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Abstract

Neural networks stand out from Artificial Intelligence because they
can complete challenging tasks, such as image classification. However,
designing a neural network for a particular problem requires experi-
ence and tedious trial and error. Automating this process defines a
research field usually relying on population-based meta-heuristics. This
kind of optimizer generally needs numerous function evaluations, which
are computationally demanding in this context as they involve build-
ing, training, and evaluating different neural networks. Fortunately,
these algorithms are also well suited for parallel computing. This work
describes how the Teaching-Learning-based Optimization (TLBO) algo-
rithm has been adapted for designing neural networks exploiting a
multi-GPU high-performance computing environment. The optimizer,
not applied before for this purpose up to the authors’ knowledge, has
been selected because it lacks specific parameters and is compatible
with large-scale optimization. Thus, its configuration does not result in
another problem and could design architectures with many layers. The
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parallelization scheme is decoupled from the optimizer. It can be seen
as an external evaluation service managing multiple GPUs for promising
neural network designs, even at different machines, and multiple CPU’s
for low-performing solutions. This strategy has been tested in design-
ing a neural network for image classification based on the CIFAR-10
dataset. The architectures found outperform human designs, and the
sequential process is accelerated 4.2 times with 4 GPUs and 96 cores
thanks to parallelization, being the ideal speed up 4.39 in this case.

Keywords: Artificial neural networks, Neural network design, HPC, TLBO,
Multi-GPU

1 Introduction

Neural networks simulate the behavior of the human brain to perform different
tasks, such as image classification, object recognition, language processing, and
anomaly detection [1]. However, designing a neural network for a particular
problem is not trivial. It is necessary to select the type of network and its
configuration or architecture, which requires experience and implicitly needs
trial and error.

Throughout the years, there have been neural networks designed for spe-
cific problems. For instance, Yolo [2] aims at object recognition, while ResNet
[3] and VGG [4] have been conceived for image processing. Regardless, prear-
ranged designs do not always adapt well to datasets. Thus, finding the most
appropriate architecture of the neural network used for a particular applica-
tion remains a problem-specific task. This situation led to the definition of an
active research field known as Neural Architecture Search (NAS) [5]. It studies
the automation of finding the optimal neural network architecture for a prob-
lem and the associated dataset. Google was a pioneer in designing algorithms
for this purpose [6].

In this context, population-based algorithms are widely used for addressing
the underlying optimization problem [5, 7]. As these methods are meta-
heuristic and simultaneously work with multiple solutions, the computational
demand is generally high, and the results might be sub-optimal. Nevertheless,
their exploration capabilities significantly outperform human experts, whose
search process is tedious and potentially biased. Besides, the benefits of such
methods increase with the problem size because the possible configurations to
consider rapidly become immeasurable for human beings.

Population-based algorithms work with vast sets of candidate solutions that
interact with each other to improve their quality. For the problem at hand,
each solution represents a neural network architecture, and its associated fit-
ness indicates its goodness after being evaluated. Some of the population-based



Springer Nature 2021 LATEX template

Multi-GPU neural network design 3

optimizers considered for this purpose so far are Particle-Swarm Optimiza-
tion (PSO) [8] and Ant-Colony Optimization (ACO) [9]. They have been
demonstrated to find designs comparable to those obtained by human experts.

This work proposes using Teaching-Learning-based Optimization (TLBO)
to optimize neural network architectures. This algorithm is also a population-
based meta-heuristic proposed in [10] and has gained popularity. This choice,
innovative in this field up to the authors’ knowledge, is based on two fun-
damental aspects with respect to the population-based optimizers previously
mentioned. Firstly, TLBO was designed for large-scale optimization problems,
i.e., with many variables. This aspect would allow its use for designing com-
plex neural networks, as required for most real applications. In contrast, the
performance of methods such as PSO and ACO decreases with the number of
variables [11]. Secondly, TLBO only needs as input the number of cycles to run
and the population size, while most population-based optimizers, such as PSO
and ACO, must be carefully configured according to their working metaphor.

