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Abstract—In recent years, RDF has gained popularity as a format for the standardized publication and exchange of information in the
Web of Data. In this paper we introduce RDFCSA, a data structure that is able to self-index an RDF dataset in small space and
supports efficient querying. RDFCSA regards the triples of the RDF store as short circular strings and applies suffix sorting on those
strings, so that triple-pattern queries reduce to prefix searching on the string set. The RDF store is then represented compactly using a
Compressed Suffix Array (CSA), a proved technology in text indexing that efficiently supports prefix searches.

Our experiments show that RDFCSA provides a compact RDF representation, using less than 60% of the space required by the raw
data, and yields fast and consistent query times when answering triple-pattern queries (a few microseconds per result). We also
support join queries, a key component of most SPARQL queries. RDFCSA is shown to provide an excellent space/time tradeoff,
typically using much less space than alternatives that compete in time.

Index Terms—Compact data structures, RDF, CSA, Web of Data

1 INTRODUCTION

Since the advent of the World Wide Web a few decades ago,
the volume of publicly available data has been increasing
at a fast pace and has become an invaluable repository of
information at global scale, scattered along a large number
of repositories from several sources. Since it was originally
designed for direct human use, most of such information
is stored in the form of unstructured Web pages and hy-
perlinks between them, which limits our ability to automat-
ically access and process it. The Web of Data is an effort
to provide a formal structure on the data, so that it can
be published and processed in automatic form. The Web of
Data builds on top of the concepts of the Semantic Web [2].
The Resource Description Framework (RDF) [3], [4] is a
W3C recommendation designed to publish and share infor-
mation in the Web of Data. It is based on a simple labeled-
graph-like conceptual structure, but it does not enforce a
specific storage format. This graph is usually regarded, for
most practical purposes, as a collection of triples, or 3-
tuples (source, label, target), that represent the edges in
the graph. Going further in the standardization effort, a
specific query language called SPARQL has been defined [5]
to query RDF collections. SPARQL is based on the concept
of triple pattern, a tuple that may contain some unbound
elements and that is matched against all the triples in the
RDF dataset. Building on this basic selection query, SPARQL
enables matching of more complex subgraphs by means of
joins, which connect triples that share some component.
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The ability of RDF to provide a simple format to publish
information has led to its rise in popularity in recent years.
The lack of an enforced physical representation format has
also led to the emergence of many different solutions to
efficiently store the RDF data. These solutions, generally
called RDF stores or triple stores, aim at providing efficient
storage and querying of the RDF dataset. Some RDF stores
rely on adapting existing ideas from relational or graph
databases [6]. Tools such as Virtuoso [7] and Blazegraph [8],
work as fully-functional RDF stores and provide a wide
range of query capabilities. Other solutions are based on
custom techniques devised specifically for RDF or adapted
from other areas. Some examples of these tools include
RDEF-3X [9], Tentris [10], BITMAT [11], HEXASTORE [12],
WaterFowl [13]], or HDT [14].

The main issue for modern RDF stores, as the number
and size of RDF datasets increases, is the scalability of
the solutions [15]. New approaches have been proposed
to tackle this problem. Most solutions based on databases
or custom indexes rely on caching to maintain good query
performance even if the full dataset is too large to fit in
main memory. New proposals of distributed stores [16],
[17] provide a framework to store and query in a clustered
environment, thus facilitating scalability. Finally, a number
of solutions aim at achieving very efficient compression
so that even large datasets can be efficiently stored and
queried in main memory in regular machines, based on
compact data structures; K2Triples [18] and permuted trie
indexes [19] are examples of proposals that work in this
way. Both K2Triples and permuted trie indexes assume that
RDF triples are composed of numeric identifiers, so they
rely on an external compact dictionary to map RDF strings
to identifiers [20]], [21].

In this paper we introduce RDFCSA, a solution for the
compact representation of RDF data that aims at combining
good compression with consistently good query perfor-
mance. RDFCSA is based on the compressed suffix array,



or CSA [22], a data structure originally devised for text
indexing that is able to store a set of sequences in com-
pressed space and efficiently supports prefix searches. We
modify the CSA to regard the triples of the RDF dataset as
short circular strings. All the triple-pattern queries can then
be transformed into appropriate prefix searches, which are
efficiently solved with the CSA. Join queries can also be im-
plemented by exploiting the query capabilities of the CSA.
We further engineer the CSA to optimize its performance in
this scenario.

We test our proposal against a variety of state-of-the-art
solutions. Our experimental results show that our solution
provides an excellent space/time tradeoff with respect to
other solutions: K2Triples obtains better compression but is
significantly slower than RDFCSA, whereas permuted trie
indexes are uniformly faster only when using significantly
more space. Additionally, our results show that, thanks to
its uniform treatment of all triple patterns, the query times
of RDFCSA are very consistent and predictable. We also
perform comparisons with other popular representations,
including HDT, Virtuoso, Blazegraph, MonetDB, RDF-3X,
and Tentris; all of these are shown to be far from competitive
with RDFCSA, being in most cases several times larger
and/or several orders of magnitude slower.

The rest of this paper is organized as follows: Section [2]
provides some additional details about RDF, as well as some
of the relevant state-of-the-art alternatives, and explains the
elements of the CSA data structure, necessary to understand
our solution. Section[3|describes the RDFCSA data structure,
and the basic algorithms for simple and advanced queries.
Section [4] details the experimental evaluation performed.
Finally, Section [f| presents the main conclusions of this work
and outlines future work.

2 PREVIOUS CONCEPTS AND RELATED WORK
2.1 RDF, triple patterns, and SPARQL

The RDF data model is based on a graph-like representation
of the data, where information about a set of entities is
conceptually stored using labeled arcs in a directed graph.
Given an entity (subject), that is associated with a node, each
of its properties will be represented with an outgoing arc
(labeled by a predicate), pointing to another node (object)
that represents the value of that property [3]]. An especially
useful way of seeing this graph, that is also proposed in
the definition of the format, is as a collection of triples: we
consider that an RDF dataset is a set R of triples (s, p, 0)
(i.e. subject, predicate, object), where each triple represents
an arc of the graph.

Figure [1| displays an example of an RDF dataset, repre-
sented as a graph or as a set of string triples. Each triple
represents an edge of the graph, storing the source node as
the subject, the label as the predicate, and the target node as
the object. Note that we are using simple strings to denote
subjects, predicates, and objects. Yet in RDF, subjects and
predicates must always be identified with URIs, whereas
objects may be either URIs or literal values (we are omitting
some other artifacts of RDF, such as blank nodes, since they
are not relevant for this work; for our purposes, it suffices
to regard each component as any kind of string).

(Inception, filmed in, L.A.)

(L.A., city of, USA)

(E. Page, appears in, Inception)

(L. DiCaprio, appears in, Inception)
(J. Gordon, appears in, Inception)
(J. Gordon, born in, USA)

(J. Gordon, lives in, L.A.)

(E. Page, born in, Canada)

(L. DiCaprio, born in, USA)

(L. DiCaprio, awarded, Oscar 2015)

RDF Triples

Fig. 1. Example of RDF graph and its representation as a set of triples.

RDF collections can be queried using the SPARQL query
language. SPARQL is a complex language with many fea-
tures, but at its core are triple patterns. A triple pattern is a
tuple (subject, predicate, object) where each of its elements
may be either bound or unbound. For instance, the pattern
(s,p,0), where all three elements are bound, asks whether
subject s has a predicate (or “property”) p with value o;
the pattern (s, p, 70), where the object is unbound, asks for
the objects to which subject s is associated via predicate p;
the pattern (s, 7p, 70), where both predicate and object are
unbound, asks for all the pairs (p, 0) corresponding to the
properties of subject s.

SPARQL queries can express more complex condi-
tions using a combination of triple patterns. In this
kind of queries, the triple patterns are usually com-
bined using join variables, that is, elements of different
triple patterns that must take the same value. For in-
stance, the simple join operation (s1, p1,?z) > (2, pa, 72)
(where 7z is the join variable) asks for all the objects
that are associated to s; by property p; and to sy by
property ps. For instance, to know the names of the
movies where both L. DiCaprio and |. Gordon appeared
in, we could ask for (L. DiCaprio, appears in,?x) X<
(J. Gordon, appears in, ?x), and it would return the movie
Inception, as highlighted in Figure

A wide variety of join operations can be performed
depending on the bound and unbound elements in each
individual pattern and also on the position of the join
variables. For instance, the previous example (s, p1, 72) <
(s2, 82, 7x) is an object-object join, because the join variable
plays the role of object in both triples; the equivalent
subject-object and subject-subject joins would be (s1, p1, 7x) >
(?x,p2,02) and (?z,p1,01) > (?x,p2,02), respectively.
Additionally, we may also categorize joins according
to the unbound elements that appear in one or both
of the patterns (e.g. (?s1,7p1,%z) < (?s2,pa, ?z), and
(?s1,p1,72) b (?s2,p2,72) are different types of joins
because they differ in the number of unbound elements).
For example, (?x,appears in,?y) > (?z, lives in,?z)
(?y, filmed in,?z) looks for actors appearing in a movie
filmed in the city where they live. This yields the binding
x = J. Gordon, y = Inception, z = L.A. in Figure

A set of triple patterns such as the examples above, with
any number of triples and join variables, is usually denoted
as a basic graph pattern (BGPs). This is the key component
that appears in almost all SPARQL queries. A basic graph
pattern is a generic set of triple patterns, and may involve
any number of join variables, even though most real-world
queries follow typical patterns. In this paper, we focus on
the performance for the execution of simple binary join



queries, involving just two triple patterns. As we will see,
the join techniques used in this paper can be easily extended
for joins of any number of patterns. However, for larger
BGPs the execution order of the joins and the selection of
join technique in each case become more challenging.

2.2 RDF stores

As stated before, multiple solutions have been developed to
efficiently store and query RDF datasets. The most popular
RDF stores are fully functional systems that provide not
only storage and query capabilities, but also update mecha-
nisms and integrated SPARQL query endpoints. Virtuoso [7]
and Blazegraph [8] are two representative examples of
database solutions with all of these functionalities.

In addition to these popular solutions, many other rep-
resentations have been proposed with varying capabilities
and focus, regarding their query support, update capabil-
ities, etc. In this paper, we focus on lower-level solutions,
that tackle the compact storage of the underlying data by
means of compact data structures, and aim at providing fast
response times for triple pattern and join queries, without
attempting to support all the capabilities of SPARQL and the
features of a full database engine. Particularly, in this section
we introduce several relevant RDF stores that are based
on different compact data structures or indexing solutions.
Among them, HDT and K2Triples are of special interest to
understand our work, as we share some ideas with them.

