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Abstract Human-robot collaboration has gained a notable prominence in In-
dustry 4.0, as the use of collaborative robots increases efficiency and produc-
tivity in the automation process. However, it is necessary to consider the use
of mechanisms that increase security in these environments, as the literature
reports that risk situations may exist in the context of human-robot collabo-
ration. One of the strategies that can be adopted is the visual recognition of
the collaboration environment using machine learning techniques, which can
automatically identify what is happening in the scene and what may happen
in the future. In this work, we are proposing a new framework that is capable
of detecting robotic arm keypoints commonly used in Industry 4.0. In addition
to detecting, the proposed framework is able to predict the future movement of
these robotic arms, thus providing relevant information that can be considered
in the recognition of the human-robot collaboration scenario. The proposed
framework is based on deep and extreme learning machine techniques. Results
show that the proposed framework is capable of detecting and predicting with
low error, contributing to the mitigation of risks in human-robot collaboration.

Keywords Robotic arm pose estimation · Movement prediction · Deep
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1 Introduction

The usage of robots to perform human tasks has been increasingly applied
in the production process, manufacturing, and other areas of the industrial
sector [1]. Robots are also assisting humans in undertaking specific tasks in
what is referred to as human-robot collaboration (HRC) [2]. Currently HRC
spans diverse contexts, including manufacturing, homes, offices, and hospitals
[3]. More significantly, HRC has been introduced in Industry 4.0 manufac-
turing activities. This triggered interest and set a new trend in the research
community seeking to evaluate the impact and ensure efficient use of HRC [4].
Advocates of this technology claim that it benefits the production process by
reducing the time to execute some complex activities traditionally allocated
to humans only.

The present study looks at HRC in the context of the maintenance of
computer network equipment, such as a radio base station (RBS), as the one
described in [5]. Cellular network operators allocate considerable human and
financial resources for the maintenance of RBS equipment. This is a task that
requires frequent visits by technicians to geographically distributed sites over
small and large urban environments. An Telecom operator must ensure high
RBS availability in order to avoid financial loss. The inherent cost of these
visits and the time it takes to locally perform maintenance tasks are a concern.
This problem is likely to worsen with the introduction of a large number of
small cells as planned by the 5G standard [6]. Collaborative robots (COBOTS),
specifically robotic arms, can be successfully deployed jointly with technicians
to automate many of the RBS related maintenance tasks. Their collaborative
tasks may cover a range of activities including faulty cable verification and
their replacement, insertion and removal of cables into and from network device
ports, device configuration, among others.

Despite the many apparent advantages, the direct contact between humans
with robots can pose some risks. One of these is collision, see [7]. Such events
may lead to accidents that can cause irreparable physical damage to humans
[8]. Robots are also likely to suffer from collisions, possibly leading to financial
losses to owners. There is as a result a need to design, deploy and evaluate
new safety mechanisms that govern HRC and ensure its safety. Anticipating
and mitigating risks in HRC certainly provides a promising solution to this
problem.

Considering the previously identified research gaps, the need for safe HRC
and the promising high accuracy of DL models for detection tasks, the present
work develops and evaluates a new framework for the accurate detection of
robot poses and the prediction of future movement. The proposed framework
consists of the following two parts:

1. Robotic arm pose estimation: relies on re-training a CNN model named
SCNet-50-V1-d [9] for the pose detection task of the robot through re-
gression. The SCNet-50-V1-d model uses self-calibrated convolutions (SC-
Convs) and enjoyed a great deal of success in a wide range of application
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including image classification, object detection and instance segmentation.
In this work, we also demonstrate the efficacy of using SCConvs for re-
gression tasks. In addition, we improve pose estimation through the use
of the extreme learning machine (ELM) neural network [10], which when
combined with CNN models tends to provide a better learning outcome
[11].

2. Robotic arm movement prediction: contemplates the training a long-short
term memory (LSTM) [12] and gated recurrent unit (GRU) models [13] to
predict the future movement of a robotic arm.

The framework is instantiated with several DL models that support pose
detection and prediction of future robot movement. These are evaluated and
compared in a well-controlled scenario, as defined by Silva et al. [14]. Despite
being a well-controlled setting, the adopted testbed includes real equipment
such as the UR-5 robotic arm, networking and RBS devices installed in a
rack. The scenario also inserts a person responsible for performing collabora-
tive activities with the robotic arm. These activities are recorded through a
strategically positioned camera. We also annotate the data to carry out the
regression of the robot’s keypoints and obtain the current robot pose. We
compared all the evaluated models using the two performance metrics: mean
squared error (MSE) and mean absolute error (MAE) metrics. The obtained
result demonstrate the suitability of using the proposed framework as an ef-
ficient solution for the detection and prediction of the future movement of a
robotic arm while suffering a very low error.