In general, meta-heuristic optimizers need to evaluate numerous candidate
solutions (individuals) through their search, and this assessment uses what
is called the ‘cost’ or ‘objective’ function. For the problem at hand, evaluat-
ing a solution involves building, training, and assessing the neural network
architecture that it represents. The training is done using the widely-used back-
propagation algorithm. It is responsible for tuning the weights of the neural
network connections to minimize the error that the network commits according
to the associated gradient vector. Some years ago, implementing this method
was not feasible, especially for big networks, due to hardware limitations. How-
ever, the evolution of Graphical Processing Units (GPUs) as general-purpose
accelerators has significantly attenuated this problem. Current GPUs are even
optimized for this kind of task.

In some Internet of Things (IoT) systems, the datasets constantly change
due to the large amount of data generated per second. Therefore, the perfor-
mance of models decreases over the time if they are not updated with the new
data [12]. Having neural networks adapted to the datasets requires finding
their most appropriate architecture as fast as possible. Therefore, it is critical
to parallelize neural network architecture search algorithms to accelerate their
execution and benefit from the computing platforms used.

Fortunately, population-based meta-heuristics are suitable for parallel
computing. The parallelization strategies generally distribute the evaluation
of candidate solutions among the available computing units. In shared-
memory environments, PThreads and OpenMP are widely used. However, in a
distributed-memory environment, such as a cluster of several nodes, it is nec-
essary to apply message passing, e.g., using MPI. It can be implemented either
exclusively or coupled with a shared-memory implementation at each node.

Regardless, current high-performance computing platforms do not only
consist of multiple machines with several processors. They also have several
GPUs for general-purpose computing, and as mentioned, they are well adapted
to work with artificial neural networks. The authors of this work are aware of
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this situation, so the proposed parallelization scheme focuses on the number
of available CPU and GPU resources in the cluster nodes. The implementa-
tion developed must face several difficulties of general interest. Firstly, it is
necessary to do dynamic load balancing because not every candidate archi-
tecture is promising enough (or even feasible) to be fully evaluated. Secondly,
a two-stage evaluation of the individual is proposed. It uses CPU and GPU
resources to evaluate each type of neural network depending on its architec-
ture’s feasibility. Thirdly, GPUs can be distributed among different machines,
and their availability might vary. For these reasons, the optimization algorithm
is decoupled from the specific evaluation process (abstraction). Hence, it has
been implemented as an external module that could be linked to any other
optimizer.

The main contributions of this work are the following:

• The description of how to adapt a continuous optimization algorithm, TLBO
in our case due to its properties, to design neural network architectures using
a new solution encoding.

• The design of an external module called ‘oracle’ that processes the individ-
uals in two phases, depending on their architecture feasibility. The oracle
avoids execution errors when evaluating non-feasible individuals in GPUs
and dynamically distributes individuals to different nodes using MPI.

The rest of this paper is structured as follows: Section 2 discusses some high-
performance computing (HPC) approaches for distributing the processing of
candidate solutions in NAS. Section 3 explains the proposed methodology
for automatically optimizing neural networks. Section 4 describes the experi-
mentation carried out and the results obtained. Finally, Section 5 draws the
conclusions and states future research lines.

2 Related Works

As introduced above, evaluating individuals of population-based meta-
heuristics is suitable for parallelization. If the computational time of tasks is
known in advance, static load balancing approaches are enough. There exist
solutions for managing a set of computational jobs in a given HPC plat-
form optimally, for example, using genetic algorithms [13]. However, timing
is not always predictable, and dynamic load balancing strategies are required
to minimize idle periods of the execution units. This situation occurs when
working with different individuals representing neural network architectures
to evaluate.

In the literature, evaluating alternative neural network architectures gen-
erally relies on working with a heterogeneous platform using dynamic load
balancing. The computing environment usually combines multiple CPUs and
GPUs and requires tuning and supervision. Some frameworks, such as StarPU
[14], Qilin [15] and Scout [16], facilitate load sharing in such environments.
Their main limiting factor is that they are not designed as external modules, so
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the user must implement his/her algorithm within them, using their directives
and APIs.