2.2.1 HDT and dictionary encoding

HDT [14], [23] is a solution for RDF storage and querying.
It was originally devised as a serialization format to take
advantage of the redundancy that is usual in RDF datasets,
but it has gained popularity [14] thanks to its ability to
achieve a relatively good compression, and its support for
basic SPARQL queries [24]. One key idea in HDT is the
separation of the RDF dataset in three main components:
Header, Dictionary, and Triples. The Header component
simply stores metadata, and is not relevant for this paper.
The Dictionary stores the different strings appearing in
the original RDF dataset, and is in charge of assigning a
numeric identifier to each string and providing a bijective
string-to-id translation. Finally, the Triples component stores
the triples themselves, where each triple is a tuple with
three numeric identifiers. This is relevant to our work since
RDFCSA essentially solves the storage of the triples, and is
compatible with the dictionary solutions in HDT, so it could
be used to replace its Triples component.

HDT defines the decomposition format and provides
basic implementations for the dictionary and the triples. So-
lutions for the dictionary are based on sorting and removing
redundancy from the collection of strings, although further
work has been pursued by the authors [20], [21]. Basic
solutions for the triples rely on sorted lists that store their
elements. Although originally designed for publication and
exchange of RDF, HDT can also be used to query the data
by enhancing the basic structure with additional indexes.

Figure 2| displays the dictionary encoding used in HDT
for the set of triples from Figure [I} Strings are separated
in four different sets: a first set SO contains strings that
are both subjects and objects, and then three other sets

(Inception, filmed in, L.A.) [sO[1]Inception |[P [1]appears in (1,5,2)
(LA, city of, USA) ST A 2 awarded (214.5)
(E. Page, appears in, Inception) — - (3,1,1)
(L. DiCaprio, appears in, Inception) | [S_|3| E. Page 3| born in (5,1,1)
(J. Gordon, appears in, Inception) 4]J. Gordon 4| city of (4,1,1)
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Fig. 2. Dictionary encoding used in HDT for the set of triples in Figure[i]

store subjects S, predicates P, and objects O. Each set is
sorted in lexicographic order, and correlative identifiers are
assigned to the elements of each set: entries in SO and P
are numbered starting at 1, and entries in S and O are
numbered starting at |SO| + 1. This is useful for dictionary
compression and guarantees that each subject, predicate,
and object has a unique identifier.

222 K2Triples

K2Triples [18] is a solution for the compact representation of
RDF triples. Like RDFCSA, it only considers the structural
part of RDF, assuming that triples consist of integer iden-
tifiers; also, like RDFCSA, K2Triples is compatible with the
dictionary scheme in HDT, and is focused on the efficient
compression of the triples.

The key idea in K2Triples is the vertical partitioning [25]
of the data. Relying on the fact that the number of predicates
(i.e., the number of different properties) is usually very small
in RDF datasets, vertical partitioning separates the set of
(s,p,0) triples into one set per distinct predicate p, each
containing the (s,0) pairs connected by that predicate. In
K2Triples, each set of pairs (s,0) is regarded as a binary
relation and stored using a k?-tree [26]. The k?-tree not
only permits effectively compressing each binary relation,
but its indexing capabilities are exploited to efficiently solve
most queries in K2Triples by translating them into basic
operations on the k?-trees.

The authors have also proposed specific query algo-
rithms to efficiently answer queries involving joins of two
triple patterns, as well as a variation called K2Triples+
that improves the performance in queries with unbound
predicates. Those queries, which are usually the weak point
in techniques based on vertical partitioning, would require
accessing all the k2-trees in the original K2Triples, so the
authors integrate all the binary relations and add additional
indexes SP and OP in order to reduce the number of struc-
tures that need to be accessed. This drastically improves
their performance at the cost of up to 30% extra space. Even
with these additional indexes, K2Triples variants are, to the
best of our knowledge, the most compact representations of
RDF datasets with efficient query support.

2.2.3 Permuted trie index

The permuted trie index is a recent RDF representation
based on the use of compressed tries [19]. The index relies
on the construction of several permutations of the triples. In
the basic proposal, they use the permutations SPO, POS,
and OSP. Triple-pattern queries are answered by accessing
the appropriate structure depending on the fixed variables
in the triple pattern.



The authors store each permutation as a 3-level
trie, and propose several compression techniques based
on Partitioned-Elias-Fano (PEF) [27] compression, in or-
der to obtain different space/time tradeoffs. Their PEF-
compressed tries show very good performance in compari-
son with other state-of-the-art solutions.

In addition to their basic proposal, based on three in-
dexes (which we refer to as trie-3t), they also propose
solutions that aim at better compression by removing one
of the permutations from the index. The key idea of these
variants is that, by removing one of the indexes, queries
that used the other two permutations are not affected in
performance, while some queries that used the removed
permutation can still be performed reasonably using the
remaining ones. Among them, the best choice [27} Sec. 4.1]
is the variant that removes the permutation O.SP. We refer
to it as trie-2tp.

2.3 Rank and select on bitmaps

Bitmaps are the most fundamental components of com-
pressed data structures. A bitmap B[1, n] can be represented
in plain form using n bits of space, and then some relevant
operations can be implemented on top of it by adding o(n)
extra bits.

The most basic operation of this kind is ranky(B, i),
which counts the number of times bit b appears in BJ[1,].
This operation is easily computed in O(1) time with o(n)
extra bits [28], [29]. The inverse operation, selecty(B,7),
finds the position of the jth occurrence of bit b in B, and
can also be computed in constant time using o(n) additional
bits [29], [30].

In RDFCSA, we only need rank; and select; operations,
for which we build on a variant that requires 0.375n extra
bits [31]]. We solve rank; using a two-level structure that,
in the first level (superblocks), stores the cumulative val-
ues every 256 positions in an array using (n/256) 32-bit
integers, and in the second level (blocks), keeps the cumu-
lative counters relative to the beginning of the correspond-
ing superblock using (n/32) 8-bit integers. We then com-
pute ranki(B,i) by summing the counters at superblock
(1—1)/256, and at block (i—1)/32, and finally scanning a 32-
bit integer u (the one covered by the corresponding block)
to count the number of bits set up to position ¢/ = (i — 1)
mod 32. This last step can be solved in O(1) time using a
popcount operation. Instead, we used mask-and-shifting to
set the bits > 4’ from u to zero, followed by four lookups to
a 256-byte table that indicates the number of bits set for any
possible byte value. This yields O(1) time for rank;.

For select;, whose constant-time solution is not so prac-
tical, this variant [31] binary searches the values sampled
for rank in the superblocks, then sequentially scans the
counters of the blocks (up to 8 accesses to block counters) to
find the block that contains the 1 we are looking for. Then,
it scans the final 32-bit block using at most 4 lookups into a
256-byte table, to locate the byte that contains that 1. Finally,
a lookup to a 256 x 8-byte table gives the position within
the last byte of our 1, completing select;. Therefore, select;
is solved in O(logn) time, using essentially the same rank
structures. We later describe some improvement we make
on top of this select; algorithm.

2.4 Sadakane’s Compressed Suffix Array

The suffix array [32] is a data structure widely used for
text indexing. Given a sequence T'[1,n], built over an al-
phabet ¥ = [1,0], its suffix array is an array A[l,n] that
contains a permutation of the integers in [1,n] such that
T[A[i],n] < T[A[i + 1],n] for all 4, in lexicographic order.
The suffix array is built by sorting all the suffixes 7', n] and
storing in A[i] the offset in the sequence T' of the ith suffix
in lexicographical order. Note that all the suffixes starting
with the same string a are contiguous in A, and that any
occurrence of o in T is the prefix of a suffix of 1" starting
with . We can then efficiently search for all the occurrences
of a pattern a[1, m] in T by two binary searches on its suffix
array A, requiring time O(mlogn), which locate the range
A[l, r] corresponding to all the positions where « occurs in
T.

The original suffix array is useful for searching but re-
quires a significant amount of space, n log n bits, in addition
to the original sequence. Sadakane’s Compressed Suffix
Array, or CSA [22], provides a compact representation that
uses at most nlog o + O(nloglog o) bits and replaces both
T and A, while still efficiently supporting searches.

The CSA is composed of several data structures. The
most important of them is a new permutation ¥[1, n] [33].
For any 7 in [1, n], assuming A[i] = p, ¥[¢] stores the position
J in the suffix array that points to the next position in the
original sequence (i.e., A[j] = A[i]+1 = p+1). A special case
arises when A[i] = n, where U[i] is set to j such that A[j] =
1. Concisely, ¥ is defined as ¥[i] = A~[(A[i] mod n) + 1].

In addition to ¥, a bitmap D[1,n] contains a 1 at the
positions in A where the first symbol of the corresponding
suffixes changes (i.e., D[i] = 1iff i = 1 or T[A[i]] # T[A]i —
1]]). In order to know the symbol in T pointed by A[i], we
can count the number of 1s in D up to position ¢, that is,
ranky(D,1).

Using ¥ and D we can reproduce the same binary
search of the suffix array, without storing 7" or A. The first
symbol of the suffix pointed by A[i] can be computed as
ranki(D,1). To extract the following symbols, we iterate
using ¥: W[i] stores the position ¢’ in A that points to the
next symbol of the text; therefore, we can extract subsequent
symbols as rank;(D,¥[i]), rank,(D,¥[¥[i]]), and so on.
Assuming that rank operations in D and accesses to ¥ can
be computed in constant time, a binary search in the CSA
still requires O(mlogn) time. After computing the range
A[l,r] of the occurrences of «, a forward text context for
each can be extracted by iterating with ¥ in the same way.

An uncompressed ¥ array would still require the same
space as A. However, ¥ can be partitioned into at most ¢
increasing contiguous subsequences, which makes it highly
compressible by encoding it differentially, i.e. by represent-
ing each ¥[i] as ¥[i] — U[i — 1]. A run of ¢ increasing values
in [1, n] can be represented in ¢ log,(n/t) + O(t loglog(n/t))
using J-codes. Overall, ¥ can be compressed to space pro-
portional to the zero-order empirical entropy of the orig-
inal sequence, or nHy(T) + O(nlog Hy(T)) < nlogo +
O(nloglogo) bits [22]]. Further improvements, combining
the d-codes with run-length encoding (RLE) for runs of
consecutive differences equal to 1 (which tend to appear in
V), reduced this space even more and achieved compression



proportional to the higher-order entropy of T, nHy(T) [34].

The RDFCSA is based on the integer-based CSA (iCSAﬂ
[35]. The iCSA is a variant optimized for large (integer-
based) alphabets, with some differences in implementation
and compression techniques with the original CSA. Particu-
larly, in the iCSA the best compression is achieved by using
differential encoding of the consecutive ¥ values, followed
by mixing Huffman and run-length encoding of the result-
ing gaps. To provide efficient access (in time O(ty)) to ¥,
absolute ¥ values are stored at positions U[1+k-tg], k > 0.