1.1 Organization of this article

The remainder of this article is organized as follows. Section 2 presents similar
works in the robot keypoint detection field. Section 3 presents the proposed
framework and details its two main modules, namely, robotic arm pose estima-
tion and robotic arm movement prediction. Section 4 describes the methods
adopted in this work for developing the experimental scenario, supported im-
age acquisition process, used DL models, used parameters and metrics, and
finally model validation. Section 5 explains the obtained results 0along with
the experiments performed in this study. Finally, Section 6 concludes this ar-
ticle and suggests some future research directions.

2 Related Works

Across the literature, there are several technologies that can actually con-
tribute towards detecting and mitigating risks in HRC [15], [16], [14], [17],
[18], [19]. Among these, we highlight the special role of machine learning (ML),
which provides intelligent systems to solve the most diverse engineering prob-
lems, including HRC. In particular, we draw the attention to an emerging
sub-field of ML in the literature, deep learning (DL) [20]. DL has proven to
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beat the state of the art in solving most common problems involving ML, such
as the image classification challenge in the ImageNet database [21], [22]. Fur-
thermore, DL has gained notable prominence in regression, clustering, among
other tasks, through its use of convolutional neural networks (CNN) [23] and
recurrent neural networks (RNN) [24].

As a result, there are several approaches in the literature that use DL mod-
els for risk mitigation in HRC [14], [25], [26]. Nonetheless, many of the already
listed works are limited to carrying out the immediate detection of collision
events. They do not predict eminent risk situations before they happen. To
reduce damage to workers and agents involved in close collaboration scenarios
with robots, one should ideally train new models that predict risk situations
and analyze relevant data to predict possible risks in a timely manner and
prior to taking place [17], [18], [19].

The authors are of the view that there are limited contributions that take
into consideration the detection of human intention to estimate the likelihood
of future risks. Such works suffer from a limited scope as they focus on de-
tecting human movement [17], [18], [19] and do not combine this with robot
detection and the analysis of its movement. Note however that there are lit-
erary works that tackle robotic arms detection in an isolated context. Unlike
these, this study develops and evaluates detection mechanisms for robots to
assess their proximity, speed, collision risks, future movement, etc., in a HRC
scenario. These assessments should provide a more robust solution for risk
mitigation in HRC.

Pose estimation (or detection) is widely used in several computer vision
applications such as medical assistance, games, and human intention detec-
tion. All previously cited applications refer to human pose estimation. Human
pose estimation consists of detecting the human body keypoints through re-
gression models. In a similar view, robot pose estimation consists of detecting
the robot keypoints through regression models, these keypoints are the joints
that compose the robot skeleton. With the advance of deep learning studies,
there has been a notable advance in robot pose detection with several CNN
applications with different types of robots. Robot pose detection aims to ob-
tain the keypoints which represent the robot joints, thus constituting its pose.
Bellow, we present recent papers on robot pose detection using CNNs.

Miseikis et al. [27] present an approach for detecting robot poses in RGB
images. Their method consists of a cascade of two different convolutional net-
works. The first network performs the segmentation of the robot, with an
architecture reminiscent of AlexNet [28]. In contrast, the second network is
responsible for mapping the robot’s key points from the mask extracted with
the first network. The UR-5 robotic arm pose detection reached an accuracy of
98.1% and outperformed that of UR-3 and UR-10 with 93.1% and 92.8%, re-
spectively. In a similar research, Mivseikis et al. [29] propose the use of transfer
learning to detect various tasks (as [27]), including the detection of keypoints
of another type of robot, the Kuka LBR iiwa. The approach achieved an ac-
cuacy of 97.3% for detecting the new robot’s masks. This demonstrates that
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transfer learning also contributes to detecting keypoints of robots, even though
there are fewer examples used for training the neural network.

Zhou et al. [30] also propose an architecture for detecting the pose of robots
from RGB images. The architecture is divided into two parts, Base-Net and
Pose-Net. In Pose-Net, the positions of the keypoints in the image are initially
estimated to guide training. Base-Net obtains the 3D position of the robot
base by calculating the depth and using the robot base position in the image
evaluated by proposed system.

Lee et al. [31] present an approach to estimate the pose of the robot using
a single RGB image. As with similar previous works, a convolutional network
is used to detect the robot’s keypoints in artificial images due to the lack of
the availability of real data reported by the authors. However, unlike previous
works, the projection of keypoints is in 2D. Perspective-n-point (PnP) is then
used to retrieve the camera extrinsic, allowing the approach to dismiss the
need from an offline calibration step from a single frame.

Heindl et al. [32] use a recurrent convolutional network based on ConvGRU-
type convolutions [33]. Despite the promising approach and reaching a mean
average precision or mAP (threshold 50%) of 88.7%, all images used in their en-
tirety were artificially generated to train the proposed architecture. Although
the paper presents inferences in authentic images, there are no experiments
or other evidence that the proposed approach can work in real scenarios. The
idea of using artificial images was also adopted in previous work [34] by the
same authors in [32], however, the neural networks were modeled with vanilla
convolutions this time.