In [17], the authors propose a genetic algorithm for NAS that uses a Galaxy
2, an HPC simulator and management platform developed by Stellar Science,
to perform asynchronous load sharing. A Galaxy server is created with a mas-
ter process and different workers that evaluate individuals. This structure is
similar to what it is pursued in this work. However, Galaxy 2 is not open-
source software, and the programmer is restricted to use the functionalities
defined in it.

In [18], the authors design a NAS framework for building accurate yet fast
neural networks. The evaluation of individuals rely on MENNDL, a software
package written in PyTorch, a deep learning framework. It uses MPI for asyn-
chronous communication between nodes. Their goal is similar to ours, i.e.,
distributing the evaluation of neural networks among GPUs and CPUs. How-
ever, their management scheme is embedded in the optimization algorithm,
which makes it hard to apply their method to other optimizers.

In [19], the authors propose a framework for implementing and studying
NAS methods. It is called DeepHyper and deals with limitations in parallel
executions and scalability. It uses Balsam [20], a general-purpose framework for
managing workflows in HPC environments. Balsam relies on MPI to distribute
the load between nodes, maintaining a PostgreSQL database with the status of
the different tasks. In theory, applications require no modification to run inside
Balsam. However, evaluating a candidate design does not necessarily need any
GPU. It is desirable to know a priori the feasibility of architectures and allocate
the resources accordingly. Since a pre-processing stage is needed, it would
be linked to the optimizer, and load distribution would have to be managed
separately from Balsam. Therefore, despite being a system external to the
application, it is not completely adapted to the problem at hand. Moreover,
the generality of this solution introduces unnecessary overhead.

In the present work, the proposed solution differs from the previous ones
due to its simple design that does not depend on the optimizer. Hence, it can
be easily associated with any other optimization algorithm. Furthermore, it is
built using only OpenMP and MPI with the widely-used Slurm queuing sys-
tem, which eliminates the extra overhead that would be caused by creating
databases and auxiliary data structures. The proposed solution can be easily
configured to handle different GPUs and CPUs and only uses open-source tech-
nologies. Finally, the proposal can become a standard solution to NAS methods
considering different types of candidate neural network designs. It allows bal-
ancing the evaluation of viable and non-viable architectures efficiently, saving
resources and only allocating them for the tasks required.

3 Methodology

This section explains in detail the developed tool for automatically designing
neural networks. This description includes the optimization algorithm, the
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architecture encoding scheme, the cost function, and the parallel multi-GPU
implementation.

3.1 Teaching-Learning-based Optimization (TLBO)

TLBO is a population-based meta-heuristic proposed in [10] for continuous
large-scale optimization. As a meta-heuristic, it is independent of the objective
function, which is mainly seen as a black box. This algorithm is widely used
due to its applicability, simplicity of implementation and configuration, and
effectiveness [21–23].

TLBO simulates a class of students that interact with each other to improve
their skills. In practical terms, each student or individual is a candidate
solution for the problem at hand. As introduced, this method lacks metaphor-
specific parameters. It only expects the population size and the number of
cycles to run. This aspect is highly appreciated because most population-based
meta-heuristics have numerous parameters to tune for balancing the effort
in exploring new regions of the search space and exploiting the known ones,
which makes their use more difficult [10, 24, 25]. For TLBO, one can directly
enhance the access to new zones with larger populations and let them be stud-
ied in depth with more cycles [23]. Provided with these two parameters, TLBO
starts by creating and evaluating as many solutions as required. Once the ini-
tial population has been created and evaluated, TLBO executes its main loop,
which consists of the teacher and the student stages.

The teacher stage simulates how students learn from their professor. At
this phase, the best solution in the population becomes the professor, T . Then,
TLBO attempts to shift every candidate solution towards it in the search
space. More specifically, after identifying T , the method computes a vector
M with the average value of the current population for each dimension of the
search space. Next, for each solution candidate solution S, TLBO computes
a modified (shifted) version of it, S′. It follows Eq. (1), which is expressed in
terms of each vector component or dimension of the search space, i. TF , known
as the ‘teaching factor’, is a random integer that can be either 1 or 2. ri is a
random number in the real range [0, 1]. Both ri and TF are fixed for the current
iteration and stage. After computing each modified candidate solution, those
that outperform their original version replace it, while the rest are discarded.