Note that both the CSA and the iCSA include additional
structures to support other text search functionalities. Par-
ticularly, they add samplings of A and A~!, to be able to
find the position in T" of the occurrences of ¢, or to extract
arbitrary substrings. These additional data structures are not
necessary in our RDFCSA.

3 OUR PROPOSAL: RDFCSA

The two compact approaches we reviewed in the previous
section have issues to support all the possible combinations
of triple patterns. K2Triples and K2Triples+ are weaker
when the predicate is unbound, whereas the permuted trie
index favors the triple patterns where there is a trie starting
with the bound elements. The key idea of RDFCSA is that,
if we regard the triples (s,p,0) as circular strings (ie.,
the s follows the o again), then for every possible triple
pattern there is a rotation of (s, p,0) where all the bound
values precede all the unbound ones. Thus, if we index
the triples as circular strings, every possible triple pattern
can be reduced to a search for the circular strings that start
with some prefix. We use the CSA to simulate a set of
circular strings corresponding to all the triples of the RDF
dataset. This approach yields a uniform search approach
that will translate into not only fast, but also consistent and
predictable, query times.

We follow the convention of treating an RDF dataset
as a set R of triples (s,p,0), where s, p, and o are a
subject, a predicate, and an object, respectively. Our solution
is designed to work with integer identifiers (ids) for each
of them, so it requires a separate dictionary to perform
the translation between the original string values and the
corresponding integer ids. Particularly, we base our solution
on the same dictionary encoding proposed by HDT and also
used by K2Triples, which was described in Section 2] There-
fore, we assume a dictionary encoding in which subjects,
predicates, and objects are integers in contiguous ranges:
s € [1,ng], p € [1,n,], and o € [1,n,] (note the overlapped
identifiers in Figure[2). While any other dictionary encoding
scheme could be used for our purposes without affecting
our implementation, we do take advantage of this particular
encoding to perform some optimizations in join queries.

Our RDFCSA representation is a self-index, meaning that
we can recover the triples from it, and thus it replaces the
RDF store. As explained, it organizes the triples in a way
that can be represented with a modified CSA data structure
that efficiently answers relevant queries in the domain. We
first describe how the data structure is built from the set
of triples, and then how we efficiently support the relevant
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query operations over our self-indexed representation of the
triples.

3.1

Given an input set R of n triples, we sort them increasingly
by subject, then break ties using the predicate and further
break ties using the object, to make up a sequence Tsor¢[1, 1]
of triples. Then, we transform this sequence of tuples into an
integer sequence of identifiers T;4[1, 3n], by placing the ids
of the three components of each entry Ty, [i] at consecutive
positions T;4[143(i—1)], T;q[2+3(i—1)], and T;4[3+3(i—1)].
Hence, at the end of this step, T;4[1,3n] = (s1,p1,01,
$2,D2,02, .., Sn, Pn,On) stores all the ids for the sorted
triples.

Next, we transform the identifiers in order to obtain dis-
joint integer alphabets ¥, 3J,,, and 3, for the n, subjects, the
n, predicates, and the n, objects. This can be performed just
by computing the displacements necessary for predicates
and objects: we set an array gaps|0,2] = [0,ns,ns + ny)
and convert sequence T;4[1, 3n] into T'[1, 3n], where T[i] =
T;alt] + gaps[(i — 1) mod 3]. After this transformation, our
sequence T'[1,3n] has an alphabet ¥ = [1,ns + n, + 1),
where values in the range [1,n;] are reserved to subjects,
those in the range [ns + 1,ns + n,] to predicates, and the
remaining ones to objects.

After the previous transformations, which can be triv-
ially reversed to obtain the original set R of triples, we
build an iCSA on T. However, some key changes have to
be performed over the underlying suffix array in order to
efficiently answer queries. Those changes rely on specific
properties of our construction method.

In particular, we take advantage of the following prop-
erty of the generated suffix array A: it contains three well-
delimited sections A, = A[l,n], A, = A[n + 1,2n] and
A, = A[2n + 1, 3n], corresponding respectively to subjects,
predicates, and objects. This is a direct consequence of our
construction method, which generates integer identifiers
such that every subject is smaller than every predicate,
and this in turn is smaller than every object. This ordering
means that, when sorting suffixes, entries corresponding to
subjects, predicates, and objects end up clustered in different
sections. Therefore, A, contains entries pointing to subjects
in T, A, points to predicates, and A, points to objects.
Accordingly, array ¥ also contains three separate ranges
with special properties. Recall that U[i] contains, for the
position p such that A[i] = p, the position in A that points
to the next element p + 1 in T. Due to the division of A
into three sections, entries in ¥ also point to those delimited
intervals, so each region of ¥ contains values in a different
range: values of U[1, n| are in the range [n + 1, 2n] (pointing
to the range of predicates); entries in ¥[n + 1,2n] are in
the range [2n + 1,3n] (pointing to objects); and entries in
U[2n + 1, 3n] are in the range [1, n] (pointing to subjects).

Since our sequence T contains all the concatenated
triples in SPO order, the symbol following an object will
always be the subject of the next triple. Therefore, if we
are at position ¢ in the suffix array, such that A[i] points to
an object (i.e., A[f] for i € [2n + 1,3n], or A[i] = 3k for
some k), when we iterate using ¥ we reach a position j
such that A[j] points to the subject of the next triple. The
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original organization of ¥ was useful in the CSA to allow
full extraction of the text. In our case, however, we only
need to extract individual triples and, further, regard them
as circular. Thus, we make V¥ cycle around the components
of the same triple, instead of advancing to the next one.
Our RDFCSA then uses a modified array ¥ in which values
within U[2n + 1,3n] point not to the subject of the next
triple in 7', but to the subject of the same triple. Thanks to
the way we ordered the triples before building 7', and the
grouping of subjects in A, we can compute the modified
U very efficiently from the original array: we simply set
U[i] < U[i] — 1 for all positions corresponding to objects
(¢ € 2n+ 1,3n]), or U[i] < n for the special case U[i] = 1.

The modified ¥ provides a simpler way to recover and
search triples. Since ¥ cycles over the triples, we can start at
any position in the suffix array A[i], and apply ¥ to recover
the remaining components of the triple. For instance, if
Ali] points to a predicate (i € [n + 1,2n]), we can find
the object with an iteration using ¥, and the subject with
a second iteration (p = ranki(D,i), o = ranki(D,¥[i]),
s = ranki(D, ¥[¥[i]])). Using the original ¥ we would not
be able to iterate from objects to subjects. Note also that only
two iterations are necessary for any triple, and if we apply ¥
a third time we return to i = U[U[¥[7]]]. The same property
allows us to reduce any triple pattern to a search for a short
string in 7. We will further discuss this when describing the
query operations for RDFCSA.

We note that the modified ¥ used in RDFCSA, enforcing
the property U[U[¥[i]]] = ¢, is similar to the permuterm index
[36], which tackles a more general case. They also index a set
of strings as if they were circular, so that queries involving
patterns of the form « * 3 (where * stands for an arbitrary
string) can be answered by transforming it to the string
pattern 33a, where $ is a special string terminator symbol.
However, the permuterm index is built on top of an FM-
index [37], which uses a wavelet tree [38] as the underlying
data structure. The wavelet tree implementation requires
time logarithmic in the alphabet size, O(log(ns + n, + no))
in our case, for each basic traversal step, equivalent to a
computation of ¥ in our solution. This overhead renders
the FM-index inferior to the CSA on large alphabets [35].
We checked this by comparing the best-performing such
variant on integer alphabets [35] to index our sequence
T, and obtained times to answer (s, p,0) patterns around
2.5-4 times slower than those in RDFCSA. More recent
implementations of wavelet trees on large alphabets have
shown only minor improvements for FM-indexes [39]. This
is why we implemented our technique on top of the iCSA
for the case of RDF triples.

Figure|3.1|displays the different data structures involved
in the creation of a RDFCSA for a given set of triples. We
use the same triples described in Figure [I} following the
dictionary encoding of Figure 2| The collection contains
n = 10 triples, with n, = 5 subjects, n,, = 6 predicates, and
n, = 5 objects. The first step is sorting the triples in SPO
order, and concatenating their components in array Tj4: the
first triple is located in T;4[1,3] = (1,5,2), the second one
in T;4[4,6] = (2,4,5), and so on until the last triple, which
is set in T;4[28,30] = (5,3,5). We compute gaps[0] = 0,
gaps(l] = ng =5, gaps[2] = ng + n, = 11, and then create
T by adding the appropriate component of gaps|0, 2] to the
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values in T;4. At the end of this step we obtain 71, 30].
Note that we add an extra entry at the end of T" as an
implementation trick: by adding this value, larger than any
entry in T, we ensure that suffix sorting works properly
when constructing the suffix array A, without having to
change the construction used by the original i{CSA (similar
results could be obtained by adjusting the algorithm used
for suffix comparison). The suffix array A is then built on
top of T[1, 30] (recall that the last element is added to T just
for sorting purposes, but it is not considered as a part of the
array itself). Our construction process continues by building
the bitmap D and the array ¥,,;, as in the original iCSA.
Then, the final array ¥ used by the RDFCSA is created from
Ui by subtracting 1 to W,,4[i], for each position ¢ in the
interval [21, 30] corresponding to objects, and finally setting
U[30] = 10 for the special case where ¥,,;4[30] = 1 (as
indicated above).

The main properties stated for A and ¥ be easily checked
in the example. For instance, entries in ¥[1,10] contain
values in the interval [11,20], entries in ¥[11,20] contain
values within [21, 30] and entries in ¥[21, 30] contain values
within [1, 10]. The figure also displays the general procedure
to traverse the sequence to recover the first triple: starting
at ¢ = 1, which corresponds to the subject of the triple,
we compute P[1] = 19 to locate the predicate, and then
compute P[19] = 24 to locate its object. Note that if we
apply once again ¥, ¥[24] = 1 takes us back to the
subject location due to the cyclical ¥. When performing
binary search or extracting the triple, we can get the cor-
responding values by computing s = rank:(D,1) = 1,
p = ranki(D,19) — gaps[l] = 10 =5 = 5 and o =
ranky (D, 24) —gaps[2] = 13—11 = 2 to recover the original
triple (1,5, 2).

3.1.1 Data structure optimizations

The basic implementation described uses the same data
structures as the iCSA [35] to store ¥ and D. Precisely, D
uses the described structures to support rank and select,
whereas W uses differential encoding combined with Huff-
man and run-length encoding, which performed best.