With regard to robot pose detection, there is a need to consider the im-
portance of robots’ keypoints in the context of safety for HRC. Note also
that none of the reviewed works considers the analysis of robots’ keypoints
information into a recurrent neural network in order to classify or predict
robots’ movements. In a typical HRC scenario, it is necessary to understand
and classify/predict the robot’s intention. This approach should help to avoid
or decrease the impacts of collision/accident events.

Considering the current state-of-art, we can cite the following main contri-
butions of our work:

– This work develops a new framework designed to predict robotic arm pose
detection and its future movement in the context of HRC using DL, ELM
and one 2D camera in a well controlled scenario.

– Our framework is applied and evaluated in the proposed controlled setup
that highly mimics a real scenario, generating real data during the exper-
iments for analysis. Unlike most existing related works, this one did not
used synthetic images, e.g. robot located in random scenarios. It is also im-
portant to highlight that in our experiments the camera calibration process
was not necessary. The additional steps part of the calibration processr,
such as checkerboard position, camera positioning, acquisition of intrinsic
and extrinsic parameters are error sensitive. Our goal is to use a generic
environment where we could use devices present in-loco.
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– To the best of our knowledge, this work is first to use ELM to solve a
regression problem using features generated by a neural network that uses
self-calibrated convolutions (SCNet). It is first to obtain robot pose detec-
tion using a convolutional extreme learning machine (CELM) approach.
We demonstrate through extensive experiments that the DL model SC-
Net50 used in conjunction with the ELM method provide better detection
results in our scenario.

– Another important contribution of this work is the proposition of deep
learning models to predict the future movement of the robotic arm. Models
of this type had not been previously proposed in the literature to tackle
this problem. There are works that apply DL only to human movement
prediction models in the HRI context. Using DL, it becomes possible to
analyze the future movement of the robot. Furthermore, DL models will
also be considered, as part of future work, in the analysis of collision risk
between humans and robots.

– Finally, the last contribution of this work is that the proposed framework is
easy to deploy. The testbed relies on infrastructure that is commonly found
in workspaces including cameras, robotics arms, and networking devices.

3 Proposed framework

This section provides detailed information on the composition of the frame-
work proposed in this work. Its adopted models, their comparison and exper-
imental parameters will be presented in Section 4.

As illustrated in Fig. 1, our framework consists of two main modules. The
first one is the robotic arm pose estimation module. It uses a new proposed
neural network model that combines the self-calibrated CNN (SCNet-50) and
ELM. The second module is the robotic arm movement prediction. It executes
well known RNN models to make future inferences. The next two subsections
detail the operation of these two modules.
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Fig. 1: Framework for robotic arm pose estimation and prediction of future
movement.
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3.1 Robotic arm pose estimation

Fig. 2 depicts this module. The framework proposes a new neural network
model for detecting keypoints used to estimate the pose of the robotic arm.

Fig. 2: Module for robotic arm pose estimation.

The first part of the proposed new model, responsible for the training in
keypoints detection, uses the SCNet-50 network with self-calibrated convolu-
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tions (SCConvs). As mentioned by Liu et al. [9], in the SCConvs “each spatial
location is allowed to not only adaptively consider its surrounding informa-
tive context as embeddings from the latent space functioning as scalars in the
responses from the original scale space, but also model inter-channel depen-
dencies”. This allows SCConvs to learn better discriminative representations
by adding basic convolution transformations, identity, and sigmoid functions
to each layer [9].

The SCNet-50 version that we use has a modification also proposed by
the SCConv authors [9], the SCNet-50-V1D, which implements the original
SCNet-50 network with modifications inspired by bag of tricks for CNNs [35].
According to Liu, SCNet-50-V1D replaces the original 7 × 7 convolutions by
three 3 × 3 convolutions, and in the downsampling block, a 3 × 3 average
pooling with stride 2 is added before the convolution operations, whose stride
is changed to 1 [9].

These modifications follow some of the bag of tricks paper [35]. We first
take the SCNet-50-V1D model trained in the ImageNet database [21] and then
attempt to use it for transfer learning in our work. Here, we we re-train all
the weights of the network in our own database (described in Section 4.2) for
robotic arm pose detection. The training process consists of removing the last
fully connected layer and adding a new linear layer containing 16 activations.
There are 16 activations because in this work we aim to make the regression
of the eight keypoints that form the pose of the robotic arm, for each keypoint
there is a coordinate (x, y).

The second part of the proposed new model, responsible for the inference in
keypoints detection, uses ELM to improve the detection of poses of the robotic
arm. According to a survey carried out by Rodrigues et al. [11], ELM can be
used together with CNNs to improve the results in classification tasks and pre-
trained CNNs can be used for feature extraction. ELM models were trained
with the extracted features, providing better accuracy results compared to
using only CNNs.

In this work, we hypothesize that the pose estimation generated by the
SCNet-50-V1D model can be improved by using the ELM network for regres-
sion. Also, we hypothesize that it is possible to have better convergence and
better error results in detection for robotic arm pose estimation, considering
that ELM proved itself accurate in another regression problem, according to
Huang et al. [36].