S′
i = Si + ri (Ti − TFMi) (1)

The learner stage models how students learn from their partners. For this
purpose, TLBO pairs each candidate solution, S, with another different from
it, PS . The aim is to create a modified version of it, S′, according to Eq.
(2). It is also expressed in terms of vector components, so ri corresponds to
a real random number in the range [0, 1] linked to component i. Again, these
random factors are fixed for the current iteration and stage. As can be seen, this
stage attempts a local shift for each candidate solution, S, in the (improving)
direction defined with its pair. At the end of this stage, the altered solutions
that outperform their initial version replace them.
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S′
i =

{
Si + ri (Si − PSi

) if S is better than PS

Si + ri (PSi
− Si) otherwise

(2)

After executing the requested number of cycles, TLBO returns the best
candidate solution in the population.

3.2 Representation of candidate solutions

TLBO aims at continuous optimization problems, so its candidate solutions
must be vectors in RN , where N is the number of dimensions of the search
space. Accordingly, as explained in the next section, the objective function
ranking the candidate solutions, f , must be of the form f : RN → R.

In this context, each candidate solution has to represent a neural network
architecture. For this purpose, and considering the previous requirements, neu-
ral network architectures are encoded as vectors of real numbers. The definition
of a neural network architecture consists of a sequence of layers. Each layer is
a set of artificial neurons of a particular type and configuration. Hence, there
are two fundamental pieces of data to represent, i.e., the type of layer and its
configuration. The proposed encoding stores this information using a single
real value per layer, i. The integer part, Ii, defines the type of layer, while the
decimal part, Di, is mapped into its corresponding space of possible configu-
rations. The user is responsible for defining the number of layers to consider,
which ultimately defines the problem dimension, i.e., N , for TLBO (or any
other continuous optimizer, as the representation of solutions is not linked to
this method).

When decoding, relating any vector component with a particular type of
layer is straightforward. For instance, if 3 types of layers are considered, the
encoded value will correspond to the first, the second, or the third if the value
is in the range [0,1), [1,2), or [2, 3), respectively. As can be seen, the type
is ultimately defined by the integer part of the corresponding vector because
the decimal part will always be between 0 and 0.999... Logically, the user
is responsible for selecting the appropriate types of layers depending on the
application. However, it is advisable to reserve a special type for disabled
layers. By proceeding this way, the search is more flexible because the optimizer
can find simpler architectures, i.e., with fewer layers than N , which becomes
an upper bound in reality. This approach overcomes the assumption of fixed-
length solutions of traditional optimizers, including TLBO. A similar strategy
is applied in [26], where the authors look for the most appropriate subset of
heliostats to activate in a solar power tower plant. Namely, they assign the
value of 0 to disabled heliostats and 1 to the enabled ones so that the number of
dimensions is fixed from the perspective of the population-based optimization
used. Similarly, the authors of [8] also consider a type for disabled layers to hide
some dimensions of the candidate solutions to their PSO method for neural
network architecture optimization.

Interpreting the decimal part, Di, linked to a particular integer part, Ii, is
more sophisticated. Di encodes the configuration of the type of layer defined
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by Ii, but the number of parameters (and their range) significantly varies from
one type to another. The strategy proposed to map the space of parameters
into a single decimal value is inspired by how multidimensional matrices can
be represented in a single vector in Informatics. In this situation, the length
of the vector results from multiplying the size of each dimension. This length
can be ultimately scaled as a value in the range [0, 1]. Notice that revert-
ing the scaling can require rounding, so nearby values might result in the
same decoded value. Nevertheless, TLBO, like most population-based meta-
heuristics, is derivative-free, so it is not affected by occasional plateaus in the
search space. Furthermore, it is necessary to work with double precision to
ensure that all the possible configurations of complex layers can be thoroughly
represented. Otherwise, some intermediate values could be lost at rounding.
Regardless, that situation would not be critical either since this kind of meta-
heuristic renounces to the certainty of finding the optimal solution due to
practical limitations. In other words, not being able to achieve many configu-
rations with few variations between them would not make a big difference in
the results achieved.