On this basic structure, we apply a couple of simple
improvements that are specific of the kind of data we are
representing. Basically, since the suffix array is separated
into three areas of size n, for subjects, predicates, and
objects, and these have different characteristics, it pays off to
separate D and U into three arrays of length n each: D,[1, 7],
D,[1,n], and D,[1,n], and ¥4[1,n], ¥,[1,n], and ¥,[1,n].
We can then encode each array in different form.

In most RDF datasets, the number | P| of different pred-
icates is very small. Since D, has only |P| 1s, we can
avoid the computation of select;(D,, -) by directly storing a
small array of | P| entries with the results of the | P| distinct
select1(D,, ) queries; the select; operations on D, and D,
are still carried out as described. The effect in the overall
space is negligible.

Further, we add a small structure to speed up select;
queries on Dy and D,: being n’ < n the number of 1s in D,,
we add an array (sOnes) of n’/256 entries where we store
the position where every 256th 1 appears in the bitmap.
Given a query selecty (D, ), the answer can be either stored
in our array (if 7 is a multiple of 256), or it can be between the
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Fig. 3. Structures involved in the creation of a RDFCSA for the triples in Figures [f]and[2]

samples |i/256| and |i/256] + 1. We then start the binary
search on the range of the corresponding superblocks, which
saves in practice most of the binary search cost. The total
space for rank; and select; queries is 0.5n bits for each of
Dg and D,.

The values in U, which are in [n + 1, 2n], are decreased
by n so that they point inside ¥,,, and those of ¥,,, which are
in [2n+1, 3n), are decreased by 2n, so that they point inside
¥, These reductions do not affect the differential encodings,
but they yield a slight gain of space in the absolute samples,
which require [log, n] instead of [log, 3n] bits.

More importantly, we can represent each partition of ¥
in different form. We define a variant of our data structure
that we call Hybrid, which slightly increases the space to
obtain better access time to W. Concretely, Hybrid stores
U, and ¥, in plain form, and keeps ¥, differentially
compressed as described. For ¥, and ¥, we use a simple
array requiring [log, n] bits per entry. Keeping ¥, and ¥,
uncompressed means that accessing ¥ will be much faster,
in time O(1) instead of O(ty ), in these regions. This will be
most noticeable on queries that only use those ranges of W.

Choosing a plain representation for ¥, and ¥, is rea-
sonable because of the characteristics of the i{CSA and RDF
datasets: the numbers |S| and |O] of different subjects and
objects are relatively large, and therefore we take little
advantage of the fact that ¥4[1,n] and ¥, [1, n| are formed
by |S| and |O| increasing runs, respectively: this leads to
using log, |S|+0O(loglog | S]) or log, |O]+O(log log |O]) bits
to encode each difference, instead of log, n bits to encode an
absolute value. For example, using tgy = 32, the differential
encoding of ¥y reduces its size to 93% of the plain size
using [log, n| bits, and that of ¥,, reduces it to around 75%.
Instead, because there are few predicates, the differential
encoding reduces ¥, to around 15% of its uncompressed
size. This scheme could be easily generalized so as to apply
compression only if a given space reduction is achieved.

For simplicity, we will keep speaking of D and U,
ignoring the implementation detail that they are stored in
partitioned form.

3.2 Query operations

In this section we describe how to use RDFCSA to answer
triple-pattern queries, which constitute the main building

block to support SPARQL queries. We describe how to
solve the 7 triple-pattern queries (s, p, 0), (?s,p, 0), (s, 7p,0),
(s,p,?0), (7s,7p,0), (s,?p,?0), (?s,p,70). The basic oper-
atory for all of these patterns is to locate the range of
entries corresponding to their bound components, and then
extracting the corresponding triples. We will also describe
various RDF-specific optimizations.

We disregard the triple pattern (7s, ?p, 70), because it
retrieves all the triples in the dataset and is not really useful
as a query. Nevertheless, we note that it can be easily solved
by omitting the search phase and simply extracting the full
set of triples using W.

3.2.1 Solving triple patterns using the regular binary search
on the iCSA

The iCSA can locate all the occurrences of a pattern, by
binary searching the range A[l,r] of the suffixes that start
with the given pattern. Given a query pattern a[1,m], the
range of positions [I,7] in the suffix array A will contain
pointers to all the positions in the text where the pattern
a occurs. After computing [I,7], ¥ is used to recover the
corresponding symbols.

In our case, we are interested in answering a triple-
pattern query, where some components can be bound and
others unbound. As discussed previously, our modified ¥
allows us to treat all cases similarly, by searching for a
subsequence corresponding to the fixed components in the
triple pattern. For instance, to answer an (s, p,0) query we
build a sequence «[1, 3] = spo, and use that as our pattern
for the binary search in the iCSA. To answer (s,p, 7o) and
(?s,p,0) queries, we search for «[1, 2] = sp or «[1,2] = po,
respectively. We can also answer (s, ?p, 0) queries by search-
ing for a[1,2] = os, thanks to the cyclical traversal of our
modified ¥. Similarly, for query patterns where only one
of the elements is fixed, we simply search for «[1,1] = s,
a[l,1] = p, or a[l,1] = o. Next we detail the solution for
each group of triple patterns, depending on the number of
unbound variables.

For (s,p,0) queries, we actually set «[l,3] [s +
gaps[0], p+ gaps|1], o+ gaps[2]], containing all the elements
of the triple pattern. We then perform a binary search for
a in the iCSA. If | = r then (s,p,0) is an existing triple,
otherwise it is not in the dataset.



For queries with a single unbound variable, we pro-
ceed similarly with a binary search. Yet, we now have to
recover the original triples afterwards. For instance, for
(s,p,70) queries we set a[1,2] = [s + gaps[0],p + gaps[1]].
Binary searching for a in the iCSA, we find the inter-
val [I,7] corresponding to the result set. The number of
answers is 7 — [ + 1. For each ¢ € [l,r], we return
the triple (s, p,ranki(D, ®[U[i]]) — gaps[2]). Similarly, for
(s,7p,0), we set a[l,2] = [0+ gaps[2],s + gaps[0]], then
we binary search for pattern «, and return all triples
(s,ranky (D, U[V[i]]) — gaps[l],0). For (?s,p,0), we set
a[l,2] = [p + gaps[l],o0 + gaps[2]], we binary search for
o, and return the triples (rank, (D, V[¥[i]]) — gaps[0], p, o).

For queries with two unbound variables, we can still
perform a binary search to locate the occurrences of the
bound variable. For instance, for (?s,p,?0) triple patterns
we set a[l,1] = [p + gaps[1]], and find the interval [I, 7]
with the iCSA. The number of results is again » — [ + 1,
and for each i € [l,r], the triple (rank:(D,U[¥[i]]) —
gaps|0], p, rank; (D, ¥[i]) — gaps[2]) is recovered. Note that,
in this case, the binary search in the iCSA does not require
a binary search operation on ¥, since we can compute
I = selecty(D,a[l]) and r = select;(D,af[l] + 1) — 1. As
in the previous examples, (7s, ?p,0) and (s, ?p,?0) can be
answered using exactly the same operation but adjusting «
and the computation to return the result triples.

Since we are using a binary search on the iCSA, all the
triple-pattern queries require O(r — [ + logn) time, where
r — 1 + 1 is the number of query results. In addition to
this, for most query patterns we need to perform a number
of accesses to W per query result in order to return the
complete triples. In practice, efficient access to ¥ must
be balanced with efficient compression; the compression
of ¥ introduces a significant space/time tradeoff that can
be tuned in our representation. Note that the space/time
tradeoff also depends on the type of query pattern involved:
if a query returns a large number of results, the cost of
the binary search becomes negligible and the time required
to perform accesses to ¥ dominates the cost of the query.
However, the binary search cost becomes relevant when
only one or a few triples are returned, as well as in (s, p, 0)
queries, where no triple-pattern retrieval is necessary.

3.2.2 Query optimizations

We now describe a number of optimizations and algorithmic
variants that improve our performance.

One enhancement improves query patterns with two
unbound terms, in which we always need to perform two
select operations on D over two consecutive values, i and
i + 1. Once we compute j = select;(D, ), we can replace
select1 (D, i+1) by a new operation selectnext(D, j), which
finds the next 1 after D[j]. We implement selectnext by
scanning D bytewise from position j + 1 to the end of its
block. If we find no 1 up to then, we scan the following 32-
bit words looking for a nonzero block. If we find no 1 up to
then, we check if the next superblock has a 1, and if not, we
binary search for the next one that has. On that superblock,
which contains the answer, we restart the wordwise scan,
then the bytewise scan, and finally use the same table of
select to find the desired 1. This is in practice faster than a
second binary search.
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Our next optimization improves the performance of
accesses to W, particularly taking into account that in most
cases we need to compute values of ¥ for a relatively large
range of consecutive positions. In the original algorithm,
once [l,r] is determined through binary search, we have
to compute U[i] and U[¥[¢]] for all i« € [I,r] to retrieve
the missing elements in each triple (except on the pattern
(s,p,0)). Since ¥ is differentially encoded, each access takes
time O(ty), where we spend (nlogn)/ty bits to store the
absolute samples. In order to improve the speed of these ac-
cesses, we sequentially decompress the whole range U[l, r].
This means that, once we decode ¥[l] in O(ty) time, all
the subsequent values are decoded in constant time. This
variant is particularly efficient if we are inside a run of
differences equal to 1, as these are encoded using run-length
encoding. Note that this only works for the initial range
[l,7], since the remaining accesses to ¥ are expected to be
located at random and therefore they cannot be improved
with this technique.

We also improve the strategy to binary search for
[[,7]. We describe two alternative strategies, called D-
select+forward-check and D-select+backward-check, which ap-
ply to patterns with 2 or 3 bound elements.

3.22.1 D-select+forward-check strategy: During a
binary search in the iCSA, we compare the query pattern
a with the string pointed by the current position in the
suffix array, T[A[i], n]. The first steps of the binary search
will be faster because the strings will differ in their first
character, so the comparison will be decided with the
first integer comparison without the need to compute ¥,
just T[A[i]] = ranki(D,i). At some step of the binary
search, however, we will start to have T[A[i]] = «[1] and
will have to compute U[i] in order to compare «[2] with
ranki (D, U[i]); this access to ¥ can be relatively expensive
if differentially compressed.

Instead of performing all those isolated ¥ computations,
in this strategy we perform all the checks for the complete
range in order to filter the candidate positions.

