the value of 𝜆𝑠 drops sharply from 0.85 to around 0.7, and this change is particularly evident in 
Figure 12. At the same time, what is shown in the figure is the change trend of 𝜆𝑙 value under the long sliding window 
in the gradual dataset, which is particularly important for detecting gradual concept drift. Therefore, this paper sets the 
value of 𝜃𝑙 to 0.85.

 

Figure 8 𝝀𝒔 in datasets with abrupt drift 

 

Figure 10 𝝀𝒔 in datasets with gradual drift 
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Figure 9 𝝀𝒍 in datasets with abrupt drift 

 

Figure 11 𝝀𝒍 in datasets with gradual drift 

(2) Experiments of drift detection performance 

In this paper, the proposed algorithm MWDDM and other comparison algorithms are tested on artificial datasets 
with catastrophic concept drift, namely SINE and MIXED, and artificial datasets with gradual concept drift, namely 
CIRCLES and LED. Experiments were carried out on the NB and Hoeffding tree (HT) as learners respectively, and the 
drift detection performance of the algorithm was summarized and analyzed. 

In this paper, the maximum detection delay Δd is set to 250 on datasets with abrupt drift (SINE, MIXED), and 
1000 on datasets with gradual drift (CIRCLES, LED), because the drift width of gradual drift is considered in this paper. 
If Δd is set too small, it will lead to a higher false positive ratio. 

Table 2 shows the drift detection performance of MWDDM_H and MWDDM_M and other comparative algorithms 
using Naive Bayes and Hoeffding trees as learners, respectively, in the LED artificial dataset, which contains gradual-
type concept drift. Regardless of whether Naive Bayes or Hoeffding tree is used as the learner, MWDDM_H and 
MWDDM_M achieve the lowest detection delay among all algorithms, followed by MDDM, FHDDM, FHDDMS and 
HDDM_W. Specifically, when using Naive Bayes as the learner, the detection delay of MWDDM_H is reduced by 9.07 
compared with MDDM_E, and it is 45.73 compared with FHDDMS. Both EDDM and DDM have the highest detection 
delay. In addition, EDDM has the highest false positive ratio and false nagative ratio. 

Table 2 drift detection performance in LED 

 detector DD TPR FPR FNR 

NB 

MWDDM_H 215.20 1 0 0 

MWDDM_M 215.22 1 0 0 

FHDDMS 260.93 1 0 0 

FHDDM 260.93 1 0 0 

MDDM_A 257.20 1 0 0 

MDDM_E 224.27 1 0 0 

MDDM_G 224.27 1 0 0 

HDDM_W 287.40 1 0 0 

HDDM_A 310.20 1 0 0 

EDDM 741.67 0.33 0.67 0.67 

RDDM 332.93 1 0 0 

DDM 432.73 1 0 0 

HT MWDDM_H 210.27 1 0 0 
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MWDDM_M 215.20 1 0 0 

FHDDMS 256.00  1 0 0 

FHDDM 261.00  1 0 0 

MDDM_A 260.93  1 0 0 

MDDM_E 224.27  1 0 0 

MDDM_G 224.27  1 0 0 

HDDM_W 287.40  1 0 0 

HDDM_A 277.73  1 0 0 

EDDM 876.75  0.27 0.87 0.73 

RDDM 338.13  1 0 0 

DDM 444.00  1 0 0 

Table 3 shows the drift detection performance on the artificial dataset CIRCLES, which contains gradual-type 
concept drift. Among all algorithms, MWDDM has the lowest detection delay in the dataset, followed by MDDM and 
HDDM_W. Compared with the next best performance of MDDM_E, MWDDM_H reduces the detection delay by 6.87, 
and compared with FHDDMS, it reduces by 60.40. Compared with MDDM_E, the reduction in detection delay reaches 
8.26, and compared with FHDDMS, it reaches 61.73. FHDDMS, FHDDM and MDDM_A achieved the lowest false 
positive ratio, and EDDM achieved the highest false positive ratio. Meanwhile, EDDM and DDM have the highest false 
nagative ratio. In addition, the MWDDM algorithm in this paper also has false detections to some extent. 