For illustrating the previous explanation, one can think in a particular type
of layer that expects two integer parameters. Let the first be the activation
function considering 4 possible values. Let the second be the number of neu-
rons to use, with a limit of 500. In this situation, the space of configurations
can be represented by a 4× 500 matrix. The resulting vector would have 2000
positions. Figure 1 depicts this context and the interpretation of a hypothet-
ical decimal part of 0.85. Notice that the integer part would have previously
defined the defined type of layer. It is also relevant to mention that this kind
of matrix of possible configurations can be implemented as a look-up table if
necessary, so the values contained do not need to be always consecutive inter-
vals. Furthermore, if any of the layer-specific parameter were not integer, it
would need to be sampled accordingly.

3.3 Cost function

As mentioned above, the cost or objective function used to evaluate and rank
any candidate solution must be of the form f : RN → R. However, before
defining it, it is necessary to determine if there are feasible and unfeasible
neural network architectures. If every architecture is feasible, the cost function
can be the average quality of the corresponding network with a validation
dataset after having been built and trained. Both the dataset and training
conditions, such as the stopping criteria, must common for every solution.

If not every architecture is feasible, those that are can be evaluated as
described above. However, it is also necessary to define how to mark unfeasible
ones, i.e., undesirable solutions, while also being able to distinguish which
are the most problematic ones. This approach is one of the most popular for
handling constraints with population-based meta-heuristics [27].

For the problem used later for testing, not every layer combination is possi-
ble. For instance, after 3 convolutional layers, the resulting images have a size
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of 5 x 5. In this situation, it is not possible to apply another convolutional layer
with a filter size of 7, as the size of the obtained images would be lower than 0.

In this case, unfeasible solutions obtain a very high value compared to fea-
sible solutions. The value is 1000 (a high number never reached by feasible
solutions) minus the number of correct layers. This is useful because, for exam-
ple, a neural network containing a fully connected layer as the initial layer is
worse than another neural network producing an error in the last layer. Hence,
it is possible not only to distinguish between feasible and unfeasible ones but
also to compare and rank unfeasible ones. This latter aspect gives the opti-
mizer a higher resolution when working with that kind of solution and trying
to improve it.

As explained, the more inconsistencies that a candidate solution has,
the less value that it receives. Notice that it is convenient to include some
feasible solutions in the initial population of the optimizer. Otherwise, the
computational effort to converge to promising architectures is higher.

Concerning the evaluation of feasible candidate solutions, the associated
neural networks are trained using the backpropagation algorithm and the
Adam optimizer with a batch size of 16 and a learning rate of 0.0004. The
training does not stop after a fixed number of iterations. Instead, it concludes
when the evaluated neural network is unable to reduce the error committed
with the validation dataset after five consecutive iterations. This approach
implicitly adapts to the quality of each solution. It is also well aligned with
the current trends in neural network training to avoid over-fitting. Thus, the
cost function to minimize, can be expressed as follows:

cost = Cross Entropy (3)

(…)

0
1
2
3

0 1 499

Activation
Function

Number of neurons

(…)
0 1 1999

0.0 - 0.9999…

0.85 * (2000-1) ≃ 1699 1699 / 500 = 3
1699 % 500 = 199

(row)
(column) 

1 …
1 …

…
…

1

1

500

500

500

500

Decimal part Activation function: 4
Number of neurons: 200

(rows)

(columns)

Architecture
Fig. 1: Example of the decoding of the decimal part linked to a type of layer.
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where Cross Entropy is the error of the network after being trained with the
training dataset and evaluated with the validation dataset.