Consider for instance the triple pattern (s, p, 0), in which
we would search for @« = spo. We first find the inter-
vals that correspond to the subject, predicate, and object
of the triple pattern: R, = [ls4gapso]s "s+gapsio]), Bp =
[lp—‘,-gaps[l];rp—‘,—gaps[l]]/ and R, = o+gaps[2]s Todgaps[2]], US-
ing select operations on D: [, = select;(D,c) and r, =
selectnext(D,l.) — 1. Since V¥ is increasing within each of
those intervals, we use these ranges to check, for each ¢ in
R, whether ¥[i] € R,. Only a smaller range R;, C R, will
pass this filter, and the ¥ values in that range form in turn
a range R,s C R,. On this range R,; we compute all the
V¥ values to finally find the range R,;, C R, of the values
that map inside R, by W. Those are the final answer.
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Fig. 4. D-select+forward-check strategy for pattern (s, p, 0) = (8,4, 261).



Figure [f] shows an example of this operation. In this ex-
ample, R, = [10,12], R, = [200,300], and R, = [600, 601].
Checking the values of ¥ for the range R, we find that
P[10] and ¥[12] do not map into range [200, 300], but ¥[11]
does. Therefore, we need to check if U[¥[11]] maps into the
range R, = [600,601], corresponding to object 261. Since it
matches, we can report an occurrence of the triple (8, 4, 261),
i.e., confirm that the triple is in the collection.

In practice, this technique may be faster than a standard
binary search if the initial interval (R in our example)
is small enough. Note that, since our ¥ is cyclic, we can
use any of the three intervals R,, R,, or R, to begin our
check. Typically, the number of objects is higher than that
of subjects, so we expect that |R,| < |Rs| < |Rp|. We may,
however, choose on the fly the one that is actually shortest.

The strategy presented here can also be applied to triple
patterns with one unbound term. In this case, we perform
the same operations but restricted to the bound terms.
Assuming our bound variables are  and y, we compute
R, and R, and perform the same range check to verify if,
when applying ¥ to the positions in R,, we end up in range
R,. Again, notice that the cyclic nature of ¥ allows us to
perform the range check independently of the position of
the bound variables in the triple pattern. For example, for
(?s,p,0) triple patterns we set © = p, y = o; for pattern
(s,?p,0), we set x = o, y = s; and for pattern (s, p, 70) we
setrx =5,y =p.

3.22.2 D-select+backward-check strategy: This
strategy is based on the same ideas of the previous forward-
check strategy. It relies on the fact that all positions ¢ in
R that pass the forward-check in the previous strategy
necessarily form a subinterval of R,. This means that, in
order to discard candidate positions, we do not need to
verify every ¢ € R,; instead, we can binary search for the
subrange of positions that map to a valid range in R,,.

To take advantage of the previous property, we follow
a similar idea to the well-known backward-search strat-
egy [22]]. Assume that we are searching for a triple pattern
(s,p,0). We start our search now in interval R, = [l,,7,];
since ¥ must be increasing within interval R, = [I,,, rp], we
binary search inside R, in order to locate the subinterval
Rpo = [lposTpo] € R, that contains all the positions ¢ such
that U[i] € R,. If the subinterval is empty, no result exists
for the query and we return immediately. Otherwise, we
continue the backward-search process, binary searching in
R, in order to locate the subinterval Rg,o = [lspo, "'spo] € Rs
that contains all the entries i € R, such that U[i] € R,,. At
the end of this step, the range R, contains all the results for
our query. Note that, when using an (s, p, 0) pattern, either
0 or 1 results may arise, but we generalize this strategy to
other triple patterns below.

Figure[p|displays an example of this strategy for a sample
(s,p,0) query pattern. We start the backward search in
range R, = [600,601]. Then we perform a binary search
in the interval ¥[200, 300], in order to locate the subinterval
that contains values that map into R,; in our example, only
the entry ¥[231] maps into [600, 601], so we obtain a subin-
terval R,, = [231,231]. Next, we continue the backward-
search in R,. We binary search inside the range ¥[10,12]
and locate the subinterval that maps to 231; in the example,
only ¥[11] = 231 maps. Consequently, the final interval is
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Fig. 5. D-select+backward-check strategy for pattern (s,p,0) =
(8,4,261).

R0 = [11,11], that contains the single occurrence for the
given pattern.

This strategy can be easily adapted to work with all the
query patterns that contain a single unbound variable. In
(s,p,?0) queries, we locate the subinterval R, C R, that
maps into R, after applying ¥. In (s, ?p,0) queries, we
locate the subinterval R,; C R, whose ¥ entries map into
R,.In (?s,p,0) queries, we locate the subinterval R, C R,
whose entries map into I,

3.3 Supporting join operations

RDFCSA can be extended to support join operations by
implementing different join techniques on top of the ba-
sic triple pattern query algorithms. We first describe the
general technique, which can be used with any number
of unbound elements in the triple patterns and for subject-
subject, subject-object, and object-object join operations. We
then briefly explain particular optimizations that are applied
on top of the general technique.

Join operations in RDFCSA are essentially performed by
following either a merge-join strategy or a chaining strategy.

The merge-join strategy considers each triple pattern
separately. The join variable is treated as an unbound
variable in both triple patterns. The two corresponding
triple patterns are solved independently, therefore obtaining
two lists of results. The final step scans the resulting lists
to compute their intersectionE] For instance, to compute
(81,p1,72) > (S2,Dp2, 72), we first compute the two triple-
pattern queries Q1 = (S1,p1,%01) and Q2 = (s2,p2, 702).
The results of ()1 and ()2 are then intersected by the O
component to retrieve only the values where 0 = os.
The same strategy can be applied to any combination of
triple patterns, with simple adjustments depending on the
number of unbound variables in each side.

The chaining strategy, instead, solves one of the triple
patterns first, considering the join variable as unbound.
Then, for each result obtained in this query, the second
pattern is executed with the corresponding value of the
join variable, which is now bound. The previous example,
(s1,p1, 72) < (82, p2, 7x), is executed following this strategy
by first querying (s1, p1, 701 ), and then replacing each value
01 obtained for ?0; in the second pattern as (s2, p2, 01). We
speak of left-chaining if we start with the left triple pattern
and apply each result as bound variables in the right one (as
in the previous example), and of right-chaining if we start
executing the right triple pattern and replace the results in

2. Since the results returned by the RDFCSA for some triple patterns
are not necessarily sorted by the desired element, a sorting step may be
required prior to the intersection.



the left one. The selection of the first pattern for chaining is
important when the triple patterns have a different number
of unbound variables.

In RDFCSA we have implemented a general mecha-
nism to perform joins following the merge strategy as
well as a left- or right-chaining strategy. Depending on
the characteristics of the join, and particularly the location
of the unbound variables, the strategy selected leads to
significantly different triple-pattern queries, and therefore to
important differences in query performance. The selection
of the optimal strategy is therefore a significant problem
by itself. We test all possible strategies in our experimental
evaluation, with one exception: strategies that would lead to
the evaluation of an (?s, 7p, 70) pattern as a first step are not
considered in any case, since decompressing the full dataset
as an intermediate result would be very inefficient in terms
of time and space.

3.3.1 Optimization of join operations

Some optimizations are added on top of the general join
strategy, to take advantage of the characteristics of our tech-
nique and specific join patterns. These optimizations have a
significant effect on the amount of computation performed
by RDFCSA in most join operations.

The first enhancement to the basic algorithms is related
to the dictionary encoding used. Recall that in the dictionary
encoding used by HDT, all elements that are both subject
and object are assigned an id lower than that of any ele-
ment that only appears as a subject or as an object. This
can be used to filter out results when performing subject-
object joins. For example, to answer a query (s1,p1, 72)
(?z,p2, 02) using left-chaining, we would first obtain all
the objects that match the triple pattern (s1,p1,?z); then,
we have to check that each result matches the right triple
pattern. However, with the dictionary encoding we use,
we can immediately discard any result of the first query
with an id higher than |SO|, since we know that it only
appears as an object and therefore it will not match the
overall join query. Note that this improvement is specific to
this dictionary encoding, and is not specific to RDFCSA; the
same optimization is also used, for instance, in K2Triples.

Another simple optimization that is applied to the merge
strategy consists in taking into account the characteristics of
the result list returned. In some join patterns, we must sort
both lists to compute their intersection; however, due to the
evaluation mechanisms of RDFCSA, in some triple patterns
the list of results is already sorted. For instance, the (s, p, 70)
triple pattern returns a sorted list of objects as a result;
therefore, to answer a query (s1,p1, 7x) < (2, pe, 7x), we
can execute the two triple-pattern queries and then simply
intersect the corresponding sorted lists. A similar idea is
also applied to the chaining strategy: we can avoid some
computation in the chaining phase by identifying repeated
results. In order to do this, we sort the results of the first
triple pattern and skip the computation of the second triple
pattern on the repeated results of the first query. Therefore,
we build the results of the final join only from the non-
repeated results of the first triple pattern.

An additional improvement we include in all our join
operations, when possible, is variable filling. As explained
before, when running most triple-pattern queries, we first
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obtain the location of the set of triples and then use ¥ to
retrieve the missing variables in the triple. This cost is nec-
essary to return the complete result in a triple-pattern query.
However, in join queries that follow the merge or chaining
strategy, many of the matches found in the first pattern may
not correspond to valid results of the overall join operation,
since they do not have a match for the join variable in the
second pattern. Our algorithms identify, depending on the
type of join and the evaluation strategy, which variables in
a triple pattern are necessary to solve the join and which
ones are only necessary to make up the final result. The
latter variables are filled in only after the complete join has
been evaluated. We then use slightly modified versions of
each triple-pattern query, customized according to which of
the elements in the resulting triple have to be computed.
The general algorithms solve the join using the incomplete
triples (hence avoiding the rather costly ¥ computations on
non-sampled positions, and rank operations), and then take
care of refilling the missing variables once the join has been
completed.

For instance, to perform the join (?s1,p1,?%z) X
(?z,pa, 02) with left-chaining, the first step is to compute
the left triple pattern (?si,p1, ?o1). This is usually done by
first locating the range of p;, and then using ¥ to locate
the corresponding objects, and ¥ again to get the subjects.
However, for the join operation we do not need the subjects,
only the objects, so we do not compute the subjects yet: we
first complete the join query, and then fill in the missing
subjects for the resulting tuples.