For training, we perform the feature extraction process through our CNN
network already trained in our dataset. Then we use the ELM network for a
new training with the extracted features. As for inference, with all the afore-
mentioned models, we also execute the feature extraction process using the
SCNet-50-v1-d network. The already trained ELM network will also predict
the keypoints, which together build the pose of the robotic arm. As a result,
for each image processed, our proposed learning scheme produces outputs con-
taining all 8 (x, y) points, corresponding to the robotic arm joints. We name
our proposed model as SCNet-50-V1D+ELM to make the robotic arm pose
estimation.
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Since we now have the model SCNet-50-V1D+ELM to make inferences
about the pose of the robotic arm, there is now also a need to make inferences
from future frames to predict its movement. This type of forecast can facilitate
the understanding of what is happening in collaborative activities. To this
end, the proposed framework is also covered with the robotic arm movement
prediction module, which we will explain later.

3.2 Robotic arm movement prediction

This module proposes the use of several RNN models to predict future robotic
arm movements. As part of this task, we consider two RNN models: LSTM and
GRU. These models are frequently used for time series prediction and. Overall,
they outperform traditional ML algorithms, depending on the applications at
hand [37]. It is important to highlight that we are proposing a double-stacked
RNN (with LSTM and GRU) with encoders and decoders [38] (Fig. 3), for
better learning of long term data, storing in memory various data from the
past, and considering them in future prediction. There are two encoder layers,
in which we store the sequences for subsequent use by the decoder layers. At
last, there is a time-distributed and dense layer that makes predictions.

For each set of images In supplied to the first detection module, this will
return an array of dimension (n× 16), where n corresponds to the number of
input images, and 16 corresponds to the number of coordinates generated for
the identification of the robotic arm in the In images. This matrix corresponds
to a time series containing the keypoint coordinates of the robotic arm for the
entire set of input images.

Thus, the initial predicted data is sequential (of size (n × 16) containing
just robotic arm poses. The RNN models are used to make future inferences
with this initial data. They return another sequential data containing the
predictions of the robotic arm movement. The out sequential data has a size
of (f × 16), where f is the number of future frames set to be predicted. With
these data provided, it is possible to verify where the robot is moving, enabling
the creation of policies in the robot’s operation. An example of an applicable
policy is to stop the robot when it is moving towards a human. The output
size f is an adjustable parameter, together with the n parameter, both are
defined in Section 4.3.2.

4 Materials and methods

This section provides insights on the way the experiments were setup and
executed.
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Fig. 3: Detailed view of the module for robotic arm movement prediction.
Orange arrows refer to copy operations, and blue arrows refer to the normal
feedforward process of the neural network.

4.1 Experimental scenario

Fig. 4 presents our well-controlled experimental testbed implemented within a
laboratory as well as all its main elements. The adopted scenario is one where a
worker collaboratively interacts with a robotic arm that performs maintenance
activities on an RBS network rack.

The robotic arm used in our scenario is an UR-5 [39]. It performs mainte-
nance operations such as adding, removing, or exchanging network cables in a
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Fig. 4: System general architecture (same scenario of Silva et. al [14]).

rack similar to the one used in an RBS site. In addition, a camera is strategi-
cally placed to capture all activities performed in our well-controlled scenario.
With the interaction of the robotic arm, all images are captured at a 21 FPS
rate in high definition by a webcam and processed by a nearby computer. This
machine also hosts the software for training using deep learning models and
making inferences.

Table 1 presents, in detail, the characteristics of the camera and computer
used.

4.2 Data acquisition and processing

All scene images captured by a single camera are next processed by a dedicated
computer. In order to ensure the capture of representative scenes with HRC
risk, we established some activity protocols to be followed by the robot and
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Table 1: Specifications of the camera and computer used in this work.

Device Specification Value
Camera Type Webcam

Model Logitech C270
Transmission rate 21 fps
Image Quality HD - 1080p

Computer OS Ubuntu 18.04
Processor Core i7-2600 CPU - 3.4 GHz
RAM 16GB
System type 64 bits
Video card GeForce GTX 1060 6GB

humans to simulate collaborative activities. Based on our previous work [14],
we defined the following activities:

– a worker making movements inside and outside the robot’s workspace;
– a worker performing delivering or exchanging cables to the robot;
– accidental collision and contact situations caused by the worker or the

robot by teleoperation;

The captured the images are stored in video format (.AVI) during the
recording process. At the end of the recording, we extracted all frames from
the video which resulted in a total of 23,135 frames (approximately 18 minutes
with 20 FPS). We use the OpenCV library in Python to perform these two
procedures.

4.2.1 Data for robot pose estimation

With the obtained frames at hand, we next selected a small number of frames
to annotate robot keypoints. We considered 1,000 frames representing around
one frame per second. We decided to select frames in this way to avoid excessive
redundant information that does not contribute to the efficiency of the learning
process. It is known that frames are given with temporal interdependence, and
they generally are similar to each other. As a result, it is often not necessary
to use all frames for the detection task.