3.4 Sequential evaluation of candidate solutions

As explained, TLBO starts with an initial population of user-defined size. It
consists of 2 candidate solutions representing architectures known to perform
well with the given dataset, such as LeNet-CNN [28]. 90% of the initial solu-
tions are randomly generated, but their generation avoids violating constraints,
such as having a filter size in a convolutional layer greater than the expected
image size. Finally, the remaining solutions are totally random, which might
include unfeasible architectures with poor values.

Unfeasible architectures can be evaluated on CPUs because they do not
need to be trained with backpropagation. On the contrary, feasible ones should
be assessed on GPUs. However, their feasibility is unknown before being eval-
uated, so it is impossible to divide the computational load between CPUs and
GPUs in advance. Therefore, every candidate solution is preliminarily assessed
on a CPU, and those requiring a GPU are put in a queue to access this kind of
computational resource sequentially. This scheme remains unaltered at every
stage of the optimizer.

3.5 Parallel evaluation of candidate solutions

The evaluation is decoupled from the optimizer and implemented as an exter-
nal module known as the ‘oracle’. The oracle is synchronously called by the
optimizer to evaluate the set of candidate solutions involved in a particular
stage. Hence, it is responsible for knowing how to evaluate the different types of
candidate solutions and the available resources. The communication between
the optimizer and the oracle is through text files.

The oracle runs two phases (see Figure 2). The first runs on a CPU and
checks the feasibility of the given solutions. Unfeasible ones obtain their final
value at that point (a penalized value, as explained). As this stage does not
require any GPU, it runs exploiting the number of cores of the machine
where it runs using OpenMP and a shared-memory model. More specifically,
each thread processes one of the encoded neural network architectures. It
is important to remark that the evaluation of individuals in the first phase
cannot directly access GPUs. In that case, all the cores would try to access
GPU resources to evaluate their individuals, which is unsupported by the
configuration of the underlying deep learning framework.

The second phase of the oracle is reserved for solutions encoding feasible
architectures. However, their complexity and the required run-time might vary
significantly between them. Thus, they cannot be statically distributed among
the available GPUs in advance. It is necessary to opt for dynamic load balanc-
ing. Since the GPUs can be in different machines, the implementation of the
oracle ultimately follows a distributed-memory model using MPI. There will
be a worker process per GPU, and if a certain node features several GPUs, it
will execute the same number of workers.
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Fig. 2: Oracle phases

The oracle is integrated within a system of queues powered by Slurm. It
generates a master process and as many workers as GPUs on the available
nodes. The processes are distributed among the available nodes using the RRS
expressions1.

Accordingly, after executing the first phase, the master process distributes
the workload among the different worker nodes. Firstly, each candidate solu-
tion is assigned to a worker process with its own GPU. When a worker ends
evaluating a solution, it sends back the obtained value for the master to store
this information. This worker will keep waiting for new tasks either until receiv-
ing a new solution to evaluate or the termination signal. Algorithm 1 shows
the pseudo-code describing the second stage of the oracle and how it manages
the different GPU nodes.

4 Experimentation and results

4.1 Implementation details

The optimization algorithm has been adapted from the public C implementa-
tion published in [21]. It has been necessary to externalize the evaluation of
solutions to make TLBO use the oracle by passing and parsing text files. The
oracle has also been implemented in C within an MPI structure of division of
tasks. There is a master process responsible for the input and output with the
calling optimizer. It also executes the initial evaluation of the input solutions
(first stage) using OpenMP to benefit from running in a multi-core machine.
Besides, the master process is designed to request the evaluation of solutions
requiring a GPU (second stage) to worker processors. The worker processors
limit to wait for new solutions to evaluate with the GPU that they are attached
to and send the result to the master. This kind of evaluation internally launches

1https://docs.oracle.com/cd/E19061-01/hpc.cluster30/806-0296-10/6j9llte66/index.html
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Algorithm 1 Behavior of the oracle at stage 2 using MPI

function master(numWorkers,total)
Distribute the solutions among the available workers
sent← numWorkers
while processed < total do

Receive the answer from worker i
processed++;
if sent < total then

Sent solution to worker i
sent++

else
Send termination request to workers
Finish the loop

end if
end while

end function
function worker(rank)

while 1 do
Receive message from the master
if message contains a solution then

Evaluate the solution using my GPU
Send the result to the master

else
Terminate execution

end if
end while

end function
function main

if rank is 0 then
master(numWorkers,total)

else
worker(rank)

end if
end function

a Python script that uses Tensorflow, a deep learning framework, to build the
corresponding network and assess it.