4 EXPERIMENTAL EVALUATION
4.1 Experimental framework

We tested the compression and query performance of our
proposal using the DBPedia datasetﬂ “the nucleus for a Web
of Data” [40]. The original size of the dataset is around
34GB. It contains 232,542,405 triples in total, 18,425,128
different subjects, 39,672 different predicates, and 65,200,769
different objects. After applying dictionary encoding to the
triples, the structural part of the dataset can be stored in
2,790,508,860 bytes, using three 32-bit integers per triple.
We compare RDFCSA with K2Triples and permuted trie
indexes, as good examples of other well-known state-of-the-
art solutions that are similar to RDFCSA, in the sense that
they are based on compact data structures and designed to
work with triples composed of integer identifiers. We also
compare our proposal with a number of alternative solu-
tions following other approaches: HDT, Tentris, Virtuoso
(open source edition, version 7.2.5.1), Blazegraph (version
2.1.4), MonetDB (version 1.7), and RDF-3X (version 0.3.7).
Note that all of the latter can handle the RDF datasets in
their original form as string triples. In the case of HDT,
we display in the plots the space required only for the
Triples component, so it is directly comparable to RDFCSA,
K2Triples, and permuted trie indexes. The same occurs for
MonetDB, where we also store and query integer identifiers
instead of strings. For Tentris, Virtuoso, Blazegraph, and
RDEF-3X we display the full size of the structure, after

3. http:/ /downloads.dbpedia.org/3.5.1/


http://downloads.dbpedia.org/3.5.1/

loading the original RDF dataset. The effect of the dictionary
in space and query times will be discussed later.

Regarding query times, measurements are also taken
differently in each family of solutions. For Virtuoso, Blaze-
graph, Tentris, MonetDB, and RDF-3X we measure query
times using the utilities provided by each tool, which
includes, in general, the cost of parsing the query. For
RDFCSA, K2Triples, permuted trie indexes, and HDT, we
measure the performance of queries on the integer ids,
therefore ignoring any additional costs associated to the
query tool and the SPARQL query parsing necessary in
the other solutions. Query times are always displayed in
ps/result to reduce the effect of the overhead required by
the more complex tools.

For RDFCSA, we test the different algorithms and
variants using different sampling intervals on ¥, tg €
{4,8,16,32,64,512}, so as to obtain a wide space/time
tradeoff. Additional details on the variants and configura-
tions will be given later.

For K2Triples we use the settings recommended by the
authors. We use two different implementations, the original
K2Triples and the improved K2Triples+ that includes extra
indexes to speed up queries with unbound predicate.

We test two configurations of the permuted trie indexﬁ
trie-3t and trie-2tp. The former has better performance and
offers more stable query times because it is efficient over
all triple patterns. Instead, trie-2tp uses only two of the
three permutations, so as to reduce space while maintaining
query times in most triple patterns. The main drawback of
trie-2tp is that it performs much worse on (?s, ?p,0) triple
patterns. There are other configurations of the permuted
trie index, but we have chosen the best performing ones
according to its authors.

For HDT, we use the original implementation by the
authorsE] To provide comparable query times, we performed
minimal changes to the source code in order to measure only
the structural part of the query. To do this, we precompute
the string-to-id translation for all queries, and then measure
query times to return all results as identifiers, omitting the
final id-to-string translation that is usually performed to
return the final results. Therefore, our plots reflect the space
and time required to solve the query on ids, omitting the
space and time required for the HDT dictionary.

For MonetDB°|we store the integer ids corresponding to
the triples to make their results directly comparable to the
previous solutions. We use the mclient command-line tool
to execute queries, and use the query times reported by the
tool.

For Virtuoso[] we use the ingestion and query tools pro-
vided with the software. Particularly, we use the interactive
command-line query tool isql to execute queries, and use
the query times reported by the tool. Note that Virtuoso
includes a server that provides an HTTP endpoint that
can be used to run SPARQL queries. We have also tested
query times in this interface, but the overhead caused by
this endpoint was very significant (query times were 1.3-3
times larger than in the command-line tool); additionally,

4. https:/ /github.com/jermp/rdf_indexes
5. http:/ /www.rdfhdt.org/

6. https:/ /www.monetdb.org /

7. https:/ /virtuoso.openlinksw.com/
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the HTTP endpoint limits the number of results returned,
making it impractical for our purposes.

For Blazegraphﬂ we use a custom Java program that
connects to Blazegraph in embedded mode. Query times are
measured using System.nanoTime.The SPARQL endpoint
provided by Blazegraph was also tested, but the overhead
caused by it was also significant.

For Tentris, we use the query tool tentris_terminalﬂ
provided by the authors. We display query times as mea-
sured by the tool. Since parsing times are disgregated by
the tool, we display two different times for Tentris: Tentris
represent total times, whereas Tentris-noparse exclude the
parsing time from the total. Again, we have tested the HTTP
endpoint provided, but we omit these results in our plots
because they were up to 10 times worse than the command-
line results in some queries.

In RDF-3XE] we use the command-line query tool pro-
vided to run the queries and measure query times.

We use an existing testbed for the DBPedia datasetE]
This query set provides 500 queries for each of the 7 basic
triple patterns, and 25 queries for each join pattern con-
sidered (additional details on the join variants and their
classification will be provided in Section f.4). For a fair
comparison with tools that require access to disk, we execute
a warm-up phase before running each query set. The warm-
up includes performing the full set of triple pattern queries.
After that, we execute each query set, measuring query
times. Additionally, we set a number of repetitions of the
full query set for triple pattern queries to guarantee accurate
average time measurements.

We ran our experiments on an Intel Xeon E5-
2470@2.3GHz (8 cores) CPU, with 64GB of RAM. The op-
erating system was Debian 9.8 (kernel 4.9.0-8-amd64). The
version of GCC was 6.3.0, and the version of Java (used to
run Blazegraph) was 1.8. Our code, as well as the source
code for RDF-3X and HDT, were compiled using GCC, with
full optimizations. The remaining tools were installed using
the packages/binaries provided by the authors.

We have made our source code available at https://Ibd.
udc.es/research/rdf/.

4.2 Comparison of the query algorithms of RDFCSA

First we analyze the relative performance of the query algo-
rithms developed for our structure, discussed in Section[3.2]
We measure space and query times for the different triple
patterns using the basic binary search algorithm (base in the
plots), the D-select-forward-check strategy (forward), and D-
select-backward-check (backward).

Figure [p| displays the space and query times for the dif-
ferent search algorithms{“| We only show results for query
patterns with zero or one unbound variable, because triple
patterns with a single fixed variable lead to patterns o of

8. https:/ /blazegraph.com/

9. https:/ /github.com/dice-group/tentris

10. https:/ /code.google.com/archive/p/rdf3x

11. Provided by the authors of K2Triples, available at http://
dataweb.infor.uva.es/queries-k2triples.tgz

12. The space is given as a percentage of the size of the raw data,
which for this purpose is taken as a binary representation of the triple
patterns with each triple stored using three 32-bit integers.
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Fig. 6. Query times of the search variants on query patterns with zero or one unbound variable. Times in microseconds per result returned and in

log scale.

length 1, where backward- or forward-check strategies can-
not be applied. For the backward- and forward- strategies
we use our selectnext optimization As shown in the fig-
ure, the baseline binary search is in general slower than the
other alternatives. A notable exception occurs in (?s,p, 0)
queries, where the forward-check strategy is very inefficient.
This difference is due to the large number of occurrences
that may have to be sequentially checked in R,,. Therefore,
even though D-select+forward-check is faster in most cases,
D-select+backward-check is in general more consistent. Note,
nevertheless, that we can easily select the best algorithm
for each triple pattern, and we can even perform on-the-
fly selection of the best query algorithm using a simple
heuristic depending on the length of the ranges involved.
For simplicity, in the following experiments we only display
the query time of the most efficient search technique in
each query pattern (i.e., D-select+forward-check in most cases,
D-select+backward-check in (?s,p, 0) queries). Note also that
the results presented in this section are those of the basic
implementation of RDFCSA. Additional plots are omitted
for simplicity, but we have obtained similar results for other
implementation variants, with D-select+backward-check being
the most consistent search strategy overall.

Next, we analyze the impact of our improvements on
select; queries on triple patterns with two unbound vari-
ables. In these queries, we must search for a pattern a of
length 1, so we can replace the standard binary search of the
iCSA by two select operations in ¥ to locate the appropriate
interval [[, r]. Further, the second select can be replaced with
the selectnext algorithm, which is faster (see Section [3.2.2).

Figure [7] displays the performance of the binary search
on ¥ (binsearch), of replacing it with two select; operations

13. Further details comparing select implementations will be given in
Figure[7]

on D implemented with binary searches (2 selects), of im-
proving those select; operations with sampling (2 selects
+ samples), and of replacing the second such select; with
a selectnext operation (selectnext). The results show that
each improvement makes a significant difference with the
previous version, except for the use of selectnext, whose
improvement is marginal but still always positive. Recall
that we store the select; answers directly on D, thus in
the triple pattern (?s,p, 7o) there is no difference between
binsearch and the various select; variants. Considering these
results, in the remaining experiments we will always use the
selectnext algorithm when applicable.

4.3 Comparison with other RDF representations

In this section we compare RDFCSA with state-of-the-art
alternatives. We start by measuring their space requirements
and query performance on simple triple patterns. We show
compression as a percentage of the original size of the
collection (considering an integer-base representation). We
test three implementation variants of RDFCSA. In all of
them, we use the algorithms that obtained the best results
in previous tests: selectnext to obtain ranges using D, D-
select+forward-check for most patterns that require search on
U, and D-select+backward-check for (7s,p,o) patterns. The
three variants of RDFCSA tested are the following;:

e RDFCSA is the basic implementation, with D and ¥
partitioned into three arrays. Those for D are bitmaps
in plain form with rank; [31]] and our faster select;
structures, yet D,, stores the select; answers in plain
form. The ¥ arrays are compressed with Huffman
and run-length encoding (RLE) [35].

e RDFCSA-rrr is like the basic variant but the bitmaps
of D are compressed using the RRR technique [41]
with sampling parameter 128.
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e RDFCSA-Hybrid is the hybrid variant, with ¥, and ¥,
stored as plain arrays where entries use [log, n| bits,
and ¥, compressed as usual with Huffman and RLE.

Figure [8| shows the space/time tradeoffs obtained by all
the solutions in the core triple-pattern queries. We display
a plot per triple pattern, including the values for each
alternative.

Let us first focus in the comparison among our RDFCSA
variants. The RDFCSA-rrr variant, which aims at reducing
the space of RDFCSA, is moderately successful in that
sense, with little impact in the time when the structures
use little space (i.e., nearly 50% of space thanks to a sparse
sampling of W). Thus, it is an interesting alternative to
reduce space. However, when we aim at improving the
query performance by using a denser sampling of ¥, the
RDFCSA-rrr becomes much slower than the basic RDFCSA.
The RDFCSA-Hybrid variant, instead, uses at least 65% of
space, but it is significantly faster than the basic RDFCSA.
This variant improves its times with a denser sampling of ¥
only in query patterns where the subarray ¥, is involved.