To detect the pose of the robotic arm, it is necessary to define, through
annotations, the keypoints that compose the robotic arm. To annotate the
data for robotics arm pose detection, we use the VGG Image Annotator [40].
Fig. 5 shows an example of how the data was annotated.

Using the VGG Image Annotator (VIA), we annotate eight points that
correspond to the robot’s joints in all frames. The generated output by the tool
is in JSON format. After the frame selection process, we obtained a number
of 508 annotated images with the pose of the robotic arm.
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(a) (b)

Fig. 5: Example of robot keypoints annotation with the VGG Image Annotator
software.

4.2.2 Data for robot movement prediction

With regard to the data used for training the recurrent models, we did not
perform frame selection because for movement prediction one needs to main-
tain a temporal dependency in the data. But, one problem emerges as a result
of this decision, there are more than 20,000 frames that make the ground truth
and which can all be used to train the recurrent models.

We hypothesize that our proposed model for robotic arm pose estimation
(SCNet-50-V1D+ELM) can extract the keypoints with an acceptable level
of precision, so we assume that it is the source of our annotations. We make
predictions with the SCNet-50-V1D+ELM architecture in all frames extracted,
then create a dataset for robotic arm movement prediction. In other words,
we obtain the position of the robotic arm in all frames of the video. With
that, we created a new time series dataset containing the eight robotic arm
points, with coordinates (x, y). The result totals to 16 coordinate information
representing the robotic arm, for each frame, as shown in Fig. 6. After runnning
the automatic annotation process using the SCNet-50-V1D+ELM model, we
obtained 23,135 sequential images annotated with the pose of the robotic arm.

4.3 Experimental settings

4.3.1 Robot pose estimation

Section 3 describes the main model for detecting the pose of the robotic arm,
namely, the SCNet-50-V1D+ELM model . To prove the model’s effectiveness,
we compare it with some state-of-the-art DL models, such as AlexNet [28],
SqueezeNet [41], VGG-11 [42], ResNet-34 [43], and DenseNet-121 [44]. For
all of these models, we removed the last fully connected (or dense) layer and
replaced it with another dense layer with linear activation, now containing 16
neurons responsible for predicting the keypoints of the robotic arm. During
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Fig. 6: Automatic process for keypoint annotation proposed in this work.

the training process, we retrained all models using their pre-trained weights
obtained from ImageNet.

We trained all the models mentioned above (in addition to our proposed
model) in 500 epochs with the Adam optimizer. A learning rate of 0.0001 and
batch size of 8 were used. Data validation for this training process was carried
out using cross-validation with 5 folds. Considering that we have a regression
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problem, we used the loss function of mean squared error (MSE) to calculate
the error in the propagation of neural networks.

For the ELM network, we have four different kernel activation functions,
including the radial basis function (RBF) [45], RBF with L2-norm (RBF-L2)
[45], hyperbolic tangent (Tanh) [46], and the linear function. For all ELM
evaluations, we varied the number of neurons between 100 and 1000 with a
step of 50.

In addition to its role as a loss function, the MSE was also used as an
evaluation metric. In addition, the proposed framework adopted the mean
absolute error (MAE) as a secondary metric to evaluate the models. Eqs. 1
and 2 detail the definitions of the adopted MSE and MAE metrics.

MSE =
1

N

N∑
i=1

(yi − pi)
2 (1)

MAE =
1

N

N∑
i=1

|yi − pi| (2)

Where N is the number of samples in the set, yi corresponds to the current
real value, and pi is the predicted value by the regression model.

4.3.2 Robot movement prediction

We train the LSTM and GRU models with the Adam optimizer over 500
epochs. The learning rate equals 0.0001, and the batch size is 4096. Another
variation in the experiments with the recurrent models is the window size of
the data used to make inferences (past window - n) and the window size of
the predicted data (future window - f). We designed grid search experiments
to analyze the impact of past and future window variation in the prediction
results. Table 2 shows the parameters for the grid search.

Table 2: Grid search parameters used in the robotic movement prediction.

Parameter Values
Past window (n) 10, 20, 30, 45, 60
Future window (f) 1, 5, 15, 30, 60, 90, 120

5 Results and discussion

This section presents the main results for both pose detection and movement
prediction of a robotic arm.
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5.1 Robotic arm pose estimation

First, we present the experimental results for the robot pose detection. Ta-
ble 3 shows the results obtained for robot pose detection using DL models,
considering the mean and standard deviation of MSE and MAE reported for
each DL model in the cross-validation training. All MSE and MAE results
reported in this work are real values (difference in pixels). That is, they are
not normalized.

Table 3: MSE and MAE results reported by each DL models for robotic arm
pose detection.