Table 3 drift detection performance in CIRCLES 

 detector DD TPR FPR FHR 

NB 

MWDDM_H 120.20 1 0.23 0 

MWDDM_M 118.87 1 0.23 0 

FHDDMS 180.60 1 0 0 

FHDDM 180.60 1 0 0 

MDDM_A 186.67 1 0 0 

MDDM_E 127.07 1 0.1 0 

MDDM_G 127.07 1 0.1 0 

HDDM_W 157.00 1 0.26 0 

HDDM_A 237.73 1 0.13 0 

EDDM 956.00 0.07 0.99 0.93 

RDDM 403.53 1 0.36 0 

DDM 640.70 0.67 0.37 0.33 

HT 

MWDDM_H 54.60  1 0.10 0 

MWDDM_M 52.67 1 0.10 0 

FHDDMS 69.80  1 0 0 

FHDDM 77.27  1 0 0 

MDDM_A 77.27  1 0 0 

MDDM_E 68.53  1 0.05 0 

MDDM_G 61.40 1 0.13 0 

HDDM_W 76.27 1 0.13 0 

HDDM_A 73.67 1 0.18 0 

EDDM 316.00 0.13 0.99 0.87 

RDDM 272.13 1 0.05 0 

DDM 429.33 1 0.05 0 

Table 4 shows the drift detection performance on the artificial dataset SINE, which contains abrupt concept drift. 
When using Naive Bayes as the classifier, MWDDM_H achieves the lowest detection delay and false nagative ratio 
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among all algorithms, but also has a certain false positive ratio, followed by MWDDM_M. In addition, EDDM and 
DDM have the highest detection delay and the lowest true positive ratio. When using Hoeffding tree as the classifier, 
HDDM_W achieved the lowest detection delay, followed by MWDDM_H and MWDDM_M, and EDDM and DDM 
had the highest detection delay. 

Table 4 drift detection performance in SINE 

 detector DD TPR FPR FNR 

NB 

MWDDM_H 33.80 1 0.10 0 

MWDDM_M 34.50 1 0.10 0 

FHDDMS 40.80 1 0 0 

FHDDM 49.85 1 0 0 

MDDM_A 41.65 1 0 0 

MDDM_E 41.70 1 0 0 

MDDM_G 40.70 1 0.04 0 

HDDM_W 34.75 1 0 0 

HDDM_A 94.15 1 0.04 0 

EDDM 209.00 0.05 0.99 0.95 

RDDM 88.63 1 0.31 0 

DDM 160.02 0.70 0.07 0 

HT 

MWDDM_H 34.05  1 0.01 0 

MWDDM_M 34.90 1 0.01 0 

FHDDMS 41.55  1 0.04 0 

FHDDM 49.20  1 0.04 0 

MDDM_A 51.80  1 0.04 0 

MDDM_E 39.35  1 0.07 0 

MDDM_G 39.35  1 0.07 0 

HDDM_W 33.35  1 0.04 0 

HDDM_A 57.65  1 0.12 0 

EDDM 247.50  0.05 0.99 0.95 

RDDM 97.65  1.00 0.31 0 

DDM 155.00  0.90 0.31 0.10 

Finally, the drift detection performance of the algorithm in the MIXED dataset, which also has abrupt drift, is 
shown in Table 5. Similarly, MWDDM_M achieved the lowest detection delay and highest true positive ratio, followed 
by MWDDM_H, but both outperformed algorithms such as FHDDMS and HDDM_W. EDDM and DDM have the 
highest false negative rate. 

To sum up, the experiments of MWDDM_H and MWDDM_M and the comparison algorithm on artificial datasets 
show that both in the dataset with abrupt drift and the dataset with gradual drift, in most cases, they can outperform all 
other comparison algorithms. All have the lowest detection delay, the highest true positive ratio and the lowest false 
nagative ratio. In addition, the algorithm proposed in this paper has certain defects, that is, MWDDM_H and 
MWDDM_M have a certain false positive ratio within an acceptable range in some data sets. 