We next focus on the comparison with other solutions.
The results show that RDFCSA requires more space than
K2Triples, and even than the faster K2Triples+. The trie-
based solutions achieve significantly different compression
rates: trie-2tp is comparable in space to RDFCSA, whereas
trie-3t is up to 60% larger. MonetDB and HDT are also close
to the compression ratio of RDFCSA, whereas the remaining
alternatives require significantly more space: Virtuoso and
RDEF-3X require 7-8 times the space of RDFCSA, Blazegraph
is 10 times larger and Tentris is 20 times larger (note that
a triple break is added to the x axis to display all results
together, distorting the huge differences in space between
these techniques).

In addition to being much larger, Virtuoso, Blazegraph,
and RDF-3X are much slower in general than the alterna-
tives based on compact data structures. Note, however, that
query parsing time is included in the measurements for
these tools. In the case of Tentris, we display query times
both including parsing time and excluding it, as this infor-
mation is segregated by the query tool. Results show that
parsing time causes a significant overhead in these queries,
and ignoring this parsing time makes Tentris competitive in
query times with our solutions, although using much more
memory. Among the more compact solutions, the hybrid
RDFCSA yields the fastest query times in most patterns,

improving on the performance of K2Triples and achieving
query times competitive with permuted trie indexes: RD-
FCSA is competitive with trie-3t, requiring less space, and
is more consistent than trie-2tp. HDT is easily dominated by
RDFCSA variants in all query patterns.

Recall that we display the space and query times re-
quired to store and query triples of integers for the ap-
proaches based on compact data structures, but RDF-3X,
Virtuoso, Blazegraph, and Tentris process the original RDF
data. Space results are therefore not directly comparable,
but these techniques are still a relevant baseline as SPARQL
query tools. Note that RDFCSA, K2Triples, and permuted
trie indexes could be complemented with a compact string
dictionary that follows the encoding proposed for HDT.
Solutions like HashDAC-RP [21] can answer string-to-id
and id-to-string translations in a few microseconds per
operation (typically requiring 1-4 microseconds per oper-
ation in URI and literal dictionaries such as those required
in DBpedia [21]], [42]). This dictionary would increase the
size of the structure by an extra 60% of the collections
in our plots, keeping them in roughly 90-150% of the
original collection (still 4 times smaller than Virtuoso, the
most compact of the alternatives). This means that, even
adding the space required for such a dictionary, RDFCSA
would still easily overcome Virtuoso, RDF-3X, Blazegraph,
and Tentris in space. Additionally, since each triple-pattern
query requires at most 3 string-to-id translations per query,
and at most 3 id-to-string operations per returned result (at
most 2 translations in practice, ignoring the (?s, ?p, ?0) triple
pattern), query times would be increased by less than 10us
per result in most cases when adding this dictionary. Note,
however, that query times for Tentris ignoring parsing time
(Tentris-noparse) are also below this limit, making it
competitive in practice with RDFCSA. Virtuoso and Blaze-
graph are probably affected in similar amounts by parsing
overheads in these queries, making them look less compet-
itive than they could be in practice. In Section §.4) we will
show results for the more complex join operations, where
the effect of the dictionary and query parsing overheads is
less significant in general, and query times comparisons will
be fairer.

We now discuss specific results for each triple pattern,
though overall trends can be easily detected: K2Triples and
K2Triples+ are the most space-efficient solutions, but their
performance is difficult to assess, since it varies significantly
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among triple patterns. In turn, RDFCSA obtains consistently
low query times, never exceeding 10 microseconds per
result in any triple pattern for reasonable sampling inter-
vals. Trie-2tp obtains compression comparable with that of
RDFCSA and better query times in most triple patterns, yet
as explained before it has a major drawback: the (?s, ?p, 0)
pattern is up to 10,000 times slower than the others, and
roughly 1000 times slower than RDFCSA, effectively limit-
ing the application of this solution. The strongest counter-
part, trie-3t, on the other hand, achieves the best query times
in some cases, yet at the cost of much worse compression
(RDFCSA-Hybrid outperforms it in the others, using less
space). HDT is consistent in query times, but slower and
larger in general than RDFCSA. MonetDB is several orders
of magnitude slower than RDFCSA, using similar space,
whereas Virtuoso, Blazegraph, RDF-3X, and Tentris are
much larger than our technique. Query times for Virtuoso,
Blazegraph, and RDF-3X are still much higher than those
of RDFCSA in general. Results for Tentris, however, show
that for most of the triple patterns the cost of query parsing
is much larger than the query execution itself, that only
requires a few microseconds per result. This is comparable
to RDFCSA, that would still have to be augmented with
a dictionary to transform integer IDs in the result to the
original strings. Nevertheless, Tentris requires over 20 times

the RAM of RDFCSA (even augmenting RDFCSA with the
string dictionary, Tentris would still be 10 times larger), so
we do not consider it to be a fair competitor for RDFCSA
and the other compact solutions.

Therefore, in what follows we focus on the comparison
between RDFCSA, K2Triples, and trie variants. We will re-
sume the comparison with the remaining triple stores when
testing join queries, in which the relative overhead of query
parsing should be much smaller, and solutions like Virtuoso
and Blazegraph become more competitive.

The simplest triple pattern, (s,p,0), is the best case for
K2Triples, since it performs a single-cell retrieval query at
(s,0) in the k>-tree associated with predicate p. In terms
of time per result, this query is the worst for RDFCSA,
since it searches for a pattern of length 3 to return at most
one occurrence. Still, RDFCSA outperforms K2Triples with a
reasonable sampling for W (i.e., using over 55% space). The
variant RDFCSA-Hybrid is the fastest, together with the trie
variants. The situation is very similar for the triple pattern
(?s,p,0), where K2Triples has to scan a short column for
fixed coordinate o in the grid.

K2Triples worsens by orders of magnitude in triple pat-
terns (s, p,70), because it has to scan all the objects in a
long row (fixed s coordinate) of the k?-tree associated with
predicate p. Instead, RDFCSA and trie variants are almost



unchanged. In fact, RDFCSA-Hybrid becomes slightly faster
than the trie variants when using 70% space.

In the triple pattern (7s, p, 70), K2Triples simply retrieves
all the points in the k2-tree of predicate p, so its time per
result is good (but still outperformed by RDFCSA). This
time, the trie variants sharply outperform our fastest variant,
RDFCSA-Hybrid.

The lower half of Figure [§| displays the three triple
patterns where the predicate is unbound. In these pat-
terns, K2Triples is very inefficient, so we compare with
K2Triples+, which uses significantly more space (yet still
less than RDFCSA). As before, even the basic RDFCSA
outperforms K2Triples+ once using over 55% of space,
by orders of magnitude on (?s, ?p,0). Our fastest variant,
RDFCSA-Hybrid, also outperforms the trie variants, except
on (s, ?p,?0), where the latter are clearly faster. Note that
the main drawback of trie-2tp shows on (7s, ?p, 0), where it
is several orders of magnitude slower.

Overall, the results show that RDFCSA is an interme-
diate spot between K2Triples, which achieves by far the
best compression among the tested solutions (but is out-
performed in time by RDFCSA), and trie-3t, which disputes
the best query times with our variant RDFCSA-Hybrid (but
uses more space). RDFCSA stands out as a very relevant
space/time tradeoff, while offering stable and predictable
times across all triple-pattern queries. This consistency is
particularly significant taking into account that triple pat-
terns are the basis for more complex SPARQL queries, which
perform joins involving a number of triple patterns. An
inefficiency in one triple pattern may sharply degrade the
performance of the whole complex query. This is a problem
in variants like trie-2tp and K2Triples+, which are several
orders of magnitudes slower on some triple patterns, and
makes them less appealing for a general-purpose SPARQL
query engine.

4.4 Join queries

After analyzing RDFCSA on basic triple patterns, we study
the performance of the different solutions in join queries
involving two triple patterns. In this section we only display
results for some of the relevant state-of-the-art alterna-
tives used previously. Particularly, we keep K2Triples and
K2Triples+, MonetDB, RDF-3X, Virtuoso, and Blazegraph.
We exclude from this comparison HDT and permuted trie
indexes, that have no specific mechanisms for joins, and
implementing merging or chaining evaluation on top of
their triple pattern queries would yield the same relative
performance with respect to RDFCSA we observed in Fig-
ure |8l We also omit results for Tentris, since parsing errors
were returned for most of the join queries in our query
sets. Further, for simplicity we only display results for the
basic implementation (RDFCSA) and the Hybrid version
(RDFCSA-Hybrid). Finally, even though RDFCSA can still
obtain space/time tradeoffs for join queries, for the sake
of clarity we focus the analysis in this section on query
times, and display results only for one sampling period of
U (ty = 32, the third point left-to-right in Figure [8).

We analyze the results for all the different binary join
queries that can arise in practice, involving two triples,
using an existing testbed [18]. Figure [9|displays the different
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query types included in the testbed and their characteristics.
This testbed categorizes the joins by the number of unbound
predicates, and the number of unbound subject/objects.
For instance, join A has no unbound predicates, and no
unbound subject/object. Therefore, a pattern for this join is
(s,p1,?x) < (?x, pa, 0). This is the subject-object variant of
this join, since the join variable ?x is subject in one triple and
object in the other. Two other variants of the same join can
be created: (?x,p1,01) > (?x,p2, 02) (subject-subject join),
and (s1,p1,?x) >4 (s2,p2,7x) (object-object join). Figure [9]
details the specific bindings for subject-object joins, but the
remaining configurations can be easily inferred.

In the following sections we will display results cate-
gorized according to the number of unbound predicates
in the join patterns. This has little effect on performance
for RDFCSA, but severely affects tools based on vertical
partitioning like MonetDB and K2Triples (although the
K2Triples+ variant of K2Triples mitigates this problem with
its extra indexes). In each category, queries are listed in order
of increasing “complexity”, in the sense that additional
unbound variables generally lead to a larger number of
intermediate results, and therefore additional computation
is required. For instance, joins A, B, and C have no unbound
predicates, and have 0, 1, and 2 unbound subject/objects
respectively, so join C should be more complex in general
than join A.

The different configurations yield 9 join patterns (A, B,
C,D,E1, E2, E G, H), each with 3 variants: subject-subject
(SS), subject-object (SO), object-object (OO). Following the
original testbed, for each join type and variant we use two
different query sets (-big and -small), which differ in the
average number of results returned by the queries. This
yields a total of 54 query sets.