Model MSE MAE
AlexNet 13.65±8.27 2.37±0.29
DenseNet-121 07.33±4.67 1.67±0.22
ResNet-34 12.27±7.61 2.31±0.91
SCNet50-V1D 04.12±3.20 1.24±0.13
SqueezeNet 08.91±4.91 1.90±0.17
VGG-11 27.34±3.56 3.92±0.20

By analyzing the results, we can verify that the SCNet-50-V1D model
outperformed the others. The exception is for observed the standard deviation.
We can attribute the superiority of the SCNet-50-V1d model to its robustness
due to performing more operations on its self-calibrated convolutions, unlike
vanilla convolutions. The SCNet-50-V1D model reached an MSE equal to 4.12
and an MAE equal to 1.24.

The model that comes closest to SCNet-50-V1D was the DenseNet-121
model. It achieved an MSE equal to 7.33 and an MAE equal to 1.67. According
to Zhang et al. [47], DenseNet models are known for their superior feature
generalization with fewer parameters than ResNet and other older DL models.
ResNet-34 and AlexNet models could not reach error like the SCNet-50-V1D
models. While ResNet-34 reached MSE of 12.27 and MAE of 2.31, AlexNet
reached MSE of 13.65 and MAE of 2.37. Note that they stand only a little
behind in terms of errors from what was reported by the two best models
SCNet-50-V1D and DenseNet-121.

Between these two best models and ResNet-34, we find SqueezeNet that
achieved an MSE and and an MAE of8.91 and 1.90 respectively. The SqueezeNet
model has a smaller amount of parameters compared to ResNet-34, and this
fact may have weighed on the results obtained. ResNet-34 models generally
converge better when there is a large amount of data used for training [43].
This may have directly impacted the performance and feature generalization
of the model, given that we are facing a learning problem with relatively a
small amount of data.

Last but not least, we have the AlexNet model, with an MSE equal to
13.65 and an MAE equal to 2.37, and the VGG-11 model which resulted in am
MSE of 27.34 and an MAE value of 3.92. The AlexNet and VGG-11 models
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contain, in their architectures, several stacked convolutional layers, that is,
without concatenation operations or residual operations, as is the case with
the DenseNet or ResNet models. The fact of not having transfer features in
their layers can impoverish the feature generalization process, causing a more
significant error.

All the analysis previously performed considered only the average of the
errors of the five cross-validation runs. However, we still need to consider the
standard deviation. To carry out a more concise analysis of the behavior of the
models, we can also present the results in boxplot form in Fig. 7. We consider
the MSE error reached by each model into the boxplot.

Fig. 7: Boxplot representation for MSE results reached by the DL models.

One can observe the error variance of each of the analyzed models. VGG
and ResNet models reached the highest standard deviation and also provided
a more significant variation in the boxplot. The other models did not show
much variation, except for the presentation of outliers, which impacted the
increase in the standard deviation for the models in question.

Regarding outliers, we can observe this behavior in the AlexNet, SqueezeNet,
ResNet-34, and SCNet-50V1D models. This behavior may have happened co-
incidentally in one of the cross-validation executions, which impacts that the
data used in training causing poor learning in the models compared to the
other executions. The VGG-11 and ResNet-34 models showed, in general, poor
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learning performances in all executions. For this reason, they may not present
outliers in their executions.

The boxplot analysis gives us even greater certainty about the models
that performed better in learning. We can see that the DenseNet-121 and
SCNet-50-V1D models do not overlap with other models in the boxplot. More
specifically, we can see that the SCNet-50-V1D model does not overlap with the
DenseNet-121 model, which shows that the samples are statistically different.
What could counter this argument are the outliers that both models have in
common. However, the error obtained in the outlier with SCNet-50-V1D was
lower.

This last statistical analysis reinforces the argument that the SCNet-50-
V1D model provides better results for detecting the pose of the robotic arm.
Furthermore, we can verify that SCConvs offer better results for a regression
task, in addition to the functions indicated by the model proponents, Liu et al.
[9]. In this work, SCConvs contributed to the construction of feature represen-
tation at different scales through self-calibrating operations, contributing to a
better generalization of the data. It was known in the literature that SCConvs
could present better results in large-scale problems with a high amount of data.
According to the experiments presented in this work, there is evidence that
SCConvs can also provide better representation and generalization of data in
small-scale problems.

Previously, we presented the results for detecting the robotic arm pose
using only the DL models. Next, we analyze the impact of using an ELM
network to refine the results obtained by the SCNet-50-V1D model. Fig. 8
presents a graph containing the number of neurons vs. error (MSE) reached
by the specific ELM network.

The refinement of the poses of the robotic arm with ELM can occur with
any activation function for the neurons. However, the number of neurons is
an essential factor that must be considered for the refinement step. The ELM
networks with RBF-L2 kernel and Tanh as activation functions presented sim-
ilar MSE results during all the variations of the number of neurons. While,
ELM networks with Linear kernel and RBF provide results closer to the other
two mentioned above, using more than 700 neurons.