Table 5 drift detection performance in MIXED 

 detector DD TPR FPR FNR 

NB 

MWDDM_H 33.35 1 0.20 0 

MWDDM_M 32.75 1 0.20 0 

FHDDMS 40.65 1 0.15 0 

FHDDM 48.70 1 0.12 0 

MDDM_A 39.45 1 0.12 0 
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MDDM_E 39.65 1 0.17 0 

MDDM_G 39.65 1 0.17 0 

HDDM_W 34.40 1 0.30 0 

HDDM_A 72.80 1 0 0 

EDDM 42.50 0.15 0.98 0.85 

RDDM 99.05 1 0.37 0 

DDM 157.55 0.80 0.28 0.20 

HT 

MWDDM_H 32.25  1 0.25 0 

MWDDM_M 32.30 1 0.25 0 

FHDDMS 42.45  1 0.23 0 

FHDDM 52.40  1 0 0 

MDDM_A 49.10  1 0.12 0 

MDDM_E 39.40  1 0.29 0 

MDDM_G 40.30  1 0.28 0 

HDDM_W 35.70  1 0.35 0 

HDDM_A 66.60  1 0.25 0 

EDDM 338.25  0.20 0.99 0.80 

RDDM 94.35  1.00 0.50 0.00 

DDM 170.60  0.85 0.18 0.15 

(3) Experiments of accuracy 

In this paper, the proposed algorithms MWDDM_H and MWDDM_M are tested for accuracy in real-world datasets, 
namely POKER HAND, ELECTRICITY and FOREST COVERTYPE. The real-world dataset means that the specific 
location and duration of the concept drift in the dataset will not be known, so the evaluation indicators such as detection 
delay, true positive ratio, false positive rate and false nagative ratio will not be able to be evaluated on the real-world 
dataset. Therefore, on the real-world dataset, we consider the classification accuracy in the dataset as well as the running 
time and memory consumption. 

Figure 12 shows the classification accuracy of MWDDM_H, MWDDM_M, and other comparison algorithms on 
three real-world datasets using Naive Bayes as the classifier. In Figure 12(a), showing the performance on the POKER 
HAND dataset, DDM, HDDM_A, and MWDDM_H achieve the highest classification accuracy. In Figure 12(b), EDDM, 
HDDM_A, and MWDDM_H and MWDDM_M achieve the highest classification accuracy. In Figure 12(c), EDDM 
and MWDDM_H achieved the highest classification accuracy. 

Figure 13 shows the classification accuracy of MWDDM_H, MWDDM_M, and other comparison algorithms on 
three real-world datasets using Hoeffding trees as classifiers. In Fig. 13(a), it can be concluded that DDM, HDDM_A, 
and MWDDM_H and MWDDM_M have the highest classification accuracy. In Figure 13(b), in the first half of the 
ELECTRICITY dataset, RDDM has the highest classification accuracy in most cases. In the second half of the dataset, 
MWDDM_H and MWDDM_M are more accurate in classification in most cases. Finally, in Figure 13(c), MWDDM_H 
and MWDDM_M have higher classification accuracy in most cases, followed by RDDM. In addition, it can be found 
in Figure 12 and Figure 13 that the classification accuracy of MWDDM_H and MWDDM_M can rise faster, that is, 
faster than all other algorithms to recover from the concept drift that may exist in the real-world dataset, which also 
means that MWDDM_H and MWDDM_M have lower detection latency for concept drift, enabling faster detection of 
drift and then resetting the classifier. 

Finally, this paper summarizes and analyzes the spatiotemporal consumption of MWDDM_H, MWDDM_M and 
other comparison algorithms on real-world datasets. Tables 6 and 7 show the space-time consumption of MWDDM_H 
and MWDDM_M and other algorithms on three real-world datasets with Naive Bayes and Hoeffding trees as learners, 
respectively. For the convenience of display, the three real-world datasets of POKER HAND, ELECTRICITY and 



 

 

FOREST COVERTYPE are represented by PH, ELE, and FC in the table, respectively. In terms of running time, 
MWDDM_H and MWDDM_M spend less running time on datasets POKER HAND and ELECTRICITY than most 
other comparison algorithms. In terms of memory consumption, although MWDDM_H and MWDDM_M use double-
layer windows, they can generally achieve less memory consumption due to the way of accessing the prediction results. 