Finally, for each join type, we display query times for
the different join strategies applied in each case: merge-
join (-merge), and left- (-left) and right-chaining (-right),
as well as interactive evaluation in K2Triples (-int) [18].
Note that in some joins, specific strategies are inherently
less efficient; we display all of them for RDFCSA in our
results for completeness, excluding only the alternatives that
would cause a full database query (?s, ?p, 70). Because of
the inherent inefficiency of some techniques depending on
the type of join, we will focus our discussion mainly on
the most efficient strategies for each join type. Moreover,
for some query patterns and configurations we were not
able to obtain results in reasonable time with some tools:
multiple query sets could not run in MonetDB, including
all variants of join G and H, due to the two unbound
predicates; several query sets are also omitted for RDF-3X,
Virtuoso, and Blazegraph; a few query sets also failed with
K2Triples or K2Triples+. When no time could be obtained,
the corresponding bar will appear empty in the plots that
display the results.

As discussed before, space and time comparisons be-
tween the more compact solutions (RDFCSA and K2Triples)
and the remaining alternatives may be affected by SPARQL
query parsing and other overheads that are not considered
in the former. Therefore, the direct comparison of the results
could be unfair to SPARQL-compliant stores, especially in
the simpler joins that return a smaller number of results.
In more complex joins, in which the number of unbound
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variables is large, and especially in -big query sets, the
overhead of query parsing should be smaller and time
comparisons should more accurately reflect the actual query
performance. Taking all of this into consideration, we will
focus most of our analysis on the comparison between
RDFCSA and K2Triples (or K2Triples+), highlighting only
particular cases where the performance of the other systems
should be noted.

4.4.1 Joins with no unbound predicates

For these joins, we display results for K2Triples, since the
additional indexes used by K2Triples+ do not yield any
improvement in performance for fixed-predicate queries.
The top plot of Figure [10| displays the results for join A
(e.g., (s,p1,7x) > (x, pa,0), with no unbound variables).
In this join, RDFCSA with left chaining obtains the best
results in all cases. This technique, for subject-object joins,
essentially executes each join as an (s, p1, 7z) query chained
with (z;,p2,0) queries for each x; that results from the
first query. The results are similar for object-object joins,
but for subject-subject joins, K2Triples obtains better query
times. This difference, depending on the position of the join
variable, is consistent with our previous results on triple
patterns: when executing an object-object or subject-object
join with left chaining, the first query executed involves an
(s,p, 70) pattern, where RDFCSA was two orders of mag-
nitude faster than K2Triples. However, on subject-subject
joins, the first query is an (7s,p, o) pattern, where query
times were similar. MonetDB, RDF-3X, Virtuoso, and Blaze-
graph are typically much slower than the best variant of
RDEFCSA by at least one order of magnitude. Note, however,
that query parsing and other fixed overheads in these tools
may be especially significant in these joins, that return a
very small set of results.

The middle plot of Figure [10| displays results for join B
(e.g., (?s,p1, 7x) 1 (?x, pa, 0), with one unbound variable).
Several times, K2Triples obtains the best query times with
its interactive evaluation strategy, but RDFCSA-Hybrid is the
best in the other cases. The nature of this join, where one

pattern has an extra unbound variable, leads to uncertainty
in the complexity of the best operation order. Because of this,
the interactive evaluation in K2Triples is a good approach,
even though differences are usually small. MonetDB, RDF-
3X, Virtuoso, and Blazegraph are competitive in some cases,
especially in the -big executions in which the query parsing
overhead is reduced and their ability to extract larger results
sets is highlighted.

The bottom plot of Figure (10| displays results for join
C (e.g., (7s,p1,?x) > (?x, pe, T0), with two unbound vari-
ables). In this type of join, RDFCSA again obtains the best
query times, usually with left-chaining evaluation. This is
clearly the most efficient technique for this join, with results
similar to those of join A. When both triple patterns have
a similar structure (i.e., the same number of fixed and
bound variables), RDFCSA tends to be more efficient with
left-chaining, due to the performance of the triple-pattern
queries that are generated: in subject-object joins, with left-
chaining, we run an (?s,p1, 701) query followed by many
(84, p2, T02) queries, which are very efficient in RDFCSA.
However, in object-object joins the merge strategy is better.
Regarding MonetDB, Blazegraph, and Virtuoso, we obtain
similar results as for Join B (i.e. they are at least one order of
magnitude slower than the best choice), yet we can see that
in most cases we could not get results for those techniques.

4.4.2 Joins with one unbound predicate

Figures [11] and [12] display the query times for joins D, E,
and F. In these experiments we compare RDFCSA with
K2Triples+ instead of K2Triples, since the latter is typically
orders of magnitude slower.

Considering the results across all the joins, RDFCSA
achieves better query times. Yet, results are significantly dif-
ferent depending on the join type and query set. MonetDB
is far from competitive as long as an unbound predicate
appears, as expected, and it is up to 5 orders of magnitude
slower than the other techniques. RDF-3X, Virtuoso, and
Blazegraph are also 1-2 orders of magnitude slower than
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Fig. 10. Results for join A (top), B (middle), and C (bottom).

the fastest RDFCSA variant in most cases. Hence, we will
focus on the comparison between RDFCSA and K2Triples+.
In join D, RDFCSA obtains the best overall results
for object-object joins, but K2Triples+ is also competitive.
K2Triples+ is faster in subject-subject joins and in some cases
for subject-object joins. Left-chaining is the best strategy in
most cases, both in K2Triples+ and RDFCSA, since it evalu-
ates the triple pattern with bound predicate first, therefore
saving a significant effort on the right triple pattern.
Regarding join F, RDFCSA is significantly faster in all
cases, again with left-chaining, as this reduces the cost of
processing the pattern with unbound predicate. Note that,
for this join, most alternatives failed to yield results for
the object-object joins in our setup. Finally, note that when
comparing joins D and F, we find the same trend existing
between joins A and C: K2Triples and K2Triples+ are more
competitive with few unbound variables. In more complex
queries, instead, RDFCSA is much more efficient.
Figure [12 shows significant differences between joins E1
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and E2, because the different location of the unbound predi-
cate leads to very different triple patterns in each side of the
join. The join E1 (e.g., (?s,p1,?z) > (?x, ?p2,0)) requires
much more computation with any of the basic strategies,
since both triple patterns contain an unbound variable.
The best evaluation strategy is unclear: the merge and
right-chaining techniques are competitive in RDFCSA, but
K2Triples+ is slightly faster in most cases with its interactive
evaluation. However, in join E2, the left pattern is much
simpler than the right one, leading to a clearer evaluation
path: left-chaining is the best strategy, and RDFCSA is an
order of magnitude faster than K2Triples+ in most joins.

4.4.3 Two unbound predicates
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Fig. 13. Results for joins G (top) and H (bottom).

Figure displays the query times for joins G (e.g.,
(s,?p1,%x) <1 (x,7p2,0)) and H (e.g., (?s,7p1,?x)
(?x,?7p2,0)). We omit MonetDB in these joins because
the combination of two unbound predicates makes those
queries extremely inefficient in its vertical partitioning
model.

Like in previous cases, the results vary significantly
depending on the join and query set. For join G, RDFCSA
is the fastest technique in almost all cases, using merging
or left-chaining depending on the case. For join H, RDFCSA
with right-chaining is also orders of magnitude faster than
K2Triples+ in general. These results are again consistent
with the trend in previous sections that suggests that RD-
FCSA is especially competitive in the more complex join
patterns. The subject-subject joins with many results are the
only observed case where RDF-3X, Virtuoso or K2Triples are
faster than RDFCSA. In most other query sets, however, the
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fastest RDFCSA variant is 1-2 orders of magnitude faster
than the other alternatives.

5 CONCLUSIONS

We have introduced RDFCSA, a compact data structure for
the efficient storage and querying of RDF datasets. It is
based on a compressed text index, the CSA [22], which is
adjusted so that the triples that compose the RDF dataset
are regarded as circular strings of length 3. We demon-
strate that all the SPARQL triple patterns boil down to text
searches in this particular collection of cyclic strings. The
basic capabilities of RDFCSA are then based on the CSA
search algorithms, which we have adapted and optimized
for our scenario. We also design algorithms to solve queries
involving joins.

RDFCSA is able to compress a set of RDF triples to
around 60% of their raw size. Within this space, it offers
fast and very consistent query times for all the basic triple-
pattern queries, which are the basis for SPARQL support.
In our experiments, RDFCSA answers any triple-pattern
query within a few microseconds per result. It is also able
to efficiently answer queries involving binary joins, being
faster in most cases than the alternatives. Our experimental
evaluation shows that state-of-the art solutions like RDF-3X,
Virtuoso or Blazegraph are much larger, and in many cases
slower than RDFCSA, even considering effects such as query
parsing and dictionary encoding. We also clearly outper-
form HDT [14] in both space and time. Modern in-memory
alternatives such as Tentris can achieve competitive query
times with our solution, but their memory requirements are
an order of magnitude higher than ours.

While K2Triples [18] obtains better compression than
RDFCSA, its query times are much less consistent, being
several orders of magnitude slower in some triple-pattern
queries. The recent permuted trie indexes [19], on the other
hand, are able to outperform RDFCSA in time, but in order
to achieve consistent performance for all triple patterns they
need to use around 50% more space. Our implementation
variants also provide a wide space/time tradeoff, that can
be easily tuned by adjusting the sampling interval on W.

Overall, RDFCSA provides a very appealing space/time
tradeoff for the storage of RDF data, combining low space
with fast and consistent query times. Such predictability is
very important when building up more complex SPARQL
queries on top of simple triple patterns and joins.

Our current implementation is designed to handle
integer-based triples, so it requires an external dictionary
to handle the mapping between strings and ids. As fu-
ture work, we plan to integrate RDFCSA with some com-
pressed dictionary [20], [21]], [42] in order to provide efficient
mappings. Another choice is to integrate it in the HDT
library (http://rdfhdt.org), which already provides the
needed string dictionaries. Another future challenge is to
make RDFCSA dynamic, that is, allow adding and remov-
ing triples from the database. This is already supported
by indexes like RDF-3X and solutions like Virtuoso and
Blazegraph; a dynamic implementation of K2Triples also
exists [43]. We believe that it is possible to build on dynamic
variants of the CSA [44], [45], [46] to obtain an efficient
dynamic RDFCSA. Finally, compressed indexes inspired



in the RDFCSA have been used to implement multi-join
algorithms in worst-case-optimal time [47], [48], which for
complex queries using the same variables several times are
more efficient than query plans based on binary joins.

6 DATA AVAILABILITY

The dataset DBPedia used in our experiments is available
at http://downloads.dbpedia.org/3.5.1/. A processed ver-
sion of the dataset, containing only the integer ids used
by our representation, has been made available at https:
//lbd.udc.es/research/rdf/. The source code of RDFCSA
and execution scripts are also available at the same url.
The testbed used is available at http://dataweb.infor.uva.
es/queries-k2triples.tgz.
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