By using 1000 neurons, we observe that the results of all ELM networks are
similar. However, it is worth mentioning that, if the production environment
chooses to use the more lightweight ELM model, the correct option would be
to use ELM with RBF-L2 kernel or Tanh with a smaller number of neurons.
These last two activation functions provide similar results when using 1000
neurons with the other activation functions. On the other hand, if one chooses
to use the ELM network with better learning performance, a more detailed
analysis of the obtained results is necessary.

For a better and fairer analysis, we equaled the number of neurons to 1000
for the use of all activation functions. In this analysis, we consider the MSE
and MAE metrics. Table 4 presents the results obtained with this analysis,
also considering 5-fold cross-validation.
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Fig. 8: Relation between the number of neurons and the error reached by the
ELM with different activation.

Table 4: MSE and MAE results reported by each activation functions in the
ELM network for robotic arm pose refinement.

Model MSE MAE
SCNet50-V1D 4.12±3.20 1.24±0.13
SCNet50-V1D + ELM-Linear 3.76±3.11 1.15±0.14
SCNet50-V1D + ELM-RBF 5.24±3.47 1.47±0.13
SCNet50-V1D + ELM-RBF-L2 3.74±3.20 1.14±0.13
SCNet50-V1D + ELM-Tanh 4.73±3.19 1.37±0.13

We observed that ELM with RBF-L2 kernel and Linear reached the small-
est errors, considering only an average of the errors obtained in each validation
fold. The ELM with the RBF-L2 kernel achieved an MSE of 3.74 and an MAE
of 1.14, while the ELM with Linear activation achieved an MSE of 3.76 and
an MAE of 1.15. Both generate results that are very close to each other and
below those for SCNet-50-V1D (Table 3). RBF-L2 provides a squared error-
based regularization for regression problems, which may explain its smaller
errors.

We also analyze ELM with RBF kernel, which achieved an MSE of 5.24,
and an MAE of 1.47, while with Tanh it reached an MSE of 4.73 and an
MAE of 1.37. Observe that both configurations worsened the error results that
SCNet-50-V1D achieved. Despite always obtaining error results that varied
little regardless of the number of neurons (compared to ELM-RBF and ELM-
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Linear), ELM with Tanh activation did not show interesting results with 1000
neurons. The distribution of neurons into 1000 data may have impacted the
low results of Tanh (which is more suitable for binary classification) and RBF
(that could not provide a better approximation of the function).

Considering an analysis from the standard deviation viewpoint, we can see
that ELM with RBF-L2 kernel and Linear do overlap. Fig. 9 shows a boxplot
with all the results obtained by SCNet-50-V1D with ELM. For comparison
purposes, the boxplot also shows the results of SCNet-50-V1D without ELM.

Fig. 9: Boxplot representation for MSE results reached by SCNet-50-V1D with
and without ELM network.

We verified that, regarding the models with ELM, the best learning per-
formance with RBF-L2 and Linear is confirmed. These two models obtained
smaller error results in all five execution runs, while not denoting any overlap
with the ELM models with RBF and Tanh. In addition, the outlier that had
been previously evidenced only with SCNet-50-V1D appears again, proving
that in one of the execution rounds, there was indeed some difficulty in the
modeling and learning process of the models. In addition, the ELM with Tanh,
in particular, presented a second outlier, however with a smaller MSE, while
having a significant convergence in one of the validation folds.

The boxplot analysis also indicates that it is impossible to state which of the
models is better, ELM with RBF-L2, or Linear ELM. This is because result’s
samples are not statistically different. Both models reached similar results and
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behavior across all the validation fold, as reflected by the MSE. Still, about
these last two models, their results generally do not overlap with the results of
the SCNet-50-V1D model without ELM. This phenomenon demonstrates that
the samples may not be statistically different and that the use of ELM networks
refines the robotic arm poses regression error results. Improving detection
results is essential for a better representation of poses, as wrongly detected
keypoints can negatively impact the results, causing risks in a critical HRC
system.

5.2 Robotic arm movement prediction

In this section, we present the experimental results for predicting the future
movement of the robotic arm. First, we start by showing the results using the
LSTM model. Then we present the results related to the GRU model. Due
to the many results for each model, we opted to show only MSE results. All
experiments considered SCNet-50-V1D with ELM-RBF-L2 as a robotic arm
pose detector over the video recording.

Table 5 shows the results obtained for predicting the robot’s future move-
ment using only the LSTM model for each configuration defined in the grid
search experiments.

Table 5: MSE results reported by LSTM model for robotic arm movement
prediction.