In summary, the experiments of MWDDM_H and MWDDM_M and their comparison algorithms on three real-
world datasets show that MWDDM_H and MWDDM_M have the highest or higher classification accuracy in most 
cases, and their time and space consumption also have excellent performance. In particular, it is able to recover from 
concept drift that may exist in real-world datasets faster than other contrast algorithms, which shows that MWDDM_H 
and MWDDM_M can detect drift faster to allow the learner to react.

 
(a) NB+ COVERTYPE                (b) NB+ ELECTRICITY                 (c) NB+ POKER HAND 

Figure 12 classification accuracy in real-world dataset using NB 

 
(b) HT+ COVERTYPE            (b) HT+ ELECTRICITY             (c) HT+ POKER HAND 

Figure 13 classification accuracy in real-world dataset using HT 

Table 6 time and space performance using NB 

 evaluation time model cost 
 

PH ELE FC PH ELE FC 

MWDDM_H 4.00 0.47 12.31 2.02 1.71 1.42 

MWDDM_M 4.91 0.54 11.79 2.44 1.89 1.34 

DDM 7.97 0.48 12.10 5.75 1.84 1.74 

EDDM 3.92 0.52 12.11 2.23 1.50 1.70 

RDDM 4.16 0.45 11.53 2.80 2.62 1.90 

FHDDM 4.01 0.50 11.83 1.93 1.64 1.32 

FHDDMS 4.25 0.50 11.73 2.07 1.68 1.32 

MDDM_A 4.39 0.55 13.27 2.14 1.85 1.50 

MDDM_E 4.59 0.50 12.56 2.24 1.69 1.42 

MDDM_G 4.23 0.48 12.61 2.07 1.64 1.42 

HDDM_A 4.30 0.52 11.42 2.04 1.67 1.54 

HDDM_W 4.25 0.48 14.47 2.08 1.64 1.63 
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Table 7 time and space performance using HT 

 evaluation time model cost 
 

PH ELE FC PH ELE FC 

MWDDM_H 7.39  0.98  21.64  7.32 8.30 3.74 

MWDDM_M 7.65 1.01 20.43 7.44 8.38 3.50 

DDM 9.42  1.34  25.23  8.90 1.22 4.30 

EDDM 9.81  1.09  22.53  1.02 8.44 3.74 

RDDM 9.66  1.27  26.47  1.11 1.40 6.26 

FHDDM 6.28  0.80  20.03  5.99 6.43 3.40 

FHDDMS 6.55  0.86  22.08  6.29 7.00 3.76 

MDDM_A 6.52  0.95  19.03  6.27 7.79 3.24 

MDDM_E 7.09  0.78  22.78  6.82 6.37 3.88 

MDDM_G 6.55  0.91  20.45  6.30 7.41 3.48 

HDDM_A 8.55  1.14  33.14  8.36 9.189 6.88 

HDDM_W 9.27  1.02  27.72  8.25 8.31 4.73 

5 Conclusion 

In many real-world application scenarios such as user preferences, monitoring systems, weather forecasting, and 
financial fraud detection, concept drift has become an urgent problem to be solved. In order to better solve the problem 
of concept drift in data flow, this paper proposes a piecewise weighted concept drift detection method (MWDDM), 
which proposes a threshold parameter for level transition, and introduces a "Stable level-Warning level-Drift level" 
three-level segmentation weighting mechanism in the concept drift detection process, and apply it to the double sliding 
window mechanism. During the "stable level", MWDDM will assign weights to the instances within the window, the 
newest instances are assigned a larger weight, and the old outdated instances are assigned a lower weight, and the 
difference in weight values between instances is small. After entering the "warning level", the algorithm will increase 
the difference in weights between instances within the windows to detect concept drift faster. Finally, in the "drift level", 
two variants of the algorithm use Hoeffding's inequality and Mcdiarmid's inequality to determine whether concept drift 
has occurred. The method in this paper can detect the abrupt drift and gradual concept drift in the data stream at the 
same time faster with lower false positive ratio and false nagative ratio, and achieve high classification accuracy in real-
world datasets, and achieve excellent performance in terms of space-time consumption. In future work, consider using 
an adaptive windowing mechanism and take measures to enhance the robustness to noise in the data stream to reduce 
the false positive ratio. 
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