4.2 HPC infrastructure

The experimentation has been carried out in the Bull cluster of the
Supercomputing-Algorithms research group of the University of Almeŕıa,
Spain. In this cluster, 2 nodes featuring 2 GPUs NVIDIA TESLA V100, 2
processors AMD EPYC 7302 with 16 cores, and 512 GB of RAM DDR4 each
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Fig. 3: Resulting Neural Network Architecture

have been used for the GPU workers of the oracle. Another node with 2 pro-
cessors AMD EPYC Rome 7642 of 48 cores and 512 GB of RAM DDR4 have
been reserved for the TLBO algorithm and the master process of the oracle.

4.3 Experiments

4.3.1 Evaluation of the optimization method

For evaluating the proposal made, this work tries to obtain a neural network
architecture with less than 10 layers for the CIFAR-10 dataset, restricted to
150,000 parameters. The number of parameters is of great importance in IoT
systems, as the neural networks have to be as small as possible due to memory
constraints in microcontrollers. For this purpose, the proposed neural network
architecture optimizer has been executed with a population size of 1000 indi-
viduals and 50 cycles. The achieved result has 7 layers with 71,859 parameters
in total. It obtains a top-1 accuracy level of 65%, which outperforms the initial
solutions provided to the system (defined by human experts), whose accuracy
was 55% and 61%, respectively. This network (Figure 3) consists of the fol-
lowing layers: One convolutional layer with 61 coordinate filters of size 5 x 6
and strides of size 3 x 1 and sigmoid as activation function, 1 dropout layer of
62% hidden neurons, 1 Average Pooling layer with 2 x 4 as strides dimensions,
one convolutional layer with 82 coordinate filters of size 3 x 2 and strides of
2 x 3 and ReLu as activation function, one Batch Normalization layer, and 2
fully-connected layers of 25 and 10 neurons, with ReLu and Softmax as activa-
tion functions respectively. Regardless, the proposed parallelization scheme is
transparent to the optimizer. It also allows exploring more solutions per unit
of time, which would benefit this or any other population-based meta-heuristic
by making it possible to work with more individuals and reducing design times.

4.3.2 Evaluation of the performance

Table 1 shows the execution time for 3 different configurations. The first one
executes a single optimization cycle using a single CPU thread and a GPU.
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Conf 1 Conf 2 Conf 3
Threads 1 96 96
GPUs 1 1 4

Time (s)
CPU 630 7 8
GPUs 6140 6117 1603
Total 6770 6124 1611

Speed Up 1 1,10 4,20

Table 1: Execution time and speedup of the different configurations.

This configuration corresponds to the sequential version of the system, and it
takes 6 770 seconds for evaluating all the individuals up to the first cycle.

The second configuration shows the results of parallelizing only the first
stage of the oracle with OpenMP. More specifically, it covers the initial evalu-
ation of all the candidate solutions to tag them as feasible or unfeasible using
a CPU. After that, the oracle has a single worker with a GPU for composing
and assessing the feasible neural networks encoded. Thus, this configuration
cannot exploit the availability of multiple GPUs. In this case, as can be seen,
the first stage of evaluation takes 7 seconds instead of 630, which represents
an speedup of 90. This value is near to the ideal speedup of the system, which
would be 96 as the machine has 96 cores in total. In general terms, consider-
ing the CPU and GPU processing time, the overall speedup achieved is 1.10
due to the prominent amount of GPU time compared to the CPU one, which
is well-aligned with Amdahl’s law.