Future Window
Past window

1 5 15 30 60 90 120
10 28.89 27.14 33.27 40.81 59.46 74.02 89.69
20 32.61 29.95 36.31 40.03 60.98 77.65 100.03
30 25.69 32.79 31.86 44.02 51.01 71.69 93.87
45 34.19 33.38 33.11 39.51 61.49 72.38 101.39
60 29.65 27.56 37.24 42.62 49.88 71.88 98.97

The results show that the future window parameter has a significant impact
on the results. We first highlight the use the prediction window values of 1 and
5, because in some cases, prediction with a window equal to 5 outperformed
prediction using a window equal to 1, independently of almost all sizes of the
past data window, except when this is equal to 30. This demonstrates one of
the characteristics of LSTM: it is easier to learn long-term data (despite the
the use of a small dataset) [12]. We also highlight that the LSTM algorithm
presents good results of future prediction of the robot with a small past window
with a future window equal to 5. The smaller the past window, the less data
will be processed and propagated in the network, which may decrease the
amount of processing required to arrive at a low MSE result.

Despite highlighting the prediction window of 5, LSTM tended to increase
MSE as the prediction window size is more significant, regardless of the size
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of the past data window. MSE results start to increase considerably after
using 30 frames (or 1 second) in the future forecast window. Despite this, we
can still observe that the use of a past window equal to 10 provided better
forecast results, in general, except against the past window similar to 30 (in
some cases). Nonetheless, the results obtained in these two prediction windows
remained very close.

Table 6 shows the results obtained for predicting the robot’s future move-
ment using only the GRU model for each configuration defined in the grid
search experiments.

Table 6: MSE results reported by GRU model for robotic arm movement pre-
diction.

Future Window
Past window

1 5 15 30 60 90 120
10 15.58 20.36 21.25 26.27 40.72 57.43 82.49
20 20.54 21.91 21.67 24.50 42.89 59.90 83.84
30 18.07 19.76 17.85 26.59 43.63 58.53 85.25
45 16.49 18.64 22.20 26.26 37.58 62.38 81.75
60 18.77 16.58 20.29 24.31 38.38 65.47 83.05

First, we can highlight the superiority of GRU over LSTM in our exper-
iments. A likely explanation for this phenomenon is that the fact that the
small database may have weighed in favor of the GRU [48]. The GRU model
is more straightforward than LSTM, having only two gates. It is more likely
to obtain better results when using less data. On the other hand, LSTM tends
to provide a better outcome when exposed to a large amount of data (total
number of samples in the dataset). As observed with the LSTM model, the
GRU also presented better MSE results with prediction windows equal to 1
and 5 regardless of the past data window, except when this is equal to 30.

Similar to the LSTM, the GRU model tends to increase the error as we
increased the size of the prediction window of the future. With the increas-
ing of the future prediction window, the error can also to increase [49]. The
error tendency in the first frames of the prediction sequence is smaller, and
as you move away from the starting point of the prediction window, the error
increases.

Unlike the pose detection demonstrated in the previous subsection, future
prediction does not consider images as input. The only robot poses data in a
grouping of frames from the past, making the inference in a “blindly way”. In
addition, the MSE metric penalizes the highest error results (farthest frames)
during inference. This fact also explains why the MSE results were much higher
than the robot poses detection.

With the results obtained by the GRU, we can also highlight the com-
petitiveness of the results when we use a past window equal to 10, obtaining
results close to those of other past data windows. In addition, it is also high-
lighted that the GRU promoted a significant increase in MSE when prediction
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windows equal to or greater than 60 were used. This result can be considered
another advantage for LSTM.

6 Conclusion

In this paper, we proposed a new framework for robotic arm pose estimation
and future movement prediction in the context of human-robot collaboration
in a well-controlled scenario. This framework consists of two modules, the
first module estimates robotic arm pose using self-calibrated convolutions and
ELM, while the second module predicts its future movement.

Results listed in this paper suggest that our framework provides satisfac-
tory results with a low detection error. It was possible to reach an MSE of 4.12
using the SCNet-50-V1D, while the proposed model SCNet-50-V1D+ELM
reached an MSE of 3.74. It outperforms all analyzed baselines. In this pa-
per, we showed that the use of ELM with self-calibrated convolutions can
provide low error results or better generalization for the regression task. Also,
the results reached by the LSTM and GRU could ensure low errors for robotic
arm movement prediction.

Although this work contributes to risk mitigation is a HRC, it does not
claim solving the collision risk problem in its entirety. Our goal was to address
the open gaps previously presented and propose a new framework that mainly
provides future movement prediction and detect the pose of the robotic arm.
This last mentioned step can be essential for risk assessment in the HRC
context. The use of this framework allows for example a human agent to know
where a robot will move to, providing it ample time for making decisions and
reacting in order to remain safe and avoid any damage to a moving robot and
humans nearby.

As future work, we intend to extend our approach by using the proposed
models for risk evaluation in a well-controlled scenario. We plan to use the
models for a joint human and robotic pose estimation, besides using deep
learning forecasting models to analyze the extracted keypoints to predict pos-
sible risk or collision situations in the human-robot collaboration. These ex-
tensions stand to enable us to map future collision situations even before they
occur. We also intend to extend our mechanism to work in a more advanced
and complete environment with more people, robots, and interactions in order
to develop a more robust and realistic system for collision detection.
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