Finally, the third configuration combines the 96 threads for the first stage
of the oracle along with 4 GPUs for the second one. In this case, the GPU time
consumes 1603 seconds in total, which represents a speedup of 3.83. Again,
this acceleration factor is near to the ideal one, which would be 4 for this part
of the system as it has 4 equal GPUs. Considering both stages of the oracle,
the overall speedup is 4.20, and the ideal one would be 4.39.

5 Conclusions and future work

This work has described how to use the widely-used Teaching-Learning-based
Optimization (TLBO) method for designing neural network architectures for
specific applications. Since the optimizer is for continuous optimization prob-
lems, it has been necessary to incorporate a new encoding scheme which is
able to represent neural network architectures in vectors of real numbers. This
strategy, which is optimizer-independent, is based on how multi-dimensional
matrices can be stored in a single-dimension matrix (vector) in Computer Sci-
ence. It can represent any architecture using a single dimension or component.
Additionally, the use of a class for disabled layer enhances the flexibility of the
method.

This proposal has been studied by designing a convolutional neural net-
work for image classification based on the CIFAR-10 dataset. The proposed
method has been able to find neural network architectures outperforming
those designed by human experts for the referred dataset with the imposed
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restrictions. These results support the proposal and let us think of the possi-
bility of replacing the tedious human-based stages of neural network design by
automatic optimizers.

This work focuses on the use of heterogeneous high-performance computing
platforms to support the network design method. Population-based meta-
heuristics like TLBO generally need to evaluate numerous solutions, which is
computationally demanding, and also need GPUs to run in reasonable times.
Hence, the parallelization strategy focuses on the evaluation of candidate solu-
tion, i.e., potential neural network architectures. It is decoupled from the
optimizer and implemented as an external module known as the oracle, which
is responsible for assessing the candidate solutions provided by the optimizer
and managing the computational resources dynamically. The oracle considers
two consecutive stages: the first one runs on CPU using OpenMP to detect
feasible and unfeasible architectures. Feasible ones, which will need further
evaluation on GPU, pass to the second stage. At it, the oracle uses a master
process and different workers linked to GPUs to dynamically assess the feasible
architectures. This strategy obtains a speedup factor of 90 for the first stage
using 96 CPU cores, and a speedup factor of 3.83 for the second one using 4
GPUs. Together, the overall speedup achieved is 4.2 out of a maximum of 4.39
with respect to a sequential execution.

In the future, we will implement a mechanism to group disabled lay-
ers altogether to have permanently simplified architectures and reduce the
search space. The possibility of reducing the training dataset to accelerate
the assessment of candidate solutions will be also considered. Finally, differ-
ent optimization methods will be compared within the proposed framework of
continuous neural network encoding and decoupled oracle-based evaluation.

Declarations

Ethical Approval

This article does not contain any studies with human participants or animals
performed by any of the authors.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceptualisation, M.L., N.C.C, J.F.S, B.P and P.M.O; Methodology: M.L.,
N.C.C, J.F.S, B.P and P.M.O; Implementation: M.L. and N.C.C; Experimen-
tation: M.L., N.C.C; Writing - original draft preparation: M.L., N.C.C, J.F.S
and P.M.O; Writing - review and editing: J.F.S, B.P and P.M.O. All authors
have read and agreed to the published version of the manuscript.



Springer Nature 2021 LATEX template

16 Multi-GPU neural network design

Funding

This work has been funded by the projects R+D+i RTI2018-095993-B-I00
and PID2021-123278OB-I00 from MCI-N/AEI/10.13039/501100011033/ and
ERDF funds; by the Andalusian regional government through the project
P18-RT-119, by the University of Almeŕıa through the project UAL18-TIC-
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[22] Cruz, N.C., Maŕın, M., Redondo, J.L., Ortigosa, E.M., Ortigosa, P.M.:
A comparative study of stochastic optimizers for fitting neuron mod-
els. application to the cerebellar granule cell. Informatica 32(3), 477–498
(2021). https://doi.org/10.15388/21-INFOR450

[23] Torres-Moreno, J.L., Cruz, N.C., Álvarez, J.D., Redondo, J.L., Giménez-
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